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Temporal probabilistic shaping for mitigation of
nonlinearities in optical fiber systems

Metodi P. Yankov, Member, IEEE, Knud J. Larsen and Søren Forchhammer, Member, IEEE

Abstract—In this paper, finite state machine sources (FSMSs)
are used to shape quadrature amplitude modulation (QAM) for
nonlinear transmission in optical fiber communication systems.
The previous optimization algorithm for FSMSs is extended
to cover an average power constraint, thus enabling temporal
optimization with multi-amplitude constellations output, such as
QAM. The optimized source results in increased received SNR
and thereby increased achievable information rates (AIR)s under
memoryless assumption. The AIR is increased even further when
taking the channel and transmitter memory into account via
trellis processing at the receiver. Significant gains are reported
in the highly nonlinear region of transmission for an FSMS of
up to second order and 16QAM and particularly for unrepeated
transmission. At the optimal launch power of WDM transmission,
the FSMS order needs to be increased further in order to notably
outperform previous probabilistic shaping schemes.

Index Terms—probabilistic shaping, finite state machines, non-
linear distortion.

I. INTRODUCTION

Constellation shaping is currently among the hot topics for
investigation in the fiber optic communications community.
Shaping is generally achieved via digital processing, which
allows for improving the performance of legacy fiber networks
in terms of e.g. the achievable rates and maximum link
distance without making changes to the links themselves.
In particular, probabilistic shaping of quadrature amplitude
modulation (QAM) constellations is gathering popularity due
to its simple integration with standard digital signal processing
techniques. As recently demonstrated [1]–[4], probabilistic
shaping can be integrated into coded modulation schemes with
powerful forward error correcting codes, thus allowing for in-
creased link distance while also approaching the high data rate
demand that the fiber systems face. Most such systems operate
based on a memoryless channel assumption due to the reduced
complexity of the receiver. However, due to the interactions
of chromatic dispersion (CD) and nonlinear effects (self-phase
and cross-phase modulation, SPM and XPM, respectively),
this assumption is often too strong. The achievable rates of
such receivers therefore diminish at high optical signal to noise
ratio (SNR) (high launch power, respectively) [5].

Memoryless probabilistic shaping with memoryless receiver
processing provides increased data rates, however, it generally
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does not allow for increased launch power and the gains are
therefore limited [1].

Temporal shaping for the fiber channel was analyzed in [6],
where it was suggested that superior gains to those of linear
channels can be achieved. Input constellations constrained to a
multi-dimensional (MD) ball are studied in [6], and are shown
to significantly outperform uniformly distributed MD cube, i.e.
uniformly, independent, identically distributed (i.i.d.) QAM
symbols with alphabet cardinality tending to infinity. Such
ball-shaped constellations are difficult to realize in practice
due to 1) large (infinite) cardinality in each dimension; 2)
dependence of dimensions on both past and future symbols.
In practice, the cardinality is limited (e.g. 16 in 16QAM). The
dependence between symbols in time can be realized by e.g.
finite state machine sources (FSMSs) (equivalent to Markov
sources in the context of this paper), which were treated in
[7] for linear channels with memory. A procedure was derived
for optimization of the source in terms of its state transition
probabilities and the constellation constrained capacity was
found with BPSK input. This method was modified for ap-
plication to the nonlinear optical fiber in [8], where it was
shown that shaping gains are possible even with QPSK input
constellations.

In this paper, FSMSs are studied as input to the fiber
channel. The algorithm from [7] is extended to cover nonlin-
ear channels and FSMSs with multi-amplitude constellation
output, allowing for high spectral efficiency. In Section IV,
results are shown in terms of mutual information (MI) between
channel input and output, where the channel memory was
(partly) taken into account at the receiver.

A. Notation

The following notation will be used. Capital letters, e.g.
X denote random variables, which come from an alphabet,
denoted with caligraphic letters, e.g. X , of size |X |. Lower
case letters denote realization of the random variable, e.g. xk
denotes the value of X at time k, and xj denotes the j−th
symbol from X . The sequence in time from t to k is denoted
xkt . The probability mass function (PMF) of X is defined as
pX , and the probability that X takes on value x is pX(X =
x) = p(x) for short notation.

