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Abstract 

Purpose  Product developers using life cycle toxicity impact assessment models to understand potential 

impacts of material substitutions face serious challenges related to large data demands and high 

uncertainty.  This motivates greater focus on model sensitivity toward input parameter variability, 

particularly in the context of emerging contaminants like engineered nanomaterials (ENMs), to guide 

future efforts in data refinement and design of experiments.  This study presents a Monte Carlo tool 

designed for use with USEtox 1.0 that allows researchers to rapidly prioritize data needs according to 

influence on characterization factors (CFs).   

Methods  Using Monte Carlo analysis we demonstrate a sensitivity-based approach to prioritize 

research through a case study comparing aquatic ecotoxicity CFs for the ENM C60 and the vitamin B 

derivative niacinamide, two antioxidants used in personal care products.  We calculate CFs via 10,000 

iterations assuming plus-or-minus one order of magnitude variance for fate and exposure-relevant 

inputs.  Spearman Rank Correlation Indices are used for all variable inputs to identify parameters with 

the largest influence on CFs, which we prioritize for data refinement and future experimental 

investigation.  Based on the importance of aggregate multi-species toxicity (average log EC50) and 

studies suggesting solvent residues may yield erroneous toxicity estimates, we recalculate C60 CFs 

omitting all studies using solvents in sample preparation. 

Results and discussion  For emissions to freshwater, the C60 CF is log-normally distributed with a 

geometric mean of 280 and geometric standard deviation (GSD) of 2.1 PAF m3 day/kg compared to 2.6 

with a GSD=1.8 PAF m3 day/kg for niacinamide.  C60 CFs are most sensitive to varied suspended solids 

partitioning coefficients (Kpss) and average log EC50, whereas variation of other substance parameters 

has comparatively little effect on model results.  Insufficient experimental evidence hampers to revise 

assumptions for Kpss, and we suggest prioritizing future experiments that elucidate C60 interactions with 

suspended solids.  Recalculating C60 CFs without toxicity studies that use solvents reduces the geometric 

mean by more than a factor of ten.  This reinforces the importance of thorough characterization of 

released ENMs, in this case regarding the presence of solvent residues.   

Conclusion  Calculating stochastic CFs allows sensitivity-based prioritization of data needs and future 

experiments, which is particularly helpful in the context of emerging contaminants like C60.  Researchers 

can conserve resources and address parameter uncertainty by applying our approach when developing 

new or refining existing CFs for the inventory items that contribute most to toxicity impacts.  The Monte 

Carlo tool can be applied to current toxicity characterization models like USEtox and is freely available at 

https://www.dropbox.com/home/MC%20USETox/Interface/20151222  
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Introduction 

Coupled fate-exposure-effect models like USEtox (Rosenbaum et al. 2008), Impact2002 (Pennington 

et al. 2005), and USES-LCA (van Zelm et al. 2009) are widely used to calculate characterization factors 

(CFs) for human toxicity and ecotoxicity impacts in life cycle assessment (LCA).  CFs allow practitioners 

and decision makers to quantify potential toxicity-related impacts associated with chemical emissions 

quantified in the life cycle inventory (LCI) phase of LCA.  Life cycle impact assessment (LCIA) models for 

characterizing human toxicity and ecotoxicity are complicated, require various substance-specific input 

parameters, and their results are typically characterized by an overall uncertainty of two to three orders 

of magnitude depending on emission compartment, exposure scenario, and data availability (Jolliet and 

Fantke 2015; Rosenbaum 2015).  Thus, these models require further improvement, although significant 

achievements have been made over the last decade.  For example, sustained harmonization efforts 

between divergent toxicity LCIA models resulted in the consensus model USEtox (Rosenbaum et al. 

2008; Westh et al. 2015) and the recently released USEtox 2.0 (http://usetox.org), which are considered 

best practice (Hauschild et al. 2013), recommended by the ILCD handbook (EC 2011), and implemented 

in TRACI (Bare et al. 2012).  The extensive inter-model comparisons and streamlining activities 

addressed model uncertainty and improved transparency and credibility (Hauschild et al. 2008).   

However, further development and adoption of current human toxicity and ecotoxicity LCIA models 

faces challenges related to the large number and diverse properties of relevant emitted substances, 

limited availability of high quality data, and sparse treatment of parameter uncertainty or variability 

(Alfonsín et al. 2014; Gust et al. 2015; Rosenbaum 2015).  For example, there is a large discrepancy 

between the ≈ 10,000 substances included in the latest Ecoinvent inventory library (Weidema 2013) and 

the ≈ 1,200 human toxicity and 2,500 ecotoxicity CFs available from the recent USEtox 2.0 update 

(http://usetox.org).  Each individual CF requires approximately ten substance-specific input parameters, 

thereby challenging the experimental and data curation efforts required for database validation and 

expansion.  As a result, a large share of CFs in USEtox relies on substance data estimated using outputs 

from quantitative structure activity relationships (QSARs) such as EPI Suite (USEPA 2015b), which are 

essential for filling data gaps but often lack experimental evidence and therefore are considered of 

lower quality than measured values (Huijbregts 2010a).  Thus, there is a critical need to explore the 

sensitivity of human toxicity and ecotoxicity LCIA results – and those used in other impact categories – 

to variability and uncertainty in required substance input data, which may help expedite database 

expansion, refinement, and development of future research agenda (Cellura et al. 2011; Cucurachi and 

Heijungs 2014).   

