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Abstract—A real-time demand response system can be viewed
as a cyber-physical system, with physical systems dependent
on cyber infrastructure for coordination and control, which
may be vulnerable to cyber-attacks. The time domain dynamic
behaviour of individual residential demand responses is governed
by a mix of physical system parameters, exogenous influences,
user behaviour and preferences, which can be characterized
by unstructured models such as a time-varying finite impulse
response. In this study, which is based on field data, it is shown
how this characteristic response behaviours can be identified and
how the characterization can be updated continuously. Finally,
we propose an approach to apply this behaviour characterization
to the identification of anomalous and potentially malicious
behaviour modifications as part of a cyber-physical intrusion
detection mechanism.

Index Terms—Demand response, Cyber-physical systems, In-
trusion detection, Data-driven

I. INTRODUCTION

Residential demand response is considered a significant

resource of localized flexibility, in particular in cases where

the heat and cooling needs of buildings are satisfied by electric

heating or heat pumps. As demand response is maturing from

a vision to real-world applications, it is also becoming a

potential target for cyber attacks. A real-time demand response

system can be viewed as a cyber-physical system: a physical

structure with a behaviour that is strongly influenced by

ICT facilitated interactions. Demand response behaviour is

partly governed by physical properties of the process, partly

by autonomous behaviour of residents, and in part by the

local control systems, which may be parametrized by local

users. This combination of uncertain and in-transparent system

properties leads to new challenges for reliability and security

of operation. Further, the involved control systems are more

diverse and open, which offers more entry points for cyber-

attacks. We investigate the feasibility of an online monitoring

system characterizing the dynamic response behaviour of

price-controlled demand. The goal is to formulate indicators of

anomalous behaviour based on the observable characteristics

of individual households. The investigations are based on a

data set obtained by the EcoGrid.eu project [1]. The indicators

are framed by a method for cyber-physical intrusion detection

system (CPS-IDS) developed in context of the SALVAGE

project1.

1http://www.salvage-project.com/

As demand response requires a large number of typically

quite diverse individual units, one cannot cannot expect direct

and manual monitoring. Further, occupant privacy should

be considered in such systems, thus give preference to the

applications of aggregate, purpose-build detection models, and

to avoid the use of individually traceable information. Based

on experimentally observed data, we therefore aim to develop

a modeling approach to detect specific kinds of “anomalies”

in observable response dynamics.

Whether a cyber-intervention is the actual cause of anoma-

lous behaviour cannot be inferred from physical models alone:

CPS-IDS hypotheses in the Salvage framework combine sev-

eral sources of evidence, including both cyber- and physical

anomaly and intrusion detection [2]. In the Salvage CPS-

IDS, the developed indicators are viewed as a DER analysis

component as illustrated in Fig. 1. As such anomalies may

not only be caused by external interventions, but simply be

a reflection of changes in the inhabitants’ behaviour. We

therefore propose a hypothesis-driven approach, which a) will

account for more apparently goal-directed changes, and b)

neglect commonly observed patterns of behavioural change.

Fig. 1. Cyber-physical IDS architecture proposed in SALVAGE project [3].

In Section II the Cyber-physical IDS concept and the

here proposed approach to behavioural anomaly detection

in demand response is introduced. Section III reviews the



applied methods. A proof-of-concept application to field data

is reported in Section IV which supports exemplifies the

proposed approach to demand response modeling. The method

and results are discussed in Section V.

II. CONCEPT AND APPROACH FOR IDS

A. CPS-IDS Concept

Intrusion detection systems (IDS) gather and analyze the

information from a computer network or a system in order to

discover malicious activities or violations of policy [4]. An

IDS for application in smart grids needs to integrate both on-

line and post-mortem analyses, of both the observed cyber-

and physical systems: A Cyber-Physical Intrusion Detection

System (CPS-IDS) [2].

The cyber-physical IDS architecture proposed in the SAL-

VAGE project consists of two main parts: a domain-specific

analysis of the behavior of the individual components, and

an integrated analysis of the cyber-physical system 1. The

joint cyber-physical analysis combines the information from

both physical and cyber-security components and presents the

outcomes to the power system operator.