The main performance metric used in this paper is the
mutual information (MI) between the channel input and output
I(XK

1 ;Y K1 ), which represents the achievable information rate
(AIR) on the fiber with the corresponding receiver processing.
Bit error rates (BER) are also studied.
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II. FINITE STATE MACHINE SOURCES AND CHANNELS

A FSMS is defined by its states, state transitions and output,
associated with each transition. In this paper (with the excep-
tion of Section III-D), the state S is defined as the previous
N symbols, emitted by the source xk−1k−N (also denoted by
the column vector [xk−N , xk−N+1, . . . xk−1]), where N is the
order of the source. The symbols X , which are output of the
FSMS and input to the channel in this paper are instances of
a QAM constellation. A branch (or transition) of the source
is defined as b ∈ B , {i, j}, denoting exiting state i with
the symbol xj . We then have |S| = |X |N and |B| = |X |N+1.
Optimization of the transition PMF pX|S allows for temporal
probabilistic shaping, generalizing memoryless probabilistic
shaping, for which pX|S = pX and pX is optimized. When
the FSMS output sequence xK1 completely defines the state
sequence sK1 , the MI I(XK

1 ;Y K1 ) = I(BK1 ;Y K1 )1.
In this paper, the finite state machine channel (FSMC)

model from Fig. 1 is adopted at the receiver as an auxiliary
channel (see Section III for more detail). While it is not an
entirely accurate representation of the fiber, it allows for some
of the channel memory to be captured. The main assumption of
the model is that the memory is finite, i.e. the current channel
output sample depends on the previous M input symbols,
while disregarding the future. This extends the memoryless
assumption, for which p(yK1 |xK1 ) =

∏K
k=1 p(yk|xk). Another

assumption in this model is stationarity, i.e. the PMFs pX|S
and pY |X,S are time-independent.

Using this model, the MI I(XK
1 ;Y K1 ) can be computed via

the BCJR algorithm [9], which was also suggested for the fiber
channel with BPSK input [10]. On the other hand, the repre-
sentation I(BK1 ;Y K1 ) allows for optimization of the state tran-
sition probabilities as p(b) = arg maxp(b) I(BK1 ;Y K1 )(under
some constraints) [7]. In either case [7], [9], a trellis is
built at the receiver side which allows for processing of
sequences of symbols, thus capturing up to M symbols
of the combined channel and transmitter memory via the
likelihoods p(yk|xkk−M ). In this paper (with the exception of
Section III-D), the states in the receiver’s trellis are represented
by the previous M input symbols (as in Fig. 1). Note that while
optimization of the FSMS transition probabilities requires
BCJR processing with M = N , the MI can be computed with
the memoryless assumption also when the input is an FSMS,
and vice-versa. In general, M = N is not a requirement for
the system and different performance/complexity tradeoffs can
be achieved with different choices of {M,N}.

III. FSMS OPTIMIZATION FOR MULTI-AMPLITUDE AND
MULTI-PHASE CONSTELLATION

The general Blahut-Arimoto (BA) algorithm for optimizing
an FSMS on a linear FSMC is given in [7, Lemma 44,
Algorithm 45]. Due to it’s lengthy derivation and notation,
it is omitted here, however, some of the definitions and results
therein will be reused with proper referencing in this paper.
The limitations of the algorithm for direct application to the
optical fiber are two-fold: 1) the likelihoods p(yk|xkk−N ) are

1since H(SK
1 |XK

1 ) = 0 ⇒ I(BK
1 ;Y K

1 ) = I(SK
1 , X

K
1 ;Y K

1 ) =
I(XK

1 ;Y K
1 ) + I(SK

1 ;Y K
1 |XK

1 ) = I(XK
1 ;Y K

1 )
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Fig. 1. FSMC with FSMS input model assumed in this work. For illustration
purposes, the state of the channel is identical to the state of the source, which
is generally not a requirement. The current symbol depends on the state and
the PMF pX|S , and the channel output depends on the vector [sk, xk].

not known in closed form; 2) it does not support an average
power constraint in its general form. An average power con-
straint is crucial for the fiber, since the channel, and thereby the
likelihoods are power dependent. The algorithm is in its nature
iterative, i.e., the PMF of the transitions is iteratively optimized
until convergence. While a given average power constraint
is ensured with constant amplitude constellations (such as
QPSK in [7], [8]), FSMSs with multi-amplitude constellations
output exhibit an average power, which is dependent on the
PMF of the state transitions. We observed that without a
power constraint, especially in the highly-nonlinear region of
transmission, the algorithm from [7] results in convergence to
a local optimum of higher MI than the initial value, but much
lower than what is otherwise possible.

