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RESEARCH ARTICLE Open Access

Transcriptional changes induced by
bevacizumab combination therapy in
responding and non-responding recurrent
glioblastoma patients
Thomas Urup1*, Line Mærsk Staunstrup2, Signe Regner Michaelsen1, Kristoffer Vitting-Seerup2, Marc Bennedbæk3,
Anders Toft1, Lars Rønn Olsen4,5, Lars Jønson3, Shohreh Issazadeh-Navikas6, Helle Broholm7, Petra Hamerlik1,8,
Hans Skovgaard Poulsen1,9 and Ulrik Lassen1,9,10

Abstract

Background: Bevacizumab combined with chemotherapy produces clinical durable response in 25–30% of
recurrent glioblastoma patients. This group of patients has shown improved survival and quality of life. The aim of
this study was to investigate changes in gene expression associated with response and resistance to bevacizumab
combination therapy.

Methods: Recurrent glioblastoma patients who had biomarker-accessible tumor tissue surgically removed both
before bevacizumab treatment and at time of progression were included. Patients were grouped into responders
(n = 7) and non-responders (n = 14). Gene expression profiling of formalin-fixed paraffin-embedded tumor tissue
was performed using RNA-sequencing.

Results: By comparing pretreatment samples of responders with those of non-responders no significant difference
was observed. In a paired comparison analysis of pre- and posttreatment samples of non-responders 1 gene was
significantly differentially expressed. In responders, this approach revealed 256 significantly differentially expressed
genes (72 down- and 184 up-regulated genes at the time of progression). Genes differentially expressed in
responders revealed a shift towards a more proneural and less mesenchymal phenotype at the time of progression.

Conclusions: Bevacizumab combination treatment demonstrated a significant impact on the transcriptional
changes in responders; but only minimal changes in non-responders. This suggests that non-responding
glioblastomas progress chaotically without following distinct gene expression changes while responding tumors
adaptively respond or progress by means of the same transcriptional changes. In conclusion, we hypothesize that
the identified gene expression changes of responding tumors are associated to bevacizumab response or resistance
mechanisms.
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Background
Glioblastoma is the most malignant primary brain tumor in
adults. Standard treatment comprises surgery followed by
radio-chemotherapy with concomitant and adjuvant temo-
zolomide. Despite this aggressive treatment the prognosis is
dismal with a median survival of 14.6 months [1]. Recur-
rence of glioblastoma is almost inevitable and at recurrence
numerous agents have shown limited clinical effect [2].
Glioblastoma is characterized by excessive and aberrant

angiogenesis. Anti-angiogenic agents inhibiting vascular
endothelial growth factor A (VEGF) have been shown to
normalize the tumor vasculature and improve blood flow
and drug delivery [3, 4]. This emphasizes the potential
value of combining anti-angiogenic therapy with drugs
targeting the tumor. Bevacizumab, a VEGF targeting anti-
body, in combination with chemotherapy is among the
most frequently used treatments in recurrent glioblastoma
patients. Although this treatment regimen has not proved
active in the total population of recurrent glioblastoma
patients [5], 25–30% of the patients achieve treatment
response (defined as radiological and clinical improve-
ment). This group of patients has demonstrated improved
survival as well as quality of life [6–9], highlighting the
importance of identifying predictive biomarkers for
bevacizumab efficacy.
Glioblastoma consists of a mixture of cancer cell

subclones, glial cells, stromal cells and immune cells, and
each of these cell populations adds to the tumor
heterogeneity. This complicates the interpretation of tumor
biomarker analysis. Nevertheless, gene expression profiling
of glioblastoma has identified four molecular subtypes,
namely Neural, Proneural, Classical and Mesenchymal, and
preliminary evidence indicates survival benefit in distinct
molecular subtypes treated with bevacizumab combination
therapy [10, 11]. However, the results of these two studies
have been inconsistent and we have along with others
shown that the subtypes do not impact bevacizumab re-
sponse in recurrent glioblastoma [12, 13].
Due to the rarity of paired, biomarker evaluable, recur-

