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Over the last century, humans have modified landscapes, generated pollution and provided opportunities for exotic species
to invade areas where they did not evolve. In addition, humans now interact with animals in a growing number of ways
(e.g. ecotourism). As a result, the quality (i.e. nutrient composition) and quantity (i.e. food abundance) of dietary items
consumed by wildlife have, in many cases, changed. We present representative examples of the extent to which vertebrate
foraging behaviour, food availability (quantity and quality) and digestive physiology have been modified due to human-
induced environmental changes and human activities. We find that these effects can be quite extensive, especially as a
result of pollution and human-provisioned food sources (despite good intentions). We also discuss the role of nutrition in
conservation practices, from the perspective of both in situ and ex situ conservation. Though we find that the changes in
the nutritional ecology and physiology of wildlife due to human alterations are typically negative and largely involve
impacts on foraging behaviour and food availability, the extent to which these will affect the fitness of organisms and
result in evolutionary changes is not clearly understood, and requires further investigation.
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Introduction
In the last century, humans have modified the global land-
scape to accommodate the growing human population
(Vitousek et al., 1997). Previously pristine landscapes, rivers-
capes and seascapes have been transformed as a result of
agriculture, urbanization, resource extraction (e.g. mines,
forestry, fishing), energy production (e.g. hydropower, fossil
fuels), military activity, and other human developments and

activities (Marzluff et al., 2001; Foley et al., 2005; Dudgeon
et al., 2006; Kennish, 2002; Crain et al., 2009). The accumula-
tion of human-induced changes has modified ecosystems to the
point where human activities are now considered the primary
driver of global change (Vitousek et al., 1997; Sanderson et al.,
2002) and it is proposed that we have entered a new epoch
called the Anthropocene (Crutzen, 2006). As a result, humans
have changed the environment in which wild animals live,
including the abundance and quality of food items which has
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implications for animal health, reproduction and survival
(Acevedo-Whitehouse and Duffus, 2009).

In recent years, two fields of nutrition have grown signifi-
cantly (Frost et al., 2014). Nutritional ecology investigates the
relationships among diet, digestive physiology and feeding
behaviour (Foley and Cork, 1992; Raubenheimer et al., 2009),
while nutritional physiology focuses on the subset of relation-
ships related to the intake and assimilation of food items. Here
we focus on how food choices and digestion are affected by the
abundance (quantitative limitation) and composition (qualita-
tive limitation) of the foods available in a particular environ-
ment (Lambert, 2007; see Table 1 for commonly used tools to
evaluate nutrition in animals). These fields have generated many
insights that have made them a cornerstone for understanding
the mechanisms that link ecological patterns and processes to
animal phenotypes (Raubenheimer et al., 2009; Karasov et al.,
2011; Simpson and Raubenheimer, 2012). They are also import-
ant in understanding the constraints that nutrition may impose
on locomotion, activity patterns, demography and population
dynamics (Foley and Cork, 1992; Raubenheimer et al., 2015).

Currently there is no cohesive framework that posits how
human-induced environmental change influences the nutri-
tion of wild vertebrates. Such a framework would be particu-
larly useful for developing testable hypotheses concerning
the future implications of such alterations. In this paper, we
present an overview of the ways in which humans have
altered the environment (climate change, pollution, habitat
loss/fragmentation, invasive species, human disturbances and
provisioned food sources), and consider how each of these
modifications may affect the acquisition, availability (quality
and quantity) and digestion of food for vertebrates. We add-
itionally present representative examples that demonstrate
the extent to which humans can impact the nutrition of wild
vertebrates. We address how nutrition has been used in the
context of in situ and ex situ conservation. We focus on

vertebrates given their imperilled status (Sala et al., 2000),
interest from conservation practitioners and policy makers
(Redford et al., 2011) and because relative to most inverte-
brates, the basic biology, natural history and nutritional
ecology of vertebrates are well studied (see Donaldson et al.,
2016), an understanding owing in large part to them being
commonly held in zoos and aquaria (Conde et al., 2011).

Human-induced environmental
changes and their effects on
nutrition
Humans have altered the planet in many ways including
through climate change, pollution, habitat alteration and the
introduction/translocation of new species (reviewed in
Vitousek et al., 1997). What does this mean to animals in
terms of nutrition?

Climate change
In today’s warming world, shifts in moisture, carbon dioxide,
temperature and solar radiation are pervasive (IPCC, 2013),
and these changes will directly and indirectly affect animal per-
formance by influencing the composition of their food (Post and
Stenseth, 1999; Kearney et al., 2013; Rosenblatt and Schmitz,
2016). These predicted changes are far-reaching and complex,
and their interactions among trophic levels are still poorly
understood. For example, changes to primary producers involve
both quality and abundance: increased temperature may lead to
increased stratification of the water column in parts of the
ocean, creating nutrient limitation and changing the dominant
species of phytoplankton with unknown effects on higher
trophic levels (Beardall et al., 2009); and Lake Tanganyika in
Africa has already undergone decreases in phytoplankton prod-
uctivity due to increased stratification from a combination of

Table 1: Brief summary of the common methods used to study nutrition in animals, with a description of the advantages and disadvantages
for each

Method Pros Cons

Gut sampling Provides insight into specific ingested prey
items, nutrient intake, energetic intake

