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A B S T R A C T

This review discusses opportunities and bottlenecks for cell factory development of Lactic Acid Bacteria (LAB),
with an emphasis on lactobacilli and pediococci, their metabolism and genetic tools. In order to enable
economically feasible bio-based production of chemicals and fuels in a biorefinery, the choice of product,
substrate and production organism is important. Currently, the most frequently used production hosts include
Escherichia coli and Saccharomyces cerevisiae, but promising examples are available of alternative hosts such as
LAB. Particularly lactobacilli and pediococci can offer benefits such as thermotolerance, an extended substrate
range and increased tolerance to stresses such as low pH or high alcohol concentrations. This review will
evaluate the properties and metabolism of these organisms, and provide an overview of their current
biotechnological applications and metabolic engineering. We substantiate the review by including experimental
results from screening various lactobacilli and pediococci for transformability, growth temperature range and
ability to grow under biotechnologically relevant stress conditions. Since availability of efficient genetic
engineering tools is a crucial prerequisite for industrial strain development, genetic tool development is
extensively discussed. A range of genetic tools exist for Lactococcus lactis, but for other species of LAB like
lactobacilli and pediococci such tools are less well developed. Whereas lactobacilli and pediococci have a long
history of use in food and beverage fermentation, their use as platform organisms for production purposes is
rather new. By harnessing their properties such as thermotolerance and stress resistance, and by using emerging
high-throughput genetic tools, these organisms are very promising as versatile cell factories for biorefinery
applications.

1. Introduction

In order to satisfy the increasing world-wide demand for fuels and
chemicals in a sustainable way, alternatives to fossil resources are
needed. Whereas several renewable resources such as wind, water and
solar power can be used for supplying energy and fuels, microbial
fermentation of biomass-derived sugars in a biorefinery is the most
important alternative for chemical production. Some products such as
lactic acid have a long history of commercial production via microbial
fermentation, but for other products economically feasible production
has not yet been achieved. The product, substrate as well as the
production host all play a role in determining this. Currently, the most
frequently used production hosts include E. coli and S. cerevisiae, largely
due to the availability of an array of efficient genetic engineering tools.
However, these organisms are not always the most suitable hosts for
biochemicals production, and promising examples of alternative hosts
such as thermophiles or Lactic Acid Bacteria (LAB) are emerging due to
a range of desirable features (Bosma et al., 2013; Gaspar et al., 2013;

Lin and Xu, 2013; Mazzoli et al., 2014). This review provides an
overview of the application of LAB for biotechnology purposes in the
context of the biorefinery, with an emphasis on lactobacilli and
pediococci. First, the introduction will reflect on the requirements of
substrates, organisms and products in a biorefinery. Second, this
context will be used to examine the properties and metabolism of
LAB. This will be illustrated with some experimental data on stress
tolerance, substrate utilization, products, temperature range, and
genetic accessibility. Third, development of LAB into platform organ-
isms will be further explored by examining genetic tool development
and currently available examples of metabolic engineering towards
different end products. This section will provide an overview as well as
discussion of opportunities for further development. Lastly, concluding
remarks will be given on the suitability and future development
possibilities of LAB and their products for biotechnology applications
in a biorefinery context.
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1.1. Biorefinery considerations: product, substrate and production host

Chemicals are typically divided into specialty, fine and bulk
chemicals. Biofuels and bulk chemicals such as plastics used for
packaging are low-cost and produced in large quantities. Specialty
and fine chemicals such as drugs and vitamins, on the other hand, are
more expensive and produced in smaller quantities (Budzianowski,
2017). Most specialty, fine or bulk chemicals are today produced by
chemical synthesis, but in many cases, microbially produced chemicals
can directly replace existing products that are now produced from fossil
resources. Furthermore, microorganisms can also be used to synthesize
compounds that are nowadays not produced via other ways, thereby
adding innovative products to the market (Budzianowski, 2017).
Microbially produced chemicals that are direct replacements for exist-
ing chemicals need to have at least the same or lower price than the
existing ones to be economically feasible. This is generally more
challenging for bulk than for specialty products, since bulk products
are expected to remain very low-cost as long as oil prices do not
dramatically increase. In order to enable the production of sustainable
bulk biochemicals, it is therefore necessary to develop alternative and
cost-efficient production methods. These considerations should be
taken into account with the choice of product, but also the substrate
and production host to be used in a biorefinery (Bosma et al., 2013;
Budzianowski, 2017; Budzianowski and Postawa, 2016).

First generation biorefinery processes use (purified) sugar from food
biomass, such as corn, sugar cane and beet, and wheat, thereby
interfering with the food and feed chain. Second generation biorefi-
neries use non-edible biomass, in which the focus has so far been
mainly on lignocellulosic material. Lignocellulosic biomass can be
forestry or agricultural residues, generally the non-edible parts of
plants such as sugarcane bagasse and corn stover. The sugar fraction
is composed of cellulose and hemicellulose, which are polymers of
mainly glucose, xylose and arabinose and are tightly packed together
with the structural component lignin (Seidl and Goulart, 2016). Third
generation alternatives such as seaweed, household waste, or very low
demanding crops are gaining interest and have additional advantages
such as that they do not require arable land or freshwater (Jiang et al.,
2016; Kawai and Murata, 2016). The second and third generation
substrates are more difficult to utilize for the currently used micro-
organisms. This may lead to high production costs due to need for
expensive pretreatment and because the substrates are not completely
utilized. Also, no final solution has been found yet for inhibitory and
non-fermentable compounds, such as furfural, lignin or salts, that are
often found in significant concentrations in hydrolyzed biomass
(Jönsson and Martín, 2016).

The most frequently used production organisms so far have been E.
coli and S. cerevisiae, mainly because they are well-studied and have
efficient genetic tools available. This has led to the production of a large
variety of both natural and non-natural products with impressive titers.
Yet, there are only few examples of bulk biochemicals that are being

produced at industrial scale, which is largely because of the high costs
of the processes. Metabolic engineering has substantially broadened the
substrates that can be used by these organisms, ranging from xylose to
cellulose and alginate. However, there are many cases in which other
organisms have shown to be very promising alternative production
hosts with possible superior performance over model organisms. For
example, organisms that are naturally and efficiently capable of using
complex substrates, are highly resistant to toxic compounds present in
or as substrate, medium, process or product, or are able to grow at high
temperatures (Bhalla et al., 2013; Boguta et al., 2014). Fermentation at
higher temperatures can improve process efficiency by reducing cooling
costs and contamination risks and increasing product and substrate
solubility. Section 2.3.1 will provide more detailed examples of such
cases and explain the associated advantages and disadvantages. The
main downside of such non-model organisms is that they are less well-
studied and understood, and genetic tools are either absent, under-
developed or lack throughput, which limits their use as versatile
platform organisms. Whereas it might be an option for selected
products to use a specific organism only for that single product, it is
generally desirable in a biorefinery to use a single platform organism
that can be metabolically engineered to produce any desired product in
high yields and productivities without (major) byproducts, as this
facilitates process optimization, strain handling, etc. Therefore, there
is an increasing interest in non-model organisms and the adjustment of
existing genetic tools for these organisms is currently accelerating,
opening up the possibility of utilizing organisms that have superior
characteristics as cell factories. A large part of this review will be
dedicated to explain the development of genetic tools in detail for
lactobacilli and pediococci, as both these groups of LAB can be found as
typical contaminants in today's biorefineries, and therefore can be
considered as promising platform organisms for chemical and fuel
production.

1.2. Lactic acid bacteria (LAB)

LAB are probably among the microorganisms with the longest track
record of use by humans and they have been important for centuries in
the production of fermented foods and beverages (Bourdichon et al.,
2012; de Vos, 2011; Gaspar et al., 2013). Owing to their long history of
safe use, wide variety of metabolic end products and metabolic
versatility, applications of LAB nowadays range from the traditional
use in food and beverage fermentation to production of fuels and
chemicals, food ingredients and pharmaceuticals, to delivery vehicles
for vaccines and drugs, as well as pre- and probiotics (Fig. 1) (Gaspar
et al., 2013). Whereas a few species such as Streptococcus pneumoniae
are known as pathogens, the majority of LAB species are known to be
harmless or even beneficial, and many species have been Generally
Recognized As Safe (GRAS) for use by the FDA (USFDA, 2017).

LAB form a very heterogeneous group of organisms and especially
the family of Lactobacillaceae is exceptionally large and diverse, which

Central Carbon Metabolism Secondary Metabolites

Lactic Acid Bacteria

Products used as:
Food flavoring, texturing, health

Medical ingredients
Green chemicals and fuels

Bacteria present in/as:
Fermented food cultures

Probiotics
Vaccines and drugs delivery

Products used as:
Antimicrobials
Nutraceuticals

Fig. 1. Overview of applications and products of LAB. The colours of central carbon metabolites correspond with the products in Fig. 3B, where their respective production pathways are
shown in detail.
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makes taxonomy complicated and phenotypic traits highly variable
(Sun et al., 2015; Zheng et al., 2015) (Fig. 2). At the same time, this
makes the genus highly interesting to study both from a fundamental
and from an applied perspective. Despite the diversity, LAB do share
certain phenotypic traits: they are low-GC Gram-positive organisms,
facultatively anaerobic or aerotolerant, non-sporulating and non-motile
and they ferment a wide range of carbon sources with lactic acid as the
main end-product. They are highly directed towards a fermentative
lifestyle and depend largely on substrate level phosphorylation for
energy production, as they lack a functional respiratory chain (Chassy
and Murphy, 1993; de Vos and Hugenholtz, 2004; Endo and Dicks,
2014). They comprise cocci as well as bacilli and have a wide
temperature growth range. Although the optimum growth temperature
for most LAB is 30 to 37 °C, many species have a very wide growth
temperature range with the upper limit often around 45 °C (Franz et al.,
2014; Pot et al., 2014). Several species of especially lactobacilli and
pediococci, such as L. delbrueckii and P. acidilactici, are highly thermo-
tolerant and grow well up to around 50 °C (Franz et al., 2014;
Monteagudo et al., 1997; Pot et al., 2014). Generally, LAB have a
simple metabolism and a small genome of 1.7–2.7 Mb, with a few

outliers of 1.23 Mb and 4.91 Mb (Sun et al., 2015). LAB are part of the
phylum Firmicutes, class bacilli, order Lactobacillales and are then
divided over six different families: Lactobacillaceae, Streptococcaceae,
Leuconostocaceae, Enterococcaceae, Carnobacteriaceae and Aerococcaceae
(Fig. 2). Lactococcus lactis, belonging to the Streptococcaceae family, is
one of the most-studied model organisms among LAB. The lactobacilli
and pediococci are genera belonging to the Lactobacillaceae family, of
which especially several lactobacilli have a long track record in
fundamental research and applications such as food fermentations
and probiotics. While LAB have been used as starter cultures and in
food fermentations already for a very long time, their use as platform
organisms in a biorefinery is relatively new. Interest in their use as cell
factories is increasing due to their beneficial properties such as high
tolerance to ethanol, salts, low pH and wide temperature ranges. These
and other properties will be discussed in the next sections.