rent glioblastoma tissue samples, our current knowledge
on bevacizumab response and resistance mechanisms is
based on preclinical animal studies and small clinical case
reports [14–19]. Recently, novel gene expression
technologies, including RNA-sequencing (RNA-Seq), have
shown high performance on formalin-fixed paraffin
embedded (FFPE) glioblastoma samples [10, 11]. This will
prove valuable for future clinical biomarker studies on
archived tumor tissue.
In this study, we hypothesized that bevacizumab com-

bination treatment exerts selective pressure on the tumors
and creates adaptive transcriptional changes as tumors re-
spond and progress. Accordingly, the aim was to identify
transcriptional changes by RNA-Seq in paired tumor sam-
ples, before and after bevacizumab treatment in both

responding and non-responding recurrent glioblastoma
patients.

Methods
Patients
All patients with glioblastoma (pathologically confirmed
WHO grade IV) treated at recurrence with bevacizumab
plus irinotecan at Rigshospitalet in the period between
May 2005 and December 2014, were assessed for eligibi-
lity. Eligibility criteria for this study were 1) response eva-
luability and 2) biomarker accessible tumor tissue prior to
bevacizumab treatment and at time of progression after
bevacizumab treatment. The criteria are specified below.

Treatment and clinical follow-up
Treatment at recurrence followed Danish national
guidelines and was planned at a multidisciplinary team
conference. If the neurosurgeons considered the tumor
amenable for relapse surgery, this was offered in order to
remove as much tumor tissue as possible. Bevacizumab
and irinotecan therapy was administered according to a
published treatment protocol [20]. Prior to initiation of
treatment the patients had to have measurable progressive
disease by contrast-enhanced MRI after standard therapy
and had to be at least 4 weeks from prior chemotherapy
and 3 months from completion of radiation therapy. Clin-
ical and radiological follow-up was performed according
to protocol [20]. Treatment response was evaluated based
on the RANO criteria and response was confirmed on the
subsequent follow-up MRI [21]. Responders were defined
as patients with complete or partial response (CR + PR)
and non-responders were defined as patients with stable
disease (SD) or progressive disease (PD).

Sample acquisition and RNA preparation
A total of 264 patients were assessed for eligibility.
Twenty-four response-evaluable patients had surgery be-
fore and after bevacizumab treatment and had archived
paired FFPE tissue blocks at the Department of Pathology,
Rigshospitalet. Tissue review was conducted by a neuro-
pathologist, who was blinded to clinical outcome. The
number of tumor cells was estimated based on
hematoxylin and eosin-staining. Macrodissection was per-
formed in a few cases to remove large amounts of normal
brain tissue and only samples containing a tumor cell fre-
quency > 50% were selected for RNA-extraction. If tumor
blocks from relapse surgery prior to bevacizumab treat-
ment were available and contained sufficient amount of
tumor cells, they were included in preference to tumor
blocks from time of glioblastoma diagnosis. All post-
bevacizumab samples were obtained from relapse surgery
following progression on bevacizumab treatment and no
intermediate relapse therapy was administered. Three pa-
tients had an insufficient number of tumor cells in one of
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the paired tumor blocks and were excluded prior to ana-
lysis. Thus, a total of 21 patients with paired tumor blocks
were included in the study. Samples were sectioned into
3 × 10 μm thick FFPE sections and RNA was extracted
from paired tumor blocks in three equal sample-sized
batches using Deparaffinization Solution (Qiagen, Ca. No.
19093) and RNeasy FFPE kit (Qiagen, Ca. No. 73504).
RNA extracts were stored at −80 °C.