The initial SALVAGE CPS-IDS design had a unidirectional

structure detect anomalies in operation of both cyber and phys-

ical components [3], [5], [6]. The extended hypothesis-driven

framework, presented in [2], allows the integrated analysis

to configure and combine the available component analyses

(arrow [j] in Fig. 1). The extended architecture supports

the idea of a hypothesis testing approach to cyber-physical

security. Hypotheses in the SALVAGE CPS-IDS framework

are derived from hypothesis templates composed by domain

experts, each addressing a particular cyber-physical power

system attack goal. The hypothesis template is then matched

with the present system configuration such that any applicable

hypothesis can be generated and quantified.

The different parts of the entire CPS-IDS as depicted in

Figure 1 perform each a different type of analysis. The

Cyber-physical analysis combines performs the cyber-physical

hypothesis generation [j], quantification and ranking, assessing

the ad hoc risk of any of the active hypotheses [k]. Inputs

to this hypothesis quantification [g,h,i], are labeled state-

and probability data generated in domain-specific analysis

modules. The module for power system analysis performs e.g.

load flow based calculations, requiring network models as well

as electrical measurements. The module for cyber-security

analysis performs a model-based probabilistic simulation of

cyber attacks within the IT infrastructure that exists alongside

the physical infrastructure of the power grid and its cyber-

neighbourhood. The DER analysis assesses the current state

and likelihood of anomalous behaviour of different types of

distributed energy resources (DER), such as photovoltaic (PV)

electricity generation [3], [5] or demand response. The main

purpose of this paper is to discuss a particular variant of

the DER analysis module suitable for assessing price-based

demand response systems.

The objective of this work has been to provide online

indicators for anomalous behaviour of individual households
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Fig. 2. Conceptual outline of detection approach.

or groups of households in a demand response portfolio. Given

a certain attack hypothesis, what types of behaviour can be

expected to be observed? Such an attack hypothesis allows

to formulate a systematic character in the behaviour change.

The here investigated systematic behaviour changes include:

(a) Elimination of response amplitude (de-activate response);

(b) altering response shape to worsen “Kick-back” (to cause

grid overload or Cobweb effect [7]); (c) Inverse-response

(destabilizing system).

B. Approach for DER Behaviour IDS

In previous work, we have investigated contextual model-

based anomaly detection for DER analysis applied to photo-

voltaic (PV) DER [3], [5], [8]. There is however a fundamental

difference in the dynamical characteristics of (residential)

demand response and the PV models: instead of an algebraic

input-output relation, the residential demand response is char-

acterized by a) unobservable (random) behaviour of residents

influencing both demand volume as well as parameters of the

response characteristic, and b) the unknown thermal dynamics

of the household, influenced by further exogenous parameters.

In previous work [9], [10] on characterizing the price-

change responses from houses with smart metering equipment

the suggested approach has been to extract finite impulse

response (FIR) coefficients from the price input to the demand.

The following steps are proposed:

1. General power consumption modelling. Models the part of

the system that is not sensitive to the real time prices.

2. Online price sensitivity modelling. Models the price sensi-

tivity, to reduce features of the price sensitivity signal for

anomaly detection.

3. Anomaly detection and feature extraction based on the

system online estimated parameters from step 2.

Based on these principles, the data processing concept

shown in Figure 2 has been developed.

The model comprises an offline phase where a general

system behaviour and dynamical response characteristics are

modelled, and an online phase where system parameters are

continuously identified and anomaly detection parameters are

computed as input to an IDS.

III. METHODS AND DATASET

The methods employed in this work belong to a very basic

toolset of statistical methods: linear regression, ARMAX time

series modeling and two clustering methods. The data set is



one recorded in a large scale field demonstration of demand

response.

1) Linear Regression: Linear regression is a well known

approach for modelling a linear relationship between a set of

input variables and an output. It has the nice property that it

will always converge to the global minimum, if there are as

many or more samples than unknowns. The general form is

shown in (1), where ut, εt and yt is the input, error and output,

and θt is the estimated proportionality constants [11].

yt + εt = xtθx (1)

Using this method, Larsen et al [12] and [10], shows that it is

possible to extract FIRs to the real time market from another

period of the Ecogrid EU data. With prices, weather and a set

of Fourier terms as input to model the general behaviour and a

difference model modelling the response from changes in the

pricing. This provides a very condensed set of information

at DER level, describing the system response to market price

changes.