The average output power of an FSMS (input power to the
channel) can be found as

Pav =
∑

b∈{i,j}

p(b) · |αxj |2, (1)

where α is a scaling factor, allowing for basic geometric shap-
ing in terms of linear scaling of the constellation X . In order to
ensure a constant Pav , an additional Lagrange multiplier λP is
introduced in the optimization process, making the noisy ad-
jacency matrix from [7, Definition 43] Ai,j = eTi,j+λPα|xj |2 .

In order to circumvent the lack of a closed form expression
for the channel likelihoods, the method of mismatched decod-
ing and auxiliary channel is adopted (see e.g. [1], [2], [9]). The
auxiliary channel in this case is a 2D Gaussian, i.e., the above
mentioned likelihoods are modeled as Gaussian functions at
yk

p(yk|B = bi,j) = N (Σi,j , µi,j ; [Re [yk] , Im [yk]]
T

), (2)

where Σi,j is a 2x2 covariance matrix and µi,j is the 2D mean.
Such auxiliary function allows for capturing the non-circularity
of the noise, which is particularly important when operating
in the nonlinear region of transmission [11]. We note that it
is possible to increase the dimensionality of the likelihoods to
e.g. p(yk+Dk−D |B = bi,j), however, estimating of the parameters
Σi,j and µi,j in this case requires an exponentially increased
number of samples [12, Ch. 1.4]. Furthermore, we have
verified that increasing the dimensionality to 2 · D + 1 = 3
does not result in significant performance improvement. For
the rest of the paper, D = 0.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JLT.2017.2671452

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



3

Since the likelihoods are only approximations to the true
channel, the result is a lower bound on the MI [9]. The overall
precision of the approximation governs the tightness of the
lower bound. The finite memory FSMC model adopted at the
receiver in this work represents a further approximation of
the true likelihood, and thus has an additional effect on the
tightness of the MI bound.

The updated BA algorithm is given in Algorithm 1. We have
slightly abused the notation to add the PMF and the scaling
α to the arguments of the MI in Steps 21 and 22.

Algorithm 1 Algorithm for optimizing an FSMS on a non-
linear optical fiber channel
Initialize: Pthr - threshold for achieved average power
Initialize: λmin, λstep - conditions for numerical estimation

of λ.
1: for α ∈ [1/max(|X|); 1/min(|X|)] [13] do

Initialize: pB , such that the power constraint∑
b∈i,j p(b)|αxj |2 = Pin is satisfied

2: while Not converged p(b) do
3: Generate the sequences sK1 , xK1 and bK1 according

to sk = xl−1k−M , xk ∼ pX|S , bk = [sk, xk]
4: Generate yK1 by solving the NLSE via the split-

step Fourier method (SSFM)
5: for each b ∈ {i, j} do
6: Find the set of indices k ∈ K for which sk = si

and xk = xj .
7: Estimate Σi,j = Cov [Re [YK] , Im [YK]]

T

8: Estimate µi,j = Ek [Re [YK] , Im [YK]]
T

9: Set p(y|B = bi,j) =

N (Σi,j , µi,j ; [Re [y] , Im [y]]
T

)
10: end for
11: Calculate Ti,j according to [7, Lemma 70].
12: Set λ = λmin
13: do
14: Optimize pB and pS according to [7, Lemma

44], with Ai,j = eTi,j+λPα|xj |2 .
15: Calculate Pλ =

∑
b∈i,j p(b)|αxj |2

16: λ = λ+ λstep
17: while |Pλ − Pin| > Pthr
18: end while
19: Calculate Iα(XK

1 ;Y K1 ) = Iα(BK1 ;Y K1 ) [7, Eq. (42)]
20: end for
21: α̂ = arg maxα Iα(XK

1 ;Y K1 )
22: pB = arg Iα̂(XK

1 ;Y K1 , pB)

The newly introduced λ is found numerically by a search
with a step of size λstep. As long as λstep is kept small,
the average power constraint can be achieved with reasonable
accuracy Pthr. In our simulations, Pthr = 0.005 dBm and
λstep = 0.001, which resulted in observed convergence in all
investigated cases.

