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Abstract

Educational timetabling problems require the assignment of times and re-
sources to events, while sets of required and desirable constraints must be
considered. The XHSTT format was adopted in this work because it models
the main features of educational timetabling and it is the most used format
in recent studies in the �eld. This work presents new cuts and reformula-
tions for the existing integer programming model for XHSTT. The proposed
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cuts improved hugely the linear relaxation of the formulation, leading to an
average gap reduction of 32%. Applied to XHSTT-2014 instance set, the al-
ternative formulation provided four new best known lower bounds and, used
in a matheuristic framework, improved eleven best known solutions. The
computational experiments also show that the resulting integer program-
ming models from the proposed formulation are more e�ectively solved for
most of the instances.

Keywords: Timetabling, Integer Programming, Formulation

1. Introduction

Educational timetabling problems consist in assigning times and resources
to events of educational institutions respecting several hard and soft cons-
traints. Sometimes this problem can be solved manually by the institution
manager. However, this task becomes virtually impossible when there are
hundreds of events, resources, and constraints to be handled. Moreover, the
use of optimization techniques to generate timetables leads to signi�cantly
better schedules, allowing the institution to use more e�ciently its resources,
to improve the satisfaction of the sta�, and even to increase the performance
of the student. Beyond its practical importance, this problem is NP-Hard
[1], which makes it of interest for Operations Research and Arti�cial Intelli-
gence communities.

Studies on timetabling optimization have begun in 1963 by Gotlieb [2]
and, since such a work, several approaches have been developed to tackle
this problem. Most of these approaches are based on metaheuristics, such as
Simulated Annealing [3, 4], Greedy Randomized Adaptive Search Procedure
[5], Tabu Search [6, 7], Variable Neighborhood Search [8, 9], Iterated Local
Search [10, 11] and Evolutionary Strategies [12, 13]. More recently, model-
based heuristics (so-called Matheuristics) have achieved remarkable results
for this problem class [14, 15].

Although metaheuristics frequently achieve reasonable solutions in short
time, they do not ensure optimality. Moreover, they cannot even provide
optimality gaps. In this sense, exact techniques, such as Constraint Pro-
gramming and Mathematical Programming, take an important role. They
can provide lower bounds to evaluate more precisely the quality of a solution
and even reach good or optimal solutions. However, to achieve good/optimal
solutions through exact methods may be possible only when the timetabling
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problem is small or when advanced techniques of formulation, such as Col-
umn Generation [16], Cuts [17, 18], and Decomposition [19] are applied.

This work considered the eXtended Markup Language for High School
Timetabling (XHSTT) format [20] for modelling the problem. This format
was chosen due to its capacity of covering several timetabling features and
due to its relevance in recent literature, being adopted by the last internatio-
nal timetabling competition [21]. Although it was initially proposed for High
School Timetabling, it can be also applicable to universities and other types
of educational institutions, such as shown in [22]. Indeed, several XHSTT
problem sets found in the literature, including the one considered in this pa-
per, contain university timetabling, student sectioning and other instances
that are not necessarily from high school institutions. Finally, several ins-
tances are available in this format and the research community keeps track
of the best known bounds for them.

Kristiansen et al. [23] proposed the �rst Integer Programming formula-
tion for the XHSTT format. However, to the best of our knowledge, not much
e�ort has been done to strengthen Kristiansen's formulation or to develop al-
ternative formulations. In this sense, the objective of this work is to propose
new cuts and reformulations to the existing XHSTT Integer Programming
formulation.

The remainder of the paper is organized as follows. The XHSTT time-
tabling problem as well as its complete formulation are described in Section
2. The alternative formulation and the implemented cuts are presented in
Section 3. Computational experiments and results achieved are reported in
Section 4. Finally, some concluding remarks are drawn in Section 5.

2. Complete Formulation

Kristiansen's formulation [23] was designed to describe precisely and to
handle any instance in the XHSTT format. This formulation is presented in
this section and denoted as F1 throughout the paper. The formulation takes
as input sets:

An event e ∈ E has a duration De ∈ N and a demand for a set of
resources (event resources), denoted as er ∈ ERe. Furthermore, a resource
demanded for the event er can undertake a role roleer, which is used to link
the resource to certain constraints. A resource r ∈ R can be preassigned to
ful�l the demand er ∈ ERe. Parameter PAer ∈ {1, 0} take value 1 if event
resource er has a preassigned resource, and 0 otherwise, while parameter
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T Times
T G Time Groups
R Resources
RG Resource Groups
E Events
EG Event Groups
C Constraints

PRer,r ∈ {1, 0} take value 1 if resource r is preassigned to event resource er,
and 0 otherwise. A sub-event se is de�ned as a fragment of a speci�c event
e ∈ E . Each sub-event has a duration Dse ≤ De and it inherits exactly the
same resource requirements of the source event.

Let SE be the entire set of sub-events of a XHSTT instance and let
se ∈ SEe be a set of the sub-events generated from an event e. The total
duration of all sub-events generated from event e in a solution must be exactly
De. A set of all possible sub-events with di�erent durations is created, such
that all combinations of sub-events for a given event can be handled. For
example, if an event has duration 4, the set of sub-events for this event has
the respective lengths: 1, 1, 1, 1, 2, 2, 3 and 4. Thereby the set of possible
sub-events for an event e ∈ E with duration De has

∑De

i=1b
De

i
c elements.

The times T are organized in chronological time; thus, pt denotes the
index number of time t ∈ T . A time group tg ∈ T G de�nes a set of times, in
such a way t ∈ Ttg denotes the times belonging to time group tg. Additionally

T startse,t = {t′ ∈ T \ {tD} | pt −Dse + 1 ≤ pt′ ≤ pt} (1)

is pre-processed to denote the set of times that a sub-event se ∈ SE occurs
assuming that it is assigned start time t ∈ T .

Each constraint c ∈ C is of a speci�c type and it applies to certain events,
resources or event groups. Notations e ∈ Ec, r ∈ Rc and eg ∈ EGc represent,
respectively, the events, resources or event groups that a constraint applies
to.

