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“Data isn't information. ... Information, unlike data, is useful. While there’s a gulf 

between data and information, there’s a wide ocean between information and 

knowledge. What turns the gears in our brains isn't information, but ideas, 

inventions, and inspiration. Knowledge—not information—implies understanding. 

And beyond knowledge lies what we should be seeking: wisdom.” 

  — Clifford Stoll 
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My interest in disease surveillance started during my traineeship in the final year of my 

DVM. The continuous monitoring of animal health-related data was and is a growing field 

due to challenges concerning the choice of data sources and monitoring methods. Knowing 

“what to look for” and “how to know if a disease is spreading” depends on the context in each 

country.  

On 10
th

 October 2013 (the same day I got my DVM degree) I received a message from a

former PhD student at Copenhagen University, advising me to look at a PhD position 

advertised on the National Veterinary Institute – Technical University of Denmark (DTU Vet) 

website. After reading the description of the position, my first thought was “I´ll send an 

application and see what happens!” I had no idea what I was getting into… 

When I accepted the position, I knew I would have to leave my comfort zone and move to 

a “Viking country” for 3 years. I was naïve to think that doing a PhD in disease surveillance 

would involve simply plotting laboratory data from swine, cattle and poultry and using 

“friendly statistical methods for veterinarians” previously used in Syndromic Surveillance. 

How wrong I was! 

I landed for the first time in Copenhagen on the evening of 10
th

 December 2013. On 13
th

December - it was a Friday, yet I still don’t know if that was a good or a bad sign! - I went to 

DTU Vet to see my future workplace and meet my supervisors and colleagues.  

The journey officially started on 15
th

 December 2013. After a few days at work, I realized

that doing a PhD is not only about science, but also learning how to deal with people with 

very different personalities – especially our supervisors! I must confess that there were ups 

and downs, funny and stressful moments, and people supported me in their own way. 

Firstly, I would like to thank my main supervisor Nils Toft, without whom (and in spite of 

his candor, criticism of my work, extremely busy schedule and tons of sarcasm!) it wouldn’t 

have been possible to finish this PhD. Besides, he had to learn how to deal with my 
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“Portuguese temperament” especially when “the mustard was already getting to my nose”
1
! 

So I must say thank you for that, and for giving me the chance to do this PhD.  

I must also thank Tariq Halasa, my co-supervisor, for his support, laughs and kind 

comments on my work. Thank you as well for attempting to cheer me up when I was getting 

frustrated during my PhD.  

However, a PhD requires the involvement of more people than the supervisors. 

Dan Jensen was the person who provided scientific support during the last year of my PhD. 

Without him, I wouldn’t have been able to learn and apply “unfriendly statistical methods for 

veterinarians”, which include terms such as priors and matrices. I would like to thank him for 

his support, for the pizza and beers after long hours at the office programming, and for 

cheering me up at times when I wasn’t sure if I’d be able to finish this PhD. Mange tak! 

I would like to thank Fernanda Dórea for her supervision both during and after my first 

stay at the National Veterinary Institute (SVA) in Uppsala. Thank you for teaching me, 

having the patience to deal with my stress and frustrations, and making me understand that 

it´s all part of PhD life. Thank you for your support and for boosting my confidence on bad 

days. Also, thank you for opening the doors of your home and providing me with shelter and 

food. Muito obrigada! 

I would like to thank Annette Ersbøll for the opportunity to do my second external research 

at the National Institute of Public Health (SIF) - University of Southern Denmark. Thank you 

for your kind support during my stay at SIF. 

I would like to thank all of my co-authors and colleagues: Klara Tølbøl Lauritsen, 

Charlotte Sonne Kristensen, Lars Erik Larsen, Mette Ely Fertner, Anna Camilla Birkegård, 

Anette Boklund and Kristine Bihrmann for their support and contributions to the projects 

included in this thesis. 

I would also like to thank to the Danish Pig Research Centre – SEGES for providing the 

data for the project.  

 A PhD also requires non-scientific support. 

I would like to thank all of my current and former colleagues and friends at the Section for 

Epidemiology. Thank you guys for your support, for the laughs, for the breakfasts, for the 

cakes and beers. A special thanks to Rene Bødker, Peter Lind, Carsten Kirkeby, Kaare 

                                                 
1
 A Portuguese idiom used when people are getting upset about something. In portuguese: A 

mostarda já me estava a chegar ao nariz. 
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last 3 years. Thank you for the Friday beers, parties, brunches, dinners, funny Danish classes, 

hyggelig tea and cake and for supporting and cheering me up on stressful days. Thank you 

guys! 

We live in a time where social apps are freely available and they can be used to keep in 

touch with people several flying-hours away. This helped me to keep in touch with my 

friends, family and boyfriend in Portugal. I would like to thank all my friends there for their 

support – mainly through Facebook and WhatsApp – and the warm “welcome back”s. Despite 

the distance, it’s good to know that nothing has changed.  

Finally, I thank my family and boyfriend for their support and for accepting my quarterly 

visits. They had to adapt to a Skype-based routine to talk about the changes in our lives. Also 

a big thank you for taking care of my dog Spike. 

After 3 years of hard work, tons of knowledge, laughs and cries, stressful and unforgettable 

moments and, most surprisingly, not a single grey hair, this chapter of my life is now 

complete.  

 

København, 14
th

 December 2016 

 

 

 

 

https://www.facebook.com/SayeemDK


x 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

xi 

 

Summary 

The spread of diseases is one of the most important threats to animal production and public 

health. Disease spread causes considerable economic losses for the agricultural sector and 

constitutes trade-limiting factors, as transmission to countries free from disease should be 

avoided.   

Monitoring and surveillance systems are critical for the timely and effective control of 

infectious diseases. The ability of a system to detect changes in the disease burden depends on 

the choice of data source. Many factors can lead to inconsistent data collection among 

populations and it is therefore important to assess the quality of data before use in disease 

monitoring and surveillance.  

Over the past decade, several studies have focused on using statistical control methods to 

detect outbreaks of (re-)emerging diseases in the context of syndromic surveillance – both in 

human and veterinary medicine – in an attempt to supplement traditional sentinel surveillance. 

However, it may not be possible to generalize the performance of these methods to the 

context of other countries (where data have different characteristics), or to the context of 

endemic diseases. 

Lower incidence rates are normally expected for endemic diseases compared to highly 

infectious (re-emerging) diseases, due to control measures such as vaccination or health-

management programs. Furthermore, the data collected differ from those obtained from 

traditional surveillance (generally related to incidence monitoring), due to its focus on the 

endemic scenario, with less frequently sampled data. This reflects the added complexity of 

monitoring endemic diseases, as disease burden is affected not only by the incidence, but also 

by the duration and recovery rate.  

The aim of this thesis was to evaluate existing register data related to veterinary health, as 

a tool for monitoring swine diseases in Denmark. This included: i) describing and evaluating 

the quality of data (regarding the potential for disease monitoring and surveillance) in Danish 

databases related to swine health; ii) assessing the feasibility of studying changes in data 

records over time to detect changes that might indicate disease spread between swine herds; 

iii) evaluating the performance of different time-series methods for the monitoring and 

surveillance of endemic diseases, as well as assessing the impact of noise in the data on the 

results when using these methods. Some of the work presented was focused on endemic 

diseases, using Porcine Reproductive and Respiratory Syndrome (PRRS) as example. 

Interviews were conducted with relevant stakeholders in order to assess the data quality of 

seven databases: the Central Husbandry Register (CHR), the swine movement database 
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(SMD), the national Danish database of drugs for veterinary use (VetStat), laboratory 

diagnostic data from the National Veterinary Institute – Technical University of Denmark 

(DTU-Vet lab) and the Pig Research Centre - SEGES (VSP-SEGES lab), the Specific 

Pathogen Free System (SPF System) and the Meat Inspection database. The guidelines from 

the European Centre for Disease Prevention and Control (ECDC) for monitoring data quality 

and surveillance systems were used. The findings showed that limitations included delayed 

transfer of data to databases and incomplete representation of Danish swine herds.  

Laboratory submission data for testing PRRS were used to study temporal changes in data 

records, due to the large amount of diagnostic data available. The laboratory data proved to be 

useful for monitoring temporal patterns of disease occurrence. The fact that some Danish 

swine herds are tested monthly allows for changes in disease prevalence and incidence to be 

monitored, which is an example of sentinel surveillance. However, for other herds, the 

frequency of testing (i.e. the representativeness of the data) depends on factors such as the 

herd status, farmer compliance, the value of the animal, commercial purposes and ongoing 

control and eradication programs. This limitation did not apply to the mortality data, which is 

available for all Danish swine herds on a monthly basis. However, observed changes might be 

due to disease occurrence, or as a result of changes in herd management or a lack of accuracy 

in the calculation of mortality.  

Several scenarios representative of changes in endemic disease sero-prevalence programs 

were simulated to test the performance of different monitoring methods. These included 

univariate process control algorithms applied directly to the simulated data, as well as using 

the forecast errors and trend-based methods. The performance of these methods was evaluated 

based on the sensitivity and time taken to detect changes, which showed that some methods 

were more efficient than others for specific patterns. Therefore, choosing a single temporal 

monitoring method is challenging, and the objectives of the monitoring program and the 

differing performance of the methods in detecting a specific pattern should be taken into 

account. Changes in the noise of the data had an impact on the univariate process control 

algorithms, while the trend-based methods provided a consistent approach to monitoring 

changes in disease or sero-prevalence.  

The findings of this thesis may serve as a basis for the improvement of monitoring swine 

diseases in Denmark. Although the available databases have the potential for use in disease 

monitoring and surveillance of swine herds in Denmark, improvements are needed for 

accurate and real-time implementation. Further research relating to the improvement of data 

quality, as well as combining different data sources for monitoring endemic diseases in 

Denmark is needed. 
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Sammendrag 

Sygdomsspredning er en af de vigtigste trusler mod produktion af dyr og folkesundheden. 

Sygdomme kan forårsage betydelige økonomiske tab for landbruget og begrænse for handel 

med lande, som er fri for den pågældende sygdom. Overvågnings og kontrolsystemer er 

kritiske for rettidig og effektiv kontrol af infektiøse sygdomme. Hvor godt et system er til at 

detektere ændringer i sygdomsbyrden afhænger af, hvilke datakilder der vælges. Flere 

faktorer kan føre til inkonsekvent dataindsamling i husdyrpopulationer. Det er derfor vigtigt at 

vurdere datakvaliteten, før data bruges til sygdomsovervågning.  

Gennem det sidste årti har der været flere studier, der anvender statistiske kontrolmetoder til 

at detektere udbrud af (gen-)opståede sygdomme i forbindelse med syndromovervågning – 

både i human- og veterinærmedicin. Disse metoder er et forsøg på at bidrage til traditionel 

overvågning af sygdomsudbrud. Det har ikke været muligt at generalisere effekten af disse 

metoder, når de har været brugt i relation til andre lande (hvor data har andre karakteristika) 

eller i relation til endemiske sygdomme.  

Endemiske sygdomme har lavere incidensrater end, hvad der normalt forventes, når de 

sammenlignes med eksotiske sygdomme. Dette skyldes anvendelsen af 

kontrolforanstaltninger såsom vaccination og/eller biosecurity. Data fra overvågning af 

endemiske sygdomme er generelt anderledes end typiske overvågningsdata for eksempel på 

grund af mindre hyppige dataindsamling. Dette reflekterer den øgede kompleksitet i 

overvågningen af endemisk sygdom, eftersom sygdomsbyrden er påvirket ikke kun af 

incidensen, men også af udbruddets varighed og af hvor hurtigt dyrene kommer sig.  

Formålet med denne afhandling var at evaluere eksisterende veterinære sundhedsrelaterede 

registerdata som redskab til at overvåge svinesygdomme i Danmark. Dette inkluderer i) 

beskrivelse og evaluering af datakvaliteten i danske databaser med svinesundhedsrelaterede 

data i relation til potentialet for sygdomsovervågning, ii) detektere ændringer over tid i 

dataregistreringer, der muligvis indikerer spredning af sygdom mellem svinebesætninger, og 

iii) evaluering af forskellige metoder til overvågning af endemisk sygdomme samt 

påvirkningen af støjen i data ved brug af disse metoder.  De fleste af studierne blev 

gennemført med Porcint Reproduktions- og Respirations Syndrom (PRRS) som eksempel på 

en typisk endemisk sygdom. 

Ved hjælp af en interviewundersøgelse blev der lavet en vurdering af datakvaliteten af syv 

databaser: Central Husdyrregister (CHR), svineflyttedatabasen (SMD), den nationale danske 

database for medicin til veterinært brug (VetStat), diagnostisk laboratoriedata fra 

Veterinærinstituttet – Danmarks Tekniske Universitet (DTU-Vet lab) og videncentret for 
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svineproduktion – SEGES (VSP-SEGES lab), specifik patogen fri-systemet (SPF systemet) 

og kødkontroldatabasen. Vurderingen af kvaliteten af data og overvågningssystemer blev 

gennemført med en tilrettet version af instruktionerne fra det europæiske center for 

sygdomsforebyggelse og -kontrol (ECDC). Resultaterne viste, at der var begrænsninger i 

potentialet som følge af blandt andet forsinket dataoverføring, og hvor godt de danske 

svinebesætninger var repræsenteret i data. 

Data for laboratorieindsendelser til test af PRRS blev brugt som et eksempel på, hvordan 

temporale ændringer i dataregistreringer kunne undersøges på grund af store mængder af 

diagnostisk data. Det blev påvist, at laboratoriedata var brugbare til at undersøge temporale 

mønstre i sygdomsforekomsten. Det faktum, at nogle danske svinebesætninger testes 

månedligt, muliggør overvågningen af ændringer i sygdomsprævalensen af disse. For andre 

besætninger afhænger frekvensen af test (dvs. hvor godt data repræsenterer populationen) af 

andre faktorer så som besætningens status, besætningsejerens accept, dyrets værdi, 

kommercielt formål samt kontrol- og udryddelsesprogrammer. Dødlighedsdata, var 

tilgængelige for alle danske svinebesætninger på månedlig basis og udgør dermed en komplet 

sample. De observerede ændringer i dødelighed kunne dog skyldes sygdomsforekomst, 

ændringer af management af besætningen eller begrænsninger i, hvordan data er udregnet. 

Adskillige scenarier, der kunne repræsentere ændringer i forekomsten af endemiske 

sygdomme, blev simuleret for at teste forskellige overvågningsmetoder og deres effektivitet. 

Der blev brugt ”univariate process control” algoritmer, der blev anvendt direkte på de 

simulerede data, eller på prædiktionsfejlen. Desuden blev der testet forskellige trend-baserede 

metoder. Effektiviteten af metoderne blev evalueret på basis af hvor ofte og hvor hurtigt de 

detekterede de simulerede ændringer. Resultaterne viste, at nogle metoder var mere effektive 

end andre for specifikke mønstre. Derfor er valget af en enkelt metode til temporal 

overvågning vanskeligt. Formålet med overvågningsprogrammet bør indgå i overvejelserne. 

Ændringerne i antallet af prøver påvirkede “univariate process control”-algoritmernes 

effektivitet, hvorimod de trend-baserede metoder var mindre påvirkede. 

Resultaterne i denne afhandling kan bruges som basis for at forbedre overvågningen af 

svinesygdomme i Danmark. De tilgængelige databaser har potentiale til at blive brugt til 

sygdomsovervågning i de danske svinebesætninger, men forbedringer er nødvendige før 

implementering af overvågning i real tid. Yderligere forskning i, hvordan datakvaliteten kan 

forbedres og forskellige datakilder kan kombineres for overvågningen af endemiske 

sygdomme i Danmark er nødvendig. 
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Sumário 

O risco de propagação de doenças é uma das maiores ameaças à produção animal e à saúde 

pública. A propagação de doenças causa perdas económicas consideráveis no setor agrícola, 

levando à ocorrência de restrições comerciais na tentativa de evitar a propagação para outros 

países.    

Os sistemas de monitorização e vigilância são fundamentais para o controlo rápido e eficaz 

das doenças infecciosas. A capacidade de um sistema para detectar alterações na ocorrência 

de doenças depende fortemente da escolha da fonte de dados. Muitos factores podem levar à 

recolha inconsistente de dados entre as populações e, portanto, é importante avaliar a 

qualidade dos dados antes da sua utilização para a monitorização e a vigilância de doenças. 

Na última década, vários estudos avaliaram a capacidade de vários métodos estatísticos 

para detectar surtos de doenças (re-)emergentes no contexto da vigilância sindrómica - tanto 

na medicina humana como  na medicina veterinária, numa tentativa de complementar os 

sistemas de vigilância tradicionais. No entanto, não é possível generalizar a adequação desses 

métodos para monitorizar doenças em outros países  (onde os dados têm características 

diferentes) e no contexto de doenças endémicas. 

As taxas de incidência de doenças endémicas são normalmente mais baixas quando 

comparadas com as taxas de incidência de doenças altamente infecciosas (re-emergentes), 

devido à aplicação de medidas de controlo tais como programas de vacinação ou boas práticas 

de gestão. Além disso, os dados são recolhidos com menor frequència do que os obtidos 

através da vigilância tradicional que geralmente visam a monitoração da incidência. Isto 

reflecte a complexidade acrescida da monitorização das doenças endémicas, uma vez que a 

severidade da doença é afectada não só pela incidência, mas também pela sua duração e taxa 

de recuperação.  

O objetivo desta tese foi avaliar o potencial dos registos de saúde animal existentes como 

uma ferramenta para monitorizar doenças em suínos na Dinamarca. Isto incluiu: i) descrever e 

avaliar a qualidade dos dados nas bases de dados dinamarquesas relativamente ao seu 

potencial para a vigilância da doença; ii) explorar a viabilidade de monitorizar alterações 

temporais e espaciais nos dados para detectar mudanças que possam indicar a propagação de 

doenças entre varas e iii) avaliar o desempenho de diferentes métodos de análise de séries 

temporais quando aplicados à monitorização e vigilância de doenças endémicas e o impacto 

da variação dos dados nos seus resultados. A marioria dos estudos incluídos nesta tese 

focaram-se em doenças endémicas, usando o Síndrome Respiratório e Reprodutor Porcino 

(PRRS) como exemplo. 
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Várias entrevistas foram feitas com partes interessadas a fim de avaliar a qualidade de sete 

bases de dados: i) Registro Central de Pecuária (CHR), ii) movimentos de suínos (SMD), iii) 

registo de medicamentos para uso veterinário (VetStat), iv) s laboratórios do Instituto 

Nacional  de Veterinária - Universidade Técnica da Dinamarca (laboratório DTU-Vet), v) do 

Centro de Pesquisa de Suínos - SEGES (Laboratório VSP-SEGES), vi) Sistema Específico de 

Patógeno Livre (SPF System) e vii) abate de suínos. As directrizes do Centro Europeu de 

Prevenção e Controlo de Doenças (ECDC) foram usadas para avaliar a qualidade dos dados. 