A block diagram of the optimization process is given in
Fig. 2. As mentioned, MI estimation, while requiring the
same BCJR processing, is generally independent of the FSMS
optimization and can be performed with different parame-
ters (e.g. different M,D,K and different auxiliary channel
p(yk|xk, sk)). Algorithm 1 can be considered a combination

WDM 
generation

FSMS SSFM
CD 

compensation

Parameter 
estimationMI calculation

Transition 
probabilities 
optimization

𝑥𝑘

𝑦𝑘

Fig. 2. A block diagram of Algorithm 1.

of the algorithms from [13] for AWGN channel, which was
later modified to fit the optical fiber channel under mem-
oryless assumption, for which the channel likelihoods are
input-dependent [1], and then further modified to include the
generalizations of FSMC with FSMS input [7].

A. Demodulation with a BCJR receiver

Practical receivers can be built with similar techniques as
used in Algorithm 1. The goal of the demodulator is to
estimate log-likelihood ratios (LLR)s of the bits, which in
turn requires the symbol posterior probabilities p(xk|yK1 ). In
Algorithm 1, the posterior probabilities p(bk|yK1 ) are implicitly
calculated via forward and backward recursions during the
calculation of the Ti,j values. The posteriors can then be
obtained by marginalization as

p(Xk = xj |yK1 ) =
∑
i

p(Sk = si, Xk = xj |yK1 )

=
∑
i

p(Bk = {i, j}|yK1 ). (3)

The LLRs are then computed by standard techniques [14].
The MI in this case is estimated as I(XK

1 ;Y K1 ) = H(XK
1 )−

H(XK
1 |Y K1 ) and provides an AIR.

The MI can also be estimated as I(XK
1 ;Y K1 ) = H(Y K1 )−

H(Y K1 |XK
1 ) as in e.g. [9]. In that case, the same trellis is used,

but p(yK1 ) is calculated instead of p(bK1 |yK1 ). This calculation
requires only a forward recursion and thus less complexity.
The MI estimates of both approaches are equivalent, however,
the latter approach does not allow for demodulation as in
Eq. (3).

B. Complexity issue

In order to accurately estimate the likelihoods p(Y |B =
{i, j}), the set of indices k ∈ Ki,j for which [sk, xk] =[
si, xj

]
needs to be large. However, the maximum length

K of the input/output sequence is limited by the maximum
memory of the simulator. As M , N and thereby |B| grow and
K is fixed, |Ki,j | is reduced and the likelihoods become more
inaccurate. Furthermore, the standard method for calculating
the MI I(XK

1 ;Y K1 ) is to generate long sequences xK1 and yK1 ,
and use the fact, that [9]

H(XK
1 |Y K1 ) = lim

K→∞

1

K
log2 p(x

K
1 |yK1 ), (4)

H(Y K1 ) = lim
K→∞

1

K
log2 p(y

K
1 ). (5)

The values Ti,j in Step 11 in Algorithm 1 are estimated in a
similar manner from the sub-sequences of symbols Ki,j . As
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the size |Ki,j | is reduced, the approximation for Ti,j in [7,
Lemma 70] becomes poorer and results in inaccurate MI esti-
mation and optimization. This issue is even more pronounced
when the input PMF is non-uniform, since some sequences
appear seldom, and their Ti,j values and contributions to the
MI are improperly calculated. A couple of suggestions for
circumventing this problem are given below.

C. Maxwell-Boltzmann distribution

While it was shown in [1] that with memoryless receiver
processing the modified BA algorithm provides only marginal
improvement over Maxwell-Boltzmann (MB) distributions,
such analogy is not possible here, since the MB distribution
is inherently memoryless. To that end, the multi-dimensional
MB (MDMB) PMF of the branches in an FSMS is defined
from the probabilities

p(B = {i, j}, λMB) ∝ · exp(−λMB

[
si, xj

]H [
si, xj

]
), (6)

where [·]H denotes a conjugate transpose of the col-
umn vector. An average power constraint Pav is ensured
with MDMB by scaling the constellation X to X̂ =

X/
√∑

b∈{i,j} p(b, λMB)|xj |2. The MDMB can be optimized
by brute-force searching through a suitable range of the pa-
rameter λMB . The dimensionality of the optimization problem
is thus reduced to 1, however, the dimensionality of the
MI estimation problem is still governed by the cardinality
|B| = |X |M+1 of the branches in the receiver.

