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Abstract: Expanding the frontiers of information pro-
cessing technologies and, in particular, computing with 
ever-increasing speed and capacity has long been recog-
nized as an important societal challenge, calling for the 
development of the next generation of quantum technolo-
gies. With its potential to exponentially increase comput-
ing power, quantum computing opens up possibilities to 
carry out calculations that ordinary computers could not 
finish in the lifetime of the universe, whereas optical com-
munications based on quantum cryptography become 
completely secure. At the same time, the emergence of Big 
Data and the ever-increasing demands of miniaturization 
and energy-saving technologies bring about additional 
fundamental problems and technological challenges to 
be addressed in scientific disciplines dealing with light-
matter interactions. In this context, quantum plasmonics 
represents one of the most promising and fundamental 
research directions and, indeed, the only one that enables 
the ultimate miniaturization of photonic components for 
quantum optics when being taken to extreme limits in 
light-matter interactions.

Keywords: quantum plasmonics; extreme plasmonics; 
light-matter interactions; quantum technology.

Expanding the frontiers of information processing tech-
nologies and, in particular, computing with ever-increas-
ing speed and capacity has long been recognized as an 
important societal challenge, calling for the development 
of the next generation of quantum technologies [1]. With 
its potential to exponentially increase computing power, 
quantum computing opens up possibilities to carry out 
calculations that ordinary computers could not finish in 
the lifetime of the universe, whereas optical communica-
tions based on quantum cryptography become completely 

secure. At the same time, the emergence of Big Data and the 
ever-increasing demands of miniaturization and energy-
saving technologies bring about additional fundamental 
problems and technological challenges to be addressed 
in scientific disciplines dealing with light-matter inter-
actions. In this context, quantum plasmonics represents 
one of the most promising and fundamental research 
directions [2, 3] and, indeed, the only one that enables 
the ultimate miniaturization of photonic components 
for quantum optics when being taken to extreme limits 
in light-matter interactions (Figure 1). Whereas plasmon 
phenomena are inherently of quantum nature, surface 
plasmons (SPs) [4] have, for decades, been successfully 
explored with a mindset of classical electrodynamics [5] 
(bottom left corner). However, fundamental problems 
found in all corners of this schematic chart (Figure 1) 
increase exponentially their complexity when coming to 
experience also fundamental size limitations posed by the 
very nature of both light and matter, both consisting of 
quanta and thereby being discrete. With this perspective, 
we anticipate an emerging new era of “quantum plasmon-
ics” (top right corner), where both light and matter exhibit 
quantum mechanical effects. We expect numerous chal-
lenges emerging out of the “treasure trove” while also 
providing the fuel for emerging quantum technologies. 
Below, we discuss some intriguing aspects of the different 
regimes outlined in Figure 1.

Recently, there have been significant efforts in what 
we here term “extreme plasmonics” (bottom right corner), 
where extremely confined plasmonic modes [6] are pro-
moting electrodynamics beyond the accurate descrip-
tion of the local-response approximation of light-matter 
interactions [7]. Intriguing and classically unexpected 
experimental observations include frequency blue-shifts 
of plasmon resonances in few-nanometer silver nano-
particles [8, 9] and gold plasmonic gap structures [10] as 
well as gap-dependent broadening and onset of charge-
transfer plasmons in dimers and gap structures with sub-
nanometer gaps [11–13]. Theoretical explanations range 
from hydrodynamic nonlocal response [14, 15] to ab initio 
quantum mechanics [16, 17], accounting for quantum 
effects such as quantum pressure waves, Landau damping, 
quantum spill-out, and tunneling. In the other extreme, 
“quantum optics and single-photon phenomena” (top left 
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corner) have been interfaced and enhanced by the classi-
cal electrodynamics of plasmonic nanostructures [18, 19]. 
Here, the quantumness is in the nonclassical states of the 
electromagnetic field or in the quantum properties of the 
light emitters [20, 21].

It is the merging of quantum optics with extreme plas-
monics that now drives us to new exciting “quantum plas-
monics” (top right corner), being quantum in a double 
sense: both light and matter exhibit quantum mechanical 
effects. As an appetizer from this almost virgin territory of 
quantum plasmonics, we here mention the recent explo-
ration of single-molecule strong coupling dynamics in 
subnanometer plasmonic gap cavities [22].

Many crucial issues in modern plasmonics revolve 
around the fact that the most exciting and unique feature 
of plasmonic modes, viz., the feasibility of broadband 
and extreme (down to atomic scale) mode confinement 
as well as associated enormous field enhancement by the 
use of metal nanostructures, is directly associated with 
the energy loss (via radiation absorption) in metal that 
progressively increases with the field confinement [23]. 
The fundamental problem is then to understand to what 
extent this unique feature, enabling both ultimate min-
iaturization [24] and ultra-strong coupling to quantum 
emitters (QE) [25], should be exercised before the inevi-
table energy loss destroys the outcome of its exercise. 

Enormous challenges emerge already on the way to proper 
formulation of the associated problems, as the whole well-
developed macroscopic treatment of light-matter interac-
tions breaks down and no longer works on the nanoscale, 
requiring nonlocal and quantum effects to be taken into 
account.

The whole set of fundamental problems associated 
with extreme plasmonics can be factorized into several 
tradeoffs representing conflicting tendencies that are 
being enormously enhanced when reaching extreme 
limits. A careful analysis and assessment of these trade-
offs is indispensable for the accurate mapping of the field 
boundaries and potential developments. In this context, 
the exploration of fundamental limits in light-matter inter-
actions can be categorized into several major research 
challenges that are all related to the aforementioned key 
issues.