2. Characteristics of lactobacilli and pediococci and evaluation of
their potential as platform organisms

The phenotypic variability of LAB is very large and some species or

Homofermentative

Facultative        
heterofermentative

Obligate 
heterofermentative

Lactobacillaceae

Streptococcaceae

Leuconostocaceae

Enterococcaceae

Fig. 2. Neighbor-joining tree of 16S rRNA gene sequences of LAB type strains of species discussed in the text as well as several others representative for other LAB families. The non-type
strain L. lactis MG1363 is included since this is one of the most-used model LAB. E. coli and B. subtilis are shown for comparison. The colors correspond to those in Fig. 3A: green are
homofermentative species; red are obligate heterofermentative and yellow are facultative heterofermentative species. The different shapes represent families: circles: Lactobacillaceae;
squares: Streptococcaceae; triangles: Leuconostocaceae; diamonds: Enterococcaceae. Numbers at the nodes represent bootstrap values out of 1000 replicates. GenBank accession numbers are
shown in brackets. Mega7 was used for alignment using ClustalW and subsequent construction of the Neighbor-joining tree using the Maximum Composite Likelihood method.
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strains might be more suitable as platform organism than others. Owing
to their long history of study, many properties of LAB are known and a
selection of possible platform organism candidates can be made, but
there is also considerable strain-dependent variation (Huys et al.,
2012), making it worthwhile to test for required properties. Descrip-
tions of growth characteristics and transformation have previously been
reported for a range of different LAB strains, but these experiments are
typically performed in different growth media and under different
growth conditions. With this in mind, combined with the large strain
diversity known to exist among LAB, we have included a screening of 9
Lactobacillus and 18 Pediococcus strains for biotechnologically relevant
properties. The strains were selected because they met one or more of
the following criteria: 1) known to be an industrial ethanol plant
contaminant and thus likely to be robust for industrial applications, 2)
genetic accessibility has been described for that strain or a close
relative, 3) the species or strain can grow on elevated temperatures.
Altogether, we aimed at identifying a strain that is robust and suitable
for industrial application: i.e. tolerant to several stresses, relatively little
nutrient requirements, genetically accessible and able to grow in a wide
temperature range. In the sections below, we provide experimental data
for the selected strains and use them as examples to review each of
these criteria and different organisms in a biorefinery context.

2.1. End product formation and properties of central carbon metabolism in
heterofermentative and homofermentative LAB

LAB can be divided into homo- and heterofermentative species
(Figs. 2 and 3A). In homofermentative and facultatively heterofermen-
tative LAB, lactic acid is essentially the only product and glucose is
catabolized via the Embden–Meyerhof–Parnas (EMP) pathway. Facul-
tative heterofermenters are capable of utilizing pentose sugars via the
PKP pathway. Obligate heterofermentative strains, on the other hand,
catabolize sugars via the phosphoketolase pathway and hence produce
an equimolar mixture of lactate, CO2 and ethanol or acetate (Endo and
Dicks, 2014). Either L-lactate, D-lactate, or both enantiomers are
produced depending on whether the strain encodes an L-ldh, D-ldh or
both, as well as on the presence of lactate racemases that interconvert
the two enantiomers. All heterofermentative LAB contain a two-domain
aldehyde/alcohol dehydrogenase enzyme for the production of ethanol
(Zheng et al., 2015). Some homofermentative species also contain this
enzyme, in which case they also contain a pyruvate-formate lyase (PFL)
for the anaerobic conversion of pyruvate into acetyl-CoA and formate,
an enzyme that is not found in heterofermentative LAB (Zheng et al.,
2015). Homofermentative LAB include Enterococcaceae, Streptococca-
ceae and several Lactobacillaceae, while heterofermentation is found in
species of Lactobacillaceae and in Leuconostocaceae (Endo and Dicks,
2014) (Fig. 2). Homofermentative strains are also capable of producing
ethanol and acetate during mixed acid fermentation, which is different
from heterofermentation since these strains still use the EMP pathway,
while only the end products are changed (Fig. 3A). Such a shift to mixed
acid fermentation occurs for example during carbon limitation, low
growth rates or a change in oxygen concentration (Endo and Dicks,
2014; Goel et al., 2012; Kandler, 1983). In the presence of oxygen,
NADH oxidase (NOX) becomes active, and due to its high affinity for
NADH it outcompetes LDH for the available NADH, causing a shift from
homolactic to mixed acid fermentation under aerobic conditions, with
the final products depending on culture pH (Lopez de Felipe et al.,
1997). This principle has also been applied in a classic co-factor
engineering study, in which nox was overexpressed in L. lactis to cause
a shift towards the mixed acid fermentation products diacetyl and
acetoin (Lopez de Felipe et al., 1998).

The use of the PPP for pentose utilization in LAB is rare, but in a
strain of the homofermentative species L. lactis, the use of PPP for
pentose fermentation was shown (Tanaka et al., 2002). Some thermo-
philic lactate producers such as Bacillus coagulans and Bacillus smithii
have been shown to be homofermentative and use the PPP pathway

when grown on pentoses (Bosma et al., 2015; Patel et al., 2006). For
lactate production from pentoses, the use of the PKP is disadvantageous
since the yields are only half of when the PPP is used, which yields
lactate as the sole end product (Fig. 3A). However, for other products,
the use of the PKP pathway is not necessarily problematic and can even
be beneficial (Henard et al., 2015) and the most important factor is the
pentose uptake rate. Regulation of the split ratio between PPP and PKP
was shown in an engineered Lactobacillus brevis strain to be strongly
dependent on the phosphoketolase enzyme (Guo et al., 2014) and
hence, this might be a target for future engineering efforts to optimize
fluxes though these pathways.

An important difference in central carbon metabolism enzymes
between heterofermentative and homofermentative LAB that deter-
mines the use of PKP or EMP seems to be the presence or the activity of
phosphofructokinae (PFK) and fructose-1,6-biphosphate aldolase (FBA)
(Fig. 3A). Although there are contradictory reports, in obligately
heterofermentative strains, a pfk gene is generally absent and many
of these strains also lack fba (Sun et al., 2015). In general, surprisingly
little is known at the fundamental level about the regulation, gene and
enzyme presence and flux distribution of PKP, PPP and EMP pathways
in LAB and there are large strain-dependent variations that are not yet
fully understood (Burgé et al., 2015; O'Donnell et al., 2013; Papagianni
and Legiša, 2014; Saulnier et al., 2011; Zheng et al., 2015; Årsköld
et al., 2008). Contrary to what is generally assumed regarding the
absence of pfk in heterofermentative LAB, for the L. reuteri strain ATCC
55730 and for the heterofermentative Lactobacillus plantarum and
Lactobacillus salivarius strains, the presence of all genes necessary for
a complete EMP was shown (Årsköld et al., 2008). For Lactobacillus
reuteri ATCC 55730, the PKP was the main pathway for glucose
utilization and the EMP was simultaneously used, serving as a shunt
to gain more NADH and ATP (Årsköld et al., 2008). Heterologous
expression of pfk in L. reuteri ATCC 55730 as well as in L. brevis strongly
enhanced flux through the EMP (Guo et al., 2014; Papagianni and
Legiša, 2014). L. reuteri type strain DSM 20016 does not seem to encode
a pfk (Sun et al., 2015), and this strain was recently also shown to
barely utilize the EMP (Burgé et al., 2015). However, the relatively low
EMP activity in this strain might hint at an alternative PFK activity, as
was also assumed in the metabolic model developed for this species
(Santos, 2008). The study by Burgé et al. showed large differences in
EMP and PKP flux distribution between three different L. reuteri strains.
The type strain DSM 20016 was shown to barely utilize the EMP but
almost solely the PKP (Burgé et al., 2015). In contrast, strain DSM
17938 (a plasmid-free derivative of ATCC 55730, one of the strains
shown to encode pfk) used exclusively the EMP during exponential
growth and switched to the PKP in the stationary phase, and strain
ATCC 53608 showed a similar trend but with simultaneous use of the
PKP and EMP during exponential growth (Burgé et al., 2015). In
summary, care should be taken when comparing different LAB strains,
even within the same species, and more research is needed to shed light
on the differences and improve the fundamental understanding of
central carbon metabolic fluxes. This is also crucial in order to develop
metabolic engineering strategies and use LAB as industrially relevant
platform organisms.

In addition to the most common end products lactate, acetate and
ethanol discussed above, which are produced under most standard
fermentation conditions on glucose, LAB are capable of naturally
producing many more different end products when grown on other
carbon sources than glucose or under aerated conditions (Endo and
Dicks, 2014; Kandler, 1983; Papagianni, 2012). The products can
include 1,2-propanediol, diacetyl, acetaldehyde, acetoin and alanine,
but also exopolysaccharides (EPS) and polyols such as mannitol
(Fig. 3B). Details about when and how these products are produced
will be discussed in Section 4 that describes metabolic engineering of
LAB to further enhance production of these compounds. Also the kinds
and amounts of produced organic acids vary highly among species
(Özcelik et al., 2016). Complex pathways to for example vitamins are
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and medical ingredients; orange: health products; purple: chemicals and fuels. For the compounds in italics, some enzymes are present in some LAB (more than in most other species) but
metabolic engineering is required to complete the pathway for production. Enzyme abbreviations: GDHt: glycerol dehydratase; 1,3PDDH: 1,3-propanediol dehydrogenase; MDH/SDH:
mannitol dehydrogenase/sorbitol dehydrogenase; M1P/S6P: mannitol-6-P dehydrogenase/sorbitol-6-P dehydrogenase; FK: fructokinase; M2DH: mannitol-2-dehydrogenase; MGS:
methylglyoxal synthase; MGR: methylglyoxal reductase; ADH: (lact)aldehyde dehydrogenase; PYK: pyruvate kinase; PFL: pyruvate-formate lyase; PDHC: pyruvate dehydrogenase
complex; LDH: lactate dehydrogenase; ALS: acetolactate synthase; AlaDH: alanine dehydrogenase; ALD: acetolactate decarboxylase; BDH: butanediol dehydrogenase; ADHE: bifunctional
aldehyde and alcohol dehydrogenase.
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difficult to engineer and thus it is advantageous if the organism already
contains these.

We evaluated the most common central carbon metabolism end
products and the enantiomer of lactate produced in the 27 screened
strains in MRS medium (Fig. S1). The results are in line with species
descriptions in literature, with minor strain-dependent variations in the
amounts produced and in the ratio between D- and L-lactate (Fig. 2, Fig.
S1). All 18 tested pediococci were found to be homolactic, as well as all
L. plantarum strains. L. reuteri, Lactobacillus fermentum and L. brevis
showed heterofermentation with ethanol as byproduct. All strains
produced a mixture of D- and L-lactate except Lactobacillus delbrueckii,
which produced only the D-enantiomer, and Pediococcus claussenii,
which produced almost only L-lactate. Pediococcus ethanolidurans and
L. brevis produced minor amounts (0,08 and 0,02 g/L, respectively) of
1,2-propanediol (Fig. S1).

2.2. Substrate utilization

Whereas practically all microorganisms are able to utilize first
generation biomass in the form of pure glucose or sucrose, their ability
to utilize second and third generation biomass such as lignocellulose or
macroalgae are highly species- and strain-dependent. Consolidated
bioprocessing (CBP), in which no saccharolytic enzymes are added
and the microorganisms directly utilize the polymeric sugars present in
lignocellulose, is being investigated with wild-type polysaccharide-
degrading organisms such as clostridia, thermoanaerobacteria and
geobacilli for ethanol and lactate production (Bosma et al., 2013;
Daas et al., 2016; Olson et al., 2015). However, yields of CBP are still
relatively low and almost all the organisms only utilize either the
hemicellulose or the cellulose fraction and not both. Hence, in
industrial CBP processes for bioethanol production using yeast, en-
zymes still need to be added though at reduced levels. A currently more
feasible alternative is the use of simultaneous saccharification and
fermentation (SSF), in which saccharolytic enzymes are added to the
biomass to degrade the polymers into monomeric sugars that can be
fermented by microorganisms in the same reactor. Several SSF pro-
cesses at elevated temperatures resulting in high lactic acid yields have
been described (Ou et al., 2011; van der Pol et al., 2016; Zhao et al.,
2013), but co-utilization of pentoses and hexoses is still challenging (Ou
et al., 2011; Zhao et al., 2013). Co-utilization of substrates without
catabolite repression for the production of lactic acid has been achieved
in E. coli via metabolic engineering to remove the catabolite repression
(Lu et al., 2016) but was shown to naturally occur in Lactobacillus
buchneri and L. brevis (Kim et al., 2009; Liu et al., 2008), in L. plantarum
after insertion of the xylose-utilization genes (Hama et al., 2015; Zhang
et al., 2016), as well as in the thermophile Geobacillus thermodenitrifi-
cans (Daas et al., 2016). In a recent study, Lactobacillus casei was used
for the conversion of sugars from hydrolyzed algal cake, the waste
product of biodiesel producing-algae (Overbeck et al., 2016).