One available method to evaluate LCIA model sensitivity to variability in substance data is to use 

Monte Carlo analysis to sample from specified distributions (Sonnemann et al. 2003) and calculate CFs 

as frequency distributions as opposed to point values (Lloyd and Ries 2007; van Zelm and Huijbregts 

2013).  Calculating stochastic CFs enables sensitivity analyses that can help expedite data collection by 

identifying the substance-specific parameters with the greatest influence on model output variability 

(Saltelli et al. 2008).  This can help define research agenda and conserve resources by focusing attention 

on experiments with the greatest potential to reduce uncertainty of model results, while substance data 

with little impact on results may be revealed as a low investigative priority.   

The benefits of applying sensitivity-based research prioritization may be greatest in the context of 

emerging contaminants such as engineered nanomaterials (ENMs).  Widespread concern regarding 
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potential toxicity-related impacts associated with emissions of ENMs galvanized an active research 

community and produced volumes of published data that demonstrates high variability between 

published parameter estimates (NSTCCT 2014).  The suitability of human and ecotoxicity LCIA models for 

ENMs is a known issue (Klopffer 2007) and relatively well covered in recent literature (Gilbertson et al. 

2015; Miseljic and Olsen 2014b; Salieri et al. 2015).  Less emphasized are critical data-related challenges 

include: 

1) The large number of commercially-relevant ENMs and possible permutations made through 

alternative surface coatings leaves comprehensive characterization and collection of sufficient 

data for all ENM emissions impracticable (Alvarez et al. 2009; Cohen et al. 2013; Grieger et al. 

2010), 

2) Material heterogeneity within even narrow classes of ENMs – for example carbon nanotubes 

with differing lengths, number of walls, chirality – results in high variability in risk-relevant 

parameters reported in the literature (Hendren et al. 2015; Saleh et al. 2015; Seager and Linkov 

2008), and 

3) Computational approaches to estimating substance properties for ENMs are nascent (Alvarez et 

al. 2009; Cohen et al. 2013; Eisenberg 2015) and QSARs designed for conventional chemical 

pollutants may be inapplicable.  For example, EPI Suite does not apply to the ENM C60 because 

the closed-cage structure is incomparable to other carbonaceous materials. 

Together these challenges limit the applicability of existing human and ecotoxicity LCIA models to ENMs, 

and to date there are no CFs for ENMs included in any commercial LCA software package or database.  

Nanomaterial LCA review articles identified the lack of ENM-specific CFs as preventing quantification of 

toxicity impacts associated with ENM emissions (Gavankar et al. 2012; Hischier and Walser 2012; 

Miseljic and Olsen 2014a).  In the literature fewer than five studies have developed aquatic ecotoxicity 

CFs for ENMs, predominantly through innovative modifications of USEtox including: development of 

realistic and worst-case scenarios for the ENM’s CF (Eckelman et al. 2012), precautionary assumptions 

(Miseljic and Olsen 2014a), qualitative discussion of uncertainty (Rodriguez-Garcia et al. 2014), and 

development of simplified colloidal transport models within USEtox (Salieri et al. 2015).  Only Eckelman 

et al (2012) conducts a thorough Monte Carlo sensitivity analysis on substance properties, but the 

emphasis was on comparing the magnitude of cumulative upstream ecotoxicity impacts with those 

directly from ENM releases, and therefor did not include the relative influence of variable substance 

data on characterization results.   

The present paper introduces a Monte Carlo tool that can be combined with USEtox 1.01 to specify 

substance data as variable distributions, as opposed to point value estimates, and presents resulting CFs 

as frequency distributions.  We apply the tool to compare aquatic ecotoxicity CFs of the ENM C60 (CAS 

99685-96-8) and the vitamin B derivative niacinamide (CAS 98-92-0), both of which are used at low 

concentrations in commercial personal care products because of their antioxidant properties (Benn et 

al. 2011; Lens 2009; PEN 2013).  The comparison represents a hypothetical decision context in which 

personal care product developers are considering the emerging material C60 as an alternative for a 

conventional chemical providing the same function.  Given high environmental and regulatory 

uncertainty regarding ENMs, product developers are unsure of potential toxicity impacts and what 

further research is necessary to improve confidence in the material comparison.  Differences in 

performance, which are often the motivation for adoption of new materials, would be reflected in 

functional unit definition and differences in emitted mass are tracked in the life cycle inventory, both of 
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which are beyond the scope of this manuscript.  More importantly, the comparison illustrates one 

component of an anticipatory approach to LCA that compares an emerging technology to conventional 

alternatives in order to guide research and development decisions towards reduced environmental 

impacts (Wender et al. 2014b), and that might help moving toward fundamentally more sustainable 

substitutions (Fantke et al. 2015).   

2.0 Methods 

USEtox calculates freshwater ecotoxicity CFs in a CF matrix per unit mass of emitted substance,  

expressed as comparative toxicity units CTUe (PAF m3 d/kgemitted), and interpreted as the product of a 

fate factor matrix (FF, kgin compartment per kgemitted/d), an exposure factor matrix (XF, kgbioavailable/kgin 

compartment), and an effect factor matrix (EF, PAF m3/kgbioavailable) (Equation 1).  FF, XF, and EF represent the 

residence time in freshwater, dissolved fraction in freshwater, and aggregated multi-species 

toxicological response, respectively (Henderson et al. 2011; Huijbregts 2010a): 

 𝐂𝐅 = 𝐄𝐅 𝐗𝐅 𝐅𝐅   Eq. 1 

Model structure, assumptions, and landscape data of USEtox 1.01 were not targeted in our Monte Carlo 

tool and thus model uncertainty is not addressed in this study as the focus is exclusively on prioritization 

of research into substance data.   