Insight into short-term diet only; Ingested organisms may be mistaken
during identification; Typically requires lethal sampling or high levels of
induced stress (stomach lavage) but new options with DNA assessment
of gut materials are being developed

Tissue sampling Provides insight into macromolecules Often requires lethal sampling

Faecal analysis Non-invasive, does not require capture, or lethal
sampling

Difficult to match faeces to a particular individual if behaviour is
important to the study; Soft-bodied prey often not identifiable

Stable isotopes Provides insight into short and long-term diet Costly; Does not provide information on specific ingested foods

Direct
behavioural
observations

First hand observations of what foods are
ingested

Very time-consuming; Human presence can sometimes alter feeding
behaviour

Bio-logging or
biotelemetry

Provides information on the spatial and
temporal patterns of foraging behaviour and
food intake

Data may take time to examine; Electronic tags tend to be expensive
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increased temperature and decreased wind velocity, leading to a
decline in pelagic fishes (O’Reilly et al., 2003). On land, elevated
CO2 typically causes an increase in tissue carbon in plants,
accompanied by decreases in nitrogen (Cotrufo et al., 1998),
phosphorus (Gifford et al., 2000) and other elements (Loladze,
2002), including protein (Robinson et al., 2012). When feeding
on these plants, insects had decreased growth but increased con-
sumption (Robinson et al., 2012) indicating that the nutritional
quality of the plants had diminished. Food protein content is
often associated with animal performance, and so a decrease
in the ratio of protein energy to non-protein energy (i.e. protein
vs carbohydrates and lipids; Raubenheimer et al., 2014) will
reduce the quality of plant foods available to wildlife (Zvereva
and Kozlov, 2006). Plants may also undergo increases in toxic
secondary compounds under increased temperatures which
may affect the ability of herbivores to meet their nutritional
requirements (Moore et al., 2015). Most of these changes have
been documented for the primary producers themselves, with
much less research on the subsequent nutritional effects on
their consumers.

Climate change can also directly impact secondary and ter-
tiary consumers in several ways. One way it does this is to cause
further physiological impairments when combined with
decreased nutritional intake (Robbins, 1993; Murray et al.,
2006). For example, when prey is depleted and individuals cat-
abolize their fat reserves, lipophilic toxins such as PCBs can be
released (Jepson et al., 2016). In herbivores, body condition
influences how individuals choose locations of high forage qual-
ity versus tolerable thermal stress (Long et al., 2014). These
trade-offs may be particularly severe during the energy-
intensive time of reproduction (egg or embryo development in
females, pregnancy or lactation in female mammals, and/or par-
ental care) (Lewis, 1993; Ashworth et al., 2009) or be more
intense in animals with certain reproductive strategies (e.g.
income versus capital breeders; Costa, 2012). For example, nest
success in parental male smallmouth bass (Micropterus dolo-
mieu) is affected by both body size and climatic indices (Suski
and Ridgway, 2007). Because the activity and development of
many insects depend on climatic conditions (Burles et al.,
2009), food availability for insectivores will likely be highly
affected by climate change (Sherwin et al., 2013; Berzitis et al.,
2017). As lower trophic levels can adapt their phenologies in
response to climate change faster than their consumers can,
shifts in peak abundance of food may no longer align with peri-
ods of vertebrate offspring growth and development (Davies
and Deviche, 2014). Additionally, when nutrient dispersers
such as bats are affected by climate change, this will presumably
affect the extent to which nutrients will be dispersed over the
landscape, potentially having important repercussions on other
animals, though this link has not yet been investigated.

Pollution
Changes in animal behaviour can occur at concentrations of
chemicals lower than can cause mortality (Little and Finger,
1990) and may affect foraging decisions (Scott and Sloman,

2004; Vaughan et al., 1996). Environments that are heavily
contaminated by metals have a reduced abundance and
diversity of many terrestrial insects (reviewed in Heliövaara
and Väisänen, 1990), which can affect the breeding perform-
ance of insectivorous birds (Eeva et al., 1997). Birds exposed
to metal pollutants also showed decreased appetite (Di Giulio
and Scanlon, 1984) and paper mill effluents interfere with
digestive enzymes in fish (Temmink et al., 1989). Thus, pollu-
tants potentially have accumulating effects: they reduce the
food supply available, decrease interest in the available food
and reduce digestion of food that is consumed. Predators are
especially vulnerable because many compounds undergo bio-
accumulation, exposing animals higher in the food chain to
elevated levels of pollutants (Walker, 1990).

In streams, lakes and estuaries, water can become turbid
through a variety of processes (Smith, 1990). This results in
changes in the abundance and diversity of primary producers
(Smith, 2003) and affects the ability of consumers to detect
prey (Utne-Palm, 2002; Chivers et al., 2013; Chapman et al.,
2014). In general, turbidity is predicted to affect piscivorous
fish more than planktivorous fish due to differences in attack
distances (De Robertis et al., 2003) but turbidity also changes
the behaviour of prey fish due to decreased risk of predation
(Pangle et al., 2012). For example, under turbid conditions
perch (Perca fluviatilis) had reduced capture rates of benthic
prey and slower growth rates (Ljunggren and Sandstrom,
2007), and brown trout (Salmo trutta) consumed a lower
diversity and abundance of benthic prey and had lower condi-
tion (Stuart-Smith et al., 2004). In planktivores, bluegill sunfish
(Lepomis macrochirus) showed reduced feeding rates under
increased turbidity (Gardner, 1981); larval herring (Clupea
harengus pallasi) increased feeding on plankton at low tur-
bidity but decreased feeding at high turbidity (Boehlert and
Morgan, 1985); and perch captured fewer zooplankton with
increasing turbidity while no effect was seen in roach (Rutilus
rutilus) (Nurminen et al., 2010). Turbidity can also change
prey selection. Piscivorous, benthivorous and planktivorous
species have all showed shifts in prey composition in turbid
environments (Hecht, 1992; Stuart-Smith et al., 2004; Shoup
and Wahl., 2009; Johansen and Jones, 2013). Turbidity has
clear effects on foraging behaviour and diet quantity and
composition, but the fitness effects of these changes are not
known.