The substrate utilization range of LAB is broad and highly species-
and even strain-specific (Franz et al., 2014; Pot et al., 2014; Zheng
et al., 2015). Most LAB are able to utilize both pentoses and hexoses
derived from lignocellulose, and some are able to utilize short polymers
such as cellobiose, but none are capable of utilizing longer polymers.
Polymeric lignocellulosic substrates are also not utilized by current
platform organisms such as E. coli and S. cerevisiae. Whereas E. coli
naturally utilizes both pentoses and hexoses, S. cerevisiae only naturally
utilizes hexoses and has been engineered to utilize the pentose fraction
(Olofsson et al., 2008). We evaluated the substrate utilization spectra of
a subset of the 27 selected strains using API-50 CH tests (Biomerieux).
The results were mostly in line with literature but also showed some
strain-dependent variation (Table 1). A high strain-specificity and
relatively poor reproducibility is known for substrate utilization in
LAB (Huys et al., 2012) and therefore screening of strains is worth-
while. Glucose, D-xylose and L-arabinose are the main components of
lignocellulose. Glucose and L-arabinose were fermented by all selected

strains, and D-xylose was utilized by all strains except L. reuteri.
Cellobiose was also utilized by all strains.

2.3. Growth conditions

For an industrial production strain, it is crucial that it is robust
against contamination with other microbes and phages, but also against
several stresses that might occur, especially in large fermenters, such as
fluctuations in temperature, pH and oxygen levels. The ability to run
the process at high temperature and low pH can substantially decrease
the costs (Ou et al., 2009; Zhao et al., 2013). The strain should be able
to tolerate high concentrations of the products and substrates, as well as
potential inhibitors present in the used substrate, especially if this not a
pure sugar but derived from lignocellulosic or other raw biomass
(Abdel-Rahman and Sonomoto, 2016; Jönsson and Martín, 2016).
Furthermore, the strain should have minimal nutrient requirements.
This is especially important when bulk chemicals or fuels are produced
that have low added value and should be as cheap as possible to
compete with alternatives. Oxygen transfer is often a limiting and
expensive parameter for large scale reactors. Also, the theoretical yields
are for many products higher under anaerobic conditions, and anaero-
bic processes are therefore often desirable (Weusthuis et al., 2011).
Since strict anaerobes are typically difficult to handle and the medium
needs to be made anaerobically, facultative anaerobes or aerotolerant
species such as LAB but also thermophilic bacilli have substantial
benefits as platform organisms.

For the 27 selected strains, we evaluated robustness by testing
growth temperature range, resistance to high salt and ethanol concen-
trations and low pH, and we tested a sub-selection of strains in less rich
media to find strains with less expensive nutrient requirements.

2.3.1. Growth temperature: making use of the temperature tolerance of
lactobacilli and pediococci

Using a moderately thermophilic platform organism offers many
advantages over mesophilic organisms: substrate and product solubility
are higher, metabolic reactions run faster, contamination risk is
decreased, cooling costs are lower, and SSF processes run more
efficiently at elevated temperature, as has been shown for lactate
production with thermophilic B. coagulans (Ou et al., 2009). Many
commercially available saccharolytic enzymes have an optimum activ-
ity temperature of around 50 °C (Ou et al., 2009; van der Pol et al.,
2016), which means they perform suboptimal and need to be added in
larger amounts when used simultaneously with mesophilic E. coli or
yeast fermentations, thereby significantly increasing enzyme load and
costs (Ou et al., 2009). Furthermore, the production of volatile products
at temperatures above their boiling point enables direct product
removal, prevents product toxicity and feedback inhibition of produc-
tion pathways.

Contrary to many mesophiles such as E. coli or yeast, several species
of lactobacilli are known to tolerate a rather wide temperature range,
with most species able to grow at least up to 45 °C (Pot et al., 2014). In
the case of pediococci, the species Pediococcus acidilactici is known to
contain strains that grow well even up to 50 °C, whereas the maximum
temperature is highly strain-dependent for Pediococcus pentosaceus.
Several other species can grow at 40 °C but not at 45 °C (Franz et al.,
2014). The advantage of using such thermotolerant LAB over strict or
less well-characterized thermophiles such as Geobacillus or Thermo-
anaerobacter is that genetic tools are better developed and more readily
available or adjustable (Bosma et al., 2013; Mougiakos et al., in press;
Taylor et al., 2011).

In general, the results for our 27 selected strains were in line with
known temperature limits of the tested species, with the majority of
lactobacilli and pediococci able to grow well at 45 °C or higher. Some
strain-specificity was also observed, highlighting the need for screening
when selecting a production strain. Also, we observed large fluctuations
in final OD at the maximum temperature for almost all tested strains
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(Fig. 4, Table S2). It is known that medium composition can have an
influence on maximum growth temperature and other growth condi-
tions (Chen et al., 2015; Nakagawa and Kitahara, 1959) and also the
state of the cells during transfer as well as adaptation periods are of
importance (Chen et al., 2015). Many P. acidilactici strains showed
reproducible growth at temperatures up to 50 °C – although with
relatively low ODs for some of the strains – with more fluctuation
starting above that. Strain-dependent variation started to be evident
already at 45 °C, where strains NRRL B-41522, NRRL B-41195 and
NRRL B-1326 grow noticeably less well than the other strains of this
species. At 48 °C, strains NCIMB 8952 and DSM 1056 showed a
relatively large decrease in OD compared to 45 °C and performed
substantially worse than the remaining strains. Strain NCIMB 702925
showed high variation in density at almost all temperatures. The
growth at 37 °C for all P. acidilactici strains was strong with an OD600

of around 4.0 and the OD at 50 °C was for many strains still around 1.0.
Although this is 4× less than at their optimal temperature, it is still a
relatively high density and growth might be further optimized via
adaptation or evolution experiments. As also reported in literature
(Franz et al., 2014), the P. pentosaceus strains showed strain-dependent

variability. The strains were able to grow at 45 °C and showed large
fluctuation in final densities at 48 °C (Fig. 4, Table S2). A similar
irreproducible growth was observed for L. plantarum WCFS1 at 48 °C.
These results indicate that these strains may be evolved for growth at
elevated temperatures. Many LAB are known to produce exopolysac-
charides (EPS) (Caggianiello et al., 2016), and care should be taken
with interpreting OD-values as these will be influenced by the produced
EPS.

2.3.2. Stress tolerance and nutritional requirements
With regard to stress tolerance, lactobacilli and pediococci are

among the best recognized organisms, whereas they have less of a
reputation with regards to nutritional requirements. Both phenotypes
may be linked to their natural habitats: for example, species isolated
from animals have lost pathways for synthesis of certain nutrients such
as vitamins and amino acids, whereas pathways for uptake and
catabolism were gained, since these nutrients are abundantly available
in their habitat (Makarova et al., 2006; Sun et al., 2015). Since lactic
acid production and concurrent acidification of their environment is
their main competitive strategy, LAB (particularly lactobacilli and

Fig. 4. Growth temperature ranges of screened lactobacilli and pediococci. Data shown are averages of two replicate experiments; for absolute values and standard deviations see Table
S2. White dots indicate a standard deviation higher than half of the average, meaning that growth at that temperature was irreproducible. Strains were grown in MRS medium for 12–14 h
at each temperature and then 1:50 transferred to the next one, except at 52 °C, in which strains were grown for 24 h. L. lactis growth was started at 30 °C.
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pediococci) are among the most acid and low-pH tolerant bacteria. In
beer or ethanol plants, their high tolerance to ethanol and hop is
important and makes lactobacilli and pediococci the main contami-
nants (Beckner et al., 2011; Dobson et al., 2002; Geissler et al., 2016;
Limayem et al., 2011; Roach et al., 2013). Resistance to high salt
concentrations is also very common, with some pediococci being able to
grow in> 15% NaCl (Franz et al., 2014). Several recent studies have
shown superior tolerance of several lactobacilli and pediococci to
inhibitors from pre-treated lignocellulosic biomass when compared to
E. coli (Abdel-Rahman and Sonomoto, 2016; Boguta et al., 2014; Vinay-
Lara et al., 2016; Zhao et al., 2013). Compared to these organisms,
model LAB L. lactis also performed well in one of these studies,
especially under medium conditions that were optimized for this
well-studied organism, although it was still outperformed by some of
the new isolates (Boguta et al., 2014).

Whereas the natural habitat might play a role in the presence or
absence of nutrient pathways and stress resistance, this is not always
easy to ascertain since the habitat of isolation is not necessarily where
the organism originally evolved from, and a large degree of strain
diversity exists (Deguchi and Morishita, 1992; Sun et al., 2015). The
latter was shown in an evolution experiment, where different LAB were
adapted on minimal media and found to regain biosynthetic capacities
for a large number of vitamins and amino acids, indicating that these
pathways were not completely lost but merely inactivated by genetic
lesions, with different strains showing different adaptive capacities
(Deguchi and Morishita, 1992). Large differences between strains of the
same species have also been shown for ethanol and hop tolerance (Pittet
et al., 2013). A powerful tool for increasing stress resistance or
changing other traits of the host organism is genome shuffling. This
strategy was successfully applied to several LAB, in which lactic acid
production was optimized at pH around 3.8–4.0 (Patnaik et al., 2002;
Wang et al., 2007; Ye et al., 2013). The pKa value of lactic acid is 3.8
and therefore a decrease in pH of the medium below this level is critical
for growth inhibition, because the protonated form of lactic acid can
diffuse back into the cell (Patnaik et al., 2002).

We screened the 27 selected strains for growth at low pH, high salt
and high ethanol concentrations and compared them to several
currently used bacterial platform organisms and the model LAB L.
lactis (Fig. 5). In agreement with literature, most pediococci were found
to be able to grow in all three stress conditions. Especially growth at
pH 3.8 was efficient in these strains with several strains reaching a
higher final density at this pH than in the non-stress (MRS) medium
control with pH ~5.6. Some pediococci also still grew up to ~35% of
the optical density of the control in 12% ethanol. Tolerance towards
low pH and high ethanol was also high in L. reuteri DSM 20016. L.
delbrueckii performed extremely poorly and did not grow in any of the
stress conditions. L. fermentum and L. brevis were not resistant to
ethanol and low pH. Several strains performed well at 5% NaCl but
showed a sharp decrease in growth at 10% NaCl. We did not find any
strain capable of growing in 15% NaCl (data not shown). Depending on
the required process and product, these stress profiles are important to
keep in mind when choosing a production organism. In general,
tolerance to low pH is beneficial also when the product is not an acid,
since running fermentations at low pH helps prevent contaminations
and can save sterilization costs. Salt resistance is especially important
when using seaweed as a substrate, which is currently considered as
third generation substrate (Jiang et al., 2016; Kawai and Murata, 2016).
The control strains E. coli, P. putida and L. lactis did not grow in 12%
ethanol or pH 3.25 and are much more inhibited by low pH (Fig. 5).
Their performance on 5% NaCl was comparable to the LAB. L. lactis
stress mechanisms have been well-studied and its tolerance to several
stresses is highly condition-dependent: for example, some resistances
appear only in minimal medium conditions or after short adaptation
times (Boguta et al., 2014; Hartke et al., 1994; Rallu et al., 1996; Ryssel

et al., 2014). Whereas generalized screening conditions will certainly
not be optimal for all tested strains, it provides a good indication of the
most robust and sensitive strains.