The set of resources and times are both extended with dummy-indices,
denoted dummy-resource rD and dummy-time tD, respectively. They are
necessary to handle with the unusual case of an optimal solution in which
one or more events do not have resources or start times assigned.
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2.1. Variables

The main decision variables of this formulation are xse,t,er,r binary vari-
ables:

xse,t,er,r =

1 if sub-event se is assigned to start time t and
resource r is assigned to event resource er

0 otherwise

additionally, the following support variables are used:

yse,t = 1 if sub-event se is assigned to start time t; 0 otherwise.
wse,er,r = 1 if sub-event se is assigned to resource r for event resource er; 0 otherwise.
use = 1 if sub-event se is active; 0 otherwise.
vt,r = number of times in which resource r is used at time t.
qr,t = 1 if resource r is busy at time t; 0 otherwise.
pr,tg = 1 if resource r is busy at at least one time of time group tg; 0 otherwise.
oe,t = 1 if at least one sub-event of event e is assigned to time t; 0 otherwise.
leg,t = 1 if at least one event of event group eg is assigned to time t; 0 otherwise.
keg,r = 1 if resource r is assigned to at least one event in event group eg; 0 otherwise.
hr,tg,t = 1 if resource r has an idle time in time t in time group tg; 0 otherwise.
hfirste = ordinal number of the �rst time assigned to any sub-event of event e.
hlaste = ordinal number of the latest time assigned to any sub-event of event e.

Each constraint c ∈ C has a set of points-of-application which, in turn,
might be any XHSTT entity depending on the constraint that it is related
to. To simplify the notation, in some equations points-of-application will
be denoted as p ∈ Pc regardless of the entity. Each point-of-application
is associated with a set of deviations, indexed by d ∈ Dp, and each set of
deviations has an associated non-negative cost. Therefore the slack variables

sc,p,d = value of deviation d of point-of-application p in constraint c.

are used to calculate the penalties for each XHSTT constraint.

2.2. Constraints

In addition to all constraints described in the XHSTT speci�cation, some
basic constraints are required to ensure the consistency of the model. They
are shown in equations (2) to (14).
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∑
t∈T

∑
r∈Rer

xse,t,er,r = 1 ∀se∈SE
∀er∈ERse

(2)

∑
er∈ERse

∑
r∈Rer

xse,t,er,r = |ERse| × yse,t ∀se∈SE
∀t∈T (3)

∑
se∈SE

∑
er∈ERse

∑
t′∈T start

se,t

xse,t′ ,er,r = vt,r
∀t∈T \{tD}
∀r∈R (4)

∑
t∈T

xse,t,er,r = wse,er,r
∀se∈SE
∀er∈ERse
∀r∈R

(5)

yse,t = 0 ∀se∈SE
∀t∈T \{tD} : pt+Dse−1>|T | (6)

∑
r∈er\{rD}

wse,er,r ≤ use
∀se∈SE
∀er∈ERse : PAer=0 (7)

∑
t∈T \{tD}

yse,t ≤ use ∀se ∈ SE (8)

∑
t∈T \{tD}

yse,t +
∑

er∈ERse:PAer=0

∑
r∈Rer\{rD}

wse,er,r ≥ use ∀se ∈ SE (9)

∑
se∈SEe

use ×Dse = De ∀e ∈ E (10)

|SE| × qr,t ≥ vt,r
∀r∈R
∀t∈T \{tD} (11)

qr,t ≤ vt,r
∀r∈R
∀t∈T \{tD} (12)

pr,tg ≥ qr,t
∀r∈R
∀tg∈T G
∀t∈Ttg

(13)

pr,tg ≤
∑
t∈Ttg

qr,t
∀r∈R
∀tg∈T G (14)

Constraint set (2) is necessary to make sure that only one starting time
is assigned to any sub-event. Constraint set (3) makes the link between
variables xse,t,er,r and yse,t whereas the number of event resources demanded
for a sub-event se is denoted by |ERse|. Constraint set (4) links variables
xse,t,er,r to variables vt,r. The link between variables xse,t,er,r and wse,er,r is
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done through constraint set (5). Constraint set (6) ensures that a starting
time t ∈ T is not assigned to a sub-event se ∈ SE if there is not enough
contiguous times after t to accommodate the duration of se.

Although all possible sub-events for an event are created, only a subset of
them should be active in the �nal solution. Recall that a sub-event is active
if a starting time or a resource is assigned to it. Constraint sets (7), (8) and
(9) are imposed to ensure the right activation of the sub-events. Constraint
set (10) ensures that the sum of the durations of the sub-events of a given
event is equal to the duration of the source event.

A resource is busy at some time if it attends to at least one event on that
time, and it is busy at some time group if it is busy at one or more times
within the times of that time group. This relation is represented by variables
qr,t and pr,tg, which are set by constraint sets (11), (12), (13), and (14).

In sequence, each XHSTT speci�c constraint type is formulated. Let set
Ci ⊆ C denote all constraints of a certain type, as follows:

C1 � Assign Resource : An assign resource constraint penalizes a solution
when no resource is assigned to supply a demand of an event resource.
Speci�cally, the deviation at one point-of-application is the sum of the
durations of the sub-events of the respective event in which a resource
is not assigned. The deviation s1

c,er at each point-of-application of this
constraint is calculated through the following equations:

De −
∑

se∈SEe

∑
r∈Rer\{rD}

Dse × wse,er,r = s1
c,er

∀c∈C1
∀e∈Ec
∀er∈ERe : roleer=rolec

(15)

C2 � Assign Time : The assign time constraint penalizes sub-events in
which times are not assigned. The deviation s2

c,e at one point-of-
application is the total duration of those sub-events derived from the
speci�c event in which a time is not assigned.

De −
∑

t∈T \{tD}

∑
se∈SEe

Dse × yse,t = s2
c,e

∀c∈C2
∀e∈Ec (16)

C3 � Split Events : A split event constraint de�nes limits to the number
of sub-events that can be derived from a given event and to their du-

rations. Let the parameters Bamt
c ∈ N and B

amt

c ∈ N be respectively,
the minimum and the maximum number of sub-events in which a given
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event can be split, and Bdur
c ∈ N and B

dur

c be the minimum and maxi-
mum durations of such sub-events.