Observe that this type of constraint contains the ball-shaped
input from [15], [16] as a special case, since for large |λMB |,
most of the mass of the constellation is concentrated on a
single amplitude in the multi-dimensional space (the points
with largest amplitude for λ < 0 and the points with lowest
amplitude for λ > 0) . When |X | → ∞ and |λMB | is large,
the constellation is a multi-dimensional sphere.

D. Merging of states

As seen from Eq. (6), many branches exhibit equivalent
probabilities by definition. It would therefore be interesting to
merge such branches, thereby reducing the dimensionality of
the optimization problem and trellis processing at the receiver,
which in turn allows for longer memory to be captured. Care
must be taken during such merging in order to ensure that the
state sequence is uniquely defined and can be traced at the
receiver side with known initial state.

For example, merging based solely on the value[
si, xj

]H [
si, xj

]
constitutes a violation of this rule since a

certain state sequence sK1 can be generated by different symbol
sequences, making reliable communication impossible with
trellis processing at the receiver2.

Instead, we propose to merge states with equal value of the
multi-dimensional vector

[
|si(1)|, |si(2)|, . . . |si(N)|

]
, where

si(n) is the n−th element of the vector si. This results in
parallel branches (transitions) between states, corresponding
to symbols from X with the same amplitude. Such cases are

2since H(SK
1 |XK

1 ) 6= 0 ⇒ I(BK
1 ;Y K

1 ) = I(SK
1 , X

K
1 ;Y K

1 ) =
I(XK

1 ;Y K
1 ) + I(SK

1 ;Y K
1 |XK

1 ) 6= I(XK
1 ;Y K

1 )
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Fig. 3. Unrepeated transmission of FSMS with QPSK. The optimized FSMS
enables increased launch power and gains of around 0.15 bits/symbol for
single channel. The gains are decreased to ≈ 0.02 bits/symbol in a WDM
setup. which is mostly attributed to the BCJR processing at the receiver.
Memoryless processing gains are < 0.01 bits/symbol.

treated in [7, Section IV-C]. The dimensionality of the MI
estimation and optimization problems is thus reduced from
|X |N+1 to |X | · |AX |N , where AX is the set of unique
amplitudes of the elements in X (e.g. for 16QAM |AX | = 3).

IV. RESULTS

The MI in this work is measured in bits/symbol as in Step 19
of Algorithm 1. As mentioned before, it represents an AIR
with the particular receiver processing. A single-polarization
link is considered. A “Standard Rx” processing corresponds to
a BCJR without memory, i.e. M = 0, or a simple 2D Gaussian
receiver [1], [11]. A “Standard Tx” corresponds to uniform
i.i.d. input symbols. At the receiver side, a matched filter is
applied and chromatic dispersion compensation is performed
in the frequency domain.

A. Unrepeated transmission

We study the gains in maximum AIR for an unrepeated link
at the optimal launch power. To that end, the split-step Fourier
method (SSFM) is used for a link of a certain length, and
an Erbium doped fiber amplifier (EDFA) with a noise figure
of 5 dB is included at the end of the link, which sets the
received power to 0 dBm. The rest of the fiber and transmitter
parameters are given in Table I. In Fig. 3, the MI is given
for QPSK input. We see that for single channel, temporal
shaping allows for increased optimal launch power and results
in gradually increasing AIR improvement with the FSMS order
to ≈ 0.15 bits/symbol at N = 5. We note that around half of
the gain is also obtained with memoryless processing. This
is a result of the improved effective SNR at the receiver,
in turn achieved by suppressing unwanted sequences in the
FSMS by assigning them a lower probability of occurrence.
This gain is even greater than the gain of a BCJR processing
for uniform i.i.d. input symbols, which means that through
shaping, complexity is effectively transferred from the receiver
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Fig. 4. Optimized PMF of the states, N = 3, |X | = 4. The state numbering is given as label, where nk is the index from the QPSK alphabet, which appears
at time k (indexing of the QPSK symbols is given on the right).