2) ARMAX system identification: ARMAX is a model for

system identification. It stands for Auto-Regressive Moving-

Average with eXogenous inputs. It estimates a linear model

which on a transfer function form can be written as in (2). As

an extension of the linear regression, it represents dynamics of

the system by using delayed system outputs (auto-regression)

and estimation of noise.

yt =
B(q)

A(q)
ut +

C(q)

A(q)
et (2)

A(q) is the system polynomial, B(q) and C(q) input polyno-

mials of input and noise, where ut, et and yt, are the input,

noise and output, respectively [13]. It is possible to estimate

these parameters of the polynomials in a recursive manner,

making an online system identification, that can follow a

changing system.

3) k-Means algorithm: As described in [11], the k-Means

algorithm is a commonly used clustering algorithm for unclas-

sified data. The algorithm associates data with a predefined

number of clusters, iteratively minimizing the total distance

from all the samples to the cluster centroids. This is achieved

by alternating between associating the data samples with a

cluster of the closest centroid and updating the cluster centroid

as the mean point of the cluster.

This algorithm is fast and does not require prior knowledge

of the data. Key to successful clustering in higher-dimensional

sample spaces is the choice of a distance measure to calculate

the distance between each centroid and sample.

4) Cosine distance: The Cosine distance is measure ap-

plicable for the k-Means algorithm. It is not a true metric,

but has proven useful as a measure of data with a high

dimensionality where the direction of a sample vector is as

important as the sample itself [14]. The cosine distance builds

upon the dot product of vectors, thus it captures angular

distance between the sample and centroid in the k-Means

algorithm. The definition is shown in (3). Where A and B

are the feature vectors.

Dc(A,B) ≡ 1− cos(θ) = 1− A ·B
||A|| ||B|| (3)

5) Gaussian mixture models: Gaussian mixture models take

a more statistical approach to the clustering problem. The idea

is to approximate n statistic sub-populations in a dataset. This

is done by maximum a posteriori estimates. Like k-Means

clustering, this is often done in iterative steps of ascending

the likelihood function and updating the population estimates

until convergence [11].

6) Dataset: The Ecogrid EU project was a research and

demonstration project for a future smart grid across the Eu-

ropean Union. It took place on the Danish island Bornholm

during the years 2011 to 2015. Characteristic for Bornholm

is a high penetration of renewable energy sources and the

grid is almost separated from the mainland, with a single

power line to Sweden. A corner stone of the Ecogrid EU, was

therefore a real-time market for activating demand response

from small scale DER [1]. The market generated 5-min real-

time imbalance prices to which household level controllers

would respond, adjusting electricity consumption of electric

space heating. The houses involved in Ecogrid EU, had a

smart-meter monitor their power consumption in five minute

intervals. For this work about 4 months of consumption data

have been assessed: in total 1736 houses and 40033 datapoints,

along with local weather data. There are, to our knowledge, no

actual attacks on the power grid, local controllers or real-time

market in the data used for this project.

IV. RESULTS

Here, the DER modeling and monitoring approach is out-

lined and exemplified on field data.

A. Stationary responsiveness

In the offline characterization we follow the methods and

approach presented in [9], [10], applying linear regression. The

results for the baseline consumption models are very similar to

the original work and will not be further discussed here. The

goal of the price sensitivity model is to extract the demand

response FIR from the power consumption data on DER level.

Following [10], the price-responsiveness of household power

consumption was modeled in form of a finite impulse response

(FIR) to the real-time price variations. The input, ut for these

models is the derivative of the difference between the real

time price (RTPt) and the day ahead price (DAt), the output

yt is the consumption data of the household subtracted the

prediction from a baseline model xt. The baseline model for

the data set has been created following [10] and is not further

discussed here.

ut =
d

dt
(RTPt −DAt) (4)

yt = ct − xt (5)

The price-changes ut are then time-lagged as input ut =
[ut . . . ut−TL

]T computed from (4) where TL is the time lag

here chosen to be 200 minutes, or 40 samples; as output the
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Fig. 3. Top: Normalized FIR coefficients for each of the 6 cluster centroids
(k=6). Bottom: Sample FIRs from each cluster (sample selection based on
confcontrolled > 0.5 and shape similarity δshape,i > 0.5). Note the x-axis
corresponds to the coefficient index (40*5min = 200min) and y-axis is the
absolute sensitivity.

(5) of each of the houses to a linear regression, the linear

model (6) appears. From θFIR the FIRs of each house can be

extracted one at a time, note that .

yt + εt = uT
t θFIR (6)

The response characterization by θFIR is a stationary model

for an individual household.