The value of the deviation at each point-of-application (each event) of
this constraint is given by the number of sub-events of the source event

whose duration is lower than Bdur
c or greater than B

dur

c (s3a
c,e) and the

number of sub-events below Bamt
c , or above B

amt

c (s3b
c,e). The following

constraint sets are imposed:∑
se∈SEe :

Bdur
c >Dse∨B

dur
c <Dse

use = s3a
c,e

∀c∈C3
∀e∈Ec (17)

Bamt
c −

∑
se∈SEe

use ≤ s3b
c,e

∀c∈C3
∀e∈Ec (18)

∑
se∈SEe

use −B
amt

c ≤ s3b
c,e

∀c∈C3
∀e∈Ec (19)

The full deviation for constraint c ∈ C3 is given by s3a
c,e + s3b

c,e.

C4 � Distribute Split Events : Distribute split event constraints impose
limits on the number of sub-events of a particular duration that may
be derived from an event. Let dc ∈ N be the duration of the sub-events
for which this constraint applies, and let Bc and Bc be the minimum
and maximum number of sub-events of duration dc that may be derived
from a given event, respectively.

Bc −
∑

se∈SEe
Dse=dc

use ≤ s4
c,e

∀c∈C4
∀e∈Ec (20)

∑
se∈SEe
Dse=dc

use −Bc ≤ s4
c,e

∀c∈C4
∀e∈Ec (21)

C5 � Prefer Resources : This constraint de�nes that an event resource has
a preference for certain resources. The assignment of all non-preferred
resources is taken and the duration of the sub-events in which these non-
preferred resources are assigned is summed to calculate the deviation.
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Let r ∈ Rc denote a preferred resource:∑
se∈SEe

∑
r∈R\{rD} : r/∈Rc

Dse × wse,er,r = s5
c,er

∀c∈C5
∀e∈Ec
∀er∈ERe : PAer=0∧roleer=rolec

(22)

C6 � Prefer Times : Like the prefer resources constraint, events might also
have preferences for certain times. The deviation is calculated for each
event by summing the duration of all sub-events which are assigned
a time that is not in the preferred times list. The constraint has an
optional duration-property, denoted Dc ∈ N0. If this property is given,
only sub-events of duration Dc are considered. Let t ∈ Tc denote a
preferred time:∑

se∈SEe

∑
t∈T \{tD}:t/∈Tc∧Dc=Dse

Dse × yse,t = s6
c,er

∀c∈C6
∀e∈Ec (23)

C7 � Avoid Split Assignments : When an event is split into sub-events,
each of its event resources is also split for each sub-event. A di�erent
resource may be assigned to each of these generated event resources.
This constraint penalizes the assignment of di�erent resources to event
resources within the same event group. The constraint examines the
demand of all event resources derived from the events in the event
group and it calculates the number of distinct resources assigned to
them, ignoring unassigned event resources. The deviation s7

c,eg is the
number of resources that exceeds 1.

∑
er∈ERe,PAer=0
rolec=roleer

wse,er,r ≤ keg,r

∀c∈C7
∀r∈R
∀eg∈EGc
∀e∈Eeg
∀se∈SEe

(24)

∑
r∈R

keg,r − 1 ≤ s7
c,eg

∀c∈C7
∀eg∈EGc (25)

C8 � Spread Events : The spread events constraint has a deviation for
each time group tg ∈ T Gc ∈ C8. Let Bc,tg and Bc,tg be, respectively,
the minimum and maximum number of sub-events of a given event that
can be placed in time group tg of constraint c. The deviation s8

c,eg,tg
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for each time group is given by the number of sub-events for the given
event that is below Bc,tg ∈ N or above Bc,tg ∈ N.

Bc,tg −
∑

se∈SEe

∑
e∈Eeg

∑
t∈Ttg

yse,t ≤ s8
c,eg,tg

∀c∈C8
∀eg∈EGc
∀tg∈T Gc

(26)

∑
se∈SEe

∑
e∈Eeg

∑
t∈Ttg

yse,t −Bc,tg ≤ s8
c,eg,tg

∀c∈C8
∀eg∈EGc
∀tg∈T Gc

(27)

C9 � Link Events : A link event constraint speci�es that a set of events
within an event group should be assigned to the same starting time.
The deviation of this constraint is set as the number of times in which
at least one event in the event group does not occur simultaneously
with the others. Constraints (28), (29) and (30) ensure that variables
oe,t and leg,t assume correct values. The slack variable of Link Events
constraint, s9

c,eg,t, is de�ned in constraint (31).∑
t′∈T start

se,t

yse,t′ ≤ oe,t
∀e∈E
∀se∈SEe
∀t∈T \{tD}

(28)

∑
se∈SEe

∑
t′∈T start

se,t

yse,t′ ≥ oe,t
∀e∈E
∀se∈SEe
∀t∈T \{tD}

(29)

leg,t ≥ oe,t
∀eg∈EG
∀e∈Eeg
∀t∈T \{tD}

(30)

leg,t − oe,t ≤ s9
c,eg,t

∀c∈C9
∀eg∈EGc
∀t∈T \{tD}

(31)

C10 � Order Events : An order events constraint speci�es that the times
assigned to two events should be in order, in such a way that the �rst
event ends before the second event starts. Let parameter Bc ∈ N and
Bc ∈ N be, respectively, the minimum and maximum number of times
that may separate two events. Let (e, ê) denote an event pair such that
this constraint applies to. The deviation, s10

c,e,ê, is then given by the

amount by which the di�erence between these hlaste and hfirste exceeds
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Bc or falls below Bc.

pt × yse,t +Dse ≤ hlaste

∀c∈C10
∀e∈Ec
∀se∈SEe
∀t∈T \{tD}

(32)

|T | − (|T | − pt)× yse,t ≥ hfirstê

∀c∈C10
∀ê∈Ec
∀se∈SEe
∀t∈T \{tD}

(33)

Bc − (hfirstê − hlaste ) ≤ s10
c,e,ê

∀c∈C10
∀(e,ê)∈(E,E)c

(34)

(hfirstê − hlaste )−Bc ≤ s10
c,e,ê

∀c∈C10
∀(e,ê)∈(E,E)c

(35)

C11 � Avoid Clashes : These constraints specify that certain resources should
not have clashes in their timetables. It means they should not be as-
signed to two or more events simultaneously. This constraint produces
a set of deviations for each resource. For each time, the number of
occurrences of given resource minus one is calculated to estimate the
deviation of that resource for that time.