Plastic debris accounts for 60–80% of the total debris in
marine environments, coming from accidental equipment
loss, careless handling (e.g. land-based trash washing to sea)
and littering (reviewed in Derraik, 2002; Galgani et al.,
2015) but freshwater habitats also have large plastic debris
loads (Wagner et al., 2014). Such pollution can greatly
reduce the quantity of food that organisms can eat through a
reduced ability to move (entanglement or injury) or a block-
age of the digestive system (ingested debris) (Quayle, 1992;
Laist, 1997; Wilcox et al., 2015; Holland et al., 2016).
Ingested debris can result in a reduction of the area available
for nutrient absorption in animals ranging from sea turtles
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(McCauley and Bjorndal, 1999; Schuyler et al., 2016) to stickle-
back (Katzenberger, 2015) to beachhoppers (Platorchestia
smithi) (Tosetto et al., 2016) and can create a physical block-
age of the digestive tract (Danner et al., 2009) which impedes
further food intake and digestion. The accumulation of debris
on the seafloor (Galgani et al., 2015) may also reduce the
productivity and species composition of plants and prey items
(reviewed in Kuhn et al., 2015). Overall, plastics more com-
monly affect the ability of individuals to eat sufficient amounts
of food rather than affecting the quality of food available, but
the impact of plastics on trophic linkages has been identified
as a global research priority (Vegter et al., 2014).

Habitat quantity and quality
Humans have altered landscapes extensively, causing habitat
loss and fragmentation, which leads to changes in the phys-
ical environment and biogeography of plants and animals
(reviewed in Saunders et al., 1991). Because some species are
restricted in the habitats they can occupy or type of food
they can consume, these landscape modifications can severely
reduce their population sizes, therefore restricting the abun-
dance of prey for their predators. For example, habitat frag-
mentation can cause a decline in pollination and seed set
(Rathcke and Jules, 1993), thereby reducing the abundance
of certain plant species and presumably affecting the herbi-
vores that feed on them. Additionally, when animals choose
habitats based on cues that are no longer appropriate, they
experience an ecological trap and may undergo population
declines (Schlaepfer et al., 2002). In general, specialist species
are likely to be affected by habitat modification to a greater
extent than generalist species (Devictor et al., 2008). However,
some species are able to switch to foods that are more readily
available when their preferred food source is scarce (Felton
et al., 2009), suggesting that behavioural plasticity is an
important factor to consider in order to fully understand the
impacts of habitat alteration on animal nutrition (Tuomainen
and Candolin, 2011). Other modifications to the landscape
can also affect the nutrition of wildlife. For example, fires are
controlled in many areas, but burning can increase the quality
of grass species for herbivores (Hobbs and Spowart, 1984).
Humans have also modified the land to accommodate infra-
structures in order to meet anthropogenic needs (e.g. oil well
sites, hydroelectric dams, roads). Such infrastructure reduces
population size by replacing natural habitat and causing ani-
mals to avoid those areas (e.g. reindeer: Nellemann et al., 2003;
bears: Gibeau et al., 2002; amphibians; Hamer and McDonnell,
2008; birds and mammals: Benitez-Lopez et al., 2010), conse-
quently reducing food abundance for their predators.

Some regions of the world have been depleted of their
native vegetation by 93% and this has been replaced by agri-
cultural land (Saunders et al., 1990), thereby providing crops
as an alternative food source. Some crops are nutritionally
attractive to wild animals and provide both energy (Sukumar,
1990; Riley et al., 2013; McLennan and Ganzhorn, 2017)

and minerals (Rode et al., 2006a). However, the effects on the
health of these species are poorly studied. In contrast, the
availability of grain crops in the winter for several species of
geese has provided an excellent food source (Gates et al.,
2001; Ely and Raveling, 2011) though some crop types are
deficient in nutrients (Alisauskas et al., 1988). Thus the effects
of replacing native vegetation with alternative food sources
are still not known for most herbivores.

Invasive species
Human-caused habitat disturbance has been associated with
an increased likelihood of invasion of communities by non-
native species (Hobbs and Huenneke, 1992), such as large
oil well sites which increase the presence of non-native plants
(Preston, 2015). Some now invasive species were even pur-
posely planted as food for wildlife (Kaufman and Kaufman,
2007), even though native plants are often nutritionally bet-
ter for herbivores than introduced species (Applegate, 2015).
Biological invasions contribute to the worldwide decline in
biodiversity by changing the abundance and richness of com-
munities (Clavero and García-Berthou, 2005). This alters
prey abundance, but the direction of this effect will depend
on whether invaders affect common or rare native species
(Powell et al., 2011) and whether herbivores and predators
prefer to consume native or introduced species (Morrison
and Hay, 2011; Jaworski et al., 2013). Introduced species
can also affect the diet quality of their consumers, but this
effect will depend on how the ratio of nutrients and second-
ary compounds differs between native and introduced prey
(Maerz et al., 2010).