To be economically feasible, fermentations should be performed
with as few additional nutrients as possible. Whereas E. coli and yeast
are known to perform well in minimal media without the addition of
expensive yeast extract, LAB are generally known to be fastidious
organisms. As mentioned earlier, nutritional requirements are species-
and strain-dependent and might be improved by adaptive evolution
while genome reshuffling could be an important tool. For a subset of the
selected strains we tested growth on limited amounts of undefined
medium components (Fig. S2). The amount of growth supported by
reduced amounts of rich components varied strongly between species.
L. plantarum showed a sharp (~3-fold) decrease in OD600 between 5.0
and 1.0 g/L yeast extract and peptone but still performed best on the
less rich media, which is in accordance with its relatively large genome
(~3.3 Mb) containing more biosynthetic pathways than most LAB (Sun
et al., 2015). L. reuteri DSM 20016 performed comparably, with the
OD600 on 0.5 g/L yeast extract and peptone still around 1.5, which is
~50% of the control containing 5.0 g/L (Fig. S2). Contrary to L.
plantarum, for L. reuteri there was almost no difference between 5.0
and 1.0 g/L yeast extract and peptone. The different Pediococcus species
performed comparable to each other, with ODs around half of L. reuteri
in the respective media. In general, YE appeared to support growth
better than peptone. It is known that different types and brands of
undefined nitrogen sources such as tryptone, meat extract, peptone or
yeast extract have different influences on different strains (Vázquez and
Murado, 2008). Our tested compounds may not be optimal for the
tested strains, but the results indicate that several strains are well able
to grow on less rich medium. This might be further improved via
adaptation, and optimization of the nitrogen sources for final selected
strains.

The most frequently used undefined growth enhancer Yeast Extract
(YE) might also be replaced by cheaper alternatives. Corn Steep Liquor
(CSL), which is a by-product of the corn wet-milling industry, is cheaper
than YE and has successfully been used in LAB-based lactic acid
production, but also in Aspergillus niger-based citric acid production
(Mazzoli et al., 2014; Salgado et al., 2009). Possibly, an even more
promising YE-substitute is vinasses, the main liquid waste of distillation
process of lees (the dead yeast remaining after wine-making) and low-
quality wines. Vinasses have a high organic content and have been used
for efficient lactic acid production by L. rhamnosus (Salgado et al.,
2009). Also proteinaceous hydrolysates derived from poultry proces-
sing leftovers have been shown to enhance LAB growth and production
(Lazzi et al., 2013). Using waste resources as nutrient source not only
decreases process costs, but also decreases waste streams and con-
tributes to the circular economy (Vázquez and Murado, 2008). The
substitution of expensive YE with cheaper, waste-based alternatives is
an important and promising field of research (not only for LAB (Kelbert
et al., 2015)) and could overcome the disadvantage of LAB being
relatively fastidious organisms.

2.4. Genetic accessibility

One of the most crucial criteria for a platform organism is its
amenability to genetic modification to enable metabolic engineering
towards any desired product of interest in sufficient titers, yields and
productivities. L. lactis is known to have the highest transformation
efficiencies among LAB and genetic tools for this organism are well-
developed. Many lactobacilli and pediococci have also been described
to be genetically accessible, mainly via electroporation protocols, but
efficiencies are generally lower than for L. lactis and highly variable
among strains and genetic tool development is accelerating only more
recently as will be discussed in Section 3. Optimization of electropora-
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tion protocols has been successfully performed for some strains, for
which it resulted in the possibility to use genetic tools that require high
efficiencies such as recombineering without the use of selection
markers (van Pijkeren and Britton, 2012), as will be discussed in
Section 3.

Genetic accessibility as well as optimal transformation conditions
are typically highly strain-specific, but it is feasible to obtain a first
impression by using a universal screening protocol (Bosma et al., 2015;
Landete et al., 2014; Sanoja et al., 1999). We therefore screened several
of the selected strains for genetic accessibility (Table 2). Some strains
have been previously described as genetically accessible (Table 2),
while others have not and to the best of our knowledge, this is the first
comparative screening of several Pediococcus species for genetic
accessibility. We used a protocol described for pediococci (Caldwell
et al., 1996) that uses high concentrations of the cell wall weakening
agents glycine and DL-threonine as well as a high concentration of

sorbitol, or with a protocol used for several lactobacilli (Aukrust and
Blom, 1992) (Appendix A). In brief, cells were grown to exponential
phase in MRS medium containing different sugars and/or cell wall
weakening agents depending on the protocol. After several washing
steps in buffer containing high sugar concentrations, cells were
transformed with two different high copy plasmids by electroporation
and plated on selective medium. With the majority of the strains testing
positive for transformation (Table 2), it is clear that genetic accessibility
is wide-spread in the tested strains, and especially for the pediococci
this has not been shown previously. Efficiencies were generally
relatively low, but for some strains already high enough for engineering
purposes and it provides a basic proof that DNA uptake is possible in
these strains, even with a generalized and probably sub-optimal
transformation protocol that can be further optimized. Both glycine
and threonine can have beneficial as well as detrimental effects on
transformation efficiencies (Rodríguez et al., 2007; Sanoja et al., 1999).

Fig. 5. Tolerance of selected lactobacilli and pediococci to high salt and ethanol concentrations and low pH. Strains were compared to several currently used model organisms shown as
the last five strains.
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The type and amount of sugars and salt added to the growth medium
and wash buffer can also have a large influence, as well as the
electroporation settings (Bosma et al., 2015; Rodríguez et al., 2007;
Sanoja et al., 1999). Optimization of the growth, washing and electro-
poration protocols should enable efficiencies that are sufficient for
many gene expression and genome engineering purposes.

3. Genetic tool development for metabolic engineering of
lactobacilli and pediococci

A wide range of genetic tools has been developed for LAB (Tables 3
and 4, Fig. 6) and metabolic engineering has been successfully applied
to several LAB for optimization of production, broadening of the
substrate utilization range, or both. At the same time, however, genetic
tools are not as highly developed and the availability of engineering
tools is far less than for S. cerevisiae and E. coli, especially for LAB other
than L. lactis. The importance of L. lactis for food production combined
with its high genetic amenability and simple metabolism have made it
the model organism for genetic work in LAB (de Vos, 2011). Due to the
importance of LAB in food applications, genetic tool development for
LAB generally focuses on food-grade systems (Landete, 2016). Table 5
provides an overview of the best reported lactobacilli and pediococci as
well as L. lactis for different products, compared to the best available
alternative host under similar process conditions. The best available
host is usually E. coli or S. cerevisiae and the table clearly indicates that
the extent of metabolic engineering in lactobacilli and pediococci is far
behind that of the other organisms. The same holds true for process

Table 2
Transformation efficiencies for screened lactobacilli and pediococci.

Strain1 CFU/μg DNA

pIL253 (Ery) pNZ7021 (Cm)

Lactobacillus plantarum LMG 9211a 02,3 500
Lactobacillus plantarum DSM 20205b 02,4 1
Lactobacillus plantarum subsp. plantarum NC8c 140 0
Lactobacillus reuteri DSM 20016d > 1500 > 1500
Lactobacillus thermotolerans (L. ingluviei) DSM

15946
1 60

Pediococcus acidilactici NRRL B-639e 120 400
Pediococcus acidilactici NRRL B-41522 50 > 1500
Pediococcus acidilactici NRRL B-41195 80 900
Pediococcus acidilactici NRRL B-23864 0 0
Pediococcus acidilactici ATCC 25742f 100 30
Pediococcus acidilactici NCIMB 701851 0 0
Pediococcus acidilactici NCIMB 702925 1 20
Pediococcus acidilactici DSM 20238g 1 5
Pediococcus acidilactici DSM 19927 15 150
Pediococcus acidilactici (Pediococcus sp.) DSM

1056h
1100 > 1500

Pediococcus claussenii DSM 14800 500 125
Pediococcus pentosaceus DSM 20206 3 3500
Pediococcus pentosaceus DSM 20333 80 1

Abbreviations: CFU: colony forming units; Ery: erythromycin; Cm: chloramphenicol.
Plasmids were introduced by electroporation using three different protocols: one for all
pediococci, one for all L. plantarum strains and L. thermotolerans and one for L. reuteri
(Appendix A).

1 Superscript letters indicate the reference in case the strain has previously been shown
to be transformable (note that this is mostly with different plasmids and electroporation
protocols). All data shown in the table are results obtained in the current study. a: (Sanoja
et al., 1999), b: (Alegre et al., 2005), c: (Aukrust and Blom, 1992), d: (Landete et al.,
2014), e: (Caldwell et al., 1996), f: (Benachour et al., 1996), g: (Alegre et al., 2005;
Rodríguez et al., 2007), h: (Chikindas et al., 1995; Landete et al., 2014).

2 Slightly resistant, with some colonies obtained on the negative control plate after
transformation, while being antibiotic-sensitive before transformation.

3 This result is in accordance with a previous report describing failure to transform this
plasmid into strain LMG 9211 (Sanoja et al., 1999).

4 This result is in line with a previous report describing the presence of active
restriction-modification systems in this strain and the need for in vitro methylation of
plasmids prior to transformation (Alegre et al., 2005).
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optimization, although this is not visualized in the table. This however
indicates that lactobacilli and pediococci are very promising hosts that
are likely to be able to compete with current hosts once they are further
engineered and their processes are optimized. To take the development
of these organisms into cell factories to the next level, genetic tools are
of crucial importance. An extensive overview of available engineered
(mainly L. lactis) and wild-type LAB for the conversion of several
substrates into several chemicals has recently been reviewed elsewhere
(Flahaut and de Vos, 2015; Gaspar et al., 2013; Mazzoli et al., 2014).
Therefore, the present section focusses strongly on the details and
recent developments of the genetic tools necessary to create lactobacilli
and pediococci cell factories (Tables 3 and 4, Fig. 6) and Section 4 will
give a broad overview of the most recent applications of lactobacilli and
pediococci for production purposes to illustrate their possibilities.

3.1. Expression systems

Initial engineering efforts in LAB mainly focused on improving dairy
production and flavor properties (de Vos, 1996) and the current
emphasis is still mostly on strains that are important for food produc-
tion and as probiotics. Since many of the genetic elements of LAB
relevant for their food applications are related to plasmids and
bacteriophages, their genetics were studied at a very early stage,
resulting in some of the first characterized replicons for shuttle vectors
(de Vos, 2011). Also, L. lactis is a very suitable host and model organism
for heterologous protein production since it is one of the most
genetically accessible Gram positive organisms, and it has a simple
secretory machinery. It only produces one secreted protein and one
membrane-bound extracellular protease that can both easily be
knocked out, enabling easy production and purification of heterologous
proteins (Allain et al., 2015; Morello et al., 2008). Hence, expression
tools are very well-developed and in general, most tools have been
developed for L. lactis and later modified for use in mainly L. plantarum,
but also for L. reuteri and L. brevis, as well as some pediococci relevant
for antimicrobials (Table 3) (Chikindas et al., 1995; Eom et al., 2012) or
dairy production (Caldwell et al., 1996).