TABLE I
SYSTEM AND FIBER PARAMETERS

Fiber loss α = 0.2 dB/km
Non-linear coefficient γ = 1.3 (W·km)−1

Dispersion D = 17 ps/(nm·km)
Central wavelenght λ0 = 1.55 µm

SSFM step 1 km
Symbol rate 28 GBd

Channel spacing 30 GHz
No. of WDM channels 1, 3, 5, 9

Pulse shape Square root raised cosine
Roll-off factor 0.01

to the transmitter. In WDM scenarios, the gains are decreased
and are mainly attributed to the BCJR receiver processing.
Only marginal gains are achieved with an optimized FSMS
and memoryless processing at the receiver (discussion about
this result is provided below).

In Fig. 4, the optimized state PMF pS is given at the
optimal launch power of Pin = 15 dBm for single channel
transmission. The state indexing is given in the label of
the axes. We see that some symmetry and structure exist in
the optimized state probabilities. However, we note that this
solution is not unique due to the dependence of the channel
on the input, which does not guarantee convergence to a
unique optimum of Algorithm 1. Due to the symmetry of the
constellation, a different numbering of the QPSK symbols (e.g.
by taking the conjugate constellation and keep the order in
Fig. 4) results in exactly the same distribution of the sequence
xk1 and should therefore result in the same AIR. We have not
yet discovered a way to exploit this fact in the optimization
process.

In Fig. 5, the MI is given for a 16QAM FSMS for different
number of channels. The fiber length in each case is chosen
such that the MI is between 2.5 and 3 bits/symbol, which is
where the maximum shaping gain is expected. The maximum
length of the sequence we were able to simulate is 5 · 105

symbols, which limits the length of the memory for BCJR
processing and the FSMS order to M = N = 2 (see
Section III-B). We see a gain of ≈ 0.2 bits/symbol with an
FSMS of order N = 2 over a single channel. In the linear
region of transmission, the gains are achieved by memory-
less shaping with the algorithm from [1] and by Maxwell-
Boltzmann optimization. This is expected, as the channel
can be considered memoryless AWGN in these cases. When

increasing the launch power, the memoryless shaping gain
disappears. The MDMB with N = M = 2 achieves ≈ 0.15
bits/symbol at the optimal launch power, which is comparable
to the gain of a standard transmitter with BCJR processing
and M = 2. We also study the reduced dimensionality FSMS
and BCJR processing from Section III-D. We see that even
though the FSMS order and the BCJR memory are increased
to N = M = 5, the shaping gains in the nonlinear region
almost completely disappear.

Since both of the above mentioned complexity reduction
techniques rely on abusing similarities in the amplitude of
the constellation points and states thereof, we conclude that
amplitude processing is insufficient for obtaining significant
shaping gains in the highly nonlinear region of the fiber when
limited memory is exploited and when the constellation is
of low cardinality (16QAM considered here vs. 256QAM in
e.g. [16])3. Different merging criteria are therefore needed in
order to increase the order of the FSMS while retaining the
complexity and preserving the shaping gains from Fig. 5. This
is further supported by Fig. 6, where the optimized PMF of
the branches is given as a function of the MD amplitude of the
branch A(b) =

[
si, xj

]H [
si, xj

]
for an FSMS with N = 2

optimized with Algorithm 1 and an MDMB PMF. We see
that branches with equal amplitude can exhibit substantially
different probability of occurrence, which cannot be attributed
to computational inaccuracy. An MDMB fit is also plotted
to the expected value of the probability of occurrence of
each amplitude, which we see provides a good approximation.
However, the lack of further diversity of the MDMB PMF
restricts the shaping gains.