Os resultados revelaram que existem limitações, tais como atrasos na transferência dos dados 

para as bases de dados, a representatividade do efectivos suíno na Dinamarca.  

Os resultados dos testes laboratoriais para a PRRS serviram de exemplo para estudar 

alterações temporais nos dados devido à grande quantidade de dados disponíveis. 

Demonstrou-se a utilidade destes dados para monitorizar padrões temporais de ocorrência de 

doenças. O facto de algumas varas serem testadas mensalmente permite monitorizar a 

prevalência e a incidência de doenças, sendo um exemplo de vigilância sentinela. No entanto, 

a frequência dos testes (ou seja, a representatividade da população nos dados) depende de 

factores como o impacto da doença, da complacência do produtor, o valor do animal, os 

objativos comerciais e os programas de controlo e erradicação em curso. Esta limitação não 

foi observada para os dados de mortalidade, que está disponível para toda a população de 

suínos todos os meses. No entanto, as mudanças observadas na mortalidade podem ser 

devidas à ocorrência de doenças, alterações na gestão da vara ou falta de precisão na forma 

como a mortalidade é calculada.  

Foram simulados vários cenários representativos de mudanças na soroprevalência de 

doenças endémicas para testar a capacidade de detecção de diferentes métodos de análise de 

séries temporais, incluindo algoritmos para controlo estatístico de processo univariados, 

usados directamente nos dados simulados, bem como nos erros de previsão dos modelos e 

métodos baseados em tendências. O desempenho dos diferentes métodos foi avaliado com 

base na sua sensibilidade e tempo de detecção das alterações simuladas, mostrando que alguns 

métodos são mais eficientes do que outros para padrões específicos. Assim, a escolha de um 

único método de monitoração temporal é um desafio; os objectivos do programa de 

monitorização e o melhor desempenho na deteção de padrões específicos devem ser tidos em 

conta. As alterações na variação dos dados simulados tiveram um impacto no desempenho de 

algoritmos para controlo estatístico de processos univariados, ao passo que os métodos 

baseados na tendência da série temporal não sofreram qualquer impacto sendo um bom 

método para monitorar alterações na soroprevalência. 
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Os resultados desta tese podem servir para melhorar a monitorização de doenças em suínos 

na Dinamarca. Mais pesquisas são necessárias para melhorar a qualidade dos dados e para 

integrar diferentes bases de dados para a monitorização de doenças endémicas na Dinamarca. 

Os métodos de análise de séries temporais com o melhor desempenho podem ser usados para 

monitorizar programas de controlo e erradicação de doenças endémicas na Dinamarca. 
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1. Introduction  

1.1 Disease monitoring and surveillance  

Over the past decades, the risk of transmission and spread of new, transboundary 

and re-emerging diseases has become one of the most important threats to animal 

production and public health worldwide as a consequence of trade in a globalized 

world (Coker et al., 2011).   

Recently, Europe experienced the emergence of new diseases such as 

Schmallenberg (Beer et al., 2013; Delooz et al., 2016) and re-emerging diseases such 

as foot-and-mouth disease (Bouma et al., 2003; McLaws et al., 2007) and African 

swine fever (Oļševskis et al., 2016; Sánchez-Vizcaíno et al., 2013). Endemic diseases 

such as porcine reproductive and respiratory syndrome (PRRS) in swine herds 

(Bøtner et al., 1994; Nieuwenhuis et al., 2012) or paratuberculosis in cattle herds 

(Garcia and Shalloo, 2015; Kreeger, 1991) also contribute to substantial economic 

losses for the agricultural sector, and might constitute trade-limiting factors in an 

attempt to avoid their spread to countries free from the diseases.   

Disease monitoring describes the ongoing process of collecting data 

representative of the health and disease status of a given population (Salman, 2003). 

The main goal of disease surveillance is the early detection of changes in health 

status, in order to take actions to control disease spread. These actions might include 

control and eradication programs, where the information from monitoring and 

surveillance systems is combined with control and intervention strategies employed 

over a period of time in order to reduce and eliminate the disease occurrence 

(Salman, 2003).  

1.2 Current trends in disease monitoring and surveillance  

Monitoring and surveillance systems are critical for the timely and effective 

control of infectious diseases. Over the past decade, several studies have applied 

statistical monitoring methods for syndromic surveillance in human and veterinary 

medicine (Buckeridge et al., 2005; Dórea et al., 2014; Dupuy et al., 2013a; Jackson 

et al., 2007). In this context, different animal health data sources such as laboratory 
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pre-diagnostic data (Dórea et al., 2014), mortality data (Alba et al., 2015; Perrin et 

al., 2015) and meat inspection data (Dupuy et al., 2013b) have been used in an 

attempt to supplement traditional sentinel surveillance for disease outbreaks. 

Nevertheless, it may not be possible to generalize the performance of these methods 

when applied in the context of other countries (where data have different 

characteristics) or in the context of endemic diseases. 

1.2.1. Using register data for disease monitoring and surveillance 

The potential use of health-related register data for disease monitoring and 

surveillance is a growing field. This approach offers a cost-effective way to ensure 

effective resource allocation. The ability of a system to detect changes in the disease 

burden is dependent upon the choice of data source, its representativeness and the 

sampling strategy (Buckeridge, 2007).  

The collection of data is influenced by many factors, including the level of 

awareness and knowledge about a particular disease among animal producers, the 

availability of a diagnostic laboratory scheme to support and confirm cases, and the 

extent to which farmers and veterinarians are willing to secure the flow of data. As a 

result, inconsistent data is collected for various diseases and among different 

populations (Salman, 2003). It is therefore important to assess the quality of data to 

ensure they are representative of the target population (European Centre for Disease 

Prevention and Control (ECDC), 2014; Salman, 2003) and that valid conclusions can 

be drawn. Other factors that might influence the quality of data and its relevance to 

disease surveillance include technical aspects, political requirements and stakeholder 

interests.  

1.2.2. Disease monitoring and surveillance methods  

Control and/or eradication measures are implemented whenever certain threshold 

levels related to the disease status have been exceeded spatially, temporally, or 

spatio-temporally. In some cases, it may not be obvious whether disease events have 

exceeded the threshold levels, and simply plotting the time-series of events will 

reveal these “extreme changes”. In other cases, these changes may be subtle, making 
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it difficult to detect changes in disease patterns based on a visual inspection of plots. 

In these situations, statistical techniques can be used to introduce objectivity. 

Temporal monitoring methods 

Recently, several studies focused on applying statistical control methods to detect 

outbreaks of (re-)emerging diseases in the context of syndromic surveillance – both 

in human and veterinary medicine (Buckeridge et al., 2005; Dórea et al., 2013; 

Jackson et al., 2007). Retrospective analysis is a common approach used in the 

literature for monitoring diseases, as it can be used to provide information on 

systematic patterns and to model the data. A wide range of models (such as linear, 

logistic, binomial, Poisson and time-series) have been implemented in syndromic 

surveillance to evaluate the role of a set of variables and to model trends and patterns 

of disease occurrence (Rodríguez-Prieto et al., 2014). The model was then used to 

make forecasts for each time step. The difference between the forecast and the 

observed data is known as the forecast error, and this is used for generating alarms. 

These studies applied univariate process control algorithms (UPCA) (commonly 

called control charts) to define detection limits for generating alarms. This approach 

implies the existence of historical data (collected over months or years) providing 

information on a systematic pattern. In the case of an intervention or change in the 

collection of data used by the surveillance system (e.g. a change in the law requiring 

testing of a larger number of individuals), it is necessary to pause the surveillance 

system until these new data are collected and retrospective analysis is performed 

before adjusting the system. The performance of the UPCA in previous studies 

cannot be generalized to other data sources or to endemic diseases. Although they 

prove useful in describing long-term and cyclical patterns and in identifying unusual 

changes, UPCA usually require a long series of observations (for retrospective 

analysis), and are unsuitable for relatively recent surveillance for which historical 

data is not available (Salman, 2003). Furthermore, previous studies focused on the 

detection of (re-)emerging disease outbreaks, rather than following up control and 

eradication programs for endemic diseases. The choice of specific temporal methods 

to detect changes is challenging since their performance depends on factors such as 
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the magnitude and shape of the signal and the monitored baseline (Buckeridge et al., 

2005).  

State-space models combine relevant prior knowledge and current information (West 

and Harrison, 1997). Moreover, they enable monitoring of changes in different time-

series components such as trend, cyclic patterns and seasonal patterns, and can 

incorporate data based on different distributions. While these models have been used 

for disease monitoring and surveillance in humans (Cao et al., 2014; Cowling et al., 

2006), how useful they are in monitoring endemic diseases remains unknown. These 

models have been adopted by veterinary science for use in herd-management 

decisions (Jensen et al., 2015; Ostersen et al., 2010; Madsen and Kristensen, 2005).  

Spatial and spatio-temporal methods 

In some situations, disease spread may not have a substantial temporal 

component, being more easily detected by its spatial distribution or the combination 

of both temporal and spatial components (Salman, 2003). Identifying spatial and 

spatio-temporal clusters has become more convenient with the recent availability of 

mapping tools and geographical information system (GIS) software. Traditionally, 

these tools were part of the digital surveillance frameworks, supporting the 

visualization of results or the implementation of certain spatial transformations of the 

data (Rodríguez-Prieto et al., 2014; Salman, 2003). They are also used to support 

active surveillance and design-sampling studies and to supplement other 

methodologies such as cluster analysis, regression models, risk assessments or 

simulation modelling (Rodríguez-Prieto et al., 2014). Methods such as the spatial 

scan statistic (Kulldorff, 1997) can be used to detect purely spatial or spatio-temporal 

clusters in data.  

The scan statistic method (Kulldorff, 2016) is one of the most commonly used 

tools for spatio-temporal analysis in biosurveillance (Wagner et al., 2006). As a 

result, this analytical method has been incorporated into several surveillance systems 

(Heffernan et al., 2004; Lombardo et al., 2003). The simplicity of the method and the 

ease with which results can be interpreted (Robertson et al., 2010) mean that this 

methodology is frequently used for early warnings of events. However, several 

studies reported that this technique resulted in false alarms, requiring further 



  

5 
 

1.
 In

tro
du

ct
io

n 

epidemiological research to determine the cause of any spatial or space-time 

clustering (Rodríguez-Prieto et al., 2014; Wagner et al., 2006). 

1.2.3. Epidemiology, monitoring and surveillance of endemic diseases  

Lower incidence rates are normally expected for endemic diseases when 

compared to highly infectious (re-emerging) diseases, due to control measures such 

as vaccination or health management programs (Carslake et al., 2011). Additionally, 

the dynamics of disease spread and previous exposure to the pathogen can lead to 

immunity for several individuals in a population, thus contributing to a lower 

incidence. As a result, we expect to observe slow and gradual increases in incidence 

and prevalence for endemic diseases (Carslake et al., 2011).  

The frequency of testing also depends on the value of the animal and not only on 

the disease impact (Doherr and Audigé, 2001). In these cases, data differ from those 

obtained from traditional surveillance (generally related to incidence monitoring), 

due to its focus on the endemic scenario, with less frequently sampled data. It is also 

important to investigate the representativeness of the data, as well as the sampling 

strategies before including data in an automated system to detect changes in the 

disease burden (Buckeridge, 2007). This reflects the added complexity of monitoring 

endemic diseases, as disease burden is affected not only by the incidence, but also by 

the duration and recovery rate. In these cases, it is necessary to use models with a 

more dynamic structure, allowing the parameters to change over time.  

For endemic diseases, it is also important that implemented strategies are 

reviewed in order to reduce and/or eliminate a specific disease as part of a control 

and eradication program (Doherr and Audigé, 2001). Unexpected changes in 

reduction, such as an increase in disease occurrence or a failure to achieve a target 

value of disease prevalence within a certain period of time, indicate that the 

implemented strategies should be revised. Failure of these programs may have a 

devastating economic impact on herds with susceptible animals. 
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1.3 Aim, goals and objectives of the thesis  

The overall aim of this thesis is to evaluate the potential use and value of existing 

veterinary health-related register data as a tool for monitoring swine diseases in 

Denmark. In order to meet the overall aim, three goals were defined to drive the 

work presented in this thesis. These goals were to: 

• Goal 1: Explore current national databases that might include data with 

potential for disease surveillance. Based on this, the following objectives 

were defined:  

Ø Objective 1.1: Describe the data gathered in different databases.  

Ø Objective 1.2: Perform a qualitative assessment of stakeholder perception 

of the data quality of the databases containing swine health-related data, 

for use in monitoring swine diseases in Denmark.  

Ø Objective 1.3: Suggest combinations of different databases to improve 

disease surveillance.  

• Goal 2: Examine the feasibility of studying changes in data records over 

space and time to detect changes that might indicate disease spread between 

swine herds. The following objectives were defined:  

Ø Objective 2.1: Describe spatial and temporal trends present in laboratory 

submission data in Denmark.  

Ø Objective 2.2: Describe spatio-temporal clusters of mortality data in 

Danish Swine herds.  

• Goal 3: Explore the potential of different temporal monitoring methods for 

monitoring control programs for endemic diseases in Danish swine herds. The 

following objectives were defined: 

Ø Objective 3.1: Compare the performance of different detection methods, 

including time-series modeling, time-series decomposition and UPCA, 

when applied to monitoring and surveillance of endemic diseases. 

Ø Objective 3.2: Assess the impact of the representativeness of the sample 

size, i.e. the noise in the data, in the performance of temporal monitoring 

methods.  
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In order to fulfill these aims and objectives, six studies were conducted, leading to 

six scientific manuscripts entitled:  

 

Manuscript 1: Evaluation of the perceived utility of information routinely 

recorded in databases for integrated disease surveillance in swine. Submitted to Acta 

Veterinaria Scandinavica. 

Manuscript 2: Spatial analysis and temporal trends of porcine reproductive and 

respiratory syndrome in Denmark from 2007 to 2010 based on laboratory submission 

data. Published in BMC Veterinary Research 2015; 11: 303.  

Manuscript 3: Mortality in Danish Swine herds: spatio-temporal clusters and risk 

factors. Submitted to Preventive Veterinary Medicine.  

Manuscript 4: Monitoring endemic livestock diseases using laboratory diagnostic 

data: A simulation study to evaluate the performance of univariate process 

monitoring control algorithms. Published in Preventive Veterinary Medicine 2016; 

127: 15–20. 

Manuscript 5: Dynamic generalized linear models for monitoring endemic 

diseases: moving beyond univariate process monitoring control. Published in 

Proceedings for the Annual Meeting of the Society for Veterinary Epidemiology and 

Preventive Medicine (SVEPM) 2016, 69-79.  

Manuscript 6: A simulation study to evaluate the performance of statistical 

monitoring methods when applied to different time-series components in the context 

of control programs for endemic diseases. Submitted to Plos One.  

 

 

 

 



 

8 
 

1.
 In

tro
du

ct
io

n 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

9 
  

2.
 M

at
er

ia
ls

 a
nd

 m
et

ho
ds

 

2. Materials and methods 

2.1 Data  

2.1.1. Qualitative data  

The data used in Manuscript 1 were gathered through interviews of relevant 

stakeholders, including the author and co-authors of the manuscript. The databases 

(which were selected based on their extensive use by the swine industry and research 

institutes) included: the Central Husbandry Register (CHR), the swine movement 

database (SMD), the national Danish database of drugs for veterinary use (VetStat), 

laboratory diagnostic data from the National Veterinary Institute – Technical 

University of Denmark (DTU-Vet lab) and the Pig Research Centre - SEGES (VSP-

SEGES lab), the Specific Pathogen Free System (SPF System) and the Meat 

Inspection database.  

2.1.2. Register data 

Central Husbandry Register (CHR) 

The CHR incorporates information on the location of animals, including farms, 

abattoirs, rendering plants, markets, assembly centers, agricultural shows and 

common pasture. Each location has its own unique ID number (CHR number) with 

affiliated address, Cartesian geographical coordinates, herd type and the number of 

swine of different age groups.  

Swine Movement database (SMD) 

The SMD was established in 2002 to fulfill the European legislation regarding the 

trade of swine in European countries. For each movement, the date, the number of 

swine moved, the vehicle used and the CHR numbers of sender and recipient farms 

are registered. 
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Specific Pathogen Free System (SPF System) 

The SPF system defines a fixed set of rules for biosecurity, surveillance and the 

movement of swine between herds (Specific Pathogen Free System, n.d.). The health 

status is defined based on regular laboratory diagnostic results and clinical visits 

performed according to SPF rules. Diseases that are monitored within the SPF 

(known as SPF diseases) are: enzootic pneumonia, pleuropneumonia, atrophic 

rhinitis, dysentery, PRRS, mange and lice. 

The frequency of visits and serological testing depends on the health status of the 

herd within the SPF system. The majority of Danish breeding herds (including 

nucleus and multiplier herds) is monitored on a monthly basis and has the red SPF 

status. Surveillance of SPF diseases that require serology testing is performed 

annually for production herds (including farrow-to-finisher and finisher herds), and 

these herds have the blue SPF status. SPF herds represent about 40% of all Danish 

swine herds, including 99% of Danish breeding and multiplier herds and 35% of 

Danish finisher herds.  

Diagnostic laboratory data for PRRS 

The decision was made to focus on laboratory serology results for PRRS from 

Danish swine herds, due to the large amount of diagnostic data stored in the DTU-

Vet lab database – mainly as part the of surveillance program of SPF herds. 

Additionally, the importance of PRRS in the Danish pig industry was a determining 

factor in choosing this disease as an example. 

Currently, PRRS is one of the biggest challenges for Danish swine producers 

(SEGES Pig Research Centre, 2015). Although control efforts are in place, PRRS 

continues to result in economic losses due to mortality in piglets, respiratory 

problems in growers and finishers, and reproductive problems in sows. It is estimated 

that an infection in a PRRS-negative herd costs DKK 200-500 per sow/year (SEGES 

Pig Research Centre, 2015). In addition, this disease is increasingly seen as an 

obstacle to the export of pork to several countries (SEGES Pig Research Centre, 

2015).  
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The PRRS surveillance program is primarily based on serological testing for herds 

with a Specific Pathogen Free system certificate, known as SPF herds (Specific 

Pathogen Free System, n.d.). The frequency of testing depends on the health status of 

the herd within the SPF system. For non-SPF herds, veterinarians can decide whether 

or not to test for PRRS, and at what intervals. The decision will depend on the 

objective (i.e. as part of an eradication and control program, or for the diagnosis of 

suspected cases herds free from disease) and the costs associated with the different 

serology tests. 