Introduced species can have diverse effects on species inter-
actions. A famous example of a successful invasive species is
the Eurasian zebra mussel (Dreissena polymorpha). Zebra
mussels modify the concentration of nutrients and the commu-
nity of algae in whole ecosystems (Caraco et al., 1997) thus
affecting the diet of native species through changing the avail-
ability of alternative food (Gonzalez and Downing, 1999),
and through consumption as a direct food source that for
some species provides less energy than normal prey (Watzin
et al., 2008). In Australia, toxic cane toads (Bufo marinus)
were introduced to deal with plant pests, but their presence
has had many unintended consequences. For example, nor-
thern trout gudgeon (Mogurnda mogurnda) exposed to cane
toad tadpoles showed reduced rate of consumption of native
tadpoles (Nelson et al., 2010) and adult cane toads reduce the
activity of native frogs during foraging (Mayer et al., 2015).
Introduced benthivorous fish, such as goldfish (Carassius aur-
atus) and common carp (Cyprinus carpio), increase water tur-
bidity through the mechanical actions of foraging, thus
affecting the foraging success of other aquatic species (see
‘Pollution’ section) (Richardson et al., 1995; Zembrano et al.,
2001). However, there has been a lack of study focused on
the nutritional effects on native animals beyond simple con-
sumption, and none linking these effects to fitness.
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Anthropogenic disturbances
Human disturbance can modify feeding strategies through
increased nocturnal illumination and acoustic disturbances.
Natural lighting cycles affect foraging in a wide variety of
species (reviewed in Navara and Nelson, 2007) and so it
should be no surprise that artificial lighting changes these
behaviours, especially as it can exceed the intensity of any
natural lunar phase (Cinzano et al., 2001). Both prey and
predators are affected by artificial light. Insects are readily
attracted to nocturnal lights, and this is changing not only
the abundance but also the species composition of this prey
base (Davies et al., 2012). Some prey reduce foraging under
lights (Kotler, 1984; Contor and Griffith, 1995; Brown et al.,
1998; Baker and Richardson, 2006) while others increase it
(Biebouw and Blumstein, 2003), changes often linked to
increased predation risk under illumination (Rich and
Longcore, 2013). Similarly, night lighting may impair the
vision of some predators (Buchanan, 1993) while others are
more active and use the increased visibility (Yurk and Trites,
2000; Rich and Longcore, 2013) which may change their
distribution in the environment (Montevecchi, 2006).
However, when the light itself mimics a foraging cue, indivi-
duals may not possess the flexibility to change their behav-
iour (Schlaepfer et al., 2002). For example, juveniles of many
seabird species are drawn to lights, possibly because they
resemble their bioluminescent prey (Montevecchi, 2006)—a
clearly maladaptive response. In general, the severity of the
effects of artificial illumination will depend on the trade-off
between predation, foraging and competition, whether the
species are naturally nocturnal or diurnal, and whether these
new cues trigger previously adaptive responses.

Acoustic disturbance has increased drastically over the
past century, affecting communication in urban populations
(Birnie-Gauvin et al., 2016). Anthropogenic noise can have
similar effects to artificial lighting in that it may hinder an
individual’s ability to identify prey and/or predators, or lead
to chronic stress, which may in turn lead to decreased for-
aging efficiency and lower reproductive success (National
Research Council, 2005; Schroeder et al., 2012: Meillere
et al., 2015: Shannon et al., 2015). This form of feeding dis-
turbance is especially detrimental to animals that rely on
acoustic cues to locate food items. For example, sonar-using
greater mouse-eared bats (Myotis myotis) spend less time for-
aging when exposed to traffic noise (Jones, 2008). However,
some species have the ability to cope with noise pollution.
For example, the foraging behaviour (i.e. diving frequency)
of mysticete whales (Balaenoptera physalus and B. musculus)
was largely unaffected by low frequency sounds which are
typical of cargo ships and oil development infrastructure
(Croll et al., 2001). In fact, whale behaviour appeared to be
more closely related to prey abundance than to acoustic dis-
turbance (Croll et al., 2001). When noise causes individuals
to shift attention, foraging often suffers. For example, noise
led chaffinches (Fringilla coelebs) to increase vigilance (scan-
ning for predators) and decrease food intake (Quinn et al.,

2006), and caused decreased foraging efficiency in three-
spined stickleback (Gasterosteus aculeatus) (Purser and
Radford, 2011). However, if specialists are also more effi-
cient at foraging, additional time dedicated to detecting pre-
dators may be more costly to generalist species (Chan and
Blumstein, 2011). The contrasting results from studies that
investigate the effects of noise on feeding behaviour suggests
that depending on the feeding nature of organisms, they may
be affected differently and to varying degree. Many reviews
have suggested that foraging is affected by noise (Kight and
Swaddle, 2011; Francis and Barber, 2013), but few studies
have made direct links to nutrition.