When the number of channels is increased, the gains are
reduced similarly to the QPSK case. However, for 3 chan-
nels, the 16QAM FSMS, including with memoryless receiver
processing, allows for slightly improved AIR w.r.t. standard
probabilistic shaping methods (FSMS with N = 0). When the
number of channels is increased, the intra-channel memory
becomes more inconsequential, and taking it into account at
the receiver and/or transmitter provides only marginal gains.
For 9 WDM channels, ≈ 0.02 bits/symbol are achieved with
N = 2 w.r.t. N = 0. MDMB achieves approximately the same
gain. We note that an FSMS with N = 2 and memoryless

3We note that the MDMB optimization is one-dimensional, which allows
to optimize the input and generate sequences with large N . We did not
observe notable improvements with N = 20 and memoryless processing
at the receiver.
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Fig. 5. Unrepeated transmission of FSMS with 16QAM output. The optimized FSMS enables increased launch power for single channel and gains of around
0.2 bits/symbol. In the nonlinear region, MDMB is outperformed by the optimization from Algorithm 1. The gains are decreased in WDM scenarios, and
become marginally better than the gains of standard memoryless shaping for more than 3 WDM channels. In the latter case, FSMS of higher order is still
beneficial, including with memoryless processing at the receiver.

processing is penalized in the linear region of transmission.
This is due to the fact, that Algorithm 1 converges to a
local optimum, which is different than that of a memoryless
solution.

The resulting waveforms of the optimized FSMSs are
further studied in terms of their peak-to-average power ra-
tio (PAPR), and in particular, its complementary cumulative
distribution function (CCDF) after pulse shaping. The CCDF
shows how often a certain PAPR is exceeded, and is estimated
numerically. An example of the single channel CCDF for
an optimized FSMS of N = 5 and QPSK output is given
in Fig. 7(a) for launch powers 12 dBm (linear region), 15
dBm (optimal) and 18 dBm (highly nonlinear region). We see
that the FSMS allows for reduced PAPR of the pulse-shaped
waveform by ≈ 0.35 dB and up to ≈ 0.8 dB at CCDF= 10−4

and CCDF= 10−6, respectively. This reduction allows for the
shaping gains with QPSK alphabet, which otherwise has a
constant envelope at the sampling points.

In Fig. 7(b), the PAPR which is exceeded with probability
10−4 is given for single channel and WDM as a function of
the launch power for optimized FSMS of N = 5. Due to
the central limit theorem, the PMF in each channel has less
impact on the distribution of the multi-channel waveform and
thereby its PAPR, when the number of channels is increased
(the distribution will tend to Gaussian for infinite number of
channels). For 9 channels, the PAPR cannot be reduced with
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Fig. 6. Optimized PMF of the branches in an FSMS with 16QAM and N = 2
as a function of their MD amplitude for 270 km unrepeated transmission on
a single channel. An MDMB fit to the expected value of the probability of
occurrence of each amplitude is also shown, together with an independently
optimized MDMB PMF as in Section III-C. The MDMB potentially allows
for capturing the expected value of the probability of occurrence of each
amplitude, but not the complete function.

the FSMS, which also results in diminished shaping gains.
In Fig. 7(c), the PAPR is given for 16QAM. In the linear

region of transmission, high PAPR has no impact on the
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for linear transmission.

AIR, and the source converges to a high-PAPR solution,
similar to the MB or MDMB. When the power is increased,
a memoryless source does not allow for reduced PAPR, and
thus provides very little gain at the optimal launch power. As
mentioned, in the WDM cases, single-channel processing and
optimization have less and less impact on the multi-channel
waveform properties, and the gain is thus decreased (as seen
in Fig. 5). The optimized source in such cases has a more
Gaussian structure in order to mitigate the impact of the linear
amplification noise.

We also study the robustness of fixed PMFs for N = 2
and N = 0, obtained at the respective optimal launch pow-
ers, while simultaneously demonstrating demodulation of the
FSMS with BCJR processing. The 16QAM PMF for N = 2 is
obtained at Pin = 12 dBm, and at Pin = 11 dBm for N = 0
(see Fig. 5). The uncoded BER with those PMFs is given in
Fig. 8 for the entire launch power region at 270 km. The BER
with N = 2 is decreased especially in the non-linear region.
However, when the launch power is reduced, the PMF with
N = 2 optimized for nonlinear transmission performs sub-
optimally to the PMF with N = 0, which is optimized at a
lower power and is mainly focused on mitigating the linear
noise.