vt,r − 1 ≤ s11
c,r,t

∀c∈C11
∀r∈Rc
∀t∈T \{tD}

(36)

C12 � Avoid Unavailable Times : An avoid unavailable times constraint
speci�es that certain resources are unavailable for any event at cer-
tain times. The deviation, s12

c,r is the number of times that are being
attended by an unavailable resource. Let t ∈ Tc denote that t is an
unavailable time for constraint c ∈ C12:∑

t∈Tc

qr,t = s12
c,r

∀c∈C12
∀r∈Rc

(37)

C13 � Limit Idle Times : A resource is idle at some time t ∈ Ttg if it is
not attending any sub-event at t, but it is attending events before and
after t in the same time group tg. Limit idle times constraint limits the
number of idle times a resource may have within a time group.

qr,t̂ − qr,t + qr,ˆ̂t − 1 ≤ hr,tg,t
∀r∈R
∀tg∈T G
∀t,t̂,ˆ̂t∈Ttg : pt̂<pt<pˆ̂t

(38)

For each resource of the constraint, the deviation is calculated as fol-
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lows: sum the number of cases in which the amount of idle times is
under Bc ∈ N or above Bc ∈ N. Slack variable s13

c,r computes the sum
of such cases.

Bc,r −
∑

tg∈T Gc

hr,tg ≤ s13
c,r

∀c∈C13
∀r∈Rc

(39)

∑
tg∈T Gc

hr,tg −Bc,r ≤ s13
c,r

∀c∈C13
∀r∈Rc

(40)

C14 � Cluster Busy Times : A cluster busy times constraint limits the
number of time groups in which a resource may be busy. The deviation
is given by number of cases in which the resource is busy for less than
Bc ∈ N time groups, or for more than Bc ∈ N time groups. Let
tg ∈ T Gc denote a time group in which such a constraint applies:

Bc −
∑

tg∈T Gc

pr,tg ≤ s14
c,r

∀c∈C14
∀r∈Rc

(41)

∑
tg∈c

pr,tg −Bc ≤ s14
c,r

∀c∈C14
∀r∈Rc

(42)

C15 � Limit Busy Times : Limit busy times constraint places limits on
the number of times a resource may be busy within some time groups.
These constraints produce a deviation for each time group. The devia-
tions are given by the number of cases in which the resource is busy for
less than Bc ∈ N time groups, or for more than Bc ∈ N time groups.

Bc − |Ttg| × (1− pr,tg)−
∑
t∈Ttg

qr,t ≤ s15
c,r,tg

∀c∈C15
∀r∈Rc
∀tg∈T Gc

(43)

∑
t∈Ttg

qr,t −Bc − |Ttg| × (1− pr,tg) ≤ s15
c,r,tg

∀c∈C15
∀r∈Rc
∀tg∈T Gc

(44)

C16 � Limit Workload : The workload of a resource is given by We,se,er =
Dse×Ler

De
, in which Ler ∈ N is the workload of the event resource er.

These values are given as inputs within the information related to
events. A limit workload constraint places limits on the total work-
load that is assigned to resources. The deviation of this constraint,
s16
c,r, is the amount of cases in which the resource workload falls short
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Bc ∈ N, or exceeds Bc ∈ N, rounded up to the nearest integer.

Bc −
∑
e∈Ec

∑
t∈T \{tD}

∑
se∈SEe

∑
er∈ERe

We,se,er × xse,t,er,r ≤ s16
c,r

∀c∈C16
∀r∈Rc

(45)

∑
e∈Ec

∑
t∈T \{tD}

∑
se∈SEe

∑
er∈ERe

We,se,er × xse,t,er,r −Bc ≤ s16
c,r

∀c∈C16
∀r∈Rc

(46)

2.3. Objective Function

Given the slack variables for each XHSTT constraint, the cost of a point-
of-application of a constraint c ∈ C is de�ned based on three properties: typec
(it can be either hard or soft), weight (wc ∈ N), and the CostFunction (CF)
to use.

The cost of a constraint c ∈ C, which contains slack variable sc,p,d, is
denoted by f(sc,p,d), and it is calculated as shown in (47).

f(sc,p,d) = wc × CostFunction(sc,p,d). (47)

Three di�erent cost function types are allowed: linear, quadratic and
step. These functions are evaluated in terms of slack variables sc,p,d, such as
follows:

Linear : Sum of deviations.

CFLinear =
∑
p∈Pc

∑
d∈Dp

sc,p,d. (48)

Quadratic : Sum of deviation squares.

A variable i ∈ {0, 1} is introduced to handle with this non-linear cost
function. It assumes value 1 if the deviation d ∈ Dp of the point of
application p ∈ Pc of constraint c has the value i ∈ I, or 0 otherwise.
Let I = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}:

CFQuadratic =
∑
p∈Pc

∑
d∈Dp

∑
i∈I

i2 × sc,d,p,i (49)
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The link from sc,p,d to sc,p,d,i is given by:∑
p∈Pc

∑
d∈Dp

∑
i∈I

i× sc,d,p,i = sc,p,d
∀p∈Pc
∀d∈Dp

(50)

It is also necessary to ensure that only a single integer value is selected
by the binary indicator. Therefore the following constraint set must be
considered: ∑

i∈I

i× sc,d,p,i = 1 ∀p∈Pc
∀d∈Dp

(51)

Step : Penalizes the number of deviations, regardless their magnitudes.

The binary variable uStepc,p,d is introduced. It assumes value 1 i� sc,p,d > 0
for constraint c, point-of-application p ∈ Pc and deviation d ∈ Dp, or
0 otherwise. The cost function and constraint set are formulated as
shown in (52) and (53), respectively.

CF Step =
∑
p∈Pc

∑
d∈Dp

uStepc,p,d (52)

M × uStepcp,d ≥ sc,p,d
∀p∈Pc
∀d∈Dp

(53)

in which M ∈ N is a su�ciently large number.

Let Ψc be the set of tuples that a constraint c ∈ C applies to. For
example, suppose c ∈ C4, then for a τ ∈ Ψc, τ ≡ (e, er) and s4

c,τ ≡ s4
c,e,er.