One of the first tools developed for LAB and still a very commonly
used one is the nisin-inducible expression system NICE (de Ruyter et al.,
1996a; Kuipers et al., 1998; Mierau and Kleerebezem, 2005) (Fig. 6F,
Table 3). In this system, gene expression is induced by the bacteriocin
and pheromone nisin, which is a natural compound that can be used in
food applications as well. The system was initially developed for L.
lactis, but soon it was adapted also for use in other LAB, mainly
lactobacilli (Kleerebezem et al., 1997; Pavan et al., 2000). A variant of
NICE is pSIP, which makes use of the sakacin-inducer peptide from the
L. sakei bacteriocin sakacin (Axelsson et al., 2003) (Fig. 6F). This system
has been used in several lactobacilli, where it was shown to have lower
background expression than the NICE-system (Jiménez et al., 2015;
Sørvig et al., 2005). Several parameters such as pH and inducer
concentrations have recently been further optimized (Nguyen et al.,
2015).

In some applications, the use of any external compound is un-
wanted, expensive, impossible or unnecessary, which triggered the
establishment of environmental stimuli-based expression systems. Gene
expression induced by environmental stresses (‘SICE’ for Stress-Induced
Controllable Expression) such as low pH, temperature, bile salts or NaCl
has been developed in L. lactis, mainly for the purpose of drug delivery
in the gastrointestinal tract (Allain et al., 2015; Benbouziane et al.,
2013; Madsen et al., 1999). As the use of inducer compounds is
generally costly and therefore also unwanted in industrial fermenta-
tions, such expression systems might also be useful in the development
of LAB cell factories for chemical and fuel production, especially if they
can be integrated into the genome of the host strain.

The need for inducible promoters other than the established nisin
and sakacin systems was the motivation behind a recent study describ-
ing novel synthetic regulatable promoters for protein expressionTa
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purposes in L. plantarum (Heiss et al., 2016). L. plantarum is an
important host for the food-grade expression of recombinant proteins,
both for industrial and medical purposes and several recent studies
have focused on optimizing both constitutive and inducible protein
expression in this organism (Heiss et al., 2016; Tauer et al., 2014).
Using mCherry as a reporter, inducible gene expression was shown with
a Bacillus megaterium-derived xylose-responsive system, with an E. coli/
L. buchneri-derived IPTG-inducible lacI repressor system, and an
artificial T7 RNA polymerase-based system using two plasmids, in
which mCherry was expressed from the T7 promoter, and the T7 RNA

polymerase was expressed on a second plasmid from the newly
developed IPTG-inducible promoter. All systems were inducible but
showed varying levels of background expression and further optimiza-
tion of repressors expression is required to improve the systems (Heiss
et al., 2016). To tune constitutive expression, the effects of promoter
strength, gene copy number and translation efficiency via modulation
of the space between the Shine-Dalgarno (SD) sequence and the start
codon were investigated (Tauer et al., 2014). The impact of the space
between the consensus sequences has previously also been well-
investigated and used for expression modulation in L. lactis, where it
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Fig. 6. Schematic overview of available genetic engineering tools for lactobacilli and pediococci. Abbreviations and colour coding: g.o.i.: gene of interest (yellow); us: upstream flanking
region of g.o.i. (red); ds: downstream flanking region of g.o.i. (blue); HR: homologous region; Chrom.: chromosome; AB: antibiotic; Ts: thermo-sensitive. Replicons are indicated in green
and counter-selection parts in purple. A. pORI system (Leenhouts et al., 1996). B. pTRK system using thermosensitive replicon (Russell and Klaenhammer, 2001). C. pTRK-upp system
using 5-FU counter-selection (Goh et al., 2009). D. Cas9 counter-selection. To be combined with HR or recombineering as in A–E so Cas9 acts as counter-selection against wild-type
revertant cells (Mougiakos et al., 2016; Oh and van Pijkeren, 2014). The black star indicates a mutation, which can be a point mutation, insertion, or deletion. E. ssDNA and dsDNA
recombineering (Boyle et al., 2013; Mougiakos et al., 2016; van Pijkeren and Britton, 2012; Yang et al., 2015). The black star indicates a mutation, which can be a point mutation,
insertion, or deletion. White circles indicate ssDNA binding proteins Beta or RecT; grey beak symbol indicates exonuclease Exo or RecE. F. Inducible expression systems based on
bacteriocins: NICE system (Kleerebezem et al., 1997; Kuipers et al., 1998) and pSIP system (Axelsson et al., 2003; Sørvig et al., 2005). p.o.i.: protein of interest; SapIP: sakacin induction
peptide.
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was shown that by keeping the consensus regions conserved and
varying the areas in-between the consensus sequences, a 400-fold
change in activity could be obtained (Jensen and Hammer, 1998).
The method was subsequently used to modulate operon-based gene
expression in L. lactis (Solem and Jensen, 2002). The same approach
was later generalized and also applied to L. plantarum using gusA as a
reporter gene (Rud et al., 2006). The consensus sequences for L.
plantarum promoters were derived from 16S rRNA promoter align-
ments. These sequences were kept the same in the entire promoter
library, whereas the space in-between the −10 and −35 consensus
sites was varied. The resulting library covered 3–4 logs of expression
levels and was shown to have similar activity in L. casei, suggesting the
wider applicability of this system (Rud et al., 2006).

In addition to the development of promoters, the development of
reporter genes is equally important, but whereas reporters such as gusA
(Rud et al., 2006) and GFP (Guo et al., 2013) have been developed for
L. lactis, examples for lactobacilli are more limited. In addition to the
already mentioned use of mCherry in L. plantarum (Heiss et al., 2016),
an elegant application was recently shown in L. reuteri (Karimi et al.,
2016). Two strains of this probiotic species were labeled with beetle red
luciferase (CBRluc) and mCherry to track them in vitro as well as in
vivo in the GIT (Karimi et al., 2016) (Table 3).

3.2. Plasmid-based homologous recombination (HR) for creating clean gene
deletions and insertions

In industrial fermentations, it is generally desired to integrate
modifications into the genome in a clean or markerless way and not
have plasmids inserted in the strain. Also, gene deletions are required
for byproduct removal and for these reasons, gene integration and
deletion systems based on targeted homologous recombination (HR) are
needed. Several HR-based integration systems have been developed for
LAB, including non-replicative or conditionally replicating vectors, as
well as recombineering. Also the well-known Cre-loxP system has been
developed for several species of LAB, but as this system leaves small lox
sites it is not entirely clean (Banerjee and Biswas, 2008; Biswas et al.,
1993; Lambert et al., 2007; Zhu et al., 2015). One of the oldest clean
integration systems for LAB is the pORI-system, a plasmid system based
on the broad host range lactococcal rolling circle plasmid pWV01. The
gene encoding the replication protein repA was removed, creating a
non-replicating integration vector when HR regions are cloned onto the
plasmid (Leenhouts et al., 1996) (Table 4 Fig. 6A). To enable cloning of
the constructs, cloning hosts have been constructed which provide a
chromosomal copy of repA in trans (Law et al., 1995; Leenhouts et al.,
1991).

An integration system based on a non-replicating vector can be used
in species with sufficiently high transformation and integration effi-
ciencies to allow for direct integration selection, but in many species
these efficiencies are not high enough for this. Whereas the efficiencies
for using non-replicative vectors in L. lactis are high enough, in
lactobacilli transformation efficiencies are generally lower (Fang and
O'Toole, 2009) and transformation with non-replicative integration
vectors do not result in any transformed colonies. It has also been
suggested that replication enhances recombination efficiencies, in
particular the rolling circle method (Biswas et al., 1993; Morel-
Deville and Ehrlich, 1996). To overcome a low transformation and/or
recombination efficiency, the two events should be uncoupled (Russell
and Klaenhammer, 2001), for which conditionally replicating vectors
provide a solution. After transforming the target strain with a replicat-
ing vector under replication-permitting conditions, the strain is trans-
ferred to non-permissive but selective conditions, thereby disabling
replication and selecting for integrated plasmids under the selective
pressure (typically antibiotic resistance). Since lactobacilli and pedio-
cocci have a rather wide temperature growth range, an easy system for
creating conditionally replicating plasmids is to use temperature-
sensitive plasmids (Table 4, Fig. 6B). This is used in the pTRK-series

of vectors, which are based on the pORI plasmids, with which a second
plasmid is co-transformed encoding repA, which is unstable above 43 °C
(Russell and Klaenhammer, 2001). After successful transformation and
allowing the integration vector to recombine, the organism is placed in
the non-replicative conditions, selecting for plasmids integrated via
single crossover via the provided homologous region (Fig. 6B). Subse-
quently, a second crossover via a second provided homologous region
leads to excision of the plasmid from the chromosome, resulting in
either wild-type or mutant genotype, depending on whether the second
crossover takes place via the same or via the other homologous region
as the first crossover. A temperature-sensitive replicon in a single-
plasmid based system was recently used for the engineering of P.
acidilactici, which is the first example of genome engineering of this
species (Yi et al., 2016). Another temperature-sensitive integration
system for LAB is the pG+host system (Biswas et al., 1993). Both pTRK
and pG+host are derived from lactococcal plasmid pGK12 (Kok et al.,
1984). The pG+host system uses a variant of repA with a lower
permissive temperature than pTRK and has been used for successful
recombination in poorly transformable lactococci, streptococci (Maguin
et al., 1996), and L. delbrueckii (Serror et al., 2003).

3.3. Counter-selection methods

Whereas non-replicating or conditionally replicating plasmids en-
able easy single crossover selection, they cannot select for both the
frequency and the type (via one or the other HR region) of the second
crossover. This can lead to laborious screening procedures depending
on recombination frequency and on whether there is a bias to revert to
wild-type genotype. Therefore, several counter-selection systems have
been developed to select for second crossover events. The most-
frequently used system in lactobacilli, which has also been added to
the pORI/pTRK-system, is counter-selection based on the uracil phos-
phoribosyltransferase gene upp (Goh et al., 2009) (Table 4, Fig. 6C). In
L. lactis, instead of upp, the orotate transporter oroP is more frequently
used (Defoor et al., 2007; Petersen et al., 2013). Both systems are based
on genes in the purine and pyrimidine salvage pathways. The expres-
sion of upp or oroP from the integration vector causes sensitivity to 5-
fluorouracil (5-FU) or 5′-fluoroorotic acid (FOA), respectively. This
feature is used to select against colonies that still contain the plasmid
and hence select for double crossover mutants that have excised the
plasmid (Fig. 6C). In both cases, either upp or oroP first needs to be
inactivated on the host's genome. Very recently, a counter-selection
system based on bacteriocin sensitivity has been developed for L. lactis,
which does not rely on temperature shifts, does not require the use of
defined media and does not require initial knockout of the counter-
selection gene (Wan et al., 2016).