2.1 Description of the Monte Carlo Tool 

To facilitate Monte Carlo operation, we developed a user-friendly interface where USEtox-required 

substance data can be described as any combination of uniform, normal, log-normal and triangular 

distributions, or remain point values as applied in USEtox.  These distributions are sampled 

independently n-specified times, the values were used as input to USEtox, and resulting CFs plotted as 

frequency distributions along with descriptive statistics.  Additionally, the Monte Carlo tool calculates 

Spearman Rank Correlation Indices for all inputs that are not point values (SI 2.1).  Results for each 

material presented are based on 10,000 Monte Carlo runs, taking approximately one hour to complete 

(2.0 GHz intel i7).  The JAVA-based tool is open source, further modifications welcomed, and a beta 

version made available for download at 

https://www.dropbox.com/home/MC%20USETox/Interface/20151222.   

2.2 Fate and Exposure Data and Modeling Assumptions 

C60
 partitions strongly to dissolved organic carbon, suspended solids, and natural organic matter 

(Yang et al. 2015).  Thus, we implement values from available literature according to USEtox 

requirements for metals as shown in Table 1.  The large quantity of publications detailing fate-relevant 

studies for C60 and its aggregates, combined with inconsistent reporting of nanomaterial and matrix 

characteristics, prohibits a comprehensive review.  To emphasize the method of sensitivity-based 

research prioritization we have selected only studies which report USEtox-required parameters by 

name, for example as opposed to studies reporting removal percentages by biomass.   

Table 1  Fate and exposure relevant data and modeled variance for C60  

Parameter Description Units 
Midpoint 
value(s) 

Baseline 
variance 

Reference 

MW 
Molecular 

weight 
g/mol 721  

721 
Chemical formula 
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Kow 
Octanol-water 

partitioning 
coefficient 

L/L 4.6 x 106  
4.6x105 - 4.6x107 

Jafvert & Kulkarni, 
2008 

Koc 
Organic carbon 

partitioning 
coefficient 

L/kg 
1.2 x 107 
5 x 103 

 
5x103 - 1.2x107 

Chen & Jafvert, 
2009 
Avanasi et al, 2014 

Kh 
Henry’s law 

constant 
Pa 

m3/mol 
1 x 10-20  

   1x10-20 
USEtox manual 

Pvap Vapor pressure Pa 
6 x 10-4 
1 x 10-20 1x10-20 - 6.6x10-4 

SES Research, 
2010 
USEtox manual 

Sol 
Solubility in 

water 
mg/L 

2-8 x 10-6 
<100 nC60 

 
5x10-6 - 1x102 

Jafvert & Kulkarni, 
2008 
Fortner et al, 2005 

Kdoc 
Kpss 
Kpsl 
Kpsd 

Partitioning 
coefficient 
between: 
dissolved 

organic carbon; 
Suspended 

solids; 
Soil particles; 

Sediment 
particles 

L/kg 3.2 x 104  
3.2x103 - 3.2x105 

USEtox regression: 
Kdoc=0.08*Kow 
Assume Kdoc = 
Kpss = Kpsl = Kpsd 

kdeg, air 
Degradation 

rate in air 

1/s 

1 x 10-20 
2 x 10-5 1x10-20 - 2x10-5 

USEtox manual, 
Tiwari et al, 2014 

kdeg, water 

Degradation 
rate in water 4.5 x 10-8 

 
4.5x10-9 - 4.5x10-

7 

Avanasi et al, 2014 
USEtox manual kdeg, soil 

Degradation 
rate in soil 2.25 x 10-8 

 
2.2x10-9 - 2.2x10-

7 

kdeg, sed 
Degradation 

rate in sediment 5 x 10-9 
5x10-10 - 5x10-8 

BAF fish 
Bioaccumulation 
factor in fish 

L/kg 
3.2 x 104 

5.12 x 105 
 

5x104 - 5x106 

Li et al, 2010 
Jafvert & Kulkarni, 
2008 

A growing weight of evidence suggests that C60 released to water partitions to natural organic 

matter, biological membranes, and settles to sediment rapidly (PubChem 2015a; Pycke et al. 2012; 

USEPA 2010).  Nonetheless some fate-relevant parameters published data show high variability, for 

example Chen and Jafvert (2009) reported the first estimate of an organic carbon-water partitioning 

coefficient (Koc) of ≈ 1.2 x 107 mL/g, whereas five years later Avanasi et al. (2014) report Koc values as 

low as 5 x 103 mL/g based on soil type.  We model Koc as a uniform distribution across this range.  C60 

solubility ranges from virtually insoluble (<10-9 mg/L) as isolated particles to nearly 100 mg/L as water-
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stable aggregates (Avanasi et al. 2014), which we model as uniform between 5 x 10-6 and 100 mg/L.  