Thus, the objective function can be stated as shown in equation (54).

z =
16∑
j=1

∑
c∈Cj

∑
τ∈Ψc

f(sjc,τ ) (54)

The full IP model consists on minimizing z, subject to constraints (2)
to (54). This model is solved in two steps. In Step 1, an IP model is built
containing only the hard constraints. When the IP solver �nds an optimal
solution regarding this �rst model (hopefully a zero-cost solution), all soft
constraints are included to the model and the solution process is warm-
started from its previous state (Step 2). Furthermore, a constraint is added
to ensure that the optimal value of hard cost is kept unchanged:

zhard = hard cost (55)
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in which zhard denotes the sum of the cost of all slack variables associated to
hard constraints.

Once such an IP model is solved, the cost of the obtained solution, minus
the hard cost found in Step 1, is the penalty due to soft constraint violations.

3. Alternative Formulation

In this section, starting from the original formulation F1 presented in the
previous section, we propose some valid inequalities and an extended �ow
based formulation for XHSTT, yielding an improved formulation denoted
throughout the paper as F2. As it can be seen in Section 4, F2 is stronger
than F1, since it is strictly contained in F1, i.e. valid fractional points for
F1 are not valid for F2. These cuts were found either by analysing fractional
solutions of F1 (3.5 and 3.7) or with the aid of an automatic integer pro-
gramming reformulation tool [24] (3.4 and 3.6), which searches for fractional
multipliers to generate Chvátal-Gomory cuts [25]. This is a computationally
expensive, o�ine tool. Once these multipliers were discovered, it was rela-
tively easy to generalize these cuts to the timetabling context, such that now
their separation is trivial. Pre-processing routines are also proposed to re-
move unnecessary constraints and variables. All those changes are described
in the following subsections.

3.1. Generation of Sub-events

In F2, only feasible sub-events are generated. A sub-event is called fea-
sible when it does not violate any hard Split Events constraint. This re-
duction aims to make the resulting IP model smaller, faster to build, and
less dependant on the duration of the events. For example, suppose an
event e of duration De = 4 and a hard Split Events constraints c stating

that e should be split into sub-events of duration 2 (B
dur

c = Bdur
c = 2). In

the complete formulation, the following set of sub-events having durations
SEe = {1, 1, 1, 1, 2, 2, 3, 4} would be generated. In this reduced reformulation,
the resulting set of sub-events would be considerably smaller: SEe = {2, 2}.
However, this bene�t is achieved at expense of not ensuring optimality in a
special case in which the optimal solution has hard cost di�erent from zero.
In practice, this is not a big problem for two reasons: (i) most of XHSTT
problems are feasible (i.e. they have at least one possible solution with hard
cost equals to zero), and; (ii) in real world problems, it is expected to exist
a solution having zero cost of hard constraints.
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Algorithm 1: Alternative procedure to generate sub-events

Input: A set of events E , a set of split events constraints C3.
Output: A set of sub-events SE per event e ∈ E .

1 SE = ∅;
2 foreach e ∈ E do
3 SEe = ∅;
4 foreach k = {1, . . . , De} do
5 if @c ∈ C3 | e ∈ Ec, typec = hard then
6 foreach j = {k, . . . , De} do
7 Dse = k;
8 SEe = SEe ∪ {Dse};

9 else

10 if k ≥ B
dur

c and k ≤ Bdur
c then

11 subeventsAmount = 0;
12 foreach j = {k, . . . , De} do

13 if subeventsAmount ≤ B
amt

c then
14 Dse = k;
15 SEe = SEe ∪ {Dse};

16 SE = SE ∪ SEe;
17 return SE ;
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3.2. Alternative Formulation for Link Events

One of the constraints that makes this problem di�cult is the requirement
of linked events. In this alternative formulation, the structure of Link Events
constraints is explored. When events are connected by hard Link Events
constraints, they must occur at the same time and they must be split in the
same way. Considering this fact, constraints (28), (29), (30), and (31) can
be replaced by:

yse,t = yŝe,t

∀ c ∈ C10, eg ∈ EGc,
e ∈ eg | first(eg) = e,
ê ∈ eg | first(eg) 6= ê,

(se, ŝe) ∈ (SEe, SE ê), t ∈ T \ tD

(56)

in which first(.) returns the �rst element of the set of events in event group
eg. When the events that belong to a same event group constrained by
Link Events have di�erent durations or are constrained by di�erent split
events constraints this reformulation is not applied. Once again, such a
reformulation does not ensure optimality if the the optimal solution has hard
cost di�erent from zero.

3.3. Alternative Formulation for Avoid Clashes

In real world problems, as well as for all the existing XHSTT instances,
the Avoid Clashes constraints are always hard ones. Therefore, constraints
(4), (11), (12), and (36) can be replaced by:∑

se∈SE

∑
er∈ERse

∑
t̂∈T start

se,t

xse,t̂,er,r = qr,t
∀t∈T \{tD}
∀r∈R (57)

Note that the auxiliary variable type vt,r ∈ N is no longer used in F2. Con-
sequently, it was removed from the model in the alternative formulation.

3.4. Alternative Formulation to Link X and Y (LXY)

The link between variables xse,t,er,r and yse,t in F1 might be strengthened
if one considers the link of each single variable xse,t,er,r to each single variable
yse,t, instead of linking a set of variables xse,t,er,r to |erse|×yse,t. Furthermore,
when a hard Prefer Resources constraint applies to event e that generates sub-
event se, only the preferred resources should be eligible for the assignment
(assuming the existence of a feasible solution for the problem). Taking into
account such points, constraint (3) was replaced by:
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xse,t,er,r = yse,t

∀se∈SE
∀t∈T ,
∀er∈ERse,
∀r∈Rer : r∈c∈C5 ∨ C5=∅ ∨ typec 6=hard

(58)

3.5. Cluster Busy Times Cut (CBT)

The number of days a resource may be busy is at least the sum of the
durations of the events that it is preassigned to divided by the number of
times per day timesDay. This number is rounded up to the nearest larger
integer. This cut was �rst proposed by Santos et al. [18] and adapted to
XHSTT in this work:

∑
tg∈T Gc

pr,tg ≥


∑

e∈E:
er∈ERe
PRer,r=1

De

timesDay

 ∀c∈C14
∀r∈Rc

(59)

3.6. Link Y and Q Cut (LYQ)

For any resource r and time t, if r is busy at t, at least one of the sub-
events that have r as a preassigned resource will be occurring at t. If a hard
Prefer Resources constraint applies to the sub-event, the sub-event will be
considered only when the resource is a preferred resource.