The monthly herd-level PRRS status was used to identify temporal and spatial 

clustering between 2007 and 2010 (Manuscript 2). The analysis was performed for 

both PRRSV type 1 and type 2, previously known as European (PRRS EU) and 

North American (PRRS US) strains, respectively (Murtaugh et al., 1995). Individual 

blood samples were tested for one or both PRRSV types, based on an in-house 

blocking enzyme-linked immunosorbent assay (ELISA) (Sørensen et al., 1998) and 

an immunoperoxidase monolayer assay (IPMA) (Bøtner et al., 1994). The PRRSV 

status of the herd was defined based on the cut-off for individual blood tests, and the 

herd-level cut-offs that establish the proportion of PRRSV sero-positive samples (i.e. 

animals) within the herd, as suggested by Mortensen et al. (2000).  

Subsequently, only laboratory submissions where at least two individual blood 

samples underwent serological testing were included in the analyses for Manuscripts 

4, 5 and 6. These serological tests included the DTU-Vet lab “in-house” ELISA 

(Sørensen et. al, 1997), the DTU-Vet lab “in-house” IPMA (Bøtner et al., 1994) and 

the IDEXX PRRS X3 Ab ELISA test (IDEXX, Ludwigsburg, Germany) used at the 

VSP-SEGES lab. Herds were classified as PRRS sero-positive when at least two 

individual blood samples in each submission tested PRRS positive (without 

distinguishing between the PRRS strains). The weekly between-herd sero-prevalence 

was calculated as the proportion of PRRS-positive herds from the total number of 

herds tested. It was used to define the initial sero-prevalence level in the simulation 

studies in Manuscripts 4, 5 and 6.  
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Mortality data 

The swine mortality data are owned by the Danish Veterinary and Food 

Administration and are calculated monthly for all Danish swine herds, based on data 

registered in the CHR and the SMD. The information retrieved from the CHR is used 

as a proxy for the number of animals in a given farm every month. The SMD 

includes information on all movements of Danish swine herds, including movements 

to rendering plants. The number of dead sows and finishers transported from farms to 

rendering plants is registered in the database, and the number of containers in which 

dead weaners (up to 30 kg) are transported from farms to rendering plants is used as 

a proxy for the number of dead weaners per month.   

Data from December 2013 to October 2015 were provided by the Danish 

Veterinary and Food Administration and analyzed in Manuscript 3. The information 

registered in the CHR database was used to identify production herds, in order to 

restrict the analysis to only these herds. Furthermore, only herds with ≥200 finishers, 

≥50 sows or ≥200 weaners were included in the analysis. In order to ensure that the 

study included only active farms, herds with no dead animals over 12 consecutive 

months for sows and finishers and 2 consecutive months for weaners were excluded. 

The data were divided according to three age groups –weaners, sows and finishers – 

and the mortality was analyzed separately for the three age groups. 

2.1.3. Simulated data 

Since no information is available on what extend PRRS has been spreading and if 

control and eradication programmes have been implemented in Denmark during the 

past years, it was decided to perform several simulation studies in order to represent 

potential scenarios of disease spread and control programs. This was done to 

evaluate the performance of different temporal monitoring methods when applied to 

the context of endemic diseases. 

The simulated PRRS sero-prevalence was defined based on the same method as 

described in Manuscript 4, where the number of positive herds (X) for a given week 

was derived from a binomial distribution (𝑋	~	𝑏𝑖𝑛(𝑛, 𝑝)) with a probability p and a 

sample size n corresponding to the number of Danish swine herds tested for PRRS 
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per week (Figure 1). A detailed description of the different representative scenarios 

of endemic disease spread, as well as eradication and control programs can be found 

in Manuscripts 4, 5 and 6.  

 

 

 
Figure 1- Example of the simulated scenarios representing changes in sero-
prevalence for endemic diseases and control programs.  
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2.2 Methods 

2.2.1. Interviews and data quality attributes  

A total of 20 interviews were conducted between November 2015 and January 

2016 with different stakeholders, i.e. those using and maintaining the data. This 

information was combined with the researchers’ data-related experiences, in order to 

assess the data quality of seven Danish databases for monitoring swine diseases 

(Manuscript 1). The assessment was based on a set of qualitative data quality 

attributes adapted from the European Centre for Disease Prevention and Control 

(ECDC) guidelines for the evaluation of monitoring and surveillance systems 

(ECDC, 2014). The interviewees were selected based on their level of experience 

and involvement with the databases. A detailed description of the data quality 

attributes can be found in Manuscript 1 and the questionnaire can be found in the 

Supplementary Materials section.   

2.2.2. Spatial and spatio-temporal analysis  

Spatial variation  

The spatial distribution of PRRSV type 1 and 2 sero-positive herds was assessed 

based on relative risk maps (Manuscript 2). The kernel smoothing surfaces 

techniques described by Berman and Diggle (1989) were used. 

The Inverse Distance Weighted (IDW) interpolation technique (Huisman and de 

By, 2009) was used in Manuscript 3 to facilitate visualization of the spatial 

distribution of the monthly mortality rate for weaners, sows and finishers in 

Denmark.  

Spatial and spatio-temporal clustering 

In Manuscript 2, Retrospective Space Scan Statistics (Kulldorff, 1997) were used 

to identify local spatial clusters of herds positive for PRRSV type 1 and type 2 

between 2007 and 2010. The data were aggregated biannually and a Bernoulli model 

was used, in which herds positive for PRRSV type 1 and type 2 were defined as 
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cases and negative herds as controls. The scanning spatial window was circular and 

the analysis was run using different percentages of the population at risk. 

The Retrospective Scan Statistic was used to detect spatial, temporal and spatio-

temporal clusters of mortality in different age groups within the Danish swine herds. 

Monthly data from December 2013 to October 2015 were used (Manuscript 3). The 

Bernoulli model was applied because the number of dead animals (cases) and 

number of live animals (controls) were available for each herd. In this case, the 

scanning spatio-temporal window was circular and the analysis was run using 50%, 

25% and 10% of the population at risk. The maximum temporal size of the spatio-

temporal clusters was defined as 90% of the period of the study.   

2.2.3. Time-series modelling  

Two space-state models – a Dynamic Linear Model (DLM) based on a normal 

distribution and a Dynamic Generalized Linear Model (DGLM) based on binomial 

distributions, both with a linear growth component as described previously (West 

and Harrison, 1997) – were used to model the simulated PRRSV sero-prevalence 

data (Manuscripts 5 and 6). Briefly, these models estimate the underlying parameter 

vector from the observed data combined with any prior information available. The 

estimated value is updated each time a new value of sero-prevalence is available.  

The DLM is represented as a set of two equations, defined as the observation 

equation (Eq. 1) and the system equation (Eq. 2):  

𝑌, = 𝑭,/𝜃, + 𝑣,, 𝑣,~𝑁 0, 𝑉,    (Eq. 1) 

𝜃, = 𝑮,𝜃,78 + 𝑤,, 𝑤,~𝑁 0,𝑊,              (Eq. 2)  

where Eq. 1 describes the dependence of observation Y< (i.e. PRRSV sero-

prevalence) on an unobservable parameter � (which was designed as a matrix) for 

time t, based on a linear function. The observational variance (𝑉,) was adjusted 

according to the number of herds tested for PRRS in a given week. Eq. 2 describes 

the dynamic properties of the unobservable parameter �	used to estimate the 

underlying values of PRRSV sero-prevalence according to Eq 1. The variance-
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covariance matrix (𝑊,), which describes the evolution of variance and covariance of 

each parameter for each time step, was modeled using a discount factor. 

The observation equation (Eq. 1) for the DGLM is described as:  

	𝑝, = 𝐹,/𝛳,                 (Eq. 3) 

  and the system equation (Eq. 2) is identical for the GDLM and DLM.  

More details of the estimates and a description of the models can be found in 

Manuscripts 4 and 5.  

2.2.4. Temporal monitoring methods 

Univariate process control algorithms (UPCA) 

Both Manuscripts 4 and 6 explored the performance of several UPCA for 

monitoring endemic diseases. 

In Manuscript 4, three univariate process control algorithms were used: 

Exponentially Weighted Moving Average (Wagner et al., 2006), Cumulative Sums 

(Wagner et al., 2006) and Shewhart p Chart (Montgomery, 2009). These methods 

were applied directly to the simulated weekly sero-prevalence data with simulated 

changes representing endemic disease spread. Alarms were generated when the 

observed sero-prevalence for a given week exceeded the thresholds of the 

algorithms. A detailed description of these algorithms is presented in Manuscript 4.  

In Manuscript 6, three UPCA were used to generate alarms: Shewhart control 

chart (Montgomery, 2009), Tabular Cumulative Sums (Montgomery, 2009), and the 

V-Mask (Montgomery, 2009). The Shewhart control chart and the Tabular 

Cumulative Sums were applied to the normalized forecast errors obtained from the 

DLM and GDLM models, whereas the V-mask was applied to simple cumulative 

sums of the normalized forecast errors. A full description of the methods is presented 

in Manuscript 6.  

Trend-based monitoring methods 

In Manuscripts 5 and 6, the time-series was decomposed using the DLM and 

DGLM models. For each time step t, the trend-component was obtained from m,. 

Alarms were generated based on the trend-component when significant differences 
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above and below zero were found according to 95% and 99% CI. Alarms were also 

generated when the absolute values of the trend-component changed the sign from 

positive to negative, and vice-versa (Trend Sign).  

Calibration of the UPCA 

The UPCA were calibrated to a false alarm rate of 1% when applied to a constant 

level of PRRS sero-prevalence (Manuscripts 4 and 6). Different parameters were 

tested for each algorithm as part of this process. This decision was made to compare 

the performance of the different methods, to maintain confidence in the system and 

to reduce the economic impact of investigating false alarms.  

Performance assessment  

The performance of the different temporal monitoring methods was evaluated 

using the cumulative sensitivity (CumSe) for week i, following a simulated change in 

PRRS sero-prevalence (Manuscripts 4 and 6). The CumSe was defined as:  

𝐶𝑢𝑚𝑆𝑒E = 	
FG	

H

GIJ

K.E,MN
                                                (Eq. 4) 

where 𝑥P is the number of iterations in which an alarm was given j weeks after a 

change was initiated, and n.iter corresponds to the total number of iterations used. 

The sero-prevalence was considered to have increased if an alarm was generated for 

i≥0. This criterion was developed in order to assess the performance of the 

algorithms during weeks with gradual simulated changes, and during subsequent 

weeks with constant levels.   

Assessing the impact of the sample size on the performance of temporal 

monitoring methods 

In order to assess the impact of the representativeness of the weekly number of 

herds tested for diseases monitoring, the simulation study was also performed with n 

equal to 10 and 100 times the actual number of herds tested in a given week 

(Manuscript 4) or with a fixed number of herds tested (n=600) (Manuscript 6).  

 



 

18 
 

2.
 M

at
er

ia
ls

 a
nd

 m
et

ho
ds

 

 

 

 

 

 

 

 

 

 

 

Figure 2- Collection of blood samples from a gilt in a red SPF herd for disease 
monitoring and surveillance. Photo: Ana Carolina Lopes Antunes 
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3. Results 

3.1 Data quality of existing Danish swine health databases 

The following paragraphs present a brief description of the databases on swine 

health that were evaluated in Manuscript 1, but were not used (or described) in the 

statistical analyses in this thesis.  

The SMD is part of the CHR, and registers all movements of swine in Denmark at 

different levels (e.g. farms, rendering plants, slaughterhouses). The database registers 

information about the sender, recipient, date and time of movement, number of 

animals moved, and the registration number of the vehicle used. The SMD is owned 

by the Danish Veterinary and Food Administration (DVFA) and was established in 

2002 to increase traceability. 

The VetStat is the national database for registration of all prescription-only drugs 

used in production animals. Data include information such as the date of 

prescription, prescribing veterinarian, recipient farm, species, age group, and clinical 

indications. The database is owned by the DVFA and was established in 2000 for 

research purposes, to control antimicrobial usage, and to assist veterinary 

practitioners. 

The Meat Inspection database includes meat inspection information collected in 

slaughterhouses. For each animal carcass, the originating farm number, 

slaughterhouse ID, date of slaughter, fat and meat percentage, and veterinary remarks 

are registered. The Meat Inspection database was implemented in 1964 with the 

objective of paying farmers according to the number of animals slaughtered and the 

meat inspection remarks, and increasing food safety, animal health, and welfare.  

Further details about the evaluated databases, including the data flow, can be 

found in Manuscript 1. Table 1 summarizes the advantages and disadvantages (in 

terms of disease surveillance) of data from the seven databases, based on the ECDC 

guidelines. A full description of all data attributes can be found in Manuscript 1. 
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Table 1- Description of the advantages and disadvantages of using swine register 
data from several databases for monitoring diseases in Denmark. 
Database Advantages Disadvantages 

CHR 

Mandatory for all geographic locations 
with swine. 
The data entered are checked and instantly 
become available on the database.  

Irregular updates: minimum once/twice 
yearly. 
Information is updated by the farmer, 
creating bias in the herd type and 
number of animals from different age 
groups. 

SMD 

Mandatory registration of all swine 
movements. 
The data are checked when entered in the 
system.  

Information can be registered up to 7 
days after the movement, and is often 
registered late after this period.  
Based on data from 2014, 10% of swine 
farms did not have any registered 
movements. 

VetStat 

The system generates a warning if data are 
missing from a specific pharmacy. 
DVFA perform periodic, retrospective 
manual checks of the data. 
All herds using prescription-only drugs 
are present in Vetstat.  

Antimicrobial prescription is influenced 
by many factors, not just the occurrence 
of diseases.  
Data is available no later than the 10th 
day of any given month.  
Only the prescription date is registered. 
 

SPF 

Gathers information on the health status 
of 99% of all breeding herds and 78% of 
sow herds. 
Warning messages are generated if the 
disease status for a given herd has 
changed based on laboratory test results. 
SPF herds are monitored on a regular 
basis.  

SPF status based on serology tests might 
not indicate the presence of an infectious 
disease.  
Disease status is only given for a limited 
number of diseases.   
 

Laboratory 
databases 

Diagnostic test results give the disease 
status of each herd. 
Standard operating procedures are used to 
validate the data.    

Requests for diagnostic tests are 
influenced by the occurrence of 
diseases, the value of the animal, and 
disease eradication and control 
programs. 
The frequency of testing differs between 
herds.  

Meat 
Inspection  
database 

Includes information on 98% of all 
finisher herds in Denmark.  

It is only possible to monitor diseases 
and syndromes that cause macroscopic 
disease lesions. 
Data are entered on different terminals, 
with different configurations. 
Data entered on the abattoir terminal are 
not checked.  
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3.2 Temporal and spatio-temporal patterns of PRRS and mortality in 

Denmark 

3.2.1. Temporal trends of PRRS based on laboratory diagnostic data  

On average, 230 breeding herds and 2,776 production herds were tested for PRRS 

every year between 2007 and 2010 (Manuscript 2). Regarding the average time 

between consecutive submissions, the breeding herds were tested every month 

(min=1, max=37), whereas the production herds were tested every 11.33 months 

(min=1, max=46).  

 

 

Figure 3- Number of swine herds tested for PRRS per month between 2007 and 2010 

in Denmark (a), and the corresponding PRRS EU and PRRS US sero-prevalence (b). 

 

 

Figure 3 shows the total number of herds tested for PRRS per month, as well as 

the monthly sero-prevalence for both PRRS strains (Manuscript 1). The total number 

of breeding herds tested for PRRS seems to be constant (Figure 3a). In contrast, the 
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number of production herds tested for PRRS followed a seasonal trend, with the 

lowest values in February and August of each year. The apparent PRRS sero-

prevalence was constantly higher for the EU strain than the US strain for both types 

of herds (Figure 3b). A full description of the spatial distribution of both PRRS 

strains based on relative risk maps can be found in Manuscript 2. 

 

 

 
Figure 4- Weekly PRRS sero-prevalence in SPF and non-SPF herds. 
 
 

The weekly apparent PRRS sero-prevalence was higher for non-SPF herds than 

for SPF herds (blue and red) between 2007 and 2014. The median apparent PRRS 

sero-prevalence was 0.10 (min=0.00, max=0.57) for red SPF herds, 0.30 (min=0.00, 

max=0.50) for blue SPF herds, and 0.35 (min=0.00, max=0.86) for non-SPF herds 

(Figure 4). 
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Figure 5- Weekly sero-prevalence trend in Danish swine herds from 2007 to 2014: a) 
A DGLM was used to model the data and the filtered mean (red); b) the 
corresponding trend-component was used to monitor significant decreases (based on 
95% CI) from zero (blue rugs). 
 
 

The weekly average PRRS sero-prevalence was 0.24, with a decrease from 0.28 in 

2007 to 0.20 in 2014 (Manuscript 5). Monitoring the trend component also showed a 

decrease throughout this period, and significant decreases (i.e. negative growth) were 

detected at the end of 2007, end of 2008, early 2010, and between end of 2010 and 

the beginning of 2013 (Figure 5).  
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3.2.2. Spatio-temporal mortality trends in Danish Swine herds  

Spatial and spatio-temporal patterns of mortality in 1,896 weaner herds, 1,490 

sow herds and 3,839 finisher herds (from a total of 5,016 Danish swine farms) were 

explored in Manuscript 3. The location of the herds is shown in Figure 6a).  

A detailed description of temporal and spatial patterns in the monthly mortality 

can be found in Manuscript 3. In summary, results showed an increase in mortality in 

January and July of 2014 and 2015 in all regions of the country for the three age 

groups. The mortality proportion in weaner herds was twice that observed in sow and 

finisher herds. The spatial patterns showed that a higher mortality rate was found in 

different areas for each age group: Southern Denmark had a higher mortality rate for 

sows, Zealand had a higher mortality rate for weaners, and Central Jutland had a 

higher mortality rate for finishers.  

A full description of the spatio-temporal clusters is provided in Manuscript 3. A 

summary of the number of clusters found for the three age groups is presented in 

Table 2 and the locations are shown in Figure 6b).  

 

 
Table 2- Frequency of clusters for different age groups of Danish swine herds found 
between December 2013 and October 2015. 