Library preparation for RNA-sequencing
Library preparation was carried out using the strand-
specific Ovation Human FFPE RNA-Seq Library Systems
from Nugen according to the instructions from the manu-
facturer. 250 ng of total RNA was used as input material
for the cDNA synthesis and the double stranded cDNA
was fragmented on the Covaris S2 (Covaris, Inc.) in micro-
tubes using the following settings: duty cycle–10%/Inten-
sity–5/cycles/burst-200 for a total of 180 s. RNA-Seq was
performed on Illumina HiSeq 2500 (Illumina) as
paired end sequencing 2 × 101 bases in Rapid Mode
with 5 samples per run resulting in approximately
175 million paired-end reads per run. Raw data was
converted to fastq files using CASAVA v1.8.2.

Filtering and differential expression analysis
Detailed description of the RNA-Seq analysis can be
found in Additional file 1: Supplementary Methods.
Briefly, the raw sequencing data was trimmed with

Trimmomatic and mapped to the human genome (hg19)
with TopHat2 [22, 23]. Genes were annotated (Ensemble
annotation, release 66) and expression levels were
quantified using featureCounts [24]. Libraries with less
than 10% of genes having more than 15 fragments were
discarded (n = 6). Only genes with at least 10 fragments
and an abundance of at least 3 Fragments Per Kilobase
per Million reads (FPKM) in at least 5 libraries in any of
the 4 patient-groups (Fig. 1) were kept for further ana-
lysis (15,630 genes). Differential expression analysis was
performed using edgeR (v. 3.12.0) either as paired ana-
lysis (comparison 1 and 3) or a batch-corrected analysis
(comparison 2, see Fig. 1). P-values were corrected for
multiple testing using the False Discovery Rate (FDR)
approach and genes with adjusted P-values <0.05 were
considered significant. Analysis was performed using the
software R version 3.2.2 (R Development Core Team,
Vienna, Aurstria, http://www.R-project.org). Expression
data are available at the NCBI Geo datasets, accession
number GSE79671.

Gene set enrichment analysis
Gene ontology gene-sets were downloaded (6th Jan
2016) from The European Bioinformatics Institute’s
official Gene Ontology mirror. Gene ontology terms from
the 5th level of the hierarchical gene ontology term tree
were used. Gene sets c2, c3, c6 and H were downloaded
from The Molecular Signatures Database (MSigDB [25],

Fig. 1 Transcriptional comparison analysis. Flowchart for transcriptional comparison analysis. The number of significantly differentially expressed
genes identified is shown below the three analyses
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via http://bioinf.wehi.edu.au/software/MSigDB/). The
enrichment analysis was done using a Fisher’s exact test
only considering the 15,630 tested genes, and P-values
were FDR corrected and adjusted P-value <0.05 were
considered significant.

Ingenuity pathway analysis
Differentially expressed genes were analyzed by QIA-
GEN’s Ingenuity Pathway Analysis (IPA) using the core
analysis with default settings and 15,630 tested genes
from the RNA-Seq dataset as background (IPA®,QIA-
GEN Redwood City, www.qiagen.com/ingenuity). The
software uses a large database of curated data and
computes a score for each network according to the
fit of the set of genes supplied in the analysis. The
scores were calculated by right-tailed Fisher’s exact
test. The scores derived from P-values, indicate the
likelihood of supplied genes belonging to a network
versus those obtained by chance. A consistency score
(Z-score) > 2 or < −2 indicates with ≥99% confidence
that a supplied gene network was not generated by
chance alone. Enrichment of “canonical pathways”
and “up-stream regulators” with a Z-score > 2 or <
−2 were considered for analysis [26].

Results
Patient characteristics
Patient characteristics and clinical outcome are shown
in Table 1. All patients had received standard treatment
with radio- and chemotherapy (temozolomide) prior to
bevacizumab combination therapy. All patients had
undergone relapse surgery prior to bevacizumab com-
bination therapy but only half of the resected tumor
samples were eligible for biomarker analysis. Conse-
quently, the remaining half of the samples obtained be-
fore bevacizumab therapy was from surgery before
standard treatment. Patient and sample characteristics
did not differ significantly between responders and
non-responders. Responders had a significantly longer
progression-free survival compared to non-responders
(P = 0.02) while no significant difference was observed
in overall survival (P = 0.16).
Of the 42 samples, high quality RNA-Seq data was

obtained on a total of 36 samples, leaving 20 “pre-
bevacizumab samples” and 16 “post-bevacizumab sam-
ples” and 16 paired samples. Of the paired samples, 6
patients were classified as responders and 10 patients
were classified as non-responders.