Another important form of disturbance is the very pres-
ence of humans, which is presumably the most direct form of
anthropogenic disturbance for wild organisms and generally
results in an energy cost (Houston et al., 2012). This may
come in the form of hunting, horseback riding, biking, hik-
ing, camping, swimming, fishing, skiing, photographers, or
observers (Cole and Knight, 1991; Boyle and Samson, 1985;
Knight and Gutzwiller, 1995; Hammitt et al., 2015). The
effects of such recreational activities on nutrition have sel-
dom been investigated, but behaviour can be highly affected
by human presence. For example, the presence of observers
near the territories of European oystercatchers (Haematopus
ostralegus) led to less time spent foraging and reduced food
intake for the parents, and decreased the proportion of food
allocated to the chicks (Verhulst et al., 2001). In marsh
harriers (Circus aeruginosus), disturbance by fisherman,
passers-by, dogs, and vehicles also resulted in lower food
provisioning and higher nutritional stress in chicks
(Fernández and Azkona, 1993). However, brown bears
(Ursus arctos) showed minimal effects of human presence as
they altered their behaviour to maintain food intake and
body condition (Rode et al., 2006c, 2007). Yet the same
species of bear decreased their foraging activity and fed on
berries of poorer quality when hunting risk was high
(Hertel et al., 2016). When endangered Amur tigers
(Panthera tigris altaica) were disturbed, they often aban-
doned kills, spent less time at the kill when they stayed
and consumed less meat (Kerley et al., 2002). Elk (Cervus
elaphus) fled in response to skiers, often moving upslope
to areas with poorer quality vegetation (Frances Cassirer
et al., 1992). Bald eagles (Haliaetus leucocephalus) rarely
fed at salmon carcasses when disturbed while glaucous-
winged gulls (Larus glaucescens) fed more, indicating gulls
were more wary of the dominant heterospecific than of
people (Skagen et al., 1991). Disturbance also led to
changes in temporal feeding activity of bald eagles, crows
and ravens (Knight et al., 1991). Responses to people may
also differ between the sexes. Female brown bears with
young prioritize avoidance of male bears over avoidance
of humans, while male site use was linked to prey avail-
ability (Rode et al., 2006b). The presence of people often
results in behavioural modifications in feeding activity or
location that may result in poorer body condition and
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lower reproductive success in animals that are sensitive to
this presence.

Human-provisioned food sources
In urban areas, humans often provide a source of food for
many wild animals, both inadvertently (e.g. through gar-
bage) or on purpose (e.g. bird seeds in the backyard; Murray
et al., 2016). In most industrialized countries, these foods
have a high level of predictability both spatially and tempor-
ally (Chamberlain et al., 2005; Oro et al., 2013). Such food
provisioning may affect food webs and communities, chan-
ging competitive and predator-prey interactions and nutrient
transfer processes (reviewed in Oro et al., 2013), primarily
due to ease of access in comparison to natural food sources
(Bartumeus et al., 2010) which reduces time spent foraging
(Orams, 2002).

Unintentional food provisioning usually involves refuse
sites (dumps, middens, harvest discards, etc.). Many cosmo-
politan opportunistic species such as gulls, rats and foxes
have benefited greatly from these food subsidies, showing
improved body condition and reduced susceptibility to
pathogens (reviewed in Carey et al., 2012; Oro et al., 2013).
Vervet monkeys (Chlorocebus pygerythrus) spent less time
foraging and had higher reproduction but also increased
aggression while feeding on garbage (Lee et al., 1986), while
olive baboons (Papio anubis) with access to garbage also
spent less time foraging and had higher body condition and
lower levels of parasite infection than naturally-foraging
groups (Eley et al., 1989). In other cases, food provisioning
is not beneficial. For example, fisheries bycatch provides sea-
birds with access to prey that have a lower energetic content
than their normal pelagic prey (Grémillet et al., 2008).
During the non-breeding season seabirds can use bycatch
and still meet their own nutritional needs, but when breeding
commences females need to consume pelagic prey due to the
energetic requirements of egg formation (Louzao et al.,
2006; Navarro et al., 2009) and chicks fed on bycatch have
lower growth rates and survival (Grémillet et al., 2008).
Unintentional provisioning may also include cultivated fruit
trees, compost and dropped bird seed, all of which are highly
attractive to urban wildlife (reviewed in Murray et al.,
2015). These low-protein but easily accessible foods may
either cause poor health or be used by animals already in
poor health, increasing the likelihood of human-wildlife con-
flicts (Murray et al., 2015). Human food sources can also
increase interactions among wildlife. For example, Steller’s jay
(Cyanocitta stelleri) utilizes anthropogenic food at campsites,
and though the effects on the jay’s nutrition are not known,
access to this food source may result in increased predation on
the endangered marbled murrelet (Brachyramphus marmoratus)
(Goldenberg, 2013). When food left at campsites attracts flocks
of carnivores and omnivores, small-bodied herbivores may be
excluded from the area (Densmore and French, 2005). Thus the
extent, timing and quality of human-provisioned resources will
determine the effects of using this alternative prey.