1 Refers to clusters including only one herd. 
2 Refers to clusters including more than one herd. 
 
 
 
 
 

Age group Total 
Cluster type 

Single-herd 
cluster1 

Multiple-herd 
cluster2 

Sow herds 7 5 2 
Weaner herds 68 57 11 
Finisher herds 76 49 27 
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Figure 6- Map of the herds included in the mortality analysis from December 2013 to 
October 2015 (a), and the location of the spatio-temporal clusters found (b). The 
circles represent the radius of the clusters.   
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3.3 Performance of different temporal monitoring methods when applied in 

the context of endemic diseases 

The results from Manuscript 4 showed that the Exponential Weighted Moving 

Average and Shewhart p Chart had higher CumSe than the Cumulative Sums when 

applied directly to the sero-prevalence timeline for all simulated scenarios.  

Based on the DLM model, the Shewhart Control Chart performed better in 

detecting increases in sero-prevalence compared to decreases, while the opposite was 

seen for the Tabular Cumulative Sums (Manuscript 6). The trend-based methods 

performed well in detecting the first simulated events (increases and decreases in 

sero-prevalence), but performance was poor in detecting consecutive events. The 

method that seemed to perform most consistently was the V-mask. 

When comparing the performance of the different UPCA based on DLM and 

GDLM, the results revealed that in general the temporal monitoring methods needed 

more time to achieve CumSe=0.5 based on the GDLM. The trend-based methods had 

a similar performance with both models.  

3.4 Impact of sample size on the performance of the temporal monitoring 

methods 

Figure 7 shows the impact of sample size on the performance of the UPCA when 

applied directly to the time-series, as described in Manuscript 4. For increases in 

sero-prevalence from 0.10 to 0.20 over 24 weeks, the number of weeks to achieve a 

CumSe=1.0 was halved when the sample size was increased 10-fold; increasing the 

sample size 100-fold resulted in CumSe=1.0 being achieved six times faster. 

In Manuscript 6, reducing the noise in the data (by simulating 600 herds tested per 

week) resulted in achieving faster CumSe=1 for the Shewhart Control Chart and 

Tabular Cumulative Sums. No substantial impact was observed for the V-Mask and 

both trend-based methods. 
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Figure 7- Impact of sample size on the cumulative sensitivity (CumSe) of the 
univariate process control algorithms. The results are based on an increase in sero-
prevalence from 0.10 to 0.20 over 24 weeks.  
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4. Discussion  

The overall aim of this thesis was to explore the potential uses and limitations of 

existing veterinary health data for monitoring swine diseases in Denmark. To fulfill 

this aim, the quality of data from different databases was evaluated, temporal and 

spatial patterns found in the data were described, and the performance of different 

temporal monitoring methods (in the context of endemic diseases and control 

programs) was assessed. This section presents some of the key findings. A more 

extensive discussion of each topic can be found in the corresponding manuscripts.  

4.1. Potential use of current Danish databases for monitoring swine diseases  

Manuscript 1 describes seven Danish swine databases and assesses stakeholders’ 

perceptions regarding the data quality, as well as potential uses and limitations for 

disease monitoring and surveillance. The different databases are useful to varying 

degrees when it comes to monitoring swine diseases in Denmark. They all contain 

information that can be cautiously used in different steps, including using statistical 

methods for monitoring changes in data records and contingency plans for diseases. 

The findings from Manuscript 1 suggest that the laboratory data, VetStat and the 

Meat Inspection database can be used for disease monitoring, while the CHR and the 

SMD contain information crucial to performing risk-based surveillance and 

contingency planning in case of a disease outbreak. 

The databases presented various disadvantages relating to different quality 

attributes. For example, it could take several days or weeks before the data entered 

into the VetStat and Meat Inspection databases became available. The time required 

between data entry and availability in the database (timeliness) was a limitation of 

using data from these databases as a (near) real-time disease-monitoring tool, since 

the data are not instantly available. In addition, there are limitations to using the 

information in VetStat and the Meat Inspection database as a proxy for disease 

occurrence. For instance, the data in VetStat do not provide an indication of the 

disease for which the antimicrobial treatment was prescribed, and there are no 

indications of when the treatment was applied. Also, the presence of macroscopic 

lesions at early stages of disease might be difficult to identify at the abattoir.  
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Another important data attribute for disease surveillance is how well the data 

represents the population over time (i.e. representativeness). The frequency of testing 

depends on the surveillance, eradication and control programs implemented at farm 

level, the value of the animals, and the farmers’ awareness of disease occurrence, as 

only a small proportion of Danish swine herds (mainly red SPF herds) are tested 

weekly. The same issue is true of the Meat inspection data, where information is 

more representative of finisher herds.  

The validity of the databases in Denmark has been improved by merging data 

from different databases when financial and legal consequences exist. For example, 

the Yellow Card legislation (Ministry of Food, 2010) monitors antimicrobial 

consumption based on VetStat and CHR data. Farmers and veterinarians are aware 

that incorrect information in these databases might push the antimicrobial level 

above the threshold value, leading to restrictions being imposed on the farm. Other 

examples include potential commercial restrictions for farmers when disease-status 

data are not accurate in the laboratory and SPF databases. Each farm pays for 

laboratory testing and SPF accreditation on a voluntary basis, with any “incorrect 

information” in the databases resulting in legal consequences for the laboratory and 

accreditation institutions. For this reason, the data are validated when they are 

entered, and warning messages are sent in the case of any system fails.   

4.2.  Spatial, temporal and spatio-temporal trends and clusters  

4.2.1. PRRS sero-prevalence based on laboratory data  

The overall occurrence of PRRS temporal and spatial patterns based on laboratory 

data was described in Manuscript 2. As previously discussed (Manuscript 1), the 

frequency of testing depends on the herd status (SPF herd or non-SPF herd) as well 

as the reason for testing (e.g. PRRS monitoring and surveillance, diagnosis of new 

infected herds). It is generally assumed that herds tested for PRRS have a higher 

health status (e.g. red SPF herds) than herds that do not submit samples (personal 

communication, C.S. Kristensen, 2014). This can be a limitation when monitoring 

temporal trends in PRRS sero-prevalence in Danish Swine herds based on laboratory 

data, and the same analogy can be made for other diseases.  
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4.2.2. Mortality data 

A large number of single-herd and multiple-herd clusters were found (Manuscript 

3). The higher mortality within these clusters might indicate potential welfare issues 

(SEGES Pig Research Centre, 2016, 2015) or the presence of infectious diseases 

such as PRRS (Mortensen et al., 2002) or Swine Influenza (Brown, 2000).  

Before using mortality as a proxy for disease occurrence, it is important to 

emphasize that the mortality was calculated based on data from two different 

databases. The information on the number of swine in each age group in the CHR 

database was used as a proxy for the number of swine present in a herd for a given 

month. As described in Manuscript 1, there are infrequent updates of the CHR, 

which can potentially result in biased information on the total number of swine in the 

farm for each month. The movements registered in the SMD are used as a proxy for 

the number of dead animals per age group. The registers for weaners (up to 30 kg) 

are based on the number of containers (with specific dimensions) transported from a 

farm to the rendering plant. The number of dead weaners that can fit inside a 

container varies according to the weight of the animals. In addition, the total volume 

of dead animals placed inside the container might not be representative of the total 

volume of the container. This can result in a bias in the number of dead weaners 

presented in the database, and illustrates the challenges of using mortality data for 

disease monitoring purposes in Denmark, as discussed in Manuscript 1 for the CHR 

and SMD. As a consequence, the estimated mortality can be biased, leading to under- 

or overestimations, and precautions should be taken when using these data. 

4.3. Temporal monitoring methods 

The results in Manuscript 4 showed that the Exponentially Weighted Moving 

Average and Shewhart p Chart had similar results when detecting increases in sero-

prevalence, and that their performance in this respect was better than that of the 

Cumulative Sums when applied directly to the time-series. One possible explanation 

for the poorer performance of the Cumulative Sums is that the variation in simulated 

sero-prevalence might have resulted in a negative cumulative sum, which resets the 

Cumulative Sums to zero, as verified by Dórea et al. (2013).  
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The aim of the simulated scenarios in Manuscript 6 was to represent relevant 

changes in disease occurrence for endemic diseases. Each scenario was simulated 

with an initial constant level of sero-prevalence followed by an increase or decrease 

in two different events. Both DLM and GDLM models were optimized to model a 

constant level, resulting in slower model-trend changes in Event 2. As a 

consequence, the normalized forecast errors were higher and the Tabular Cumulative 

Sums generated alarms earlier than the Shewhart control chart for increases in the 

sero-prevalence. In addition, the variation (noise) in the simulated data was higher 

when simulating increases in sero-prevalence for Event 2, which might have resulted 

in a higher number of alarms. This can explain why the Tabular Cumulative Sums in 

Manuscript 6 performed better compared to other methods for monitoring increases 

in sero-prevalence, in contrast to the Cumulative Sums (a similar detection method) 

used in Manuscript 4.  

The V-Mask showed the most consistent results in relation to the number of 

weeks required to achieve a CumSe=50%, due to the greater flexibility in defining 

the control limits. 

4.4. Impact of sample size on the performance of temporal monitoring 

methods 

Increasing the number of herds that were tested reduced the noise in the simulated 

sero-prevalence (Manuscripts 4). As a result, the Cumulative Sums were not reset to 

zero, resulting in an increase in the sensitivity to detect changes to a level equal to 

that of other methods when 10-fold and 100-fold increases were simulated.  

In Manuscript 6, decreasing the noise in the simulated sero-prevalence also 

resulted in higher CumSe for the Shewhart Control Chart and Tabular Cumulative 

Sums. Conversely, this had no impact on the V-Mask or the trend-based methods 

(Manuscript 6). This demonstrates the importance of choosing a suitable temporal 

monitoring method. The Shewhart Control Chart and Tabular Cumulative Sums 

techniques used in Manuscript 6 were sensitive to the intensity of noise in the data, 

regardless of whether they were applied to forecast errors or directly to the data. 

Using trend-based methods offers a way to monitor the underlying trend, usually 

masked by random noise in the data. 
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5. Conclusions  

This thesis explores the potential uses and limitations of existing databases 

containing swine-health data in Denmark. The goals included assessing current 

Danish databases relevant to swine health, and their potential use in disease 

monitoring and surveillance. An additional aim was to examine the feasibility of 

studying temporal and spatial changes in data records in order to detect changes that 

might indicate disease spread between swine herds, and to explore the potential use 

of different temporal monitoring methods for monitoring endemic disease control 

programs. In summary, the conclusions are: 

• The current databases cover different aspects of disease surveillance, including 

monitoring (near) real-time infectious disease status and data to support 

contingency planning in case of a disease outbreak. However, the limitations 

(such as infrequent updates, incomplete representation of Danish swine herds 

and delays in registering new data in databases) should be addressed in order to 

improve the quality of data from multiple databases for monitoring diseases in 

Denmark.  

• The laboratory data are useful for monitoring endemic diseases. The frequency 

of testing depends on factors such as the SPF status, farmer compliance, the 

value of the animal, commercial purposes and ongoing control and eradication 

programs. For example, a large percentage of the laboratory diagnostic testing 

for PRRS is performed for red SPF herds, which might result in an 

underestimation of the overall disease prevalence in Denmark, as non-SPF 

herds are not regularly tested. This limitation did not apply to mortality data, 

which are available for all Danish swine herds. However, observed changes 

might be due to disease occurrence, or as a result of changes in herd 

management or the way mortality is calculated. Moreover, the data are only 

available on a monthly basis, which is a limitation for (near) real-time disease 

monitoring. 

• The performance of the different temporal monitoring methods in detecting 

changes in sero-prevalence for endemic diseases and control programs varied. 
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Therefore, choosing a single temporal monitoring method is challenging, as the 

objectives of the monitoring program and the differing performance of the 

explored methods in detecting a specific pattern should be taken into account. 

Increasing the sample size (i.e. the number of tested herds) resulted in faster 

detection for the majority of UPCA, while the impact was not noticeable for 

the V-Mask or trend-based methods. This indicates that the V-Mask and trend-

based methods provide a more consistent approach to monitoring changes in 

disease sero-prevalence.  

• Finally, the available databases are potentially useful in disease monitoring and 

surveillance of swine herds in Denmark, but improvements are needed for their 

accurate, real-time implementation.  
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6. Perspectives  

The findings of this thesis may serve as a basis for improving swine disease 

monitoring and surveillance in Denmark. The swine-health databases currently 

available in Demark and the temporal monitoring methods described in this thesis 

can be used for monitoring temporal and spatial changes in infectious diseases and 

for contingency planning in case of disease spread. However, due to previously 

discussed limitations, real-time implementation of disease monitoring and 

surveillance will require improvements to the databases, and their full potential 

should be explored through further research, as described below: 

• To explore alternative data collection methods, such as smartphone apps 

(e.g. FARMlog, http://farmlogsvin.dk/), in order to improve the 

representativeness of the data and increase the frequency of updates. The 

information gathered using smartphones could complement the existing 

data in current databases, for example more accurate estimates of the 

number of animals present at a farm, the number of dead animals, the date 

of antimicrobial usage, or the occurrence of clinical symptoms.    

• To combine data from different databases (such as meat inspection or 

antimicrobial consumption data) using a multivariate surveillance 

approach, in which several processes are analysed in parallel or combined. 

This approach is yet to be applied to monitoring diseases in veterinary 

science. 

• To assess the performance of described trend-based methods for detecting 

outbreaks of (re-)emerging diseases.   

To evaluate the performance of different spatio-temporal methods when applied to 

the context of endemic diseases and control programs. 
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Abstract 37 

Background: In Denmark, there is an ongoing collection of data regarding the swine 38 

population, productivity and health. These data are stored in several public and industry-39 

owned databases. The databases contain information used to facilitate decision making 40 

at herd or regional/national level. The aim of this study was to assess the perceived 41 

potential of data routinely collected and registered for demographic, traceability, 42 

legislative, diagnostic and commercial purposes, as a means for integrated disease 43 

surveillance in swine. To meet this aim, the data quality of seven databases was 44 

assessed: the Central Husbandry Register (CHR), the Swine Movement Database 45 

(SMD), the national Danish database of drugs for veterinary use (VetStat), laboratory 46 

data from the National Veterinary Institute – Technical University of Denmark (DTU-47 

Vet lab), diagnostic laboratory at the SEGES Pig Research Center SEGES (SEGES VSP 48 

lab), the Specific Pathogen Free System (SPF) and the Meat Inspection database. 49 

Furthermore, suggestions for future improvements of data quality and potential 50 

combination of databases for monitoring swine diseases were also discussed. Results: 51 

The extent to which the databases can be used for disease surveillance and monitoring 52 

varies. In summary, the surveillance of swine diseases was a primary objective only for 53 

the laboratory and SPF databases. There are a number of factors influencing 54 

antimicrobial use at herd level, thus questioning the utility of VetStat data for 55 

surveillance of disease. Meat Inspection data have the advantage of being recorded at 56 

animal level, but sensitivity vary between disease categories and abattoirs. In contrast, 57 

the CHR and SMD are concerned only with swine traceability, indicating the population 58 
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at risk, or to evaluate the effect of trading patterns. Conclusions: The data quality 59 

tended to be higher, when the databases are interrelated and are linked to economic 60 

interests of the farmer. The usefulness of the different databases covers different aspects 61 

of diseases surveillance, including disease monitoring and follow-up. Further research 62 

will be needed to address technical and methodological challenges in integrating the data 63 

from multiple databases for monitoring diseases in Danish swine.  64 

 65 

Keywords 66 

Data quality, health-related data, disease surveillance, swine.  67 

 68 

 69 

Introduction  70 

Denmark holds a number of national databases in the veterinary field, covering data on 71 

herd demographics, veterinary affiliation, animal movements, slaughter remarks, 72 

surveillance of zoonotic agents, antimicrobial use and laboratory test results [1]. Due to 73 

the availability of data, these data are widely applied for purposes such as research [2–74 

4], legislative actions [5] and disease surveillance [6].  75 

Disease surveillance describes the ongoing process of the assessment of health and 76 

disease status of a given population [7]. The ability of automated systems to detect 77 

changes in disease occurrence depend to a large extent upon the choice of data source 78 

[8]. The data can be associated with analytical and interpretive limitations related to data 79 

being representative of the target population [9], technical aspects, political requirements 80 
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and stakeholder interests [10], which might influence the quality of data and the 81 

acceptance of using it for disease surveillance. 82 

 In all studies on data, an evaluation of data quality is crucial [11,12]. Unlike human 83 

medicine [9,13], studies on data quality in existing veterinary databases remain scarce.  84 

The aim of the present study was to assess the perceived potential of using data routinely 85 

collected and registered in Denmark as source for integrated disease surveillance 86 

purposes in swine. This included: i) a description of the data and structure of existing 87 

public and private databases in Denmark with swine health related data; ii) a qualitative 88 

assessment of stakeholder perception of the data quality and iii) suggestions for future 89 

improvements of data quality and potential combination of data for monitoring swine 90 

diseases.  91 

 92 

 93 

Methods 94 

Data quality attributes  95 

In 2014, the European Centre for Disease Prevention and Control (ECDC) published a 96 

technical document to support processes for assessing data quality and evaluating 97 

surveillance systems for public health in European member states in order to provide 98 

accurate and timely information for decision making [9]. This document was created 99 

based on input from groups of experts on surveillance system quality combined with 100 

review of available literature in order to suggest key quality attributes to evaluate the 101 

data quality but also the system structure, i.e. the organization in an operating system.   102 
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For the present study, seven Danish swine databases were chosen by the authors and 103 

assessed based on a set of qualitative data quality attributes adapted from the ECDC 104 

guidelines to evaluate monitoring and surveillance systems [9]. The seven databases 105 

were: the Central Husbandry Register (CHR) including the Swine Movement Database 106 

(SMD), the national Danish database of drugs for veterinary use (VetStat), laboratory 107 

data from the National Veterinary Institute – Technical University of Denmark (DTU-108 

Vet lab) and from the Pig research centre SEGES (SEGES VSP lab), the Specific 109 

Pathogen Free System (SPF) and the Meat Inspection database. These databases were 110 

selected based on their extensive use by the Danish swine industry and research 111 

institutes.  112 

The data quality attributes and the proposed indicators used to evaluate the databases 113 

were defined by the authors (Table 1).  Representative questions for each of the specific 114 

data attributes proposed by the ECDC guidelines were defined and included in a 115 

questionnaire with open questions [Additional file 1]. The questionnaire consisted of 116 

two parts. Part one focused on getting an overall description of the databases. This 117 

included the aims of the database, data sources, current use, legal accessibility as well as 118 

a description of the data flow. The second part included questions to assess the data 119 

quality for the purpose of diseases monitoring and surveillance based on the attributes 120 

presented in Table 1. In addition, the questionnaire was pre-tested on two colleagues 121 

who work with the databases. 122 

 123 

 124 



6 
 

Table 1: ECDC data quality attributes and proposed indicators for evaluating data 125 

quality in seven Danish swine databases. 126 

Attribute Proposed indicator 

1. Completeness 
a) Warnings given by the system in case of missing information  

b) Examples of missing information allowed by the system 

2. Validity 

a) External validity: description of checks and validation of the data 

delivered to the database, and whether (correct) registration is 

related to any economic aspects 

b) Internal validity: description of checks and validation of the data 

in the database  

c) Examples of coding errors found in the database and how data are 

introduced into the system (pre-defined codes, free text) 