qr,t ≤
∑
se∈SE :

r∈er∈ERse∧
r∈c∈C5∨C5=∅∨typec 6=hard

yse,t
∀r∈R
∀t∈T \{tD} (60)

3.7. Number of Busy Times Cut (NBT)

The number of busy times of a resource r is computed through variables
qr,t. However, in order to strengthen the formulation, this number could be
explicitly given to the IP model when no resource assignment is required:∑

t∈T

qr,t =
∑
e∈E:

er∈ERe∧PRer,r=1

De ∀r ∈ R (61)

If an Assign Resource constraint is considered, the inequality, for any resource
eligible to more assignments than the preassigned ones is given by:∑

t∈T

qr,t ≥
∑
e∈E:

er∈ERe∧PRer,r=1

De
∀r∈R:
∃c∈C1 | typer=roleType(rolec) (62)
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3.8. Multicomodity Flow Reformulation (MCF)

Dorneles et al. [26] modelled the High School Timetabling problem as a
Multicomodity Flow problem. Following, an adaptation of Dorneles' model
to formulate some constraints of XHSTT is presented.

Each resource is represented by a commodity. For each resource r ∈ R
a graph whose �ow represents the resource schedules is created. Let Gr =
(Vr,Ar) denote such a graph, in which V is the set of nodes and A is the set
of arcs. Each node has a set of pull in arcs A+

r,v ⊆ A and a set of pull out
arcs A−r,v ⊆ A. Variables

ϕa =

{
1 if �ow goes through arc a

0 otherwise

are added to the new formulation F2 and parameter bv has value 1 when
node v is the source, -1 when it is the sink, or 0 otherwise.

Figure 1 presents an example of this graph, in which all types of arcs are
shown for a given resource r. Each arc has a speci�c meaning. Whenever the
arc has the same meaning of a variable in F1, new variable ϕa is not created
and the respective variable in F1 is used instead. The meaning of each type
of arc a ∈ A is given below:

• Assignment arcs are used to denote that a given resource r is attending
one event at time t. These arcs are denoted by binary variables qr,t,
whose meaning is the same described before in the complete formula-
tion.

• Idle time arcs represent that a resource r has an idle time between
busy times at time t in time group tg. These arcs correspond to binary
variable hr,tg,t, which also came from the original formulation.

• Cluster busy time arcs denote that a given resource r is busy for at least
one time in time group tg. These arcs are denoted by binary variables
pr,tg, which are also the same from the complete formulation.

• Arcs aINr,tg,t and a
OUT
r,tg,t are given for each resource r, time group tg and

time t. They denote, respectively, that the �rst assignment in time
group tg for resource r is at time t and that the last assignment is at
time t.
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• Day-o� arcs aOFFr,tg represent that a resource r is not busy at any of the
times in time group tg. These arcs lead to a node that represents the
next time group or to the sink node.

source

pr,tg

qr,t

qr,t

qr,t

qr,t

hr,tg,t

hr,tg,t

pr,tg

qr,t

qr,t

qr,t

qr,t

hr,tg,t

hr,tg,t

pr,tg

qr,t

qr,t

qr,t

qr,t

hr,tg,t

hr,tg,t

sink

Timegroup 1 Timegroup 2 Timegroup 3

t4

t3

t2

t1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Figure 1: Example of network for a resource in a toy instance consisting of three days,
having four times each (adapted from [26]).

Every path in such a graph starts from the source node, alternates the
arcs providing information about the time assignments, idle times, and busy
time groups (usually days) for the resource and ends at the sink node. Figure
2 presents an example of a feasible �ow for a given resource. In this example,
the resource is busy at the �rst time (t1) of Timegroup 1, has a idle time in
t2 and is busy again in times t3 and t4; then the resource has a day o� in
Timegroup 2; and the resource is busy again at times t2 and t3 in Timegroup
3.

The following set of constraints is added to the formulation to ensure the
�ow conservation in the nodes:∑

a∈A+
r,v

ϕa +
∑
a∈A−r,v

ϕa = bv
∀r∈R
∀v∈Vr (63)

Some paths should be explicitly forbidden on the network �ow formulation
since they lead to miss calculation of penalties. Figure 3 illustrates the two
cases that shall be avoided. In the �rst case, an arc goes to node 5 and
another leaves right from node 5. This case leads to miss calculation of
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Figure 2: Example of schedule for one resource r (adapted from [26]).

penalties for Cluster Busy Times constraints because the �ow goes into a
time group even if it does not have any assignment in any time of that day.
Therefore a time group would be counted as busy when it is in fact not busy.
Constraint (64) is added to forbid such paths:

aINr,tg,t + aOUTr,tg,t ≤ 1
∀r∈R
∀tg∈T G
∀t∈Ttg

(64)

In the second case, constraint Limit Idle Times is miss calculated because
a time should not be counted as idle when there is no busy time before it in
a given time group. The time also should not be counted when there is no
busy time after itself within the same time group. Constraints (65) and (66)
disable such paths:

aINr,tg,t + hr,tg,t ≤ 1
∀r∈R
∀tg∈T G
∀t∈Ttg

(65)

aOUTr,tg,t + hr,tg,t ≤ 1
∀r∈R
∀tg∈T G
∀t∈Ttg

(66)

Constraints Cluster Busy Times and Limit Idle Times are handled by
this network �ow model. Therefore constraints (13), (14) and (38) can be
removed from F2.
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Figure 3: Forbidden paths in the network (adapted from [26]).

4. Computational Experiments

Experiments were performed on an Intel R© i7 4510-U 2.6 Ghz PC with
8GB of RAM under Ubuntu 14.04 operating system. The software was coded
in C++ and compiled with GCC 4.6.1. The obtained results were validated
with the HSEval validator1. The state-of-the-art solver Gurobi 6.5.1, with
default parameter settings, was used to solve the mathematical programming
models.

The results are represented by the pair (H,S), in which H and S denote
the cost of hard and soft constraint violations, respectively. When hard-
constraints are not violated, only the cost of soft-constraint violations is
reported. Our solver, along with our solutions and reports, can be found at
the GOAL-UFOP website2. We invite the interested reader to validate our
results.