The above-mentioned counter-selection methods select for plasmid
excision and hence simplify the screening process for identifying double
crossovers, but none of the methods is selective for mutants and the
resulting strain can also be a wild-type revertant. Whereas in most cases
there is an equal chance for the strain to become mutant or wild-type,
for some genes there is a strong selective pressure to revert to wild-type.
In these cases, a counter-selection system is also required to select
against wild-type genotypes. The most powerful system currently
available for counter-selection against wild-type revertants after bac-
terial genome editing is the CRISPR-Cas9 system (Jiang et al., 2013;
Mougiakos et al., 2016) (Fig. 6D). It is based on the endonuclease
activity of the Cas9 protein, which can be targeted to cleave a very
specific DNA sequence in the wild-type gene. This system has been used
extensively for eukaryotic genome editing, in which point mutations
can be made by the error-prone Non-Homologous End-Joining (NHEJ)
mechanism that repairs the dsDNA breaks made by Cas9. Most
prokaryotes do not have a functional NHEJ and therefore Cas9-induced
breaks are generally lethal. This principle enables the use of Cas9 as
powerful counter-selection tool: when Cas9 is targeted against the wild-
type gene of interest, only mutated cells escape Cas9-cleavage and are
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being selected for (Jiang et al., 2013; Mougiakos et al., in press; Oh and
van Pijkeren, 2014) (Fig. 6D). So far, among LAB this system has only
been used in L. reuteri (Oh and van Pijkeren, 2014). In this species, the
CRISPR-Cas9 system was used in combination with ssDNA recombi-
neering (Fig. 6E). Further details about recombineering and how this
can be applied in LAB are explained below in Section 3.4. In short, it is a
recombination system based on phage-derived recombinases enabling
recombination between short ssDNA or dsDNA oligos with the host
chromosome. ssDNA recombineering enables the creation of precise,
clean point mutations in the host chromosome without the need for
antibiotic selection. A ssDNA recombineering system was established
for L. reuteri and L. lactis and proof of principle of the method was also
shown for L. plantarum and Lactobacillus gasseri (van Pijkeren and
Britton, 2012). When ssDNA recombineering is used without Cas9-
based counter-selection, the editing efficiency is maximum 50%, since
the oligo is incorporated in only one strand of the chromosome during
replication and is therefore present in only half of the DNA (Boyle et al.,
2013). In case of multiple chromosomes, this number is brought further
down and many other factors can create suboptimal recombineering
conditions and bring the number even further down (Boyle et al.,
2013). Hence, equal to the selection for mutant double crossovers
described above, it can be laborious to screen for the desired mutations
if no counter-selection is available. In L. reuteri, using Cas9 as counter-
selection against wild-type, non-recombined, cells increased mutation
efficiencies from 0.4–19% up to 100% (Oh and van Pijkeren, 2014). In
order to obtain these efficiencies, cells had to be transformed according
to a two-step procedure, in which recombineering was allowed to take
place first before Cas9 was introduced and expressed to select against
wild-type cells. If recombineering oligos and Cas9 were added simulta-
neously, 100-times fewer recombinants were obtained, which brought
the number close to the detection limit (Oh and van Pijkeren, 2014).
The use of Cas9 to select for recombinants enabled the deletion of up to
1 kb of chromosomal DNA using ssDNA oligos, which had not been
previously shown in any Firmicute (Oh and van Pijkeren, 2014). The
power of Cas9-counter-selection lies in its ability to select for mutations
occurring at low frequencies and thus enables editing organisms with
low transformation or recombination efficiencies, which is often the
case for non-model industrial strains with limited genetic tools avail-
able (Mougiakos et al., 2016; Oh and van Pijkeren, 2014). In LAB it has
so far only been used in combination with recombineering, and only for
L. reuteri. However, it can also be used with the above-described
plasmid-based HR methods, as has been shown for a number of other
bacterial species, including several non-model organisms, such as
several of species of Clostridium (Huang et al., 2016; Li et al., 2016;
Nagaraju et al., 2016; Wang et al., 2015), Streptomyces (Cobb et al.,
2015; Tong et al., 2015) and the facultative thermophile Bacillus smithii
(Mougiakos et al., in press). These examples show that the CRISPR-
Cas9-HR-tool can be adjusted to many different organisms, and this tool
has been proven to greatly enhance engineering efficiencies in all these
non-model organisms. Adjustment of this tool for other species of LAB
would therefore be a desirable development for high-throughput
engineering of these species.

3.4. Recombineering-based HR for creating clean chromosomal
modifications

Whereas plasmid-based HR is well established in LAB, recombineer-
ing is less widely used (Table 4, Fig. 6E). The advantage of recombi-
neering is that it increases throughput: DNA oligos or PCR products are
directly added to the cells, thereby omitting cloning steps and saving
time (Sharan et al., 2009). Recombineering (recombination-mediated
genetic engineering) is based on phage-derived recombination genes
from Lambda red (Exo, Beta, Gam) or the Rac prophage (RecET). Beta
and RecT are ssDNA binding proteins that promote the recombination
of the template with the host DNA, whereas Exo and RecE are
exonucleases that are required in the case of dsDNA recombineering

to create ssDNA overhangs for recombination (van Pijkeren and Britton,
2014). Gam can be added to repress host nucleases and is frequently
used and shown to be beneficial when using dsDNA recombineering
(Sharan et al., 2009) but is not essential (Datta et al., 2008). ssDNA
recombineering is used for creating precise point mutations in the host
chromosome, for which the inducible expression of recombinase Beta or
RecT is required together with the ability of the host to take up small
ssDNA oligos (van Pijkeren and Britton, 2014). Several factors need to
be optimized in the oligo design to enable efficiencies high enough to
detect mutant cells without antibiotic selection. These include creating
sequences that avoid the mismatch repair system, use oligos matching
the lagging strand of the target DNA, determining the optimal length
and concentration of the oligos and identifying which sequences are not
degraded by the host's exonucleases (van Pijkeren and Britton, 2014).
The first step in establishing a recombineering system for a new host is
the identification of a suitable RecT and its inducible expression, since
high activity levels have been shown to reduce cell viability (van
Pijkeren and Britton, 2014). Many bacterial genomes encode RecT
homologs, suggesting that the system might be applicable to many
species (Datta et al., 2008). Secondly, the transformation efficiency
should be high enough to allow for ssDNA to enter the cell and enable
selection of mutants without selective pressure. In the study using L.
lactis and L. reuteri, a plasmid transformation efficiency of 105–106

colony forming units per μg of DNA was shown to be sufficient to enable
ssDNA recombineering. Especially for lactobacilli and pediococci an
optimization of transformation protocols will be required to use these
methods (Landete et al., 2014; van Pijkeren and Britton, 2012; van
Pijkeren and Britton, 2014) (Table 2).

Whereas ssDNA recombineering can only be used to create small
mutations in the chromosome or in some cases also deletions, dsDNA
recombineering (Table 4, Fig. 6E) can be used for both the insertion and
deletion of very large DNA fragments flanked by HR regions generated
by PCR (Sawitzke et al., 2007). Recently, dsDNA recombineering has
been established for L. plantarum (Yang et al., 2015). ssDNA recombi-
neering requires only expression of Beta or RecT, but for dsDNA
recombineering also the corresponding exonucleases Exo and RecE
are required and it might be necessary to add host nuclease inhibitors
such as Gam. A prophage locus in the genome of L. plantarum WCFS1
was identified containing homologs of Gam, Beta and Exo in an operon.
This set of genes was expressed in another L. plantarum strain, JDM1,
which does not natively contain these genes and functional dsDNA
recombineering was shown. The target gene was replaced with a
chloramphenicol resistance gene (cat) flanked by loxP sites, which are
in turn flanked by HR regions up- and downstream of the target gene. In
a second step, the Cre recombinase was used to remove the cat cassette.
When the strain was transformed with the HR-lox-cat-lox-HR cassette on
a non-replicating plasmid, the result was 16 colonies, which were all
single crossover. To obtain the double crossover, a laborious subculti-
vation and PCR-screening process was required since the recombination
and plasmid excision rate was low – a problem observed more
frequently as mentioned above in the counter-selection section. How-
ever, when using dsDNA recombineering with a linear DNA template,
the selection is immediately for double crossover integrations, which
significantly shortens the process. This was shown in the L. plantarum
study, where 95% of the 30 obtained colonies after dsDNA recombi-
neering had the correct double crossover genotype directly after
transformation without further subculturing or PCR-screening (Yang
et al., 2015). The downside of this study is that the cat gene was
inserted, creating the need for Cre-mediated cat removal and leaving
loxP scars. The cat selection was used to obtain the integrated cells,
contrary to what was performed in L. reuteri ssDNA recombineering in
which no selection was used, which is generally the case with
recombineering and one of the advantages of the system. However,
when the dsDNA recombineering was tested in the original strain L.
plantarum WCFS1, a 50-times higher number of colonies was obtained
compared to strain JDM1. The higher number is probably due to
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electroporation efficiencies, which is around 103 CFU/μg DNA for
JDM1 and 106 CFU/μg DNA for WCFS1. When using a non-replicating
HR-plasmid instead of dsDNA recombineering, no colonies were
obtained in this strain (Yang et al., 2015) and hence, the system is still
a major improvement in integration efficiency and engineering effi-
ciency even despite the two-step procedure for marker removal. The
effect of transformation efficiency is in accordance with the observation
made with ssDNA recombineering, in which the authors state that a
plasmid transformation efficiency of 105–106 colony forming units per
μg of DNA was shown to be sufficient to enable ssDNA recombineering
(van Pijkeren and Britton, 2014). These numbers suggest that it might
be possible to obtain dsDNA recombineering colonies without the need
for marker insertion in L. plantarum WCFS1 as well, but this needs to be
further investigated. It also highlights the need for electroporation
protocol optimization to allow for the use of high-throughput techni-
ques such as recombineering.

3.5. Future development of genetic tools for lactobacilli and pediococci

Altogether, a large number of gene expression and modification
systems are available for several species of LAB (Tables 3 and 4).
Several examples of successful metabolic engineering using these tools
will be highlighted in the next section. Nevertheless, the number of
highly engineered lactobacilli and pediococci for biotechnological
production purposes is still relatively low (Table 5), and throughput
of the engineering tools should be further increased to allow more
extensive engineering. Further development of dsDNA-recombineering
would improve the toolbox, as well as further developing it into high-
throughput systems such as MAGE. The latter is especially powerful
when combined with CRISPR-Cas9-counter-selection into CRMAGE,
which has so far only been used in E. coli (Ronda et al., 2016). To
establish the CRISPR-Cas9 system for more species than only L. reuteri,
the adjustments of this system for other non-model organisms can be
used as examples. In order to enable the use of recombineering
strategies without marker insertion in more strains, electroporation
protocols of industrially relevant strains need further optimization.

4. Current applications and metabolic engineering of lactobacilli
and pediococci for biotechnological production purposes and
comparisons to other organisms

As described earlier, lactobacilli and pediococci have many proper-
ties that make them interesting as platform organisms, and although
genetic tools have been developed for some species, a lot of work still
needs to be done to make these high-throughput and allow for
acceleration of metabolic engineering. Hence, the number of highly
edited lactobacilli and pediococci for bulk chemical and fuel production
is not yet very high, but current studies show promising results that are
encouraging for further development. Furthermore, LAB have the
advantage that they can also be used for whole-cell applications such
as vaccine or drug delivery, and as producers of antimicrobial
compounds or as probiotics. Examples of biotechnological application
of LAB via metabolic engineering for the production of industrially
interesting compounds from a variety of substrates, as well as the use of
whole cells for other applications will be discussed in the upcoming
section. As several reviews deal with complete overviews of these items
(Gaspar et al., 2013; Mazzoli et al., 2014; Papagianni, 2012), this
section does not aim to provide an exhaustive overview but rather
highlight the most recent developments, emphasize lactobacilli and
pediococci and make a comparison of these organisms with other
organisms to evaluate future perspectives of development (Table 5).