3. Timeliness 

a) How often are data updated/registered 

b) How much time is required between input and availability of data 

in the database 

c) How much time is required between data entry and subsequent use 

4. Representativeness a) The proportion of the population covered by the system/database 

5. Usefulness 
a) Use of data for control or eradication programs 

b) Presentation of data in e.g. reports, summary statistics or others 

6. Simplicity 
a) Time required to enter registrations into the system 

b) Time required for access to and extraction of data 

7. Flexibility 

a) Possibilities and timeliness of the system to adapt to changes, such 

as introduction of new codes/variables 

b) Examples of situations where new codes/variables were 

introduced in the database 

8. Acceptability  

a) Potential challenges in using the database for monitoring swine 

diseases and the eventual implications 

b) Combining different data sources for monitoring swine diseases 

and the eventual implications 

 127 

 128 

 129 

 130 

 131 

 132 

 133 
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Selection of database experts and interviews  134 

A total of 19 face-to-face interviews (2 joint and 17 individual) and 1 email interview 135 

were conducted between November 2015 and January 2016.  136 

Seventeen interviewees completed the full questionnaire for one of the 7 databases, 137 

while 3 provided input to specific questions only. Thus, each database was represented 138 

by 2-4 individual interviewees, selected based on their knowledge regarding the 139 

databases, level of experience and involvement in the databases. Hence, people 140 

maintaining and using the data, including veterinarians and IT services, were prioritized. 141 

The questionnaire and objective of the study were sent to all interviewees in advance. 142 

The duration of the interviews varied from 30 minutes to 1.5 hours. The interviewees 143 

were encouraged to express their knowledge, personal opinions and experiences with the 144 

data. Furthermore, the interviews were conducted by 1, 2 or 3 authors whom, based on 145 

their own experience with the data, raised additional questions regarding the data and the 146 

system structure for discussion with the interviewees. The interviewers took written 147 

notes of the answers.  148 

 149 

Combining the results from the interviews with the authors personal experience 150 

Background information on the databases was gathered from a literature search prior to 151 

the interviews, while documents and reports recommended during the interviews were 152 

retrieved afterwards for describing the databases (Part I of the questionnaire). The 153 

written notes taken during the interviews for the data quality and systems structure (Part 154 

II of the questionnaire) were summarized as presented in the results section and sent to 155 
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all interviewees to check and confirm their answers. Additionally, the authors, who have 156 

been working extensively with the included databases for research purposes, contributed 157 

with personal experience when relevant. 158 

 159 

Results 160 

Description of databases 161 

In the following sections, the data evaluation framework established by the ECDC was 162 

used for the seven databases. A summary description of each database is given in Table 163 

2. Each database was described individually, with the exception of the two laboratory 164 

databases (DTU-Vet Lab and SEGES VSP Lab), which were described together. 165 

Detailed information regarding the data flow within each database is provided in 166 

Additional file 2.  167 

 168 

Central Husbandry Register (CHR) 169 

The CHR is the national Danish database of farm demographics. The CHR was 170 

established in 1993 with the aim of tracing animals [14] and meeting the subsequent 171 

European legislation [15,16]. All locations where animals are gathered (e.g. farms, 172 

herds, markets, assembly centers, abattoirs, rendering plants, agricultural shows and 173 

common pasture) must be registered in the CHR. Each location has its own unique CHR 174 

number with affiliated address and Cartesian geographical coordinates. It is possible for 175 

several herds to have the same location and CHR number. A herd is defined as a group 176 
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of animals of the same species at the same location with a common aim and owner, and 177 

is identified by a unique herd number [17].  178 

 179 

Swine Movement Database (SMD) 180 

The SMD is technically a subset of the CHR. The original purpose of the database was 181 

to ensure traceability of all swine in Denmark, and it was established in 2002 to fulfill 182 

the European legislation regarding the trade of bovine and swine in European countries 183 

[18,19]. It is mandatory to register all swine movements in Denmark, yet these are 184 

recorded at batch level and it is not possible to trace swine movements at individual 185 

animal level. 186 

 187 

The national Danish database of drugs for veterinary use (VetStat) 188 

All purchases of prescription-only drugs for production animals are registered in the 189 

national database VetStat. It is mandatory to register the purchase of drugs, either 190 

passively (by pharmacies and feed mills at the point of sale) or actively (by 191 

veterinarians). Records include detailed information such as the date, prescribing 192 

veterinarian, receiving farm ID, species, age group, and clinical indication [20]. The 193 

database was originally implemented for research purposes in the year 2000, but has 194 

since been expanded to assist health advisory services provided by veterinarians for 195 

decision making and in keeping track of developments in drug consumption. Since 2010, 196 

VetStat data have also been used by the authorities to restrict antimicrobial use at farm 197 

level in the Yellow Card program [5]. VetStat has been presented to foreign delegations 198 
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on several occasions, and in relation to export, VetStat may enhance trade agreements 199 

with other countries by documenting antimicrobial control.  200 

 201 

DTU-Vet Lab and SEGES VSP Lab  202 

The DTU-Vet lab and SEGES VSP lab conduct extensive diagnostic examinations on a 203 

wide range of swine diseases in Denmark. Both laboratories have collaborative protocols 204 

and perform diagnostic testing in parasitology, immunology, virology, bacteriology, 205 

histopathology and necropsies. Furthermore, the DTU-Vet lab is the reference laboratory 206 

for all notifiable swine diseases in Denmark, including brucellosis, tuberculosis, swine 207 

vesicular disease, foot-and-mouth disease, classical swine fever and African swine fever 208 

[21]. For both labs, the frequency of incoming samples depends on the national 209 

monitoring and surveillance programs, the SPF status of the herd, outbreak 210 

investigations and eradication programs. Laboratory tests beyond regulative rules 211 

depend on the decision of the farmer and guidance by the affiliated veterinarian. Both 212 

laboratories have systems for recording information to track samples during the process 213 

and send results and invoices to clients. In both systems, the data are extracted and the 214 

diagnostic tests results are used for disease monitoring and surveillance by the SPF 215 

System and for research purposes with special authorization.   216 

 217 

The Specific Pathogen Free system (SPF System) 218 

The SPF system was created in 1971 to combine health information with commercial 219 

interests [22]. The SPF system defines a fixed set of rules for biosecurity, surveillance 220 
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and swine movement between herds (SPF-SuS). The SPF status of a farm is based on 221 

regular laboratory diagnostics and clinical visits performed according to SPF rules. The 222 

majority of Danish breeding herds (including nucleus and multiplier herds) are tested 223 

every month while the production herds (including farrow-to-finisher, fattener herds and 224 

finisher herds) are tested annually.  225 

 226 

Meat Inspection database 227 

Since 1964, data on meat inspection of swine slaughtered in Denmark have been 228 

registered in the Meat Inspection database [23]. The original aim of the database was to 229 

ensure food safety and correct payments to the farmer. It has been expanded to ensure 230 

animal health and welfare, in order to fulfill EU legislation [24]. The database is owned 231 

by the Classification Authority [25] while data additionally are stored by DVFA, which 232 

is responsible for the veterinary control in the abattoirs [26].  233 
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Table 2: Summarized features of seven Danish databases that may be used in the monitoring and surveillance of swine diseases 234 

in Denmark.  235 

Feature CHR SMD VetStat 
Laboratory 

databases 
SPF 

Meat Inspection 

database 

Year of 

implementation 
1993 2002 2000 

SEGES VSP lab: 1988  

DTU-Vet lab: 1908
 

(year in which the 

laboratory was 

stablished)  

1971 1964 

Current 

objectives 

Retrieve 

demographical 

information at farm 

level. 

Tracing swine. Research, assist 

veterinary 

practitioners, to 

control 

antimicrobial 

usage. 

Diagnostic, monitoring 

and surveillance of 

livestock diseases in 

Denmark. 

Manage the health 

status of 

participating farms. 

Payment of farmers, 

Food safety, Animal 

health and welfare. 

Data providers 

Farmers, 

VSP-SEGES
1
 staff. 

Abattoirs, 

Export stables, 

Pick up places, 

Rendering plants, 

Farmers. 

Pharmacies, 

Veterinarians, 

Feed mills. 

Farmers, 

Veterinarians, 

Abattoirs, 

Research institutes. 

 

Veterinarians, 

Farmers, 

Laboratories, 

Ear-tag database, 

Zoonosis register, 

SPF haulage 

contractors. 

Abattoirs. 

Data entry 

Online or through 

VSP-SEGES, Aarhus 

N. 

Receiving farm, 

Exporting farm (for 

exports only), 

Transport company. 

 

Apothecary, 

Veterinarian, 

Veterinary 

secretary,  

Employee in the 

feed mill. 

Laboratory technician 

or automatic system 

depending on the 

diagnostic test 

performed. 

Automatic data 

entry from the 

different data 

providers,  

Staff at SPF-SuS. 

 

Technician or 

veterinarian working 

in the abattoir. 

Database 

administrators 

DVFA
2
  DVFA DVFA  DTU Vet

3
/ VSP-

SEGES 

SPF SuS
4
 Classification 

Authority 

Case definition 

Geographic locations 

where swine are 

gathered at herd 

level. 

Movement of a 

batch of swine at 

herd level. 

Purchase 

records of 

prescription-

only drugs at 

farm level. 

Laboratory submission 

including sample(s) 

collected at individual 

and herd level. 

Farm level Carcass, 

Animal level 
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Information 

available by 

case 

Farm number, 

Date of establishment 

and closure, 

Contact details of the 

owner, 

Veterinary praxis 

number,  

Animal species, 

Production type,  

Numbers of animals.  

Farm number of 

sender and 

recipient,  

Date and time of 

movement, 

Number of swine 

moved, 

Registration 

number of vehicle,  

Number of the trade 

certification for the 

movement 

For rendering 

plants only: number 

of dead finisher 

moved, number of 

dead sow numbers 

and number of 

containers 

(including dead 

pigs) move. 

Recipient (farm 

number) 

Date of 

purchase, 

Prescribing 

veterinarian/ 

Practice, 

Product 

information, 

Amount of 

drug,  

Targeted animal 

species, age 

group and 

diagnostic 

group. 

Farm number, 

Veterinarian, 

Biological material, 

Date of collection, 

Date the sample was 

received and analyzed, 

Anamnesis (for 

necropsies and 

histopathology), 

Analysis codes, 

Test results. 

Farm number, 

Laboratory results,  

Danish Standard,  

Movement data, 

SPF health status, 

Salmonella. 

Originating farm 

number, Gambrel 

number, 

Abattoir ID, Date of 

slaughter, Slaughter 

number, Delivery 

number, Weight, 

Meat percentage, 

Sex, Veterinary 

remarks, Measure of 

fat and meat depth. 

 

 

 

 

 

 

 

 

 

 

Surveillance 

programs for 

specific 

diseases 

NA NA NA SPF diseases, 

Salmonella level, 

Notifiable diseases  

(OIE listed diseases). 

 

Enzootic 

pneumonia, 

Pleuropneumonia, 

Atrophic rhinitis, 

Dysentery, 

Porcine 

Reproductive and 

Respiratory 

Syndrome, 

Mange, 

Lice. 

Notifiable diseases 

(OIE listed diseases). 

Geographic 

coverage 

National National National  Farms sending 

samples 

Participating farms Farms sending swine 

for slaughter in 

Denmark. 

Data collection 

Compulsory  Compulsory Compulsory  Compulsory for 

Salmonella and  

Notifiable diseases  

(OIE listed diseases). 

SPF farms  Compulsory post 

mortem inspection at 

slaughter.  
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Legal access to 

the data 

Public access on the 

website [45]. 

Public access on the 

website [46]. 

Farmers and 

veterinarians 

have permission 

to affiliated 

farms. Open-

access for 

registered users. 

Special authorization 

to have access to the 

laboratory diagnostic 

results. 

Public access on the 

website [6].  

Farmers receive a 

report on slaughter 

remarks along with 

the account. Others 

need to apply for 

permission. 

Deliverables 

and outputs 

SEGES yearly report, 

DVFA Animal 

Health annual 

reports. 

 

 Yellow Card 

program (farm 

level),  

DVFA monthly 

statistics 

(national level) 

[47], 

DANMAP 

yearly report 

(national level) 

[48]. 

 

Quarterly and yearly 

reports on the number 

of diagnostic tests for 

specific pathogens and 

tests available online 

[49].  

Annual statistics 

reports (internal) 

Yearly report by the 

Classification 

Inspection  

1 
SEGES VSP-SEGES: SEGES Pig research Centre. 236 

2
 DVFA: Danish Veterinary and Food Administration 237 

3 
DTU Vet: National Veterinary Institute – Technical University of Denmark. 238 

4 
SPF SuS: Specific Pathogen Free system - SEGES 239 

The table summarizes the background information on the databases gathered from a literature search prior to the interviews, documents and 240 

reports recommended during the interviews for describing the databases.  241 

 242 
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Database attributes  243 

The data quality and system evaluation is presented in Tables 3 and 4. The results represent the 244 

assessment by the interviewees and the authors as well as an evaluation of the attributes as defined in 245 

Table 1.  246 

As an example, the CHR database (Table 3) records information from all farms (representativeness), 247 

requires that all variables are entered (completeness) using pre-coded or free text fields, and the data 248 

delivered to the online platform are checked (validity). The number of animals in each farm is updated 249 

at least once or twice per year, whereas other changes, such as change of ownership, are recorded 250 

within 7 days (timeliness). The CHR data are currently used for animal traceability, risk-based disease 251 

and welfare controls, manure reports and the control of antimicrobial use (usefulness). The information 252 

is updated by farmers or SEGES directly to the online platform (simplicity). The introduction of new 253 

variables or changes requires modification of Danish ministerial orders and agreements with IT 254 

companies (flexibility). The interviewees mentioned that the CHR database is widely used in 255 

combination with other databases to retrieve information on the swine herd (acceptability).  256 

 257 

 258 

 259 

 260 

 261 

 262 
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Table 3: Data quality and system evaluation of three public databases for swine herds in Denmark.  263 

Data quality 

attribute 

 

CHR SMD VetStat 

Completenes

s 

1) 

 

All variables must be filled in. All variables must be filled in before data 

can be sent to the database except for 

specific cases (see Additional file 2). 

A warning is generated if all information 

from a specific pharmacy is missing in the 

monthly registrations. 

2)  Specific possible missing variables: 

vehicle number, number of dead 

swine/containers. 

 

Complete missing cases possible (for 

registrations by veterinarians); 

ID of the drug. 

Validity 

1) Pre-coded fields where possible; 

Retrieves information from the official road 

register; 

Registrations as perceived by the farmer. 

Retrieves information from CHR; 

Partly economic: movement to abattoirs 

and rendering plants. 

Free-typed text; 

Double check of purchase in pharmacies; 

Majority economic: purchase from 

pharmacies. 

2) Computer-generated checks, letters of 

notification are sent out.  

 

Computer-generated checks, letters of 

notification are sent out;  

For export: the registration is validated 

against the Danish Transport Standard. 

Retrospective manual checks periodically 

made by DVFA employees. 

3) Number of weaners and finishers registered 

tends to be less precise than the number of 

sows registered.  

Farmers may tend to register the number of 

pen places available instead of the actual 

number of present swine. 

 There can be discrepancies between the 

actual age / disease group treated and the 

one reported in VetStat. 

Incorrect CHR or species may appear due 

to the lack of pre-coded fields.  

Timeliness 

1) Existing herds: updates at minimum 

once/twice yearly; 

Establishment of new herd, change of 

ownership, arrival of new type of swine: 

register within 7 days; 

Cessation of herd: register within 6 months 

Movement of swine must be recorded 

within 7 days of movement; 

Late registrations are often found
 a
.  

Data are registered at the time of purchase 

(feedmills, veterinarians and pharmacies), 

or shortly after (veterinarians). 

2) Online registrations are available instantly. Online registrations are available 

instantly. 

All registrations for a given month are 

available no later than the 10
th

.  

3) Instantly. Instantly. Up to two months: summary statistics are 

generated using data from the month 

before the previous one to ensure all data 

are present in the database at the time of 

calculation. 
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a 
 Based on authors personal experience with the data.  264 

Data quality is assessed based on eight attributes adapted from the ECDC guidelines. The table summarizes the opinion of the interviewees 265 

and the authors’ personal experience with the data.   266 

 267 

 268 

 269 

 270 

Representa-

tiveness 

 Mandatory for all geographic locations with at 

least one swine; 

There exist holdings with pigs not registered 

in the CHR. 

It is mandatory to register all movements 

of swine. 

Underreport of swine movements were 

verified, especially in small farms
a
. 

All herds using prescription-only drugs 

are present in VetStat. 

Usefulness 

 Traceability of animals; 

Risk-based selection of herds for diseases and 

welfare controls; 

Manure reports. 

Tracing back swine in an outbreak 

situation; 

Eradication and control programs at herd 

level. 

Research;   

Control of antimicrobial usage;  

Assist Veterinary Health Advisory 

Services. 

Simplicity 

1) Farmers or SEGES VSP staff update 

information online. 

Farmers or  SEGES VSP staff update 

information online; 

 Abattoirs upload data once a day. 

Pharmacists, veterinarians and feed mills 

introduce the data manually; 

2) Registrations are instantly available online 

(herd-level). 

Registrations are instantly available. 1-2 minutes (herd level); 

Hours (national level) 

Flexibility 

 Introducing new variables requires a change 

in the Danish regulations and an agreement 

with the IT company maintaining the system. 

Introducing new variables requires a 

change in the Danish regulations and an 

agreement with the IT company 

maintaining the system. 

Introducing new variables requires a 

change of the Danish regulations.  

Acceptability 

1) Infrequent updates; 

Herd type defined by the farmer; 

Number of weaners and finishers (in 

particular) may deviate from actual number; 

Precautions using CHR data as disease-

measuring tool. 

Precautions using SMD data as disease-

measuring tool. 

Incongruence between original aim and 

current use of the database; 

Precautions using VetStat data as 

disease-measuring tool. 

2) Widely used in combination with other 

databases to retrieve information on herd 

demographics. 