Wildlife tourism is an important source of income for
many countries (Braithwaite, 2001) and can be a motivation
for intentional feeding (reviewed in Orams, 2002). However,
this form of interaction can be highly detrimental to wildlife
(Murray et al., 2016). For example, both stingrays
(Semeniuk et al., 2007) and iguanas (Knapp et al., 2013) fed
by tourists show poorer indicators of adequate nutrition
than those eating natural food. Moreover, interactions at
food sources can lead to increased risk of injury for animals,
as is observed in chacma baboons (Papio ursinus) where
these injuries also hindered their foraging efficiency (Beamish,
2009). The feeding of wildlife can also cause an aggregation
of individuals at feeding sites (Newsome and Rodger, 2008),
potentially reducing food intake per individual through com-
petition (Raman, 1996). Even backyard feeding of birds can
affect subsequent reproduction (Ruffino et al., 2014) as provi-
sioned food is often calorie-rich but nutrient-poor (Plummer
et al., 2013). Provisioned food may even have unpredictable
effects on nutrition when it interacts with other components
of the diet. For example, white-tailed deer supplemented with
hay and corn consumed less digestible energy in areas where
they also consumed lichen which reduces feed retention times
(Page and Underwood, 2006). Humans enjoy being in close
contact with animals, but when this involves feeding wildlife,
the health of the wildlife is often of secondary importance.
Some of these negative effects of ecotourism may be overcome
by focusing on animals that possess sufficient behavioural
plasticity to eliminate the effects of humans on an individual’s
spatiotemporal resource use (e.g. brown bears: Rode et al.,
2007). Additionally, when ecotourism is designed to reduce
negative impacts on wildlife and is also used as a source of
education about their proper feeding, everyone benefits
(Ballantyne et al., 2009).

The degree to which food supplementation has long-term
effects on populations remains largely unknown. There are
few long-term studies of the effects of supplemented feeding
on nutrition in wildlife (Orams, 2002). The evolutionary
consequences have so far been virtually ignored, even though
it has been hypothesized that in cases where the more aggres-
sive individuals obtain the most food and thus leave more
offspring, supplemental feeding can be a source of selection
and change the phenotypes in a population (Moribe, 2000).
Nonetheless, when the provisioning of additional food items
has benefits such as higher survival (Orams, 2002), these
short-term gains may be important enough to offset the pos-
sible effects on population dynamics. This concept has
recently been extended to include the use of carcass provi-
sioning as a conservation strategy to enhance survival for
scavenger species (Fielding et al., 2014).

Nutrition and in situ conservation
In situ conservation (e.g. habitat restoration, supplemental
feeding) aims to manage and protect species in natural habi-
tats (Possiel et al., 1995). In the context of nutrition, this
requires balancing foraging behaviours and food availability
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(which are affected by all six categories of human-caused
modifications; Fig. 1) with nutritional physiology. This may
involve studying foraging ecology, measuring the nutritional
composition of foods, providing non-naturally occurring
food, and investigating these impacts on digestive physiology
to ensure sufficient energy and nutrient intake (Hobbs and

Harris, 2001; Hobbs et al., 2009). For example, it was neces-
sary to supplement the endangered hihi (Notiomnystis cincta)
with carbohydrates to increase reproductive success (Castro
et al., 2003), and knowledge of foraging behaviours and nutri-
ent requirements of the vulnerable Tonkean macaques
(Macaca tonkeana) can help reduce damaging crop raiding

Availability of food
(quality and quantity)

Digestive
physiology

Foraging
behavior

Modified by
reproductive status,
sex, age & season

Human modifications
(agriculture, urbanization,

resource extraction, energy
production, military activity

etc.)

Reproduction, growth &
survival

Locomotion, activity &
cognition 

Evolution (intake and
assimilation traits, behavioral

phenotypes)

Climate change Pollution Invasive speciesHabitat alterations Disturbance Provisioned food

Demography & population
dynamics

Figure 1: Anthropogenic effects on components of animal nutrition. Human presence has altered the environment. Here, we identify how
these human modifications (climate change, pollution, invasive species, habitat alterations, disturbance and human-provisioned food) affect
aspects of nutrition through effects on foraging behaviour, food availability and digestive physiology (solid black arrows represent links already
established in the literature; dotted arrows represent hypothetical links). Depending on how these three aspects of nutrition are altered,
locomotion, activity and cognition may change, affecting reproduction, growth and survival. These may in turn affect demography and
population dynamics, which may affect evolutionary processes.
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behaviours (Riley et al., 2013). Detailed studies of wild popula-
tions are often necessary to know what forage species are pre-
ferred (used versus available: Johnson, 1980). They may have
to be long-term to account for seasonal (e.g. Karachle and
Stergiou, 2008; Adeola et al., 2014) or inter-annual (Esque,
1994) variation in prey consumption, and they may have to
measure many individuals and multiple populations as the level
of individual dietary specialization can vary with resource
availability (Bolnick et al., 2002), individual mechanisms to
deal with changing food availability vary with sex and condi-
tion (Martin, 1987), and food preference can be under genetic
control and locally adapted (Sotka, 2003). Actual measures of
nutrition are often invasive, and non-invasive alternatives are
still lacking validation for many wild species (Murray et al.,
2016). Thus, measuring food intake and diet composition for
wild animals is a difficult task, but there are many techniques
that make addressing these questions possible (Cooke et al.,
2004; Robbins et al., 2004; Servello et al., 2005; Andrews
et al., 2008; Rothman et al., 2012; Machovsky-Capuska et al.,
2016; see Table 1).