Group comparisons of gene expression profiles
To identify significantly differentially expressed genes
between groups, comparison analyses were performed
according to a pre-specified analytical strategy, shown

in Fig. 1. In the analyses, no confounding effects of
clinical factors and no genetic subgroups were
identified.
The comparison of pretreatment samples between

responders (n = 7) and non-responders (n = 13) demon-
strated no significantly differentially expressed genes.
To identify transcriptional changes at the time of pro-

gression compared to before treatment a paired analysis
was performed in non-responders (n = 10) and re-
sponders (n = 6), separately: In non-responders, 1 gene
was significantly upregulated at the time of progression
(Additional file 2: Table S1). In responders, a total of
256 genes were found significantly differentially
expressed, including 72 downregulated and 184 upregu-
lated genes at the time of progression (Additional file 3:
Table S2 and Additional file 4: Table S3).
To analyze if the larger number of patients in the

non-response group explained the absence of signifi-
cant genes we performed a subsampling analysis. This
analysis subsampled pairs of non-responders to random
groups of 6 patients (100 times) and here we found that
the mean number of differentially expressed genes
(mean: 2.6; range: 0–33) was approximately 100 times
lower than the number of significantly differentially
expressed genes found in responders (Additional file 5:
Figure S1), indicating the results are not due to differ-
ences in sample sizes.
Collectively, we were not able to identify differen-

tially expressed genes between pretreatment samples
of responders and non-responders. Furthermore, beva-
cizumab combination therapy produced a significant
impact on the transcriptional changes in responders
at time of progression, but only minimal changes in
non-responders.

Functional analysis of transcriptional changes in
responders
In contrast to the non-protein coding gene (small
nucleolar RNA, H/ACA box 22; SNORA22) identified
in non-responders, several of the 256 genes identified
in responders have been functionally well-characterized
in published literature. To identify functional mecha-
nisms related to the gene expression changes in re-
sponders, the Molecular Signatures Database (MSigDB)
was used to find gene ontologies and gene lists signifi-
cantly enriched by the up- and down-regulated genes.
The top-10 most significantly enriched gene ontologies
and gene lists are shown in Additional file 6: Table S4
and Additional file 7: Table S5.
Gene ontology analysis showed that the up-

regulated genes are implicated in nervous system
development, neuron signaling and neuron differenti-
ation. Down-regulated genes are involved in blood
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Table 1 Patient characteristics

All patients
(n = 21)

Responders
(n = 7)

Non-
responders
(n = 14)

P- value

Gender, n (%)

Male 11 (52) 5 (71) 6 (43) 0.36

Female 10 (48) 2 (29) 8 (57)

Age, years (range)

Median 52 (21–70) 53 (35–65) 48 (21–70) 0.66

WHO performance status, n (%)

0 10 (48) 2 (29) 8 (57) 0.42

1 9 (43) 4 (57) 5 (36)

2 2 (9) 1 (14) 1 (7)

Secondary glioblastoma, n (%)

Yes 1 (5) 0 1 (7) 1.00

No 20 (95) 7 (100) 13 (93)

Standard glioblastoma therapy,
n (%)

Yes 20 (95) 7 (100) 13 (93) 1.00

No 1 (5) 0 1 (7)

Prior lines of chemotherapy,
n (%)

1 18 (86) 7 (100) 11 (79) 0.52

2 3 (14) 0 3 (21)

Tumor size, cm2 (range)

Median 9 (1–28) 11 (4–28) 8 (1–16) 0.65

Multifocal disease, n (%)

Yes 2 (10) 0 2 (14) 0.53

No 19 (91) 7 (100) 12 (86)