Used in combination with other databases 

to retrieve information on animal 

movement, e.g. may be used to track 

spread of disease.  
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Table 4: Data quality and system evaluation of four private databases for swine herds in Denmark.  271 

 272 

Data quality 

attribute 

 
SPF Laboratory Meat Inspection database 

Completenes

s 

1) The system generates emails 

reminding the farmer and 

veterinarians to collect samples. 

Missing information is allowed for some 

of the variables, but the systems will give 

warning messages if variables such as ID 

and results are missing, preventing the 

journal from being closed. 

The amount of data received weekly by the 

Classification Inspection is compared to the 

expected number of entries; Missing information 

on e.g. meat percentage may occur in up to 0.5% 

of the cases before a warning is given. 

2) Free text field to enter 

comments/information regarding 

the herd.  

For submissions made by other institutes 

(including experimental studies) the 

herd/farm ID is not required.  This 

represents very few submissions.  

 

Complete missing cases possible: unreadable 

delivery number tattooed on the ham or 

separation of the carcass from the gambrel; 

A maximum of six remarks can be registered per 

carcass. 

Validity 

 

1) 

Automatically retrieves information 

from CHR and laboratory data; 

Economic: SPF status influences 

the price of the swine sold by the 

farmer. 

Extra checks at insertion of data; 

Retrieves information from CHR; 

Pre-coded fields for data entry. 

Machine-generated values (meat quality); 

Pre-coded fields or free-typed text (veterinary 

remarks) depending on the system in the abattoir. 

2) No validation of the data. Integral quality documents including 

standard operating procedures (SOPs). 

Data are not double checked. 

 

3) Free text typing of owner names 

when emitting notifications. 

Free text for some variables, especially for 

pathology results. 

Difference in sensitivity among abattoirs [24]. 

Timeliness 

1) Overnight. Continuously as the laboratory results are 

available. 

Daily.  

2) Once a day, but may be corrected 

instantly during working hours. 

Instantly. 

 

The database receives registrations from all 

abattoirs daily/weekly depending on the abattoir. 

3) Instantly. 

 

The samples can be tested on the same day 

or can take weeks; 

 The bills with the results are sent in the 

same day or it can take several weeks, 

depending on the diagnostic test 

performed. 

Up to 1 week from slaughter until the farmer is 

paid. 
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Representati

veness 

 Results gathered for all SPF herds 

on a regular basis: 99% of breeding 

animals, 78% of sows and 34% of 

finishers in Denmark. 

80-90% of the total number of Danish 

commercial swine herds (estimated only 

by the interviewees and considering all the 

different diagnostic tests); 

A large majority of the herds tested based 

on serology results are SPF herds, whereas 

the number of submissions from non-SPF 

herds represents a lower percentage of the 

total of submissions and depends of 

several factors
 a
.  

98% of all swine slaughtered in Denmark 

(estimated by the interviewees). 

Usefulness 

 Health declarations; 

Eradication and control programs at 

herd level 

Diseases diagnostic,  monitoring and 

surveillance; 

Outbreaks detection; 

Eradication and control programs at herd 

level. 

Provide information for stakeholders to make 

decisions on relevant political issues. 

Simplicity 

1) Serology results from laboratories 

are introduced automatically in the 

system; 

Health status can be manually 

changed when needed and is 

available on the website. 

Serology results from  SEGES VSP are 

introduced automatically in the system; 

Serology results from DTU Vet entered 

manually or automatically; 

Results from necropsies and pathology 

results need some time to type the results. 

Once registered at the slaughter line, remarks are 

automatically transferred to the database in the 

Classification Inspection; 

No further data handling. 

2) Access to a small number of cases: 

1-2 minutes. 

Access to a large number of cases: 

several minutes.  

Access to a small number of cases: 1-2 

minutes. 

Access to a large number of cases: several 

minutes. 

Hours for download of a large amount of data. 

 

Flexibility 

 Easy to include new diseases and 

pathogens. 

Database managed by DTU vet: easy to 

change the information system to include 

new variables; 

Database managed by a private company 

for VSF-SEGES: difficult and costly 

(assuming the system implemented in 

2015). 

Requires a change of the Danish regulations and 

agreement with the IT company maintaining the 

system, which is costly; 

Demanding to change the system at the abattoir 

and to instruct technicians and inspectors. 

Acceptability 

1) Monitoring diseases and plan 

control and eradication programs at 

herd level;  

Precautions using SPF data as a 

disease-measuring tool. 

Monitoring diseases, plan control and 

eradication programs and enables 

monitoring of specific herds; 

Precaution should be taken when using the 

laboratory submission data as a proxy of 

diseases occurrence.  

Estimate true prevalence, sensitivity and 

specificity where possible; 

Enables evaluation of macroscopic disease lesions 

on a large proportion of Danish finishers/sows; 

Precautions using meat inspection data as disease-

measuring tool. 

2) Input data provided by different 

databases. 

Laboratory data has the potential to be 

merged with other databases, such as 

movement data and CHR (GIS systems). 
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a  
Based on authors personal experience with the data.  273 

Data quality is assessed based on eight attributes adapted from the ECDC guidelines. The column “Laboratory” covers information from the 274 

laboratory at the National Veterinary Institute, Technical University of Denmark (public), as well as the laboratory at the SEGES Pig 275 

Research Centre (private). The table summarizes the opinion of the interviewees and the authors’ personal experience with the data.276 
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Discussion 277 

In this study, we assessed possibilities of using routinely collected and registered swine health related 278 

data for integrated disease surveillance purposes. In addition, we presented a qualitative approach 279 

derived from existing guidelines to evaluate data quality in existing databases, exemplified in the study 280 

of seven Danish swine databases. 281 

 282 

CHR 283 

CHR data are extensively used in combination with other databases, for example swine movements, 284 

retrieval of information on herd demographics for laboratory data, standardization of antimicrobial use 285 

[5] and the selection of farms for risk-based farm visits evaluating welfare [27]. The integration of 286 

databases may have the advantage of minimizing the risk of typographical errors, yet it also means that 287 

incorrect information in one database is transferred to others. It is therefore of paramount importance 288 

that data stored in the CHR are correct. A number of automated procedures have been implemented to 289 

ensure the completeness and validity of CHR data (Table 3). However, not all variables are equally 290 

valid, e.g. the classification of production type is registered as perceived by the farmer, which may lead 291 

to misclassification bias. One farmer may define the herd as a production herd, while another would 292 

call it a hobby herd. As a consequence, using this classification to identify target farms for disease 293 

monitoring and surveillance can be problematic.  294 

The frequency of updates in the CHR is irregular (timeliness, Table 3). According to legislation, 295 

updates should be performed at least once or twice per year, depending on the farm size. However, the 296 

farmer is able to update more often, which may lead to diversity in the precision of registration between 297 

farms. According to the interviewees and the authors, the number of sows may be more reliable than 298 
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the number of weaners and finishers. In addition, CHR data are related to the manure reports, where the 299 

number of animals must correspond to the area of land use [28] favouring a low number of registered 300 

swine. However, the CHR data are also used in the yellow card scheme, where a high number of swine 301 

may favour a reduced estimation of the average antimicrobial use per each of the three age groups; 302 

sows, finishers and weaners. Despite that all farms should be registered in CHR, it was not possible to 303 

estimate the actual completeness of the database. However, there is a general belief in authorities in 304 

Denmark, including an acceptance of the need to register in public databases. Furthermore, since CHR 305 

data are used for many purposes, we must assume that farms not registered in CHR do exist; they are 306 

few, with a low number of swine and of limited importance.  307 

 308 

SMD 309 

As for the CHR, no studies have been performed quantifying the completeness of the SMD. However, 310 

the authors verified that some inward movements are underreported, especially in small farms. This 311 

means that either the registration in the CHR or the lack of registration of inward movements were 312 

incorrect. Furthermore, a considerable number of farms do not register the movements of swine within 313 

the required seven days (based on authors personal experience), thus the timeliness of the database is 314 

not always reliable. A delay in the timeliness is mostly important for traceability during outbreaks of 315 

disease. In such a situation, all farmers are obliged to update their registrations at once, and therefore 316 

the influence of this delay is expected to be limited. 317 

 318 

 319 

 320 
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VetStat 321 

At the time of purchase, antimicrobial products are registered in VetStat for a specific age group and 322 

the diagnostic group of primary interest, as estimated by the veterinarian. However, in practice 323 

antimicrobial products may be used for other age and/or diagnostic groups than the ones stated 324 

(personal communication Laura Mie Jensen, DVFA). Diagnostic groups are defined as  325 

reproduction/urogenital, udder, gastrointestinal, respiratory, joints/limbs/CNS/skin or metabolic 326 

disorders [20]. As such, one may expect the amount of antimicrobials prescribed for a specific 327 

diagnostic group to indicate the level of clinical disease for that particular group. Likewise, VetStat 328 

holds registrations on purchase of vaccines and pain killers, which may also indicate clinical disease. 329 

However, four issues bias this expected correlation between use of antimicrobials and presence of 330 

clinical disease. Firstly, antimicrobials may be used as methaphylaxis and thereby targeting the 331 

treatment of animals prior to clinical disease [29]. Secondly, some categories of registration in VetStat 332 

are more diverse (e.g. joints/limbs/CNS/skin) than others (e.g. respiratory). Thirdly antimicrobials may 333 

in practice be used for other disease groups than the one registered. And finally we do not know when 334 

the animals are treated, except assuming that the antimicrobials have been used in the time frame 335 

between two purchases of a similar product.  336 

As antimicrobials are quantified as standardized dosages (in Denmark, ADDs) based on standard 337 

weights of the animals, the variation in weights within the specific age groups influences the calculated 338 

ADDs. As sows and piglets are defined as one single group called “breeding animals/piglets”, the 339 

estimated number of treated animals (ADDs) in this group is expected to deviate more from the actual 340 

number of treated animals (standard weight 200 kg) than in the groups “weaners” (15 kg) and 341 

“finishers” (50 kg). Additionally, antimicrobial use by the farmer is influenced by factors not related to 342 

the level of disease, such as changes in legislation [4], prices of products [30], campaigns run by the 343 
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pharmaceutical companies and his personal threshold for initiation of treatment. As such the use of 344 

VetStat in disease surveillance has its limitations, when data simultaneously are used as a tool of 345 

control, e.g. in the Yellow card system.   346 

 347 

DTU-Vet lab and SEGES VSP lab 348 

For laboratory data, validity may be compromised by limitations in the system, specific changes or 349 

untrained individuals entering registrations. In particular, a wide range of issues related to coding may 350 

occur, such as errors, variation throughout time, incompleteness [12] and changes in the sensitivity and 351 

specificity of diagnostic tests. Furthermore, ongoing national monitoring and surveillance programs, 352 

compulsory as well as voluntary, outbreak investigations and eradication programs will affect 353 

representativeness over time. As an example of a voluntary monitoring program, the frequency of 354 

samples sent to the laboratory for testing PRRS in Denmark varies with the SPF status of the herd [31]. 355 

Moreover, the frequency of testing depends on the value of the animal and not only on the disease 356 

impact [32]. Also in case of a new disease occurring, veterinarians tend to send more diagnostic 357 

material to the laboratory. As a result, the veterinary practitioners focus on specific diseases may vary 358 

over time and thereby affect the number of submissions sent to the laboratory. Another limitation of 359 

using these data is that a herd tested positive based on a serological diagnostic test might be an 360 

indication of previous rather than active infection, as antibodies against a specific disease might persist 361 

long time post-infection, as for example with PRRS [33]. Furthermore, data from the two laboratory 362 

databases might underestimate the level of disease, as some veterinarians might choose to send the 363 

samples to laboratories abroad. 364 

 365 

 366 
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SPF system 367 

The SPF system is a good example of how laboratory diagnostic information can be automatically 368 

integrated with variables from other databases. However, in relation to representativeness, it only 369 

covers herds registered in the SPF System. SPF herds have often been characterized by good health and 370 

biosecurity, while the opposite is not necessarily true for non-SPF herds, since farms can adopt SPF 371 

biosecurity rules, while disregarding the serological testing for SPF diseases. Moreover, as discussed 372 

for the laboratory data, positive results based on serology might not be an indication of active infection, 373 

but a result from previous exposure to the disease. Furthermore, the farmer may choose to accept a 374 

positive status for a specific disease on the farm in order to be able to import swine from another 375 

positive farm, or to accept a positive status once the farm has got it, because it is too expensive to 376 

regain negative test status. 377 

 378 

Meat Inspection database 379 

Meat inspection data have previously been shown to have low sensitivity [3], possibly due to variation 380 

in the stage of lesions presented at slaughter [34]. Since the reformation of slaughter codes in 2009 381 

[35], courses have been held targeting a standardized assessment of carcasses in different abattoirs. 382 

However, follow-up courses may be needed regularly to maintain similar assessment criteria. The 383 

variation in registrations among abattoirs might also be explained by variation in the configuration of 384 

terminals, where some abattoirs use pre-typed codes, while digits must be typed in separately in other 385 

abattoirs. Furthermore, validity can be influenced by changes in staff, abattoir procedures [3] and may 386 

differ between disease categories due to a low sensitivity [36,37]. In addition, the speed of the slaughter 387 

line leaves no time for double-checking, or retrospective updates. Changes in disease codes [35,38] and 388 
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legislative actions can influence the content of the database as seen in Switzerland [39] and complicate 389 

the comparison of meat inspection data throughout time.  390 

 391 

General discussion 392 

The comparison of observations over time is a key feature of incorporating these data into a 393 

surveillance system, since retrospective analysis using historical data is required by many of the 394 

statistical quality control methods used for disease surveillance in human and veterinary sciences 395 

[2,40,41]. It is therefore of the utmost importance to be aware of changes in the databases that may 396 

affect the attributes described in Table 3 and 4.  397 

Completeness and timeliness have definitely improved over time in the CHR, as data collection has 398 

been updated from a written mailed questionnaire of several pages to an electronic online version. 399 

Despite of this improvement, the frequency of updates in the CHR still a limitation. For other databases 400 

such as VetStat and the Meat Inspection database, the time between data entrance and its availability 401 

(timeliness) is a limitation for using disease data as a (near-)real time disease monitoring tool. 402 

Likewise, the time between the samples are received and the results are available in the database also 403 

depends on the type and number of laboratory diagnostic tests requested, and it can be a weakness 404 

when using these data for disease monitoring and surveillance.     405 

Validity has been improved by merging data from several sources and linking the results to the 406 

economic interests of the farmer. For example, VetStat and CHR have been combined and used in the 407 

Yellow Card legislation [5]. Farmers and veterinarians are now aware that incorrect information in one 408 

of these registers may result in the herd exceeding the antimicrobial threshold value and being put 409 

under restrictions. In general, the validity of databases tends to improve, when the advantages are 410 

apparent to the farmer (such as having an SPF certificate for commercial purposes), or when incorrect 411 
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registrations have negative consequences (e.g. the influence of both VetStat and CHR registrations on 412 

the Yellow Card scheme, while errors in laboratory diagnosis can result on commercial restrictions for 413 

farmers). Another means of improving validity could be to increase the quality of data entered into the 414 

system, for example by means of specific automated data checks.  415 

The representativeness of the data is a key attribute for data quality. It is important that the data are 416 

representative of a population over time in order to monitor disease occurrence. For the laboratory data 417 

and the Meat Inspection database, only a proportion of the population is registered daily/weekly, 418 

mainly representing red SPF herds and finisher herds, respectively. This is a limitation when 419 

monitoring disease occurrence and trends on a national scale.  420 

 421 

Methodology 422 

The ECDC guidelines [9] were adapted to meet the requirements of veterinary databases, in order to 423 

monitor data quality and to evaluate surveillance systems. However, the ECDC guidelines include the 424 

assessment of quantitative measures, which would require extensive resources (including IT experts) to 425 

quantify each ECDC attribute for a large number of variables. Therefore, we opted for a qualitative 426 

approach to standardize the evaluation of seven diverse databases. The qualitative approach resulted in 427 

an overall assessment of pros and cons for the individual databases. Although interviews were 428 

standardized by using a questionnaire, bias of the results could not be entirely avoided due to influence 429 

of personal experience of the interviewees with the data. To overcome this issue, we included 430 

stakeholders from all institutions with experience and interest in the databases. However, inclusion of 431 

quantitative measures could have reduced the effect of personal agendas, but it would have required 432 

substantial resources or limited the number of databases evaluated. An alternative qualitative approach 433 

is the analysis of strengths, weaknesses, opportunities and threats (SWOT analysis), which has been 434 
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applied by Stärk and Nevel [42] to evaluate four databases used to monitor swine health in England. 435 

However, the ECDC guidelines were designed specifically to evaluate disease surveillance systems and 436 

their data quality, including specific quality key attributes, which can be used for both qualitative and 437 

quantitative data quality assessment. Since the ECDC guidelines describe a systematic approach 438 

specifically designed to evaluate data quality, we regard this to be an optimal approach for data 439 

evaluation.  440 

 441 

Suggestions for data quality improvement  442 

Improving data quality for disease monitoring and surveillance requires that the identified challenges 443 

are addressed. The CHR and SMD are restricted to the traceability of swine and to predict how the 444 

disease might spread. To improve data quality in CHR register, clear guidelines regarding the 445 

categorization of herds on the registration page might reduce misclassifications. Also, the development 446 

of mobile phone applications in order to continuously update the number of animals within the herds 447 

could be worth considering to improve the accuracy of the CHR. An improvement of the SMD could 448 

include the age group of the moved swine. This variable is included in the CHR and VetStat, hence the 449 

farmer is used to asses which age group his swine belong to. For disease surveillance purposes, the data 450 

registered in VetStat should register the date of treatment and not the date of prescription, requiring 451 

direct reports from farmers to VeStat and as consequence new IT solutions. This would allow us to 452 

improve the quality of the data used with the potential to monitor changes in consumption. In order to 453 

use antimicrobial treatment as a proxy for disease occurrence the population and time at risk must be 454 

known. Therefore, an improvement of VetStat would be to include information on the duration of 455 

treatment, the number of swine treated and an average weight at the time of treatment. However, these 456 

registrations would need to be done by the farmer himself, and would most likely lead to a reduction in 457 
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both completeness and validity as the demand for registration increases. To improve validity of VetStat 458 

data in its current state, it would be recommendable to separate the age group “breeding 459 

animals/piglets” into two separate categories, as there are major weight differences among piglets and 460 

breeding animals. Another suggestion to improve validity would be to have precoded-fields for data 461 

entry or to link data entry instead of free-typing text (VetStat, table 3) with information from the CHR 462 

register, to avoid registration of drugs for non-existing CHR numbers. 463 

 464 

Perspectives of using the databases for monitoring and surveillance swine diseases in Denmark 465 