Similarly, atmospheric degradation rates (kdeg, air) of 2 x 10-5 1/s by environmentally-relevant ozone 

concentrations was shown in Tiwari et al. (2014), although other carbon nanomaterials have been 

modeled as resistant to degradation (e.g., 1 x 10-20 1/s) (Rodriguez-Garcia et al. 2014).  Thus we model 

kdeg, air as uniform between these two values.  In part the variability in fate and exposure relevant 

substance data for C60 is related to the large number of publications on the ENM, as compared to the 

less-studies niacinamide.  Thus, future efforts can incorporate the number of studies into estimates of 

parameter uncertainty or variability as has recently been demonstrated for pesticide dissipation half 

lives in plants (Fantke et al. 2014) and related CFs for human exposure to pesticide residues in crops 

(Fantke and Jolliet 2015).   

Fate and exposure relevant parameters for which only point values are reported in literature or 

available from QSAR programs were assumed to have an arbitrary baseline scenario of uniform variable 

distributions of plus-or-minus one order of magnitude from the midpoint value.  The USEtox 1.01 

manual describes a simple regression to estimate the dissolved organic carbon partitioning coefficient 

(Kdoc) as 0.08 x Kow, giving the midpoint value of 3.2 x 104 L/kg.  In the absence of experimental data, 

we assume Kdoc is equal to the suspended solids partitioning (Kpss), sediment particle partitioning 

(Kpsd), and soil particle partitioning (Kpsl) coefficients (Eckelman et al. 2012).  Based on the classification 

of C60 as recalcitrant (Avanasi et al. 2014; Kümmerer et al. 2011) and the USEtox manual (Huijbregts 

2010b), we model the aquatic degradation rate (kdeg, water) as 4.5 x 10-8 1/s, and the soil and sediment 

degradation rates as 1/2 and 1/9 of kdeg, water respectively.  Bioaccumulation factors for fish (BAF fish) 

have been reported as ≈ 3 x 104 L/kg (Li et al. 2010) and 5 x 105 L/kg (Jafvert and Kulkarni 2008), which is 

less than the assumed baseline variability, thus we model BAF fish as uniform between 5 x 104 and 5 x 

106 L/kg.   

The conventional antioxidant niacinamide that C60 may replace is the subject of relatively fewer 

studies, which is why we rely primarily on EPISuite (USEPA 2015b) and supplement with available 

literature as summarized in Table 2.   

Table 2  Fate and exposure relevant data and modeled variance for niacinamide 

Parameter Description Units 
Midpoint 

value(s) 
Baseline variance Reference 

MW 
Molecular 

weight 
g/mol 122  

122 
Chemical formula 

Kow 

Octanol-water 

partitioning 

coefficient 

L/L 0.42  
4.2x10-2 - 4.2 

OECD SIDS 

Koc 

Organic carbon 

partitioning 

coefficient 

L/kg 8.5  
0.85 - 85 

EPISuite, Kocwin 

Kh 
Henry’s law 

constant Pa m3/mol 
2.9 x 10-7 

6.45 x10-6 2.9x10-8 - 2.9x10-6 

PubChem database 

USEtox Guidance 

Pvap Vapor pressure Pa 
0.026 

0.05 
 

5x10-3 - 0.5 

EPISuite, MPBPVP 

PubChem database 
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Solubility 
Solubility in 

water 
mg/L 

5e5 
6.9-10 x 105 

 
5x104 - 5x106 

EPISuite, exper. 
OECD SIDS 

kdeg, air 
Degradation 

rate in air 

1/s 

1.8 x 10-6  
1.8x10-7 - 1.8x10-5 

EPISuite, AOPWin 
USEtox manual 

kdeg, 

water 
Degradation 
rate in water 

2.1 x 10-7  
2.1x10-8 - 2.1x10-6 

EPISuite, Biowin 
USEtox manual 

kdeg, soil 
Degradation 
rate in soil 

1 x 10-7  
1x10-8 - 1x10-6 

kdeg, sed 
Degradation 

rate in sediment 
2.3 x 10-8  

2.3x10-9 - 2.3x10-7 

BAF fish 
Bioaccumulation 

factor in fish 
L/kg 0.9  

0.09 to 9.0 
EPISuite, BCFBAF 

Niacinamide was not included in USEtox 1.01, but was covered in the recently released USEtox 2.0 

(http://usetox.org) with fate and exposure-relevant parameter values nearly identical to those 

presented in Table 2 (SI, 2.2.2).  We collected parameter estimates from an OECD Screening Information 

Dataset, which reports experimentally-determined estimates for Kow of 0.42 and solubility of 6.9-10 x 

105 mg/L (UNEP 2002), which correspond closely with values reported in EPISuite (USEPA 2015b).  The 

National Center for Biotechnology Information database reports Henry’s Constant (Kh) as 2.9 x 10-7 Pa 

m3/mol and a vapor pressure of 0.05 Pa (PubChem 2015b).  We combine EPISuite outputs and the 

USEtox organics manual (Huijbregts 2010c) to model uniform distributions for all degradation rates and 

BAF fish following the baseline scenario of plus-or-minus one order of magnitude from these midpoint 

values.   

2.3 Effect Factor Data and Modeling Assumptions 

We calculate EF for both materials using variable toxicology data from acute and chronic toxicity 

tests on producers (algae), primary consumers (invertebrates), and secondary consumers (fish) 

(Hauschild and Huijbregts 2015; Huijbregts 2010a).  Toxicity data for C60 and niacinamide – typically 

reported as the concentration at which 50 percent of the exposed organisms over background exhibit 

the studied effect (EC50), inhibited growth (IC50), or lethality (LC50) – was taken from available literature 

and is summarized in Table 3 and Table 4, respectively.   