B. Dynamic responsiveness characterization

An ARMAX model was implemented to emulate an online

estimation of the dynanmic responsiveness. The order of the

ARMAX model is chosen by trial and error on test data to

be 16 for the system (A(q)), spanning 80 minutes; 24 for the

input polynomial (B(q)), spanning 2 hours; 2 for the error

dynamics, spanning 10 minutes. The characteristic time of the

recursive parameter estimation algorithm is set to 14 days.

This choice balances noise with the ability to follow changing

system properties. The output of the ARMAX model is a set

of parameters for the three polynomials at each point in time.

From each parameter set, a FIR can be approximated as the

superposition of a FIR response with the input through the

parameters in B(q) and an infinite impulse response (IIR) of

the system through A(q).
Figure 4 illustrates the dynamic FIR as computed from the

online ARMAX estimation for a single household. The upper

graph plots the FIR coefficients by lag time, as presented

in Fig. 3, and allows visual comparison with the stationary

response shape of the linear regression model. The lower
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Fig. 4. Illustration of ARMAX-based online FIR estimation. Top: comparison
of stationary response with 3 ARMAX sample responses; bottom: variation of
ARMAX FIR over observation time (vertical axis: delay-time corresponding to
x-axis in top-plot). The response amplitude is intensified, but the characteristic
shape remains.

timeseries illustration provides a colourmap of the evolution

of the ARMAX-estimated FIR parameters (vertical) along the

time period of the modeling (horizontal).

This “online” ARMAX was only applied to a subset of 150

houses of the original data set. These were chosen by selecting:

a) the 50 least and b) 50 most responsive houses, along

with c) 50 random draws among the remaining houses. The

responsiveness was measured by three amplitude parameters:

the integral, the maximum and the minimum value of the FIR.

C. Clustering of FIR

The set of stationary responses has been clustered by appli-

cation of k-Means using a cosine-distance measure applied to

normalized and down-sampled FIR parameters. The respective

cluster centroids (normalised) are plotted in presented in Fig.

3 (top). The bottom plots in the same figure illustrate the (un-

scaled) FIR responses associated with the respective cluster.

Each line represents one household FIR.

D. Characterization of Anomaly and Intent

The above outlined models are aimed to serve the char-

acterization and identification anomalous or even malicious

behaviour in the demand response systems. To mitigate the

high uncertainties and variance in the response behaviour, two

types of metrics are applied: i) a measure of the response

amplitude or volume log(||δA||); ii) a similarity assessment,

comparing the observed behaviour shape to benevolent or

malicious behaviours. Using Gaussian Mixture (GM) models,

the statistics of these metrics are then modelled for both

‘normal’ and ‘undesired’ behaviour.

1) Responsiveness measure: A histogram of the log mag-

nitude of the three amplitude features for these 150 houses,

reveals three proto-distributions: the least controlled (uncon-

trolled) are separated from the most controlled group, with

the random selection in the middle as expected (Figure 5). As

first measure, a filter was estimated fitting a Gaussian mixture

model to the data set containing only the 100 most/least



responsive houses. This filter yields the quantity confcontrolled,

plotted as the black line in Fig. 7.
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2) Similarity to base shapes: Using the cosine-distance

of the normalized response shapes, a measure similar to the

confcontrolled can be derived based on the summation of

distance features associated with the respective shapes. Two

approaches have been formulated to assess similarity to base

shapes.
The first approach is based on the measure feature δshape,i,

defined as the inverse cosine distance to the base shape,

normalized with the sum of the distance to all the shapes.

The inverse relationship on the distance is penalizing long

distances, while the normalization ensures that the features can

be compared. This approach has been applied in the cluster

allocation in Fig. 3. By manually grouping the base shapes into

a desirable and undesirable, this measure has been applied

to compute the affinity with that response type: desirable
(green: BS-1 to BS-4 ) and undesirable (red: BS-5 and BS-