4.1. Production of bulk chemicals and fuels

As the name implies, LAB are mainly known for lactate production,
which is historically why they have become interesting for the

biotechnology industry. Lactic acid has traditionally been used as
preservative and flavor-enhancer, but is increasingly used in cosmetics
as emulsifier and moisturizer, in the tanning industry, as a solvent in
the form of ethyl lactate, and as the bioplastic-precursor poly-lactic acid
(PLA). PLA can be used as bulk packaging material, but also for high-
value medical purposes such as suture (Castro-Aguirre et al., 2016).
Lactate has two stereoisomers, the D- and the L-form. In the human
body, only the L-form is naturally present and many people are allergic
to the D-form, which is why the L-form is mainly used in food and
cosmetics applications. For PLA, optically pure lactate is needed before
polymerization, and different mixtures of the two forms give different
properties to the plastic. For these reasons, the purity of the produced
lactate is crucial. Whereas chemical synthesis always results in a
mixture of D- and L-lactate, microbial production can result in either
of the forms or both, depending on whether the organisms expresses L-
ldh, D-ldh, or both (Fig. 3, Fig. S1). Hence, lactate production by
microbes has benefits over chemical synthesis and 90% of the lactate
world-wide is produced by microbial fermentation (Mazzoli et al.,
2014; Sauer et al., 2008). The fact that LAB metabolism is relatively
simple and strongly directed towards lactate production makes them
efficient and suitable hosts for the production of this compound.
Whereas some LAB contain only a single ldh and produce either D- or
L-lactate, several species encode multiple copies and produce both
stereoisomers. In such strains, metabolic engineering has been applied
to obtain pure D- or L-lactate. In the case of homofermentative LAB, this
could be achieved by simply knocking out all but one ldh (Kuo et al.,
2015; Yi et al., 2016), whereas in E. coli the production of pure D-lactate
as main product required far more extensive engineering, and lactate
accumulation was found to be complicated by unexpected interconnec-
tivities of metabolic routes(Kim et al., 2013a, Zhou, and Cui, W.-j., Liu,
Z.-m., Zhou, Z.-m., 2016) (Table 5). In this respect, the small genome
size of LAB (2 Mb) can generally be advantageous for engineering
purposes since there is less interference of unexpected regulatory
circuits or from competing metabolic pathways. Furthermore, LAB are
capable of producing maximum lactate yield under fermentative
conditions where no gas addition to the reactor is required. Fungi such
as Rhizopus oryzae and several yeast strains are also considered for
lactate production due to their lignocellulosic-degrading and low-pH
fermentation capacities, respectively, but these organisms either re-
quire oxygen or yields are not yet optimal and need further engineering
(Ilmén et al., 2013; Novy et al., 2017; Upadhyaya et al., 2014). Process
parameters have a large influence on lactate production by LAB and are
an important optimization factor. The effects of temperature, pH, sugar
concentration, etc. have been well-studied (Hofvendahl, and
Hahn–Hägerdal, B., 2000). Production of lactate at elevated tempera-
tures has the benefits described earlier and has been shown in an
efficient SSF process at pH values between 5.0 and 5.5 and tempera-
tures of 48–50 °C with P. acidilactici (Zhao et al., 2013) and B. coagulans
(Ou et al., 2011; van der Pol et al., 2016) and at 42 °C and pH ~5.5 by
L. delbrueckii (Adsul et al., 2007). A different L. delbrueckii strain was
used for the fermentation of beet molasses into lactic acid at 49 °C
(Monteagudo et al., 1997).

In addition to lactate, LAB are capable of producing a range of other
fuels and chemicals (Figs. 1 and 3, Table 5). The amount and type of
end products mainly depends on the process conditions as described in
Section 2.1 (Fig. 3). A big advantage of lactobacilli and pediococci in
the production of many alcohols is their native tolerance towards high
concentrations of these compounds. Their fermentative lifestyle is a
strong advantage for the production of reduced compounds such as
ethanol and 2,3-butanediol (2,3-BDO). The GRAS status of LAB is also
important, as many 2,3-BDO production native producers, such as
Klebsiella pneumoniae and Enterobacter aerogenes, are potential patho-
gens (Ji et al., 2011; Kim et al., 2013b). Although metabolic engineer-
ing has not yet been applied to such an extent that industrial titers have
been reached, these characteristics make LAB potential production
hosts for these compounds. Products for which LAB have traditionally
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been used as whole cells (see next section) are food flavor compounds
acetoin, acetaldehyde and diacetyl. However, these products are also of
interest to be produced and purified on a larger scale and very recently,
some major achievements have been made with these compounds in L.
lactis, which was subsequently further engineered to produce the
building block chemical 2,3-BDO (Table 5) (Liu et al., 2016).

Whether 2,3-BDO or any other product than lactate is the target
product, in LAB the first step for engineering towards reduced
compounds has to be the inactivation of the present ldh genes. When
the main ldh is inactivated, its role is often taken over by secondary
ones, which also need to be inactivated. In L. lactis, inactivation of three
out of the four ldh genes led to some 2,3-BDO production but the main
product was ethanol. The maximum theoretical yield of 0,67 g/g was
achieved after overexpression of its native α-acetolactate synthase and
acetoin reductase genes (Gaspar et al., 2011). 2,3-BDO exists in three
different isomers; (R,R)-2,3-BDO, meso-2,3-BDO and (S,S)-2,3-BDO.
Whereas the first two have been produced in large amounts by
microbial fermentation, the direct formation of the third variant from
glucose by fermentation was only recently shown for the first time. This
was achieved in an L. lactis strain that had been engineered for the
production of the highest diacetyl titers reported by a combination of
system metabolic engineering including a modeling approach, optimiz-
ing respiratory conditions, and optimized chemical catalysis (Liu et al.,
2016). Diacetyl formation includes the non-enzymatic conversion of α-
acetolactate into diacetyl in the presence of oxygen. This step is rather
inefficient and generally, most α-acetolactate is converted into acetoin
(Fig. 3B) (Liu et al., 2016). To overcome redox problems and allow for
respiration in a strain from which 8 genes for by-product pathways as
well as NOX were deleted, hemin was added to the cell cultures.
Respiration is possible in L. lactis when heme is added to the cultivation
medium as the organism contains all the genes necessary for a
functional electron transport chain, but not for hemin (Liu et al.,
2016). When also Fe3+ or Cu2+ ions were added to the fermentation
after the start of stationary phase, diacetyl production reached the
highest reported levels (Table 5). The pathway was subsequently
extended to optically pure (S,S)-2,3-BDO by adding a L-2,3-BDO
dehydrogenase from Brevibacterium saccharolyticum (Liu et al., 2016).

Whereas 2,3-BDO is not a major native product in any LAB, 1,3-
propanediol (1,3-PDO) is produced in large quantities already by some
lactobacilli from glycerol (Fig. 3B). 1,3-PDO is a platform chemical that
can be used as a building block in solvents, plastics, detergents, etc.
Glycerol is a by-product of the biofuel industry and therefore an
interesting second generation substrate and it is fermented by many
LAB species naturally (Chen and Liu, 2016). Similar to 2,3-BDO
producers, many 1,3-PDO producers are also potential pathogens,
which is not the case for lactobacilli. L. diolivorans is close to pathogenic
native producers like Klebsiella with titers up to 84,5 g/L (Pflügl et al.,
2012). Subsequent development of genetic tools for this species, which
was initially recalcitrant to transformation, will enable further im-
provement of production (Pflügl et al., 2013). The best characterized
1,3-PDO producer among LAB is L. reuteri, which naturally produces the
compound already in substantial amounts and process optimization
further increased yields (Dishisha et al., 2014; Jolly et al., 2014). Also L.
brevis was shown to produce 1,3-PDO, but whereas this strain needed to
be supplemented with vitamin B12 for the efficient action of vitamin
B12-dependent glycerol dehydratase (Vivek et al., 2016), L. reuteri is a
native producer of vitamin B12 and does not need additional B12 for
1,3-PDO production (Ricci et al., 2015; Santos, 2008; Santos et al.,
2008). Another product that can be formed from glycerol via 3-
hydroxypropionaldehyde (3-HPA, Fig. 3B) is 3-hydroxypropionic acid
(3-HP), which yields one NADH and one ATP, compared to one NAD+

for 1,3-PDO. Hence, redox balancing is important to determine the flux
to either of these compounds. This was recently addressed via process
optimization in L. diolivorans. By adjusting the feeding regime of
glucose as electron donor and glycerol as electron acceptor, the ratio
of 1,3-PDO to 3-HP could be modified, emphasizing the importance of

process optimization (Lindlbauer et al., 2017). A complicating factor in
the use of these pathways is the toxicity of 3-HPA and the compart-
mentalization of some of the intermediates, which was recently
addressed in a metabolic flux analysis study in L. reuteri (Dishisha
et al., 2014).

For ethanol production, yeast is generally used as production host.
High titers and yields are obtained with yeast and the process is highly
optimized, but many lactobacilli and pediococci have been described
with higher ethanol tolerance than yeast and they are common
contaminants of ethanol fermentations (Beckner et al., 2011; Geissler
et al., 2016; Limayem et al., 2011; Roach et al., 2013), which is how
pediococci were originally discovered and described (Pederson, 1949).
Their ability to ferment sugars to ethanol at low pH combined with
their high ethanol tolerance makes it a very robust potential process,
which was shown with L. plantarum at pH 3.2 with 13% ethanol (G-
Alegría et al., 2004). Also for ethanol production, all possible ldh genes
need to be inactivated to prevent lactate production completely – if
secondary ldh genes are not inactivated, often unstable strains are
obtained that revert to lactate producers (Liu et al., 2006). Initial efforts
did not result in highly producing strains, but this was most likely due
to non-optimized expression of heterologous genes and recent efforts
have created a homo-ethanologenic L. lactis (Solem et al., 2013). The
authors indicate that the reason for using L. lactis for this engineering
work was its genetic amenability as model species, but even though it is
more ethanol-tolerant than E. coli, it is less ethanol tolerant than
lactobacilli and therefore the latter might be more suitable for further
development (Solem et al., 2013). A promising candidate for this might
be a very recently described Lactobacillus casei strain, which was shown
to be highly tolerant to several alcohols and other inhibitors such as
lignotoxins and is currently being engineered for ethanol production
(Vinay-Lara et al., 2016).

Also for the well-known solvent butanol, LAB might be interesting
production hosts since they show high butanol tolerance, with several
strains tolerating up to 3% (Berezina et al., 2010; Knoshaug and Zhang,
2009; Li et al., 2010). This is at least 3 times higher than in most
solventogenic Clostridia and E. coli, although for these organisms
efficient in situ gas stripping technologies have been developed to
prevent toxicity and produce titers above the toxicity level (Ezeji et al.,
2003; Jensen et al., 2012; Shen et al., 2011). L. lactis and L. buchneri
produced butanol when the C. beijerincki P260 thiolase was expressed to
reroute acetyl-CoA to butanol (Liu et al., 2010). L. brevis natively
contains part of the pathway and was engineered with a shortened
version of the clostridial pathway for butanol production, (Table 5).
Further engineering of this strain via for example removal of by-product
pathways is necessary to obtain higher production (Berezina et al.,
2010).

Making use of the wide range of available (partial) pathways of LAB
was also employed for succinate production with L. plantarum NCIMB
8826. This strain has an incomplete TCA cycle and naturally produces
small amounts of succinate (Tsuji et al., 2013). Overexpression of
pyruvate carboxylase (pyc) was found to be the critical step, and
together with overexpression of phosphoenolpyruvate carboxylase
(pckA), the mutant produced 22-fold more succinate than its wild-type
parent strain. Production needs to be further optimized by metabolic
engineering and process optimization, which has been extensively done
for several native producers as well as for engineered E. coli (Table 5)
(Ahn et al., 2016).