Table 3  Data from individual ecotoxicity studies of C60 

Reference 
Species 
(n=10) 

Test type and 
endpoint 

Reported 
value(s) 

Stabilization 
method 

Chronic 
equiv. 

EC50 value 

Producers 

Tao et al, 
2015 

S. obliquus 72h Chronic IC50 1.94 mg/L 
THF then 
membrane 
filtered 

1.9 mg/L 

Gelca et al, 
2012 

S. 
capricornutum 

5d Chronic IC50 dark 0.04 mg/L Stirred then 
filtered, 
average of size 
ranges taken 

0.04 mg/L 

5d Chronic IC50 light 0.02 mg/L 0.02 mg/L 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

9 
 

Baun et al, 
2008* 

P. subcapitata 48h Chronic IC30 90 mg/L Stirring 90 mg/L 

Blaise et al, 
2008* 

P. subcapitata 72h Chronic IC25  100 mg/L Mixing 100 mg/L 

Seki et al, 
2008** 

P. subcapitata 72h Chronic IC50  
14.8 mg/L 
extrapolated 

Grinding with 
sugar and oil 

15 mg/L 

Primary Consumers 

Seki et al, 
2008 

D. magna 
48h Acute EC50 
immobilization  

>2.25 mg/L 
(LOEC) 

Grinding with 
sugar and oil 

5 mg/L 

Blaise et al, 
2008 

T. platyurus 24h Acute LC50 >10 mg/L 
Mixing 

5 mg/L 

H. attenuata 
96h Acute EC50 
morphological 

>10 mg/L 5 mg/L 

Lovern & 
Klaper, 2006 

D. magna 48h Acute LC50 

7.9 mg/L Sonication 3.9 mg/L 

0.46 mg/L 
THF, filtered 
then 
evaporated 

0.2 mg/L 

Zhu et al, 
2009 

D. magna 
48h Acute LC50 10.5 mg/L 

Shaken 
5.3 mg/L 

48h Immobility EC50 9.34 mg/L 4.6 mg/L 

Ji et al, 2014 
 

D. magna 
96h Acute LC50 dark 

1.85 mg/L 
(NOEC) 

Mixing then 
filtered 
through .2 
micron 

17 mg/L 

96h Acute LC50 light 
0.46 mg/L 
(NOEC) 

4.1 mg/L 

M. macrocopa 
96h Acute LC50 dark 4.1 mg/L 

96h Acute LC50 light 4.1 mg/L 

Tao et al, 
2009 

D. magna 
48h Acute LC50 
neonatal 

0.44 mg/L 
THF then 
evaporated 

0.2 mg/L 

Zhu et al, 
2006 
  

D. magna 48h Acute LC50 0.8 mg/L 
THF then 
evaporated 

0.4 mg/L 

Oberdorster 
et al, 2006 

D. magna 

96h Acute LC50 
>35 mg/L 
(LOEC) 

Stirring 

78 mg/L 

21d Chronic Molting 
delay, number of 
offspring 

2.5 mg/L 
(LOEC) 

5.6 mg/L 

Baun et al, 
2008 

D. magna 48h Chronic Mobility 
<50 mg/L 
(NOEC) 

Stirring 450 mg/L 

Secondary consumers 

Seki et al, 
2008 

O. latipes 96h Acute LC50  
>2.15 
(NOEC) 

Grinding with 
sugar and oil 

19 mg/L 

Oberdorster 
et al, 2006 

O. latipes 
96h Acute LC50 

0.5 mg/L 
(NOEC) Stirring 

4.5 mg/L 

P. promelas 1 mg/L (NOEC) 9 mg/L 

Usenco et 
al, 2007 

D. rerio 
96h Acute LC50 
embryonic 

0.2 mg/L 
C60 or C70 
sonicated in 
DMSO 

0.1 mg/L 

4 mg/L C60(OH)24 2 mg/L 

Usenco et 
al, 2008 

D. rerio 
5d Acute LC50 dark 0.3 mg/L C60 sonicated in 

DMSO 
0.15 mg/L 

5d Acute LC50 light 0.2 mg/L 0.1 mg/L 
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5d Chronic EC50   
Fin malformation 

0.15 mg/L 0.15 mg/L 

Zhu et al, 
2007 

D. rerio 
96h Chronic EC50 
developmental 

1.5 mg/L 
C60 in THF then 
evaporated 

1.5 mg/L 

50 mg/L 
(NOEC) 

C60(OH)24 450 mg/L 

*Although USEtox manual specifies EC50 values, we retain data from studies reporting 25 and 30 percent 

effected concentrations as additional uncertainty is included in EF modeling. 

**Seki et al (2008) do not reach 50 percent inhibitory concentrations but report an extrapolated EC50 

value based on lower effect-level concentrations. 

This curated data set demonstrates high variability between reported values, with at least two orders of 

magnitude difference in every trophic level and five orders of magnitude difference across all species.  In 

spite of ongoing improvements to toxicity testing for ENMs (Petersen et al. 2015) there is general 

consensus that C60 presents relatively low hazard to aquatic species (Andrievsky et al. 2005).  As noted in 

Table 3, many of the studies compare fullerene toxicity between:  

1) Alternative sample preparation methods (Lovern and Klaper 2006; Seki 2008; Usenko et al. 