Corticosteroid use, n (%)a

Yes 14 (67) 3 (43) 11 (79) 0.16

No 7 (33) 4 (57) 3 (21)

Neurocognitive deficit, n (%)

Yes 8 (38) 3 (43) 4 (29) 0.35

No 13 (62) 4 (57) 10 (71)

Primary sample, before
bevacizumab, n (%)

Initial glioblastoma diagnosis 10 (48) 3 (43) 7 (50) 1.00

Relapse surgery prior to
bevacizumab

11 (52) 4 (57) 7 (50)

Time duration from relapse
surgery (after bevacizumab),
months

to initiation of standard
therapy, median

17 17 17 0.76

to last bevacizumab
administration, median

2 2 2 0.26

Number of bevacizumab
treatment cyclesb

Median 6 8 6 0.08
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vessel development, collagen metabolism and endo-
dermal differentiation.
Among the gene lists significantly enriched by the

upregulated genes are three with high density of CpG-
promoters bearing histone H3 trimethylation mark at
K27 (H3K27me3). The gene list most significantly
enriched by the down-regulated genes characterizes
epithelial-mesenchymal transition. Interestingly, the
mesenchymal and proneural subtypes defined by
Verhaak overlapped significantly with the down-
regulated and up-regulated genes, respectively.
Collectively, this analysis shows that responding glio-

blastomas when progressing express reduced levels of
angiogenesis-related genes and higher levels of genes in-
volved in neuronal development and signaling. Further-
more, the gene profiles changed towards a less

mesenchymal phenotype and more proneural subtype at
progression.

Dynamical changes in molecular subtype profiles
To investigate if bevacizumab treatment affects the
expression of genes defining the molecular subtypes,
gene expression in the paired samples of responders
were analyzed according to subtype gene lists [11, 27].
As shown in Fig. 2, we observed that genes defining the
Verhaak classical subtype were almost equally up- and
downregulated, while the majority of mesenchymal
genes were down-regulated at the time of progression.
In contrast, most of the neural and proneural genes were
upregulated at progression. According to the adapted
Phillips classifier all genes of the mesenchymal subtype

Table 1 Patient characteristics (Continued)

Bevacizumab combination
therapy, n (%)

Irinotecan 17 (81) 6 (86) 11 (79) 1.00

Irinotecan and cetuximab 4 (19) 1 (14) 3 (21)

Response, n (%)

Response (CR + PR) 7 (33) 7 (100) 0

Stable disease 10 (48) 0 10 (71)

Progressive disease 4 (19) 0 4 (29)

Progression-free survival,
months

Median 5.4 10.8 3.9 0.02

Overall survival, months

Median 10.8 14.3 8.6 0.16

Abbreviations: CR complete response, PR partial response
a Prednisolone >10 mg
b Two bevacizumab combination treatments (28 days) defined one treatment cycle

Fig. 2 Expression of genes defining molecular subtypes. Paired gene expression fold-changes of genes defining molecular subtypes at the time
of progression compared to before initiation of bevacizumab therapy in responding patients. ● indicates the gene expression change according
to the 25% percentile of subtype genes. * Modified Phillips classifier used on the AVAglio dataset
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were down-regulated and all genes of the proneural
subtype were up-regulated at progression.

Ingenuity pathway analysis of transcriptional changes in
responders
In order to investigate the structure of possible regulatory
networks underlying the significant gene expression
changes in responders, we used the IPA. Unlike the en-
richment analysis, IPA allows identification of biological
networks, including gene relationships and interactions,
linked to specific known biological functions or pathways.
First, a canonical pathway analysis was performed to

find activated or inhibited pathways. “Integrin signaling”
was the only significantly inhibited pathway (Additional
file 8: Table S6). Fifteen canonical pathways were found
activated and one of these involved “calcium signaling”,
while the remaining 14 pathways all included protein
kinase C related signaling genes (PRKCB, PRKCE,
PRKCZ and others).
The IPA analysis identified 2 activated (estrogen recep-