An example involves the desert tortoise (Gopherus agassi-
zii), which was put under the Endangered Species Act in 1989
due to huge population declines (U.S. Fish and Wildlife
Service, 1994). The threats to the desert tortoise were con-
sidered to be mostly physiological, of which many could be
attributed (directly or indirectly) to nutrition (Tracy et al.,
2006). The presence of domestic grazers, the occurrence of
fires and the invasion of weedy plants—all of which are
largely caused by humans—contributed to their nutritional
deficiencies by reducing plant diversity (U.S. Fish and Wildlife
Service, 1994). Each tortoise obtained approximately 90% of
their diet from 5 species of plants, but the specific species eaten
differed across individuals resulting in more than 30 species of
plants consumed at the population level (Tracy et al., 2006).
The mechanisms causing this were complex, and mainly
involved choice of plants with high digestible energy (used ver-
sus available), and individual encounters with specific plant
species early in the season (switching foods incurs a cost when
gut microbes are specific to the plants consumed), suggesting
that a variety of species should be made available to tortoises
in the context of in situ conservation to fulfil individual nutri-
tion needs (Tracy et al., 2006). Inadequate dietary intake
caused by low species diversity can induce stress and lead to
compromised immunity and increased susceptibility to disease,
which in the case of the desert tortoise has had severe impacts
on population densities, providing evidence for the importance
of nutrition in conservation biology; Box 2.

Nutrition and ex situ conservation
While in situ conservation approaches have been considered
a legal and institutional priority by the Convention on
Biological Diversity (www.cbd.int), it is increasingly appar-
ent that the importance of ex situ conservation is growing, as
extinction rates continue to rise and are exacerbated by cli-
mate change (Pritchard et al., 2012). Ex situ conservation

aims to conserve species in captivity and relies on facilities
that hold plants and animals such as zoos, aquaria and
botanical gardens, and even private breeders. The knowledge
gained from these facilities can also be used to support con-
servation efforts. When inadequate diets in captivity lead to
an individual’s death or failure to reproduce, there is increas-
ing pressure to collect more individuals from the wild. For
example, many species of parrots and iguanas are popular
pets. However, these pets are often fed nutritionally inad-
equate diets, leading to death via malnutrition or increased
susceptibility to disease and more animals collected illegally
from the wild (Dohoghue, 1994; Schlaepfer et al., 2005;
Weston and Memon, 2009). If these owners were made
aware of proper nutrition for these birds, harvest of wild
populations would decrease.

The importance of meeting nutritional requirements to
conserve and manage endangered and at-risk species should
not be understated (Oftedal and Allen, 1996; see Box 3).
Food quantity continues to be the primary focus in zoo-
logical parks, despite the recognition that food quality
plays a huge role in maintaining animal health and repro-
ductive potential (see Box 1). For example, in captive rumi-
nants, browsers have a higher nutrition-related mortality
than grazers because browsers are fed a type of roughage
that is not very similar to their natural foods, resulting in
too little roughage ingested compared to seeds/grains and
causing digestion issues (Müller et al., 2010). Providing
foods and food combinations of adequate quality is a more
difficult task than food quantity, the latter which can be
addressed by simply providing more known suitable foods.
In a captive breeding project, green iguana (Iguana iguana)
hatchlings and juveniles grew more rapidly when fed diets
high in protein than when fed lower protein diets (Allen
et al., 1989). High growth rates are considered important
for young iguanas as predation risks are high and thus
individual size determined the age at which these iguanas
could be released into the wild (Oftedal and Allen, 1996).
In captive mule deer (Odocoileus hemionus), diets supple-
mented with feed concentrates, oats and barley resulted in
increased body mass and antler size, as well as earlier
breeding and a decrease in fawn mortality (Robinette et al.,
1973). Following this increased food intake, the productiv-
ity of this captive herd surpassed that of wild populations
(Robinette et al., 1973).

Conclusion and research needs
Nutritional ecology has been most extensively studied in ter-
restrial herbivorous mammals (Choat and Clements, 1998)
and while progress has been made in other taxa, including
marine herbivorous fishes (Clements et al., 2009) and insects
(Slansky, 1982; Simpson et al., 2015), other groups such as
predators are still lacking such information. Despite many
papers citing nutritional deficiencies as a possible conse-
quence of human interactions, few studies have actually
investigated the proposed links (Jones and Reynolds, 2008),
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but nutritional stress is now being included in population
modelling frameworks (National Academy of Sciences,
Engineering and Medicine, 2016). However, we now have
the tools to measure very detailed aspects of physiology
related to nutrition (e.g. microbiomes: Lyons et al., 2016;

secondary compounds: Sotka and Whalen, 2008). Further
work is clearly needed to identify the most pressing aspects
of human-caused changes to food quality and quantity, such
as: how animals choose which forage items to consume (e.g.
can individuals learn about changes in toxicity or nutrient