2007; Zhu et al. 2006; Zhu et al. 2007) to elucidate the extent to which solvents or other 

contaminants may cause erroneously high toxicity estimates (Henry et al. 2011; Kovochich et al. 

2009), and  

2) Testing conditions exposed to light or kept in darkness (Gelca et al. 2012; Ji et al. 2014; Usenko 

et al. 2008) to understand the importance of photoexcitation and degradation in driving toxicity 

(Kolosnjaj et al. 2007).   

A noteworthy source of uncertainty is converting acute, no observed effect concentration (NOEC), and 

lowest observed effect concentration (LOEC) endpoints reported in the majority of studies into 

equivalent chronic EC50 values by dividing by an acute to chronic ratio of 2 (Huijbregts 2010a), 1/9, and 

4/9 respectively, following studies for non-cancer endpoints (Eckelman et al. 2012; Huijbregts et al. 

2005).  We apply these factors consistently across both materials, and do not test the sensitivity of CFs 

to these assumptions.     

The conventional alternative niacinamide again is the subject of relatively fewer studies than the 

emerging material C60.  Reported toxicity data for niacinamide are consistently greater than C60 by at 

least two orders of magnitude, and all exceed 1 g/L as shown in Table 4. 

Table 4  Data from individual ecotoxicity studies of niacinamide 

Reference 
Species 

n=3 
Test type and 

endpoint 
Reported 
value(s) 

Chronic 
eqiv. 

EC50 value 

Producers 

OECD SIDS, 

2002 

S. subspicatus 72h Acute EC50 >1000 mg/L 500 mg/L 

Algae - generic QSAR, 96h Accute EC50 8,934 mg/L 4,500 mg/L 

Primary consumers 

D. magna 24h Acute EC50 >1000 mg/L 500 mg/L 
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OECD SIDS, 

2002 

Daphnid - generic 48h Acute EC50, QSAR 16,456 mg/L 8,000 mg/L 

Secondary consumers 

OECD SIDS, 

2002 

P. reticulata 96h Acute LC50 >1000 mg/L 500 mg/L 

Fish - generic 96h Acute LC50, QSAR 18,189 mg/L 9,000 mg/L 

ECOTox 

database* 

X. laevis 96h Acute EC50, 

embryonic 

0.34 mg/L 0.17 mg/L 

*Misclassified data point contained in ECOTox database. 

Consistent with our treatment of C60 ecotoxicity studies, we divide the acute toxicity data points 

reported in Table 4 by an acute to chronic conversion factor of 2 to estimate the chronic equivalent EC50.  

The dataset contains a misclassified acute EC50 value of 0.34 mg/L reported in the ECOTox and RIVM 

ETox databases (RIVM 2015; USEPA 2015a), which references a study that considers nicotine and 6-

aminonicotinamide (Dawson and Wilke 1991) not nicotinamide, and has been brought to the attention 

of the respective database managers.  Unfortunately, this is the only value implemented in the recently 

released USEtox 2.0, which results in a niacinamide ecotoxicity CF for emission to freshwater on the 

order of 105 PAF m³ d/kg – surprisingly large for a vitamin B derivative widely considered to be 

innocuous at relevant commercial and environmental concentrations (CIREP 2005).  Thus we exclude 

this value in calculating EFs for niacinamide, although the influence of the data point on aggregate multi-

species toxic concentration (aveLog EC50) estimation and standard error on the mean (SEM) calculation 

is significant (SI 2.3.1).   

To calculate aveLog EC50 from the individual studies reported in Tables 3 and 4, we take the log of 

the geometric mean of each trophic class, and then calculate the arithmetic mean of these values  

(Huijbregts 2010a) (SI 2.3.2).  This represents the concentration at which half of aquatic species are 

exposed above their median EC50 values, and is 0.43 and 3.2 log mg/L for C60 and niacinamide 

respectively.  We calculate the SEM from the log EC50 data, which is 0.12 for C60 and 0.04 for niacinamide 

(SI 2.3.2).  Uncertainty in the average toxicity (𝑎𝑣𝑒 𝐿𝑜𝑔) follows a Student’s t distribution (Golsteijn et al. 

2012; Van Zelm et al. 2007) centered around aveLog EC50 and scaled by the SEM, shown in Eq. 2: 

 𝑎𝑣𝑒 𝐿𝑜𝑔 = 𝑎𝑣𝑒 𝐿𝑜𝑔 𝐸𝐶50 + 𝑆𝐸𝑀 ∗ 𝑡  Eq. 2 

Where t represents a two-tailed t-distribution with n-1 degrees of freedom from n different species with 

experimental toxicity data (SI 2.3.2). 

3 Results and Discussion 

Freshwater aquatic ecotoxicity CFs for C60 and niacinamide emitted directly to urban air, continental 

freshwater, and natural soil (Figure 1 A-C) show approximately two orders of magnitude variability 

resulting from the assumed plus-or-minus one order of magnitude in the baseline scenario.  These 

results are generated through the full sampling of distributions specified in Tables 1 and 2 as well as 

𝑎𝑣𝑒 𝐿𝑜𝑔 for each material, and thus represent the global sensitivity of freshwater aquatic ecotoxicity 

CFs to simultaneous changes in all substance properties.  Emissions to rural air and agricultural soil show 
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similar variability and order of preference, and niacinamide emissions to marine water are more than 15 

orders of magnitude greater than C60 due to its resistance to removal via sedimentation (SI 3.1).   