B. Amplified WDM system distance improvement

Finally, we study a WDM link with 9x28 GBaud channels
and ideal distributed Raman amplification (IDRA), modeled as
in [5]. The rest of the parameters are as in Table I. The results
for 16QAM are given in Fig. 9. Similar to the unrepeated
WDM transmission case, temporal shaping provides only
marginal gains over memoryless shaping. Temporal shaping
is even more challenging in this case due to the increased
transmission length and the fact that the accumulated disper-
sion makes the channel memory longer. Short memory FSMSs
(N ≤ 2) therefore fail to produce significant improvements.
Indeed, we observed that similar to the linear region of
transmission, Algorithm 1 converges to a solution, for which
the conditional probability p(X = xj |S) approximates the
marginal distribution p(X = xj) =

∑
i p(B = {i, j}), i.e.,

the current output is independent of the past. Such a solution
is beneficial in mitigating the white part of the noise (linear
and nonlinear), but barely provides SNR improvement.

In order to achieve temporal shaping gains (and in fact,
increased memoryless shaping gains) in the case of WDM with
significant XPM, cross-channel processing is required both at
the transmitter and the receiver. This is further discussed in
Section V.

V. DISCUSSION AND FUTURE WORK

One of the main limitations of Algorithm 1 is the require-
ments for very long sequences for accurate calculation of the
values Ti,j for high FSMS order N . Furthermore, generating
the sequence yK1 requires performing the SSFM, which is slow
and cumbersome for long sequences. This limitation can be
circumvented by employing some of the recent techniques for
fiber channel modeling [17], [18]. However, in their present
form, i.i.d. input symbols are assumed when generating the
channel noise and the channel output samples. Generalizing
these techniques to generating correlated noise samples would
be of great interest for expanding the work in this paper
to longer memory and higher FSMS order. This will allow
for reduced running time, however, the complexity will still
be dominated by the BCJR processing at the receiver. It is
noted that Algorithm 1 is general, and can be applied directly
also for multiple-input multiple-output type systems and/or
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Increasing the order to only N = 2 does not provide significant gains over
standard probabilistic shaping. The gains from memory exploit and shaping
appear to add-up.

multi-channel processing (e.g. super-channels). As seen from
Fig. 3 and Fig. 5, the optimized FSMS allows for gains also
with memoryless processing, thus operating at low complexity.
Furthermore, the fact that gains are achieved in a 3-channel
setup with only single channel processing indicate that further
improvements in WDM scenarios are possible with cross-
channel processing. Together with the fact, that the optimiza-
tion is performed offline, this makes FSMSs a promising tool
for achieving shaping gain in the above mentioned systems.

In this work, QAM constellations were chosen as outputs
of the FSMS due to their popularity and practical transceiver
benefits such as Gray coding, readily available digital signal
processing, etc.. Other types of constellations can be directly
adopted in this framework without loss of generality. In
particular, geometrically optimized constellations, e.g. ring
constellations [19], with probabilistically shaped temporal
properties are of interest for future research.

As seen in Fig. 6, MDMB can provide a good fit to
the expected value of the probability of occurrence of each
amplitude. Introducing hyper-parameters, such as variance of
the probability of occurrence may allow for describing a
modified MDMB PMF which captures the required diversity
of the probabilities of each amplitude for achieving the shaping
gains from Fig. 5. Such closed form expressions of the PMF
and reduced dimensionality optimization would in turn allow
for increasing the FSMS order and potentially higher gains.

This work describes theoretical AIRs on the fiber, however,
communicating binary data with this system is not trivial.
In order to build a practical system, a method is required
which maps the binary data to the branches of the FSMS with
the specified PMF. This may be possible with the techniques
from e.g. [20], [21]. Alternatively, non-binary coding and
communication can be considered for easier shaping at the
symbol level.

VI. CONCLUSION

In this paper, finite state machine sources (FSMS) were
proposed for temporal probabilistic constellation shaping for
nonlinear fiber optic systems. It was shown that shaping

the probabilities of sequences of QAM symbols is benefi-
cial and in some cases significantly outperforms memoryless
shaping. Gains were demonstrated in links, dominated by
self-phase modulation, where temporal shaping allows for
increased launch power and thereby achievable information
rates. In links, dominated by cross-phase modulation, such as
wavelength division multiplexing systems, temporal shaping
requires cross-channel processing and optimization and/or
increased FSMS order in order to significantly outperform
memoryless shaping.
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