Box 1. The importance of nutrition for animals

Adequate dietary intake (both calories and nutrients) is essential to the growth and reproductive success of vertebrates. In
fact, the physiological component of reproduction and sexual behaviour is extremely sensitive to the intake of metabolic
fuels (Wade et al., 1996; Allen and Ullrey, 2004; Parker et al., 2009). Organisms will forego reproduction if they do not
have the energetic resources to invest in gonadal development or reproductive activities. However, calories alone are insuf-
ficient for the maintenance of health, growth (somatic or reproductive) and other routine functions such as cognition. For
example, mammals require proper nutrients for successful parturition and the production of colostrum and milk, while
birds require calcium to make eggshells (Robbins, 1993). Proteins and amino acids are crucial for proper organ develop-
ment (Welham-Simon et al., 2002) and egg production (Ramsay and Houston, 1998). Fatty acids are essential for brain
development and neurogenesis (Schiefermeier and Yavin, 2002), as well as for components of spermatozoa (Surai et al.,
2000). Minerals and vitamins are also an important aspect of nutrient intake. For example, a lack of dietary selenium can
impair reproductive performance (Cantor and Scott, 1974), while zinc deficiency is linked to testicular underdevelopment
(Martin et al., 1994). Vitamin A is a crucial micronutrient for proper eye development, vision and cellular differentiation
(National Research Council, 1995), and vitamins E and C are important for oxidative homeostasis (Castellini et al.,
2000). In addition, it has long been recognized that diet plays an essential role in maintaining immunity against diseases
(Lall and Olivier, 1993). For example, megadoses of vitamin C have been shown to improve antibody response and sur-
vival following infection in the channel catfish (Ictalurus punctatus; Li and Lovell, 1985; Liu et al., 1989). Diet also affects
cognitive processes: lipid-poor diets decrease the ability of kittiwakes (Rissa brevirostris) to learn the location of food
(Kitaysky et al., 2006). Thus, macronutrients and micronutrients play essential roles in the proper development of animals,
from embryo to reproductive adult.

Box 2. Nutrition in in situ conservation: the tiger

Tigers (Panthera tigris) are a globally endangered species that have suffered huge population losses as a result of
human presence (Chundawat et al., 2012). However, in Nepal, conservation efforts have resulted in the tiger popula-
tion increasing by 63% in recent years (Government of Nepal, 2013; Aryal et al., 2016). Yet the prey biomass within
currently protected areas may be insufficient to provide food for the projected increased tiger population (Aryal et al.,
2016). It has been suggested that programs should be implemented to increase prey populations in situ to continue con-
servation efforts and restore tiger populations. (Image by Martin Harvey, World Wildlife Fund)
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composition? Are genetic food preferences evolving in
response to anthropogenic effects?); the interaction between
energy availability and optimal digestion (Tracy et al.,
2006); the ways in which animals may plastically respond
and/or evolve to cope with anthropogenic impacts (Crispo
et al., 2010; Sih et al., 2011); how to design conservation
solutions while recognizing that the choices animals make
are constrained by evolutionary history (Schlaepfer et al.,
2002); and the frequency of synergistic effects across differ-
ent anthropogenic impacts (Opdam and Wascher, 2004). A
common pitfall of nutritional ecology and physiology is that
hypotheses are often based on energetic intake and density
(i.e. calories) rather than macronutrients and micronutrients,
the latter of which we still know little about. We emphasize
the importance of considering all aspects of nutrition (nutri-
ent intake, foraging behaviour and digestive physiology,
Fig. 1) when developing hypotheses about the effects of
human activities on wildlife.

It is apparent that humans have altered many aspects of
vertebrate nutrition. All anthropogenic impacts we focused
on had documented negative effects on foraging behaviour
and the availability of food, though most studies focused on
quantity rather than quality of food. Very few investigated
whether those changes affected digestion efficiency and
energy acquisition, even though some forms of impact, such
as provisioned food, logically seem like they should have

large effects. In today’s changing world, animals eat food
items they did not previously eat; they must invest more
energy in foraging efforts than they previously had to (with
the exception of wildlife that has access to human-
provisioned food sources); and they now ingest more pollu-
tants than they used to. All of these changes to nutritional
intake can influence the reproductive capacity, growth and
overall survival of wild animals. Our current understanding
of the long-term effects of such modifications are poorly
understood, and we urge for more research to consider the
impacts that changing nutrition may have on animals in the
long term as part of a broader conservation physiology
approach (Cooke et al., 2013). More specifically, the links
between nutrient quality/quantity and various aspects of
physiology (i.e. reproductive functions, immunity, stress
response, etc.) and their population-level consequences should
be investigated (National Academy of Sciences, Engineering
and Medicine, 2016). By understanding the mechanisms by
which nutrition is affected by anthropogenic factors, we may
have a greater opportunity to minimize their threats.
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Box 3. Nutrition in ex situ conservation: the kakapo

The kakapo (Strogops habroptilus) is a large, flightless parrot endemic to New Zealand. It was put on the critically
endangered list in 1989, largely due to catastrophic population declines caused by introduced mammalian predators
(Williams, 1956: Powlesland and Lloyd, 1994). The kakapo only breed in years during which podocarp trees produce
abundant fruit, which occurs every 2–6 years (Powlesland and Lloyd, 1994; Cockrem, 2006). When supplemented
with specially formulated pellets that contained protein, micronutrients, mineral supplements and amino acids, females
produced larger clutches but did not change nesting frequency, suggesting that podocarp fruiting is the cue for breeding
while the number of eggs is limited by nutritional quality rather than energetic content (Houston et al., 2007). Hand-
rearing of chicks using artificial foods now plays a critical role in the management of this critically endangered species
(Waite et al., 2013). (Image by Milena Scott)
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