 
Fig 1  Stochastic aquatic ecotoxicity CFs for C60 (black) and niacinamide (orange) antioxidants emitted 

to urban air (A), freshwater (B), and natural soil (C) compartments.  Solid lines are frequency 

distributions from 10,000 Monte Carlo runs and dashed lines are normal distributions fit to the log-

transformed data (i.e., CFs are log normal distributions).  

For emissions to air and freshwater, niacinamide is characterized by a lower toxicity potential per unit 

mass than C60, as opposed to emissions to soil in which case C60 has a lower average CF due to its strong 

partitioning to soil over water.  For emission to freshwater, stochastic CFs for C60 and niacinamide are 

log normally distributed with a geometric mean of 280 and 2.6 and geometric standard deviation of 2.1 

and 1.8, respectively.  All of these differences are significant (Welch’s t-test p < 0.001), with the closest 

scenario (i.e., emission to soil) yielding a Welch’s t-test statistic < 0.05 (SI 3.2) (Fagerland and Sandvik 

2009).  Although model uncertainty is relatively well studied and beyond the scope of this study, these 

differences are significant with respect to model uncertainty, and variability in CFs in the baseline 

scenario is smaller in magnitude than estimated model uncertainty (Rosenbaum et al. 2008) (SI 3.3).  

Given baseline scenario assumptions, the hypothetical product developers can conclude that C60 has 

greater potential for ecotoxicity impacts per unit mass than niacinamide,  

3.1 Identifying the Most Influential Substance Parameters 

To estimate the relative influence of varied input parameters used to calculate C60 CFs we take the 

absolute value of the Spearman Rank Correlation Index for emissions to urban air, continental 

freshwater, and natural soil (Figure 2A-C).  Spearman rank correlation assumes independence of 

observations within each parameter and makes no assumptions about the distribution type (Gauthier 

2001).  Many of the substance parameters in USEtox are themselves calculated as function of other 

substance input parameters using simple regressions, for example estimating Kdoc based on Kow, and 

are thereby not independent.  We do not account for the interdependence of parameters as the focus is 

on identifying only the few most influential substance properties, although Fantke et al. (2012) 

demonstrate how to truly decouple parameter uncertainty (e.g., in Kdoc) from regression-related 

uncertainty.   

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

13 
 

 
Fig 2  The five Spearman rank correlation indices with the greatest magnitude out of all variable inputs 

for three C60 aquatic ecotoxicity CFs.  Greater magnitude indicates which input parameters have the 

greatest influence on CF variability for each emission compartment.   

Figure 2 calls attention to the importance of variability in the suspended solids partitioning coefficient 

(Kpss), 𝑎𝑣𝑒 𝐿𝑜𝑔 aggregate ecotoxicity, and to a lesser extent sediment, aquatic, and soil degradation 

rates (kdegSd, kdegW, kdegSl) as driving variance in C60 CF results.  Uncertainty in 𝑎𝑣𝑒 𝐿𝑜𝑔 is derived 

solely from statistical variation in underlying ecotoxicity studies as opposed to considering the slope of 

the effect factor or working point on the potentially affected fraction curve (Hauschild 2007).  Despite 

the large variability modeled for C60 solubility, this parameter has negligible effect on CFs (SI 3.4).  The 

importance of removal through aggregation and sedimentation is consistent with recent reports for 

other ENMs (Dale et al. 2015).  Thus we prioritize C60 Kpss and 𝑎𝑣𝑒 𝐿𝑜𝑔 for further data refinement and 

future experimental research, while the remainder of material parameters have relatively little influence 

on CFs (SI 3.5).  In the case of niacinamide, uncertainty in degradation rates in air, water, and soil have 

the greatest influence for all emission scenarios, followed by Henry’s constant, the organic-carbon 

partitioning coefficient, and 𝑎𝑣𝑒 𝐿𝑜𝑔 (SI 3.6).   

3.2 Decomposing CFs into Fate, Exposure, and Effect Components 

The two antioxidant compounds display significant differences in terms of their freshwater 

residence time (fate factor FF), dissolved fraction (exposure factor XF), and aggregate multi-species 

toxicity (effect factor EF) as shown in Figure 3A-C, and the product of these three yields the CF following 

equation 1.   

 
Fig 3  Component fate (A), exposure (B), and effect factors (C) for niacinamide (orange) and C60 (black) 

identify significant differences between the two antioxidants, specifically the high exposure and low 

toxicity of niacinamide compared to C60.  Solid lines are frequency distributions of 10,000 Monte Carlo 

runs and dashed lines are normal distributions fit to the log-transformed data. 
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FF for each material is equivalent, with partitioning and sedimentation the dominant removal route for 

C60 and biodegradation dominant for niacinamide.  XF for niacinamide is effectively 1 – representing 100 

percent of the emission being bioavailable – whereas the C60 XF has a geometric mean of 0.1 

(corresponding 10 percent dissolved and bioavailable) because of strong partitioning to suspended 

solids, dissolved organic carbon, and biomass.  The greatest difference between the two antioxidants is 

in EF, where C60 exceeds niacinamide by three orders of magnitude (geometric mean 190 vs 0.2), which 

is not surprising given the low ecotoxicity values reported for niacinamide in Table 4. 