To what extent the seven databases can be used as indicators of swine diseases varies; these databases 466 

contain information, which can be used in different steps of disease monitoring and surveillance, 467 

including 1) data monitoring, 2) defining control and preventive measures, and 3) follow-up.  468 

Over the last decade, the increasing availability of electronic records collected actively or passively led 469 

to the development of new analytical and modelling tools. It is believed that using large volumes of 470 

data will improve the timeliness of epidemiological information, resulting in more accurate disease 471 

surveillance [43].  472 

The combination of multiple data streams from different databases can be used as a multivariate 473 

surveillance approach, in which several processes are analysed in parallel or combined [44]. To our 474 

knowledge, this approach has not been applied in veterinary sciences. Further epidemiological research 475 

will be needed to evaluate and purpose the best approach for monitoring changes in the data that could 476 

indicate spread of disease. This depends on the targeted disease (emerging vs endemic) and on the 477 

choice of the study unit of disease monitoring and surveillance (herd, regional, national level).  478 

 479 

 480 
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Conclusions 481 

The present study describes and evaluates data routinely collected and registered in seven Danish swine 482 

databases and discuss suggestions for improvement and integration of data. In addition, we present a 483 

qualitative approach derived from existing guidelines to evaluate data quality in existing databases.  484 

A number of limitations and potentials for disease monitoring and surveillance were identified and 485 

described for the databases. A general finding was that the validity of the databases tended to improve, 486 

when registrations were interrelated with other databases and are of economic interests to the farmer. 487 

Completeness and timeliness of the data have improved with the use of electronic registrations. 488 

However, infrequent updates and delays between data entrance and its availability (timeliness) is a 489 

limitation for using some of the databases as (near-)real time disease monitoring tool. Additionally, the 490 

population coverage (representativeness) varies over time which is a limitation when monitoring 491 

disease occurrence and trends on a national scale.  492 

Despite of the limitations, the combination of these databases has potential to improve diseases 493 

surveillance in Denmark. Further research is needed to explore and evaluate different statistical 494 

monitoring methods, which allows to include different data sources.     495 
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Additional file 1- Questionnaire used during the interviews  627 

Part I - System/database overview 628 

1. What is (/was) the (original) objective of the database?  629 

a. Where is it described? 630 

2. Which data sources are used? (veterinarians, farmers, laboratory, etc.) 631 

3. For what purpose/s is/are these data being used? 632 

4. Which disease surveillance programs are based on this database? (N/A in some cases) 633 

5. Is the data gathered from all Danish pig herds?  634 

6. Is the data compulsory or collected voluntarily? 635 

a. If voluntary: What type of farmers / economic advantages or costs are related to 636 

participation? 637 

7. Who is responsible for gathering the information? (data sources) 638 

8. Who is responsible for entering the data into the system? (data entry) 639 

9. What specific information is being recorded? (where is it described?) 640 

10. Who administers the database? (data operators) 641 

11. Who has access to the database and who extracts the data? Is it the same person? 642 

12. How is the data stored in the system? Integrated or relational? Is it connected to other databases 643 

(e.g. GLR-CHR-VetStat (and movement?) are apparently part of the same database)? 644 

13. Are there any reports produced based on the data? 645 

a. If so, how often are they produced? 646 

 647 
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Part II - Data quality and system structure evaluation 648 

Completeness  649 

14. Does the system give a warning if information is missing? For example, if you should collect 650 

information from 18 herds and you only have information for 4 herds? 651 

15. Does the system allow “missing information”, when a registration is typed in? 652 

16. Can you describe and give examples of missing information from different variables for cases 653 

registered in the database?   654 

Validity 655 

17. Is anyone responsible for checking and validating the data delivered to the database compared 656 

with the case (external validity)? 657 

a. If yes, who? Data operator / manager? Same person every time?  658 

b. How often is this performed? 659 

c. What does this data check include (random or same check every time)? 660 

d. What actions are taken if an error is found? 661 

18. Is anyone responsible for checking and validating the data in the database (coding errors: 662 

internal validity)? 663 

a. If yes, who? Data operator / manager? Same person every time?  664 

b. How often is this performed? 665 

c. What does this data check include (random, or same check every time)? 666 

d. What actions are taken if an error is found? 667 
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19. Which coding errors can be found in the database? Please give examples of variables with 668 

coding errors.  669 

20. When data is entered into the database, is it recorded using pre-defined codes used in the system 670 

(words) for all variables, or is it “free” typing text/numbers? 671 

Timeliness 672 

21. How often is the database updated? 673 

a.  Does this happen before / after the eventual data checks?  674 

22. How much time passes between the data becoming available and being uploaded to the 675 

database?  676 

23. How much time passes between data entry and its subsequent use? 677 

24. Has the database been exposed to any major changes, or is it possible to compare data 678 

throughout time? 679 

Representativeness 680 

25. What proportion of the population is covered by the system (can be expressed in numbers or 681 

percentages)? 682 

Usefulness 683 

26. Can you indicate action plans taken (such as disease control/eradication programs) based on 684 

information originating from the system/database?  685 

27. Are the data being used for specific purposes such as reports, research or other? 686 

a.  Are these in agreement with the original purpose of the database? 687 
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Simplicity 688 

28. How much time does it take to load the data into the system? 689 

29. How much time does it take to have access to the data in the system? 690 

Flexibility  691 

30. How easy/time-consuming is it to adjust information in the system? 692 

31. Is it possible to add new codes/variables into the system? 693 

32. Can you please give examples of situations where new codes/variables were introduced in the 694 

database? What implications did this have (e.g. was it necessary to create a completely new 695 

system)? 696 

33. How easy/time-consuming is it to expand the system, for instance to include new data (new 697 

variables)? 698 

Acceptability 699 

34. Do you think that these data can be used for monitoring pig diseases? 700 

35. Do you think that is it possible to combine these data with other databases for monitoring pig 701 

diseases? What are the eventual implications of combining with other databases? 702 

 703 

 704 

 705 

 706 

 707 

 708 
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 709 

Additional file 2 – Dataflow in the databases 710 

CHR 711 

It is the responsibility of the herd owner to register the herd and keep the records up-to-date. Depending 712 

on their size, existing herds must update their records once or twice (for large herds, i.e. swine herds 713 

>300 sows, >3,000 finishers or >6,000 weaners [17]) a year. Establishment of a new swine herd or the 714 

inclusion of an additional age group must be registered within 7 days, and closure of a herd no later 715 

than 6 months after removal of the last pig. 716 

Farmers can register online [45] or ask SEGES (Aarhus N) to do it for them. The majority of data are 717 

instantly available to the public on the website. Computer-generated logical checks and follow-up 718 

letters are generated on a daily/weekly basis using registrations in the database. Examples of such 719 

checks include: swine herds holding swine, but without movements, or swine herds with no registered 720 

swine or movements. 721 

 722 

SMD 723 

Data are entered either by automatic upload or manually through an interface. Data are available 724 

instantly when entered through an interface, while uploading occurs twice a day. All movements must 725 

be recorded within 7 days. The data can be corrected by the person that entered them, or by the 726 

authorities. The receiving farm is responsible for registering the movements. However, in cases where 727 

swine are exported outside of Denmark, the farm of origin is responsible for the registrations. 728 

The number of swine moved, the date and time of movement, the CHR and herd number of sender and 729 

recipient, the registration number of vehicle, and the number of the trade certificate for the movement 730 
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are registered in the SMD [19]. The trade certificate is an official document that follows the swine. 731 

Furthermore, movements of dead swine to rendering are recorded as number of containers (primarily 732 

used for weaners, swine from 7-30kg) or number of dead sows or dead finishers (swine from 733 

30-100 kg) [19]. 734 

Reports on the movement of specific herd numbers are publicly available via the website [46]. 735 

 736 

 737 

VetStat 738 

All purchased prescription-only veterinary drugs are registered in VetStat.  739 

Upon arrival at the pharmacy or feed mill, the prescription is typed in free text and is automatically 740 

recorded in the system at the same time as payment is made. Pharmacy procedures include thorough 741 

checks of all delivered drugs. All registrations made by pharmacies are automatically transferred to the 742 

Danish Health Authorities, who ensure that human and veterinary registrations are separated. 743 

Veterinary registrations are forwarded to the IT company handling VetStat, but the number of records 744 

is not checked, and some registrations may not be delivered to VetStat until the 10
th

 day of the 745 

following month. A warning appears if VetStat has not received any registrations from the largest 746 

pharmacies within a month. In contrast, veterinarians and feed mills must actively register records on 747 

purchased veterinary drugs, which is possible in 4 different ways: 1) Through the IT system of the 748 

veterinary practice; 2) Registration on paper sent to DVFA; 3) Uploading a file on the VetStat website; 749 

4) Registration directly on the VetStat website. Veterinarians are able to use methods 1-4 and feed 750 

mills can use methods 3 and 4. Registrations by veterinarians and feed mills must be registered no later 751 

than the 10
th

 day of the month following purchase. Initially, all data arrive at the IT company handling 752 

VetStat and are then merged with CHR data for use in Yellow Card calculations [5]. Data are 753 
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subsequently reloaded into VetStat. Only herds with a  Veterinary Health Advisory Contract (VAC) 754 

[50] are included in the Yellow Card program [5]. Summary statistics are generated using data from the 755 

month before the previous one to ensure that all data are present in the database at the time of 756 

calculation. 757 

 758 

DTU-Vet lab and SEGES VSP lab 759 

After receiving the samples (organic material for analysis), the laboratory technicians are responsible 760 

for creating the journal (case file), including registration of the sample ID, CHR number, farmer 761 

identification and veterinarian. The information is then checked by a second individual. Depending on 762 

both the diagnostic test performed and the system, the results are transferred automatically to the 763 

system or are entered manually. Academic staff is responsible for validating the results. Depending on 764 

the type of diagnostic test performed, the results are available on the same day (i.e. serology) or within 765 

several days or weeks (i.e. histopathology, bacteriology). The results are reported to clients by email or 766 

letter. In cases where individual samples are missing results, the system gives a warning and will not 767 

allow for closure of the journal.   768 

 769 

 770 

SPF system 771 

Laboratory diagnostic results from SPF herds are retrieved automatically on working days from DTU-772 

Vet and VSP-SEGES. The system generates an alarm if SPF herds are classified as positive for a 773 

disease that does not correspond to the current SPF herd status. In these cases, the results are checked 774 

manually and decisions to change or keep the health status are made. During working hours, changes to 775 

the herd health status are updated immediately on the SPF website.  776 
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The SPF system also includes data on Salmonella for all Danish swine herds. For breeding and 777 

multiplier herds, the Salmonella index is calculated based on serological testing. For herds delivering 778 

more than 200 finishers annually, the Salmonella level is retrieved from the Zoonosis Register. The 779 

salmonella level is calculated each month by serological testing of “meat juice” (drip fluid released 780 

from meat after freezing and thawing).    781 

The system also gathers data related to swine movements. A Danish animal trade company, SPF-782 

Denmark (SPF-DANMARK), plans and performs swine movements, taking into account the SPF status 783 

of the herds. The company provides information on the farmer’s name, address and the number of 784 

finishers and sows to the SPF register1. The number of weaners is retrieved from the ear-tag register. 785 

The system generates an alarm if animals with a certain health status are sold to herds with a higher 786 

health status.  787 

Furthermore, information about the Danish Standard (SEGES - Videncenter for Svineproduktion) is 788 

also available in the SPF system. The requirements for Danish swine farmers should correspond to the 789 

regulatory and industry requirements. These requirements are described in the Danish Product 790 

Standard. An independent company carries out audits (inspections) in the herds. This information is 791 

also available on the SPF website and includes 100% of all Danish swine herds.  792 

 793 

Meat Inspection database 794 

Upon arrival at the abattoir, all swine are checked ante mortem by the official veterinarian to determine 795 

cases of welfare violation or signs of OIE-listed diseases [24].  796 

After slaughter, each carcass is associated with a specific gambrel number, to which the following 797 

information is registered: abattoir ID, date of slaughter, slaughter number, originating CHR number, 798 

                                                           
1
 Information on movements is also registered in the SMD. 
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delivery number, carcass weight, meat percentage, price, sex, up to ten (six in practice) different 799 

veterinary remarks, measure of fat and meat depth, meat and if necessary skatole (boars only). The 800 

delivery number is used to identify the herd of origin at all times during the slaughtering process. 801 

The majority of registrations are measured and recorded automatically. Only veterinary remarks are 802 

registered manually by the technician on the slaughter line or the veterinarian at the site of re-803 

examination.  804 

 805 

 806 
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Abstract

Background: Porcine reproductive and respiratory syndrome (PRRS) has been a cause for great concern to the
Danish pig industry since it was first diagnosed in 1992. The causative agent of PRRS is an RNA virus which is divided into
different genotypes. The clinical signs, as well as its morbidity and mortality, is highly variable between herds and regions.
Two different genotypes of PRRS virus (PRRSV) are found in Denmark: type 1 and type 2. Approximately 40 % of Danish
swine herds are seropositive for one or both PRRSV types. The objective of this study was to describe the temporal trend
and spatial distribution of PRRSV in Danish swine herds from 2007 to 2010, based on type-specific serological tests from
the PRRS surveillance and control program in Denmark using the results stored in the information management system
at the National Veterinary Institute, Technical University of Denmark (DTU Vet).

Results: The average monthly seroprevalence of PRRSV type 1 was 9 % (minimum of 5 %; maximum of 13 %) in
breeding herds, and 20 % (minimum of 14 %; maximum of 26 %) in production herds; PRRSV type 2 had an average
seroprevalence of 3 % (minimum of 1 %; maximum of 9 %) in breeding herds and of 9 % (minimum of 5 %; maximum
of 13 %) within production herds. The seroconversion rate followed a similar and consistent pattern, being higher for
type 1 than for type 2 for both PRRSV types. Regarding the spatiotemporal results, the relative risk distribution maps
changed over time as a consequence of the changes in PRRSV seroprevalence, suggesting a general decline in the
extent of areas with higher relative risk for both type 1 and 2. Local spatial analysis results demonstrated the existence
of statistically significant clusters in areas where the relative risk was higher for both herds.

Conclusions: PRRSV type 1 seroprevalence was constantly higher than for PRRSV type 2 in both herd types. Significant
spatial clusters were consistently found in Denmark, suggesting that PRRSV is endemic in these areas. Furthermore,
relative risk distribution maps revealed different patterns over time as a consequence of the changes in seroprevalence.

Keywords: PRRSV, Laboratory submission, Spatiotemporal, Seroprevalence, Serocovertion rate

Background
Porcine reproductive and respiratory syndrome (PRRS)
causes significant financial losses for the pig industry in
Europe, United States (US) and Asia [1-5].
The causative agent of PRRS is an RNA virus [6, 7], the

PRRS virus (PRRSV), which is divided into genotypes: type

1 and type 2, previously known as European and North
American strains, respectively [8]. The severity of the
diseases is highly variable between herd as a result from
immunological factors, herd management and the patho-
genicity resulting in different clinical signs, morbility and
mortality rates [9, 10].
The first Danish case of PRRSV type 1 was diagnosed

in March 1992 in a sow herd located in southern
Denmark [11]. A voluntary PRRSV control program was
established in 1996 by the Federation of Danish Pig
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Producers and Slaughterhouses in order to reduce the
spread of the virus. Initially, a national serological screen-
ing based on an DTU Vet (National Veterinary Institute,
Technical University of Denmark) “in-house” Blocking
Enzymed-Linked Immunosorbent Assay (ELISA) and
Immunoperoxidase monolayer assay (IPMA) was carried
out, which demonstrated that the seroprevalence of PRRSV
type 1 in Danish herds was 33 % [12]. This screening did
not reveal the presence of PRRSV type 2. The second step
included vaccination of 1100 herds with a modified-live
PRRSV type 2 vaccine, between 1 July and 1 October 1996.
The vaccine was approved by the Danish Health author-
ities from 1 July 1996 and licensed for use in pigs between
3 and 18 weeks old. However, this vaccine had already been
used in October 1995 to vaccinate all boars entering
artificial insemination stations [13]. This procedure was
performed in quarantine units with special permission
from the Danish authorities. Following approval in 1996,
the vaccination was not only carried out in PRRSV sero-
positive herds, but also in many herds that had no clinical
symptoms of PRRS.
In 1997, PRRSV type 2 was isolated for the first time in

Denmark from fetuses, dead piglets and sows, suggesting
transplacental infection had occurred after PRRSV infec-
tion of pregnant sows. In addition, non-vaccinated Danish
herds previously uninfected with PRRSV type 1 had
become infected with the vaccine-like PRRSV. The PRRSV
type 2 virus was also spread from artificial insemination
centers in semen, by introducing vaccinated animals to
herds, and by airborne transmission to PRRS-free and
non-vaccinated herds [13].
Despite disease control efforts in Denmark, PRRS con-

tinues to contribute towards the economic losses associ-
ated with mortality in piglets, respiratory problems in
growers and finishers, and reproductive problems in sows.
Furthermore, previously full sequencing of PRRSV type 1
and type 2 [14, 15], demonstrated a high variance in several
genomic regions in the PRRSV type 1 strains circulating in
Denmark, further complicating the control of the disease.
Currently, the between-herd seroprevalence of PRRSV in
the Danish pig population is considered to be around
40 %, based on the number of herds with a known status
(unpublished data). Spatial and temporal analysis can be
used to identify the location, shapes and sizes of potential
diseases outbreaks [16].
The spatiotemporal description of PRRS based on labora-

tory data might help decision makers to re-evaluate their
conclusions on the spread of the disease and assess the effi-
ciency of the implemented control strategies. DTU Vet was
the only laboratory in Denmark to perform serological tests
for PRRS virus from 2007 to 2010. Using only the data
from 2007 to 2010 would therefore allow us to study the
spatiotemporal occurrence of PRRS. This analysis will allow
us to characterize changes in the PRRSV seroprevalence

and seroconversion rate, and to assess the spatial distribu-
tion of PRRSV seropositive herds, facilitating control of the
disease on local and regional basis, e.g. by changing man-
agement routines, trade customs etc. and make a descrip-
tive analysis and find patterns, clusters, etc to make help
prioritize funds for controlling these diseases.
The objective of the present study was to describe the

temporal trend and spatial distribution of both PRRSV
types in Danish breeding and production herds from
2007 to 2010.