6), as illustrated in Fig. 7, upper plots. For the stable case

(“House 99”), here only little change in the response type

is observed, even though the response amplitude is changing

over time (Fig. 4). For the house undergoing an intervention

(“Augmented house 23”), the measure becomes stable for

higher amplitude but is sensitive at low FIR amplitudes.
The second approach uses a Gaussian Mixture Model to

characterize a confidence for cluster allocation, similar to

the responsiveness measure introduced above. To identify

the 2D GMM with two centers, the cluster centroids were

again associated either with desirable or undesirable base

shapes; two features were then computed based on the sum

of log-distances to either undesirable, x1, or desirable, x2,

base shapes. The identified GMM produces a more informed

characterization of the classification of response samples by

offering a confidence-level of the classification. Note that in

preparation of the GMM base shapes, the k-Means clustering

has been applied to a subset of the total data set, including only

the houses with 20% highest responsiveness range to extract

only significant response contributors, yielding a different set

of cluster centroids (base shapes) than utilized in application of

the first approach. The base shape numbers here are therefore

also different.
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Fig. 6. Scatterplot of sum of log-cos-distance to undesirable shapes x1 vs.
sum of log-cos-distance to desirable shapes x2; the data points are coloured
by associated base shape clusters (desirable BS: {1, 2, 4, 6} ; undesirable
BS: {3, 5}). The data is overlayed with the two-parameter GM to be used
for response type identification: upper-left: undesirable response shape, lower-
right: desirable response shape.

In the chosen approach to clustering, the engineering

choices in sample selection and the manual base shape classi-

fication directly influence the detection outcomes. To evaluate

the final detection effectiveness, reference cases would be

required, characterizing the systematic behaviour changes (a)-

(c) listed in Section II-A. With such reference cases, or

analytic metrics, an automatic base shape classification could

be developed.

3) Anomaly Detection: The implemented anomaly detec-

tion evaluates changes in the feature vector δFIR. Every point

in time is assigned a probability of it being an anomaly.

Assuming difference of the features is normal distributed, their

standard deviations is estimated based on all 150 houses. These

parameters are then used to calculate an anomaly probability

at each timestamp per house.

In Figure 7, this feature is marked by a diamond, as

can be seen in the lower plot set. Here, it is apparent that

this anomaly detection is overly sensitive for low response

amplitudes (observed false positives before Dec.1s). Along

the same lines, the similarity measure (separation line between

red/green areas) reacts very sensitive in the low responsiveness

period before Dec. 1st (confcontrolled < .5). On the contrary,

it is rather stable in combination with high responsiveness, as

can be observed in both examples in Figure 7. This suggests a

combination of the measures, e.g. by reducing the confidence

in the similarity measure in dependence of another measure

such as confcontrolled.

Here it is worth noting, that in case of a CPS-IDS in-

tegration, the anomaly detection component will not be ap-

plied independently. Here the statistical measures outlined

previously are better applied, as they deliver a continuous

probability value, to be employed by the CPS-IDS hypothesis

quantification component [2].
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99” from Fig. 4 and “Augmented house 23” with artificially mixed response
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Dec.1st.

V. DISCUSSION AND CONCLUSION

Based on smart metering data, the behaviour of price-

responsive control of loads can be monitored, and these

observations may be integrated in a cyber-physical intrusion

detection system (CPS-IDS).

The load response behaviour was characterized by the Finite

Impulse Response (FIR) the behaviour. The wide variety of

response shape indicates that relevant ‘anomalies’ are not

easily identified in the time domain behaviour of a group of

loads, but engineering intuition was applied to classify the

shapes of time domain behaviours observable in the data. This

expert-based approach was employed to intuitively classify

response types into “desirable” and “undesirable” features.

Statistical methods were then applied to detect and classify

behaviour anomalies. Behaviour change has been formulated

as criterion for anomalies using to independent features:

response amplitude (confcontrolled) and a similarity measure.

Both measures are formulated as a probability metric using

statistically identified distributions, so that the observed prob-

abilities can be employed in the further probabilistic reasoning

step in the CPS-IDS for risk analysis.

The results demonstrate a feasibility of a statistical approach

to integrating cyber-physical observations in demand response

oriented intrusion detection system. Parameter identification

using the chosen ARMAX technique takes about 24h of

observation until convergence, which puts limitations on the

integration in online CPS-IDS systems, but is in line with

the time-scale of typical smart-metering data acquisition. The

validity and accuracy of the developed statistical models has to

be evaluated in future studies. Approaches to avoid the manual

classification of response types should also be replaced by

more principled metrics based from attack goals.

The reported monitoring for normal and anomalous demand

response behaviour offers a number of possible applications

beyond the CPS-IDS application outlined here, such as: system

supervision and decision support, monitoring of an aggrega-

tor’s portfolio to estimate flexibility or monitor user behaviour,

or validation of a contracted response.
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