Challenges It is known [25] that placing QEs in optical 
resonators with high-quality factors (Q) and/or very small 
volumes (V) results in the spontaneous emission (SE) 
enhancement described by the Purcell factor F ~ Q/V. 
Whereas extremely high Q values (> 106) can be attained 
with photonic crystal microcavities, the rate of single-
photon QE emission out of such a resonator is inevitably 
limited due to its high-quality factor [25]. Alternatively, 
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Figure 1: Quantum aspects of plasmonics exhibit both in the quantum nonlocal response of matter and in the quantized light fields.
With the developments of quantum plasmonics, we anticipate a “treasure trove” of emerging quantum technologies that harvest from the 
quantum concert of both light and matter. In the main text, we outline three challenges associated with this.

Brought to you by | DTU - Technical Information Center of Denmark (DTIC)
Authenticated

Download Date | 5/29/17 10:47 AM



S.I. Bozhevolnyi and N.A. Mortensen: Plasmonics for emerging quantum technologies      3

localized surface-plasmon (LSP) excitations enable 
extreme light confinement (down to nanometer-scale), 
thereby providing unique possibilities for SE enhance-
ment [2]. The quality factors of SP resonators are, contrary 
to the previous case, rather limited (Q < 100), and ultra-
bright single-photon sources become feasible by squeez-
ing the LSP volume (V → 0). At the same time, extreme 
LSP confinement leads to increasing QE quenching and 
thus decreasing the QE quantum yield, so that the issue 
of ultimate SE enhancement remains open (Ch1). It should 
be noted that the most promising results (ultrafast SE 
emission) have been obtained with special SP resonators, 
viz., metal-insulator-metal nanocavities supporting gap 
SPs [26], whose unique features require very careful theo-
retical analysis with nonlocal and quantum effects being 
taken into account.

The problem of SE enhancement in the case of QE 
coupled to propagating waveguide SPs (WSP) is some-
what similar to and yet very much different from the above 
(Ch2). In this case, the Purcell factor is determined by 
the ratio between the waveguide mode group index and 
the mode area (i.e. F ~ ng/Sm). Whereas very high group 
indexes (> 102) can be attained with photonic crystal 
waveguides, the bandwidth available for QE emission into 
such a waveguide is inevitably limited due to its proxim-
ity to the (prohibited) band gap. Contrary to that, various 
WSP modes, including the gap and channel SP modes 
[27], can be confined (practically at any wavelength) 
within extremely small cross-sections, thereby increas-
ing the QE-WSP coupling efficiency [28]. At the same time, 
however, the loss-related problems would also become 
significant. In fact, one should simultaneously maximize 
the Purcell factor, the coupling to propagating SP modes 
(rather than to lossy SPs), and the normalized SP propaga-
tion length [19]. The record of the corresponding product 
is currently ~ 6.6 [19], but its fundamental limit is yet to be 
established. A novel issue in this context is the problem 
of unidirectional and efficient SE into WSP modes [29], as 
one would ideally couple all emitted photons into WSP 
quanta propagating in the same direction.

Another unique feature of SP-based waveguides (Ch3) 
is related to the possibility of seamless interfacing of 
electronic and photonic circuits by employing the same 
metal circuitry for both guiding the optical radiation and 
transmitting the electrical signals that control the guid-
ance [30]. The latter implies that metal electrodes used for 
radiation control are located at the maximum of the WSP 
mode intensity (reached at the metal-dielectric interface), 
maximizing the controlling efficiency and thus ensur-
ing considerably lower power requirements. This feature 

opens unique perspectives for substantial reductions in 
sizes and energy of SP-based photonic components and 
circuits while extending the operation bandwidth [31]. It 
also allows one for the realization of conceptually new 
functionalities and exploitation of new materials with 
fascinating properties, such as single-crystalline gold 
films [32] or graphene [33], as demonstrated, for example, 
by realizing hybrid SP-graphene waveguide modulators 
[34]. The degree of WSP modulation can be enhanced by 
squeezing the WSP mode area and thereby increasing 
the slowdown factor. The associated increase in the WSP 
absorption has to be carefully investigated and analyzed 
to take advantage of the enormous potential of the afore-
mentioned unique WSP characteristics. Proper analy-
sis requires the further development of the theoretical 
models tailored suitably for dealing with nanostructured 
light-matter interactions.

Spinoff directions Investigations of the underlying 
physics and fundamental limitations associated with LSP 
excitations would be greatly beneficial for the whole field 
of flat optics based on phase and amplitude-gradient meta-
surfaces [35], allowing one to mould the radiation with an 
unprecedented control over its polarization and propaga-
tion characteristics as well as to produce surface colora-
tion at nanoscale [36]. In the field of sustainable energy 
sources, LSP-induced resonance energy transfer becomes 
increasingly important for solar energy conversion [37]. 
Moreover, recent groundbreaking discoveries emphasize 
that even inevitable light absorption in plasmonics can 
be turned into gain within various topics: from plasmon-
enhanced optical tweezing to thermal therapy and data 
storage [38]. Finally, mastering unique plasmonic features 
associated with the excitation of both LSP and WSP would 
most certainly provide additional possibilities for pairing 
photons with phonons in quantum optomechanics [39]. 
It is thus clear that studies related to the above objec-
tives would have major consequences and implications 
to many subfields of modern nanoscience and emerging 
quantum technologies [40], including radiation-lifetime 
engineering, plasmon-enhanced chemistry, single-mole-
cule sensing, quantum microscopy, quantum optics, and 
optomechanics in general and single-photon sources in 
particular.
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