tor and SPDEF) and 4 inhibited (TGF-β1, SMAD3, ERK
and ERRB2) upstream regulators (Additional file 9: Table
S7). Out of the 6 upstream regulators, TGF-β1 was the
most significant (Z-score = −4.0) and TGFB1 was the
only gene which, based on our RNA-Seq data, trended
toward a down-regulation in responders (raw P = 0.006;
adjusted P = 0.15; log2 fold-change = −1.08) while this
was not observed in non-responders (raw P = 0.57).
Consequently, we focused on TGF-β1 and by using the
mechanistic network function in IPA, we generated a
plausible directional network from TGF-β1 and its clos-
est related upstream regulator molecules. As shown in
Fig. 3, this network consisted of two inhibited regulators
SMAD3, HIF1A and one activated regulator PPARG, of
which HIF1A was the only gene trending toward a
down-regulation in responders (raw P = 0.03; adjusted

P = 0.36; log2 fold-change = −0.77), while this was not
observed in non-responders (raw P = 0.51). These
upstream-regulators directly or indirectly induce down-
stream effector molecules involved in cell-cycle check
point regulation (CDKN1A) and extracellular matrix re-
modeling (SERPINE-1). These effector molecules in
addition to others, shown in Additional file 10: Figure
S2, were predominantly found transcriptionally down-
regulated at the time of recurrence, suggesting that
TGF-β1 signaling is inactive when tumors progress.
In summary, the pathway analysis showed that protein

kinase C signaling was activated in progressing tumors.
The analysis found TGF-β1 and HIF1A inhibited and a
down-regulated trend was confirmed in the RNA-Seq
data. These two up-stream regulators are known to
regulate extracellular remodeling and cell-cycle,
indicating that responding tumors at progression express
reduced extracellular matrix remodeling and increased
proliferation.

Histological changes
To investigate a possible association between the
identified transcriptional changes and morphological
changes of the tumor, we performed a non-blinded
review of hematoxylin-eosin stained pre- and post-
treatment samples. However, no gross differences or
changes were observed in the amount and morphology
of tumor cells, stromal cells, neural/glial cells, blood
vessels or architecture of the extracellular matrix. Repre-
sentative images of two responding glioblastomas are
shown in Additional file 11: Figure S3.

Discussion
In this study of recurrent glioblastoma patients, we
performed RNA-Seq on tumor tissue surgically removed
before and after bevacizumab combination therapy. In

Fig. 3 Mechanistic network of inhibited TGF-β1. Generated on the basis of relationships to identified transcriptional changes in responders at the
time of progression. The three closest related regulators in the network are SMAD3, HIF1A and PPARG and the two most related downstream
molecules are CDKN1A and SERPINE1
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line with others [12], we found no significant differences
between pretreatment samples of responders and non-
responders. Considering the extreme inter-tumor hetero-
geneity of glioblastoma and the small sample size, this was
not unexpected. Taking this into account, we pre-specified
a paired analytical strategy of before and after treatment
samples according to treatment response. The results of
this analysis reveal significant transcriptional changes in
patients responding to bevacizumab while such changes
were almost absent in patients not responding. This
suggests that non-responding glioblastomas progress
chaotically without following any distinct gene expression
changes while responding tumors adaptively respond or
progress to bevacizumab treatment by means of the same
transcriptional changes.
By functional data mining of published literature, we

studied the transcriptional changes of responding glio-
blastomas to uncover potential response and resistance
mechanisms to bevacizumab treatment.
First, it is important to acknowledge that the patients

underwent relapse surgery 2 months after bevacizumab
treatment cessation. This may explain why no morpho-
logical changes in the vasculature were observed, as blood
vessels can grow and remodel extensively within few
weeks [28]. Nevertheless, gene ontology analysis found
angiogenesis related genes significantly downregulated at
the time of relapse. The reason for these conflicting find-
ings remains unexplained.
The enrichment analysis revealed that up-regulated