Other food ingredients that can be produced by LAB are polyols
such as xylitol, mannitol and sorbitol (Table 5). These are low-calorie
sweeteners with possible health-promoting properties, but mannitol
also has applications in medicine and in the chemical industry (Park
et al., 2016). The current commercial production is based on chemical
catalysis that requires very pure substrates and expensive down-stream
processing and therefore, microbial production is an economically
attractive option (Gaspar et al., 2013; Papagianni and Legiša, 2014).
Xylitol is most frequently produced by natural xylitol-producing yeast,
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but sorbitol and mannitol are mostly produced using LAB (Park et al.,
2016). Whereas chemical synthesis yields mannitol and sorbitol that are
hard to separate, heterofermentative LAB produce mannitol and no
sorbitol from fructose or fructose-glucose mixtures in a single enzy-
matic step from fructose via mannitol dehydrogenase. Homofermenta-
tive LAB use mannitol-1-phosphate dehydrogenase and mannitol-1-
phosphatase to convert fructose-6-P into mannitol in two steps (Park
et al., 2016). However, other by-products such as lactate still need to be
eliminated via metabolic engineering. High mannitol yields in homo-
lactic L. lactis have been achieved after removing mannitol uptake
systems and removal of several ldh genes (Gaspar et al., 2011; Gaspar
et al., 2004) or by ldh-removal combined with heterologous expression
of mannitol 1-phosphatase and mannitol 1-phosphate dehydrogenase
genes (Wisselink et al., 2005). In heterofermentative L. reuteri ATCC
55730, the heterologous expression of pfk ensured higher flux through
the EMP instead of the PKP pathway. This resulted in a 5.6-times
increase in mannitol production, most likely because the increased
glycolytic flux resulted in higher NADH availability, which is necessary
for mannitol dehydrogenase activity and mannitol production
(Papagianni and Legiša, 2014). The strain still produced acetate and
lactate and further engineering is required to reduce byproducts, but
the strategy to shift the main pathways can be applied for other species
and products as well. LAB, namely L. plantarum and L. casei, have also
been engineered for sorbitol production using similar strategies as for
mannitol, via overexpression of production pathways, preventing re-
utilization, eliminating by-products and improving redox balance (De
Boeck et al., 2010; Ladero et al., 2007; Park et al., 2016).

A more recent addition to the specialty LAB product portfolio are
plant secondary metabolites such as isoprenoids and polyphenols,
which have applications as antimicrobials, antioxidants, cardiovascular
drugs, and as flavoring compounds (Pandey et al., 2016). Extraction of
these metabolites from plants is typically not highly profitable due to
low productivities and high down-stream processing costs. The com-
mon platform organisms E. coli and yeast have been rather well-
established for the production of plant metabolites, but LAB and other
Gram positive organisms such as Corynebacterium glutamicum are
currently being explored as alternative hosts with improved product
resistance (Dudnik et al., submitted; Gaspar et al., 2013; Kallscheuer
et al., 2016; Pandey et al., 2016; Song et al., 2014b).

4.2. Engineering substrate utilization

Initial bio-based production processes mainly utilized purified
sugars from food resources – mainly glucose and sucrose, which are
readily fermented by most LAB and other microorganisms. Current
second generation processes aim at utilizing raw substrates, or sugars
derived from non-food resources. This is especially important for the
production of bulk products such as those described above for plastics,
nylons, etc. These second generation substrates often contain different
sugars, of which not all are readily fermented by most organisms,
requiring the selection of strains that naturally do so, or use metabolic
engineering to expand the substrate range. It is frequently mentioned
that LAB, like yeast, are unable to utilize pentoses (Lu et al., 2016), but
as shown in the first section of this work this highly depends on the
species that is used and many lactobacilli and pediococci are well able
to utilize a wide range of sugars. In some cases, they even carry out
mixed sugar fermentations without carbon catabolite repression. For
example, L. brevis co-utilized xylose and glucose from lignocellulose
into lactate without carbon catabolite repression (Guo et al., 2014;
Mazzoli et al., 2014). Several other lactobacilli have been shown to
utilize different carbon sources such as whey or molasses, either
naturally or after metabolic engineering. An extensive overview of this
has recently been provided (Mazzoli et al., 2014). Most LAB use the PKP
pathway for pentose utilization (Fig. 3A), but L. plantarum was
engineered to become homolactic via the PPP by heterologous expres-
sion of a transketolase for arabinose utilization (Okano et al., 2009a)

and after the addition of xylAB the strain also fermented xylose in a
homolactic way via this pathway (Okano et al., 2009b). The same strain
was later shown to be able to co-utilize xylose and glucose during SSF
on lignocellulosic substrates (Hama et al., 2015; Zhang et al., 2016). A
recent study showed high L-lactate yields (96%) on lignocellulosic
hydrolysates using L. paracasei with a disrupted D-ldh gene (Kuo et al.,
2015). In another study, L. pentosus was used in an SSF process using
corn stover without sterilization (Hu et al., 2016), resulting in a robust
and cost-efficient process. A similar SSF-process for lactic acid produc-
tion from corn stover was shown for P. acidilactici (Yi et al., 2016).
Whereas non-engineered lactobacilli and pediococci that use both
pentoses and hexoses can readily be used in SSF processes and many
of them can utilize cellobiose, they generally cannot ferment longer
polymers and there are few examples for direct polymer fermentation.
These include L. plantarum with an endoglucanase from C. thermocellum
for cellulose conversion (Okano et al., 2010), and L. brevis with a
xylanase from a metagenomics sample for xylan utilization (Hu et al.,
2011). Also B. subtilis has been engineered to directly convert xylan to
fermentation products (Rhee et al., 2016) and several thermophilic
organisms that naturally utilize xylan or cellulose are available as
interesting potential hosts for lactate and ethanol production such as
Thermoanaerobacterium aotearoense (Yang et al., 2013), G. thermodeni-
trificans (Daas et al., 2016) and C. thermocellum (Tian et al., 2016).
However, for all the mentioned organisms, engineering as such, as well
as the expression of (hemi)cellulolytic enzymes and understanding of
both organism physiology and enzyme mechanisms and expression is
still challenging (Bosma et al., 2013; Mazzoli et al., 2012; Olson et al.,
2015; Taylor et al., 2011; Yamada et al., 2013). For these natural hosts
as well as for LAB, B. subtilis and others, extensive optimization of both
substrate utilization and product formation is required before final
conclusions about the optimal hosts can be drawn.

4.3. Specialty chemical production and whole-cell applications of LAB: food
ingredients, antimicrobials, probiotics and drug delivery

One of the major advantages of LAB over other potential platform
organisms is their ability to be used not only for excreted products, but
also as whole cells – either when added to food to produce flavor
compounds such as diacetyl or acetoin (for which the production as
bulk products has been described above), but also for many other
purposes in which secondary metabolites are the products of interest, or
the entire cell is used, for example as a delivery vehicle for drugs. Such
options are hard to engineer in non-native organisms due to the
complexity of the pathways and the use of whole cells.

Several LAB-derived secondary metabolites have applications as
specialty chemicals within medicine or nutraceuticals (food additives to
enhance health benefits). Examples include vitamins or γ-aminobutyr-
ric acid (GABA). Most of these compounds are currently preferably
added indirectly via probiotics producing such compounds, for which
LAB are often considered (Johnson and Klaenhammer, 2014), but
several lines of research also investigate the production of these
compounds, so they can be added as separate chemicals. Bioactive
amines such as GABA are produced by humans and LAB by the
decarboxylation of amino acids and serves as an energy source as well
as protection mechanism in acidic environments, making LAB very
suitable hosts for this product (Diana et al., 2014; Mazzoli et al., 2010).
Several processes for GABA-production have been developed for
different species of lactobacilli (Diana et al., 2014). Almost all of these
focus on the optimization of environmental factors such as pH, but a
recent study focused on metabolic engineering of L. brevis. GABA-
production by this strain was made less dependent on environmental
conditions by creating a FoF1-ATPase deficient and glutamate decar-
boxylase overexpressing strain (Lyu et al., 2017).

The rise of antibiotic-resistant bacteria and subsequent untreatable
infections has accelerated research in new antimicrobial compounds.
Several alternatives to antibiotics are currently already used in cases
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where the use of antibiotics is prohibited, such as in the livestock
industry, where probiotic bacteriocins are added to animal nutrition
(Ma et al., 2016). Bacteriocins are small, ribosomally synthesized
peptides that are secreted by many different bacteria to inhibit the
growth of other bacteria, as well as fungi and some parasites (López-
Cuellar et al., 2016). The bacteriocins are classified in different
subclasses based on characteristics including post-translational mod-
ifications, size, thermostability, etc. (Alvarez-Sieiro et al., 2016). They
have a wide variety of applications ranging from food preservation to
improving health in the GI-tract (López-Cuellar et al., 2016) and they
are possible candidates as antibiotic-replacers (Cotter et al., 2013).
Many LAB naturally produce bacteriocins, such as nisin by L. lactis,
sakacin by L. sakei or pediocins by pediococci (Alvarez-Sieiro et al.,
2016). Metabolic engineering has been used to increase production,
such as of pediocin in P. acidilactici (Eom et al., 2012) or to broaden
antimicrobial activities by adding multiple bacteriocins into one strain,
such as microcin V and pediocin PA-1 in L. plantarum (Ma et al., 2016).
Bacteriocins can be used by adding a producing culture or by adding
only the produced and separated compound. In both cases, but
especially in the first scenario, LAB are highly preferred because they
are food-grade with a long history of safe use in food, and many
products derived from LAB strains have received GRAS status (Alvarez-
Sieiro et al., 2016).

Another application for which the safety of LAB is important and for
which the entire organism is used, is their application as delivery
vehicles for drugs targeted at the GI-tract or as in situ vaccine
production hosts (Michon et al., 2016). lactobacilli have been shown
effective as oral or nasal vaccines against several bacterial and viral
infections, and clinical trials with an L. casei-based vaccine against
human papillomavirus were successful and might become the first
approved LAB-based therapy (Rosales-Mendoza et al., 2016). The use of
LAB for the delivery of drugs has been evaluated for diseases such as
Crohn's disease, diabetes and colorectal cancer (Cano-Garrido et al.,
2015). Several drugs can be produced by the same delivery micro-
organisms and in many cases, side-effects were shown to be reduced
compared to traditionally administered medicine (Cano-Garrido et al.,
2015). Importantly, by using one organism for production and delivery,
expensive purification of the vaccine or drug is prevented, increasing
the economic feasibility of these systems (Cano-Garrido et al., 2015;
Rosales-Mendoza et al., 2016).

5. Conclusions and future directions

To realize a bio-based economy, it is important that the most
suitable production organism is used for each process. Whereas in some
cases it is best to use one specific organism for a certain product, it is
generally desired to use a platform organism with which several
products can be produced. However, this does not need to be a one-
organism-fits-all solution and a set of platform organisms each produ-
cing a set of products can be envisioned. Economic feasibility analysis
will be important to evaluate which process parameters are most crucial
for each set, such as medium composition, pH, final titer and
productivity, aeration conditions, temperature, contamination risk,
etc. In general, it is important to have a flexible and robust organism,
and in that respect lactobacilli and pediococci are very suitable
candidates: they perform well under a wide range of temperatures,
pH values and are generally highly tolerant to high concentrations of
several products and stresses. Their small genome size can be of
advantage when engineering due to less interference of unexpected
regulatory circuits or competing metabolic pathways. Another major
advantage of LAB over other organisms is their wide number of possible
applications: they are not only potentially suitable as platform organism
for bulk products, but also for food applications and specialty products,
antimicrobials and medical applications. One could thus envision a
LAB-based refinery in which all these applications come together.
However, in order to compete with highly engineered species such as

E. coli and S. cerevisiae as platform organisms, the development of high-
throughput genetic tools for lactobacilli and pediococci has to be
advanced. Whereas they cannot compete with the highly engineered
production organisms as of yet, further studies will be very promising as
lactobacilli and pediococci show higher tolerance to acid stress and
alcohols, as well as faster (facultatively) anaerobic growth and fermen-
tation than many current production hosts. Development of highly
engineered strains as well as process optimization, combined with
medium optimization by using cheap nutrient sources will likely lead to
the development of lactobacilli and pediococci into competitive cell
factories with application in biorefineries.
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