4.1. Characterization of Instances

The ITC2011 Hidden3 (XHSTT-ITC2011-hidden) instance set was con-
sidered to compare the formulations. This set covers features of timetabling
from several countries and has variate problem sizes, ranging from instances
demanding the assignment of 75 events to instances that demand the assign-
ment of thousands of events and resources. Moreover, this instance set is

1http://sydney.edu.au/engineering/it/ and ~jeff/hseval.cgi
2http://www.goal.ufop.br/softwares/hstt
3https://www.utwente.nl/ctit/hstt/archives/XHSTT-ITC2011-hidden/
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currently the most used to evaluate algorithms for XHSTT in the literature.
Table 1 presents the occurrence of constraints and whether they are hard or
soft in each instance. A hard constraint is denoted as H and a soft constraint
is identi�ed as S. An empty cell means that the constraint is not considered
on that instance.

Table 1: Constraints in XHSTT-ITC2011-hidden instances.
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BrazilInstance2 H S H S H H H S S

BrazilInstance3 H S H S H H H S S

BrazilInstance4 H S H S H H H S S

BrazilInstance6 H S H S H H H S S

FinlandElementarySchool H H S H H H S

FinlandSecondarySchool2 H H H H S S

Aigio1stHighSchool10-11 H S H H H H H S S

ItalyInstance4 H H H H H H S S

KosovaInstance1 H H H S H H H H H

Kottenpark2003 H H H H H H H H H S S S

Kottenpark2005A H H H H H H H H H S S S

Kottenpark2008 H H H H H H H H H H S

Kottenpark2009 H H H H H H H H H S S

Woodlands2009 H S S H S

Spanish school H H H H H H H S S

WesternGreeceUniversity3 H S H H H H

WesternGreeceUniversity4 H H S H H H H

WesternGreeceUniversity5 H S H H H H

4.2. Cut E�ectiveness

Table 2 presents, for each cut, whether its addition to F1 changes the
optimal solution of the linear relaxation of the model or not. Each entry in
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the table represents the execution of the linear relaxation of F1 applying the
refereed cut on it. The cuts were ordered from the one that was e�ective to
most instances to the one that was e�ective to least instances. The following
abbreviations were used: Number of Busy Times Cut (NBT); Link X and
Y Cut (LXY); Multicomodity Flow (MCF); Link Y and Q Cut (LYQ); and
Cluster Busy Times Cut (CBT).

Table 2: E�ectiveness of each cut over XHSTT-ITC2011-hidden archive
Instance NBT LXY MCF LYQ CBT
BrazilInstance2
BrazilInstance3
BrazilInstance4
BrazilInstance6
FinlandElementarySchool
FinlandSecondarySchool2
Aigio1stHighSchool10-11
ItalyInstance4
KosovaInstance1
Kottenpark2003
Kottenpark2005A
Kottenpark2008
Kottenpark2009
Woodlands2009
Spanish school
WesternGreeceUniversity3
WesternGreeceUniversity4
WesternGreeceUniversity5

From the analysis of Table 2, it can be concluded that NBT and LXY
were the most e�ective cuts, improving the linear relaxation of all considered
instances. NBT a�ects variables qr,t, which are essential to calculate resource
related constraint penalties. LXY plays a central role since variables yse,t de-
�ne the time assignment of the events and it provides a stronger link within
the main variable, xse,t,er,r. MCF does not a�ect instances FinlandElemen-
tarySchool, Woodlands2009 and Spanish School. Indeed, MCF strengthens
the de�nition of Limit Idle Times constraints and this constraint does not
apply to these instances. LYQ is e�ective when the assignment and prefer-
ence of resources applies to the instances. It was also e�ective to strengthen
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the link events speci�cation. As expected, CBT only a�ects the instances
whose this constraint applies to. Finally, it is possible to note that the char-
acteristics of the instances provide valuable information for selecting the cuts
to be active. Therefore the activation of cuts could be tailored according to
the features of the input problem.

4.3. Model Dimensions

Figures 4, 5 and 6 represents, respectively the number of variables, cons-
traints and non-zeros of formulations F1 and F2 applied to the instances of
XHSTT-2011-hidden archive.

Figure 4: Comparison of the number of variables of F1 and F2 for each instance in XHSTT
2011 hidden.
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The number of variables in F2 is slightly higher than in F1 in most of
the cases. This is mainly due to the new variables introduced to represent
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Figure 5: Comparison of the number of constraints of F1 and F2 for each instance in
XHSTT 2011 hidden.
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some of the arcs in the multicomodity �ow reformulation. For some instances
the increase rate is higher because they have a high number of resources. It
forces the model to create a lot of graphs and therefore new variables. An
odd behaviour can be observed for KosovaInstance1, whereas the number of
variables reduces in F2. This happens because a large number of variables
to represent sub-events of infeasible duration is not generated in F2.

Although the cuts demand new constraints to the models, the number
of constraints is slightly smaller in F2 compared to F1 for most cases. It
happens because of the reformulations, whereas several constraints can be
dropped from the F1. One example is Inequality (38), that generates a large
number of constraints but can be removed when considering the multicomod-
ity �ow reformulation in F2.
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Figure 6: Comparison of the number of non-zeros of F1 and F2 for each instance in
XHSTT 2011 hidden.
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The number of non-zeros depends heavily on problem features. Therefore
it is sometimes higher in F1 and sometimes higher in F2 as it can be seen
in Figure 6.

4.4. Linear Relaxations

Table 3 presents linear relaxation of both original (F1) and alternative
(F2) formulations over the instances of XHSTT-2011 and their running times
as well. Column ↓Gap presents the percentage of decrease of the gap from
using (F1) to using (F2). The table also presents the best known solution
for these instances (UB). When marked with a star, the best known solution
is optimal. Instances whose optimal solution cost is zero were not included.