3.3 Refining Estimates of Variability for C60 Substance Data 

Figure 2 indicates that, for the majority of input parameters in Tables 1 & 2, the assumed variability 

of plus-or-minus one order of magnitude has little influence on C60 aquatic ecotoxicity CFs.  In the case 

of direct emission to freshwater, the suspended solids partitioning coefficient (Kpss) and average toxicity 

(aveLog EC50) are prioritized for data refinement and promising candidates for further experimental 

investigation.  The assumed Kpss with uniform variability between 3 x 103 and 3 x 105 L/kg is based on 

the USEtox 1.01 regression for estimating Kdoc from Kow, which does not warrant reduction from our 

high-uncertainty baseline scenario even though experimental values for Kow are available.  C60 is 

expected to exhibit strong partitioning to suspended solids based on reported Koc values (PubChem 

2015a), although there are reports of variable removal between 10 and 90 percent by high 

concentrations of heterogeneous biomass (which likely has a higher organic content than suspended 

solids) between alternative C60 preparation methods (Kiser et al. 2010).  Thus, further reduction of 

variability in Kpss requires identification of dominant preparation methods and experimental 

investigation of C60 partitioning to suspended solids with realistic compositions and concentrations.   

Uncertainty in aveLog EC50 for C60 is similarly influential to CFs, and for conventional emissions 

influenced by combination of acute and chronic toxicity data through fixed conversion factors  as well as 

unequal distribution of studies between different species (Pennington 2003).  In the context of the 

emerging contaminant C60, uncertainty in aveLog EC50 is further complicated by differences between 

alternative preparation methods, particularly regarding the presence of solvent residues and their 

potential contribution to erroneously high toxicity estimates (Henry et al. 2011).  C60 used in cosmetics is 

commonly stabilized in castor oil or polymer coatings such as polyvinylpyrrolidone (Benn et al. 2011; 

Lens 2009), and likely will not be prepared using solvents.  To explore the sensitivity of C60 EFs and CFs to 

preparation method, we exclude all studies in Table 3 that used solvents to stabilize C60 and calculate a 

revised EF with a geometric mean of 72 and revised CF of 31, as opposed to 187 and 280 in the baseline 

scenario including all preparation methods, (Figure 4A&B).   

 
Fig 4  Removal of all ecotoxicity studies relying on solvents (black without, blue with) reduces the C60 

effect factor (A) and characterization factor (B) by more than one order of magnitude.  With no 
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solvents the toxicity potential of C60 is closer to niacinamide (orange) but still significantly different for 

emissions to freshwater (C).    

The revised CF for C60 emissions to freshwater still exceeds niacinamide by an order of magnitude 

(4C) and is significantly different (Welch’s t test p < 0.001).  This suggests that, if solvent residues are not 

present in C60 emissions, the aquatic ecotoxicity potential is marginally greater than niacinamide for 

direct emission to freshwater.  For emissions to rural and continental air, the geometric mean of the C60 

CF is at least two orders of magnitude greater than niacinamide, whereas for emissions to natural soil, 

agricultural, and marine water niacinamide significantly exceeds C60 (SI 3.7).  Thus, the order of 

preference for the materials depends on the emission compartment.  Furthermore, there is a critical 

need to: 1) characterize the form of C60 released regarding the presence of solvent residues, and 2) to 

design new experiments to elucidate suspended solids partitioning behavior.   

4.0 Conclusion 

LCIA method developers can apply the Monte Carlo tool to expedite expansion and review of 

toxicity databases by identifying the most influential substance data for distinct chemical classes, and 

then focusing their efforts on reducing parameter uncertainty on these estimates by finding or providing 

experimental references.  Analogous to the case shown above, it is likely that only a few model input 

parameters are significant for each chemical class, and analyzing uncertainty estimates for these 

parameters may allow future quantification of parameter uncertainty for all chemicals currently 

included and foreseen for inclusion in LCIA models (similar to what has been done for global estimates 

of model uncertainty).  Furthermore, we encourage LCA practitioners to apply the Monte Carlo tool to 

the life cycle inventory items that contribute most to ecotoxicity impacts to increase confidence in 

interpretation of LCIA results.   

In the context of emerging contaminants, calculating CFs stochastically allows identification of which 

input parameters are most influential to characterization results, and use this information to help 

prioritize experimental research agenda.  Our results suggest that focusing experimental resources on 

improving data for suspended solids partitioning behavior and multi-species toxicity indicators has the 

greatest potential to reduce uncertainty of current C60 CF estimates.  In this capacity, stochastic 

evaluation of impact assessment models to identify the most influential parameter uncertainties and 

inform future research agenda constitutes an example of anticipatory LCA (Wender et al. 2014a; 

Wender et al. 2014b).   

The approach outlined in the present paper has potential for broader application to different LCIA 

models and other impact categories that use simplified fate and effect modeling based on variable 

substance properties.  The controversy, parameter, and mechanistic uncertainty surrounding the 

environmental impacts of ENMs represent an opportunity to reevaluate LCIA estimates for 

commercially-available, well-studied chemicals.  No midpoint impact assessment methods include 

formal uncertainty analysis, thus this approach could improve treatment and presentation of 

uncertainty for LCA of emerging and established technologies alike.    
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