genes at time of progression were significantly overrep-
resented by genes involved in neural development and
differentiation processes. Furthermore, up-regulated
genes were significantly enriched by genes that are
known to be up-regulated due to de-methylation of
H3K27 promoter regions - a process which is known to
be related to decreased activity of Polycomp Repressive
Complex 2 (PRC2) during differentiation [29]. Accor-
dingly, epigenetic regulation may be associated with the
up-regulated neural differentiation genes. However, no
morphological changes were observed in regards to
tumor or stromal cells.
It has previously been found that some glioma patients

with recurrent disease after non-bevacizumab treatment
shift from a proneural tumor into a mesenchymal sub-
type [30]. Preclinical glioblastoma studies have shown
that adaptive resistance to anti-angiogenic agents is
characterized by a transition to a mesenchymal pheno-
type [17, 18]. In contrast, we observed that bevacizumab
responding glioblastomas shift into a less mesenchymal
and more proneural subtype when progressing.
By using the Ingenuity Pathway Analysis software, we

identified TGF-β1 as the most central up-stream regulator
associated with the identified gene expression changes.
TGF-β1 was found inactivated at time of progression and

this was associated with down-regulated extracellular
matrix remodeling genes of which several define the mes-
enchymal subtype signature [27]. This suggests that the
shift toward a less mesenchymal phenotype may be related
to inactivation of TGF-β1 downstream signaling. In line
with this finding, it has been shown in preclinical
glioblastoma models that TGF-β signaling induces a
mesenchymal shift, while inhibition of TGF-β prevents
this shift [31]. Accordingly, the subtypes appear plastic
and if the subtypes are representing specific cancer cell
lineages, as originally proposed [30], bevacizumab
responding glioblastomas may transdifferentiate during
progression. Another possibility is that interactions be-
tween tumor cells and microenvironment impact subtype
classifications, similar to what is seen in epithelial cancers
[32]. In this case, bevacizumab induced normalization of
the tumor microenvironment and vasculature [33, 34],
may change the gene profile accordingly.
Hypoxia has been identified as a central driver of ac-

quired resistance to anti-angiogenic agents in preclinical
animal models [16], and hypoxia stimulates secretion of
TGF-β which can lead to mesenchymal transition [35].
Thus, one could speculate that reduced hypoxia, as a con-
sequence of bevacizumab-induced vascular normalization,
may lead to TGF-β inhibition and reverse mesenchymal
transition. Interestingly, and in line with our results, it has
recently been found that breast cancer patients respon-
ding to bevacizumab demonstrate reduced levels of tumor
hypoxia leading to reduced activity of TGF-β [36].
The IPA analysis revealed a significant overrepresenta-

tion of genes associated with activated protein kinase C
signaling at the time of relapse. This pathway has a cen-
tral role in tumor-derived VEGF-induced angiogenesis,
and in preclinical tumor models protein kinase C
inhibitors have shown anti-angiogenic activity [37].
Accordingly, protein kinase C mediated VEGF secretion
may induce resistance to bevacizumab and may serve as
a target in bevacizumab responding glioblastoma
patients.
Our study presented a few limitations. The small

number of highly selected patients may or may not
have introduced selection bias. The lack of paired
glioblastomas treated without bevacizumab containing
regimens make it difficult to interpret whether the
observed effects are related to bevacizumab response
or treatment response in general. In this context, the
exploratory results have to be carefully interpreted
taking these limitations into account. Nevertheless,
the baseline patient/sample characteristics and gene
profiles did not differ between responding and non-
responding patients and the pre-analytical design of
the study make it less likely that the observed
changes are independent of response to bevacizumab
combination therapy.
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Conclusions
To our knowledge this is the first study to demonstrate
that bevacizumab combination treatment has a signifi-
cant impact on transcriptional changes in a paired ana-
lysis of responding glioblastoma patients. Such changes
were minimal in patients not responding. In conclusion,
we hypothesize that the identified adaptive changes of
bevacizumab responding glioblastomas are related to re-
sponse or resistance mechanisms. If validated, these data
may prove valuable for identification of new and more
efficient bevacizumab combination regimens.
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