From Table 3, it can be noticed that the linear relaxations provided by F2
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Table 3: Comparison between linear relaxations of F1 and F2

Time (s) LB
Instance UB F1 F2 F1 F2 ↓Gap
BrazilInstance2 5* 0.2 0.4 0.5 4.0 70%
BrazilInstance3 24* 0.2 0.4 0.0 2.0 8%
BrazilInstance4 51* 0.5 1.1 8.0 32.5 48%
BrazilInstance6 35* 2.5 4.4 2.0 16.0 40%
FinlandElementarySchool 3* 6.1 10.9 0.0 0.0 0%
ItalyInstance4 27* 15.8 25.6 0.0 15.0 56%
Kottenpark2003 420 5h+ 5h+ 0.0 0.0 0%
Kottenpark2005 784 5h+ 5h+ 0.0 86.0 11%
Kottenpark2008 15463 5h+ 5h+ 2.3 2904.0 19%
Kottenpark2009 5095 3115.6 8751.9 0.1 179.0 4%
Spanish school 335 24.4 23.4 54.9 305.0 75%
WesternGreeceUniversity3 5* 1.8 2.3 2.0 5.0 60%
WesternGreeceUniversity4 3* 6.5 3.4 0.0 0.0 0%

are signi�cantly stronger that the ones from F1, leading to an average of 32%
of gap reduction. The processing times were slightly longer in F2 in most
cases. For Kottenpark2009 in special, the new formulation was considerably
more time consuming ( 2.8×). However it led to a huge linear relaxation
improvement. Such a lower bound was even better than the previously best
known for this instance in the integer model (see Table 5). The lower bound
of 2904 for Kottenpark2008 was also better than the previously best know
bound.

4.5. Integer Model

Table 4 presents the integer results for both original and alternative for-
mulations under one hour of time limit. Instances in which neither of the
formulations achieved a feasible solution within the given time limit were
omitted. Optimal bounds are marked with a star.

From the analysis of Table 4 it can be seen that F2 found the optimal
lower bound for eight out of ten instances against �ve optimal lower bounds
in F1. Regarding the upper bounds the alternative formulation was also
superior, �nding �ve optimal bounds against three from the original formu-
lation.
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Table 4: Integer Programming results for formulations F1 and F2 within 1 hour time
limit.

F1 F2

Instance LB UB Gap LB UB Gap
BrazilInstance2 4.5 10 0.55 5.0* 5* 0.00
BrazilInstance3 21.3 24 0.11 24.0* 24* 0.00
BrazilInstance4 49.7 138 0.64 51.0* 51* 0.00
BrazilInstance6 17.5 224 0.92 35.0* 217 0.84
FinlandElementarySchool 3.0* 3 0.00 2.7 4 0.33
Aigio1stHighSchool10-11 0.0* 0* 0.00 0.0* 0* 0.00
ItalyInstance4 27.0* 11,244 1.00 27.0* 15,348 1.00
WesternGreeceUniversity3 5.0* 9 0.44 5.0* 6 0.17
WesternGreeceUniversity4 0.0 24 1.00 2.0 8 0.75
WesternGreeceUniversity5 0.0* 0* 0.00 0.0* 0* 0.00

Although some progress towards �nding better bounds for timetabling
was done in this work, neither of the formulations were able to �nd any feasi-
ble solution for the eight remaining instances in XHSTT-2011-hidden. This
result shows that this problem is still challenging for the research commu-
nity, since exact methods are still not able to handle a considerable set of
instances of this problem.

4.6. Improving Best Known Bounds

The automated timetabling research community keeps a track of the best
known bounds for timetabling instances over XHSTT-2014 archive4. The
aim of these experiments is to �nd new lower bounds or best known solu-
tions (upper bounds) for this archive. To compute new lower bounds, the
full integer programming model of alternative formulation F2 was executed.
To improve the best known solutions (upper bounds) the alternative formu-
lation was considered instead of the original formulation in a Matheuristic
framework [15]. Instances whose optimal solution was known and proven
were not considered. These experiments were performed during one month
in a multi-core cluster, allowing each process to use four threads.

The new formulation was able to �nd and to prove the optimality for two
new instances from XHSTT-2014, namely AU-SA-96 and AU-TE-99. These

4https://www.utwente.nl/ctit/hstt/archives/XHSTT-2014/
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Table 5: New best known lower (LB) and upper (UB) bounds obtained using the new
formulation F2

Instance LB UB New LB New UB ↑ LB% ↓ UB%
AU-BG-98 0 415 0 129 0% 69%
AU-SA-96 0 2 0 0* 0% 100%
AU-TE-99 0 33 20 20* 100% 100%
DK-FG-12 285 1514 412 1300 31% 14%
DK-HG-12 (7, 0) (12, 2611) (7, 0) (12, 2356) 0% 10%
DK-VG-09 (0, 0) (2, 2718) (2, 0) (2, 2329) 100% 14%
ES-SS-08 334 335 334 335 0% 0%
NL-KP-03 0 420 0 199 0% 53%
NL-KP-05 89 784 89 433 0% 45%
NL-KP-09 170 6265 180 1620 6% 74%
UK-SP-06 0 (15, 1892) 0 (5, 4014) 0% 67%
US-WS-09 0 111 0 103 0% 7%

instances are challenging and have been open for several years. In most of
these instances events are constrained by Link Events. The reformulation of
this constraint was very e�ective on these cases. AU-SA-98, from the same
instance set (Australian instances), is still open but had its upper bound
diminished in 69%. This reformulation of Link Events was also very e�ective
on the Dutch instances (NL-KP-03, NL-KP-05 and NL-KP-09) whose upper
bounds drastically fell as well.

Besides the achievement of several new upper bounds, new lower bounds
were also produced for AU-TE-99, DK-FG-12, DK-VG-09 and NL-KP-09.
Surprisingly, the little gap in ES-SS-03 could not be closed. Even though
this instance is not large when compared to the others, it is still challenging
for the automated timetabling research community.

5. Concluding Remarks

This paper presented new integer programming techniques for the Edu-
cational Timetabling problem. The developed cuts and reformulations dras-
tically increased the lower bound of the linear relaxation for most of the
instances in the XHSTT-2011-hidden archive. In exchange, a small increase
on the running times for the linear relaxation was observed. The computa-
tional experiments also shown that the resulting integer programming models
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from the proposed formulation are more e�ectively solved for most of the ins-
tances. The new formulation was also successful to �nd new bounds for the
XHSTT-2014 archive: four new lower bounds and eleven new upper bounds
were found. The optimality was found and proven for two of these instances.

Future work will focus on developing a column generation approach for
this problem and embedding it in a branch-and-cut algorithm. The search
for additional cuts based on the features of each instance is also subject of
future research.
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