Methods
Data description
The Specific Pathogen Free (SPF) System was imple-
mented in Denmark in 1971. It is a voluntary health
program with established rules for monitoring Enzootic
pneumonia, Porcine pleuropneumonia, Swine dysentery,
Atrophic rhinitis, PRRS, mange and lice [17]. This program
is primarily based on serological testing performed on a
regular basis according to the herd type: the breeding
herds (including nucleus and multiplier herds) are tested
on a monthly basis and are classified as “red” herds; the
production herds (including farrow-to-finisher and finisher
herds) are tested every 12 months and classified as “blue”
herds. The “red” and “blue” are designation used within
the SPF system to classify the herds according to its herd
health status. For each testing is necessary to take individ-
ual blood samples from 10 animals (5 gilts and 5 sows)
and from 20 animals randomly selected within the herd for
the red and blue herds respectively (personal communica-
tion, C.S. Kristensen, 2014). The SPF herds represent about
40 % of all Danish swine herds, but since many large farms
are enrolled, 73 % of the Danish sows are included [18].
The laboratory submissions are requested according to

the SPF status of the herd. For non-SPF herds, the veter-
inarians can decide which serological test to request,
and at what interval. The outcome of this decision will
depend on the overall objective and the costs associated
with the different serology tests.
Laboratory submissions stored in the DTU Vet informa-

tion management system in the period from 1 January
2007 to 31 December 2010 were extracted. Each laboratory
submission consisted of individual blood samples collected
from the same herd on the same day. Only submissions
with between 2 and 60 individual blood samples tested by
serological tests ELISA and/or IPMA for one or both
PRRSV strains were included in the analysis. A total of
27,854 laboratory submissions tested for PRRS at the
National Veterinary Institute were included in the analysis,
representing a total of 879,327 serological tests performed
on 404,029 individual blood samples collected from a total
of 4702 Danish swine herds.
The laboratory submissions were merged with the SPF

system database in order to classify the herds into
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breeding and production herds. All red herds in the
SPF system database were classified as breeding herds
(N = 264); the remaining herds (blue SPF herds and
non-SPF herds) were classified as production herds
(N = 4438). The herd classification was year-specific
since the SPF health status can change over time.

Ethics approval
The study was conducted using surveillance data and
did not involve experiments on animals. The serum
samples used for the study were obtained from blood
samples voluntarily collected for monitoring PRRS. From
an ethical perspective, all of the material collected and
used as part of this study was outside the scope of
Directive 2010/63.

PRRSV status
The herd PRRSV status in each laboratory submission was
defined based on the cut-off for individual blood tests, in
addition to the herd-level cut-off, which establishes the
proportion of PRRSV seropositive samples (i.e. animals)
within the herd. This approach was performed due to the
recognized cross-reactivity between serological tests for
the two PRRSV types [19], and the possible co-existence
of PRRSV type 1 and 2 within herds [20].
For herds with more than one submission per month,

the latest submission within the month was used to clas-
sify the herd.

Individual blood samples classification
At DTU Vet, in-house ELISAs and IPMAs were used to
test for PRRSV antibodies, enabling us to distinguish be-
tween PRRSV type 1 and PRRSV type 2 specific antibodies.
The blocking ELISAs were performed according to

[19, 21]; ELISA plates were separately coated with
either PRRSV type 1 or 2 antigens, and the individual
test serum samples were added to both the type 1 and the
type 2 ELISA-plates. After incubation with the samples,
biotinylated polyclonal swine-IgG directed against either
PRRSV type 1 or 2, respectively, was added to the plates.
For final development, peroxidase conjugated streptavi-
dine and TMB were used, and colorimetric reactions were
then measured based on optical density (OD). Results
were considered positive if the OD% ≤44. Both ELISAs
were run in parallel for the same sample and if the test
result was positive for at least one type, the type 1/type 2
ratio was determined based on the obtained OD values in
order to distinguish between the two PRRSV types. Ratios
below 1.3 indicated the presence of type 1 PRRSV whereas
ratios above 1.9 was an indication of type 2 [19]. Ratios
between these values did not allow for distinction between
the two PRRSV types.
The IPMA technique is described by [11]. In summary,

the IPMA plates were prepared with MARC-145 cell

lines, fixed with either PRRSV type 1 or 2 [21]. These
plates were then incubated with serial sample dilutions
from 50 to 6250. The enzyme peroxidase was used to
catalyse a chemical reaction to color PRRSV specifically
stained cells, and the plates were examined under a
microscope. Specific staining of infected cells indicated
the presence of PRRSV antibodies.
Serological tests with missing results in the database

were excluded from the analysis (N = 6202).
Each individual blood sample was classified as PRRSV

type 1 seropositive, PRRSV type 2 seropositive, PRRSV
type 1 and 2 seropositive or seronegative according to the
following criteria:

� Samples only tested by IPMA were classified
according to [21];

� Samples tested by both ELISAs were classified based
on the ratio type 1/type 2 according to [19];

� Samples with ratios between 1.3 and 1.9, were
classified as both PRRSV type 1 and 2 seropositive;

� For samples tested by ELISA and IPMA, the IPMA
results were prioritized in order to identify the
PRRSV type;

� Samples tested only against one PRRSV strain by
ELISA or IPMA were classified based only on those
results.

Herd-level PRRSV classification
The herd-level PRRSV status was defined based on the
number of PRRSV seropositive samples as suggested by
[22]. The number of individual blood samples tested by
ELISA and IPMA to classify the herd PRRS status varied
according to the total number of individual blood sam-
ples tested per herd.
For herds with animals tested for both strains by IPMA,

the classification was made following a comparison of
titers in IPMA-PRRSV type 1 and IPMA-PRRSV type 2 in
each individual sample. Herds were defined as PRRSV type
2 seropositive if the number of individual blood samples
with IPMA-PRRSV type 2 ≥ IPMA-PRRSV type 1 per sub-
missions [number of individual blood samples tested per
submission] was equal or higher than 2 [2–5], 3 [6–15], 4
[16–18], 5 [29–35], 6 [36–45] and 7 [46–60]. Herds were
defined PRRSV type 1 seropositive if the number of indi-
vidual blood samples with IPMA-PRRSV type 1 > IPMA-
PRRSV type 2 was equal or higher than 2 [2–7], 3 [8–15],
4 [16–29], 5 [30–45] and 6 [46–60]. For those submissions
where IPMA was used to test for only one PRRSV type,
the herds were considered to be PRRSV type 2 seroposi-
tive when IPMA-PRRSV type 2 titers ≥ 1250 was equal or
higher than 2 [2–5], 3 [6–10], 4 [11–15], 5 [16–21], 6
[22–28], 7 [29–36], 9 [37–46] and 11 [47–60]. In addition,
the cut-off points to classify herds as PRRSV type 1 sero-
positive were 2 [2–5], 3 [6–10], 4 [11–15], 5 [16–22], 6
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[23–29], 7 [30–36], 8 [37–44], 9 [45–53] and 10 [54–61]
IPMA-PRRSV type 1 titers ≥ 1250 in individual samples.
For laboratory submissions with individual blood sam-

ples tested only by ELISA, the herds were classified as
PRRSV type 1 seropositive if they had at least 2 [2–19],
3 [20–39], 4 [40–59] or 5 [60] individual blood samples
with a ratio <1.2. If the herds had at least 2 samples with
a ratio ≥ 2 at any sample size, these herds were classified
as PRRSV type 2 seropositive.
For a herd to be classified as PRRSV seronegative, all

individual blood samples must test seronegative for both
PRRSV types in both tests (ELISA and IPMA).

Statistical analysis
PRRSV seroprevalence in herds submitting samples
The seroprevalence of PRRSV type 1 and 2 in herds sub-
mitting samples was calculated on a monthly basis, where
the number of PRRSV positive herds was divided by the
total number of herds tested for PRRSV in that specific
month.

Seroconversion rate in breeding herds
According to 23], PRRSV antibody titers reach the lower
limits of detection at around 324 days post-inoculation
(PI). Therefore, the breeding herds were classified as newly
PRRSV seropositive if they had been seronegative in the
previous 12 months. The number of new positive herds
was modelled assuming a negative binomial distribution
according to the following model:

Y
e

μþoffset log tarð Þð Þ ð1Þ

where Y is the number of new positive herds per month
from January 2008 to December 2010, μ is the intercept of
the model and tar is the average time at risk in the previous
12 months. The average time at risk was calculated for each
month based on the average number of previous months
in which the herds were PRRS seronegative (i.e. classified
as susceptible).

Herd identification
The herd identification number was used to obtain the
geographic coordinates (UTM EUREF89, zone 32) from
the CHR (Central Husbandry Register) database. Herds
with missing location data (N = 107) were omitted from
the spatial analysis.

PRRSV relative risk maps
PRRSV relative risk maps were made to facilitate
visualization of the spatial distribution of PRRSV type
1 and 2 seropositive and seronegative herds biannu-
ally from 2007 to 2010.
The odds of a herd at a given location c being PRRS

positive were calculated as p(c) = λ1 (c) / (λ1 (c) + λ0 (c)),

where λ1 and λ0 are the intensity functions of positive and
negative herds respectively. The risk surfaces were created
by calculating the ratio of intensity functions for positive
and negative herds on a grid of 2 × 2 km cells. The kernel
smoothing surfaces were calculated based on a Gaussian
model [24]; no edge-correction was performed.
The specification of the bandwidth is more important

than the choice of kernel function [25]. Therefore, the me-
dian of specific biannual bandwidths were calculated for
each PRRSV type and used to perform kernel smoothing,
in order to identify any temporal differences.

Cluster analysis
Retrospective Space Scan Statistics [26] were used to
identify local spatial clusters of PRRSV type 1 and type 2
seropositive herds biannually from 2007 to 2010. This
method has been used in veterinary medicine to identify
PRRSV outbreaks in United States [27] and Canada [28].
The Bernoulli model was used since the herds were classi-
fied as either PRRSV type 1 and 2 seropositive (cases) or
seronegative (controls). The scanning window was circular
and no overlapping clusters were permitted. The analysis
was repeated five times using different maximum popula-
tion sizes (i.e. herds) at risk, including 5, 15, 25, 35 and
50 %. The p-value was obtained using 999 Monte Carlo
simulations and a 5 % significance level was used based on
a likelihood ratio test.
All analyses were performed in R version 3.1.1 [29].

Kernel smoothing densities were made using the’sm
package’ [30] for estimating the bandwidth and’spatialk-
ernel package’ [31] for kernel estimation. Spatial cluster
analysis was based on SatScan version 9.3.1 32].

Results
Data description
The total number of herds, laboratory submissions and
blood samples tested per year during the period from
January 2007 to December 2010 are listed in Table 1. On
average, 2776 production and 230 breeding herds were
tested annually; the median number of annual submis-
sions was 12 for breeding herds and 1 for production
herds. The average time between two consecutive submis-
sions was 1 month (maximum of 37) for breeding herds
and 11.33 months (minimum of 1 and maximum of 46)
for production herds. The descriptive statistics of PRRS
serological diagnostic tests performed are described in
Table 2.
The total number of breeding herds submitting samples

on a monthly basis between 2007 and 2010 did not vary
from year to year. In contrast, the total number of tested
production herds followed a seasonal trend (Fig. 1). In
general, the number of positive herds followed the same
trend as the total number of herds tested. The number of
herds testing seropositive was higher for PRRSV type 1
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than for PRRSV type 2. This applied to both production
and breeding herds, the only exceptions being in April
2007 and June 2010, when the number of PRRSV type 2
seropositive production herds increased to the same value
as PRRSV type 1 seropositive production herds.
No herds were classified as positive for both PRRSV

types simultaneously in the same month.
Figure 2 shows the distribution of all herds tested for

PRRSV based on serology from 2007 to 2010. The ma-
jority of these herds were located in Jutland, reflecting
the higher pig density in this region.

PRRSV seroprevalence
The apparent PRRSV seroprevalence in tested herds ap-
pears to be higher for PRRSV type 1 than for PRRSV
type 2 from 2007 to 2010 (Fig. 3). There appeared to be
an overall decrease in the seroprevalence for both
PRRSV types (though this was not tested for statistical
significance). The monthly average PRRSV type 1 sero-
prevalence was 0.09 (minimum of 0.05; maximum of
0.13) in breeding herds and 0.20 (minimum of 0.14;
maximum of 0.26) in production herds; PRRSV type 2
had an average of 0.03 (minimum of 0.01; maximum of

0.09) in breeding herds and 0.09 (minimum of 0.05;
maximum of 0.13) in production herds.

PRRSV seroconversion rate in breeding herds
The total number of new PRRSV seropositive breeding
herds per month is presented in Fig. 4. The monthly
seroconversion rate followed a constant pattern for both
PRRSV types, being higher for type 1 (average of 0.65
herds per 100 herds) than type 2 (average of 0.21 herds
per 100 herds).

Smoothed relative risk surfaces
The smoothed relative risk surface of the probability of
swine herds being positive for both PRRS-strains chan-
ged spatiotemporally (Fig. 5). The median values for the
biannual bandwidths were h = (29,576.49; 31,069.79) and
h = (30,885.97; 31,401.67) for PRRSV type 1 and 2,
respectively.
In general, the extent of areas with higher relative risk

decreased from 2007 to 2010 for both PRRSV types.
Regarding PRRSV type 1 relative risk distribution

between July 2007 and December 2008, the areas with the
highest relative risk were located in the west of Denmark.

Table 2 Descriptive statistics by frequency (N) and percentage (%) of PRRS serological diagnostic tests performed from 2007 to 2010

Year 2007 2008 2009 2010

Serological test N % N % N % N %

Total number of serological tests performed ELISA-type 1 101,925 44.1 100,172 44.2 95,133 44,7 94,493 45.2

ELISA-type 2 101,924 44.1 100,174 44.2 95,133 44.7 94,495 45.2

IPMA-type 1 14,307 6.2 14,426 6.4 12,421 5.8 10,830 5.2

IPMA-type 2 12,804 5.5 11,775 5.2 10,225 4.8 9040 4.3

Total number of samples 105,066 - 102,663 - 98,212 - 98,088 -

Number of samples only tested by: ELISA-type 1 1 <0.01 1 <0.01 0 0.00 0 0.00

ELISA-type 2 0 0.00 3 <0.01 0 0.00 0 0.00

IPMA-type 1 783 0.8 605 0.6 1021 1.0 1095 1.1

IPMA-type 2 402 0.4 168 0.2 532 0.5 784 0.8

Number of samples tested by doubled ELISA 89,529 85.2 87,156 84.9 84,569 86.1 85,659 87.3

Number of samples tested by ELISA and IPMA 12,395 11.8 13,015 12.7 10,564 10.8 8837 9.0

Table 1 Descriptive statistics by frequency of laboratory submissions sent to DTU Vet laboratory for testing PRRSV during the period
from 2007 to 2010 for breeding (Breed) and production (Prod) herds. Each laboratory submission consisted of individual blood
samples collected from the same herd on the same day

Year 2007 2008 2009 2010

Herd type Breed Prod Breed Prod Breed Prod Breed Prod

Total number of tested herds 237 2982 233 2729 228 2720 220 2673

Median number of submissions per herd (Q1 – Q3) 12 (12–13) 1 (1–1) 12 (12–13) 1 (1–1) 12 (12–13) 1 (1–1) 12 (12–13) 1 (1–1)

Total number of samples 31,505 73,561 33,430 69,233 30,572 67,640 33,420 64,668

Median number of samples per herd (Q1–Q3) 10 (10–15) 20 (17–20) 10 (10–15) 20 (16–20) 10 (10–10) 20 (15–20) 10 (10–15) 20 (15–20)
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During the remaining periods, the same areas covered a
smaller geographic area and were located in the north-
western and the southwestern parts of Denmark.
The overall relative risk was lower for PRRSV type 2

when compared to PRRSV type 1. In this case, the high-
est relative risk areas had a larger extent in 2007, which

later decreased. In the following years, these areas
remained in the western part of the country.

Spatial cluster analysis
The significant spatial clusters of PRRSV type 1 and 2
are shown in Fig. 6. The descriptive statistics of these

Fig. 1 Number of production and breeding herds tested for PRRSV per month from January 2007 to December 2010

Fig. 2 PRRSV herd status distribution from 2007 to 2010, including only herds submitting samples. Herds were classified as PRRS seropositive if they
were positive during a minimum of 1 month between 2007 and 2010; herds classified as seropositive for both strains during this period were labeled
in green; negative herds (grey) were not classified as PRRS positive during the period of study
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significant clusters are presented in Additional file 1.
Increasing the maximum spatial window size from 5
to 15 % of the population at risk resulted in the ag-
gregation of two or more secondary clusters for some
6-month periods. For higher percentages of popula-
tions at risk, the number and size of clusters did not
change (results not shown). Several clusters were
found for each 6-month period. The spatiotemporal
pattern for PRRSV type 1 clusters changed over time,
except for those located in the northwest of Jutland.
Similarly, the locations and sizes of PRRSV type 1
clusters also altered over time from January 2007 to
December 2010. In this case, there was a constant
cluster in the central eastern part of Jutland.

Discussion
This is the first study to use surveillance data from la-
boratory submissions to describe the occurrence of

PRRSV in Denmark. The use of laboratory submission
records was essential in order to gather previous infor-
mation and assess the spatial distribution of PRRSV
seropositive herds. Such information might be used to
evaluate the efficiency of control strategies implemented
on a local or regional basis. Using laboratory submission
data from a surveillance program might help to identify
and record new PRRSV cases in a more reliable way than
other sources of information.
The frequency of testing and the type of serological

test requested depends on the Danish herd status (SPF
or non SPF) and the purpose (PRRSV surveillance or
diagnostic). For example, if the objective is to detect in-
fection early, IPMA is normally requested, because high
IPMA values are indicative of recent infection as ELISA
titers tend to persist for a longer time period [19]. Ani-
mals can also be tested for trading purposes, to main-
tain/gain an SPF certificate, and prior to being

Fig. 3 Monthly PRRSV seroprevalence in Danish pig herds. The figure illustrated the monthly PRRSV type 1 (a) and type 2 (b) seroprevalence in
production and breeding herds from January 2007 to December 2010
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introduced in a farm after sanitation procedures. Differ-
ent reasons for testing might explain the variation in fre-
quency of laboratory submissions in both herd types
over the study period. It is our general assumption that
herds submitting samples for surveillance or diagnosis
have a higher health status compared to those herds that
never submit samples (personal communication, C.S.
Kristensen, 2014). Therefore, the overall seroprevalence
of PRRSV in Danish swine herds may be underestimated
based on the submission data used in the present study.
The serological tests used in this study do not

differentiate between antibodies from the naturally
infected pigs, and those that have been vaccinated
against PRRS. However, it is reasonable to assume
that an observed seroconversion will be related to a
preceding natural infection with PRRSV of homolo-
gous type, since vaccination is unlikely in a PRRSV-
negative herd. In this study, we therefore argue that
an observed seroconversion must initially have been
caused by a natural infection, yet we are aware that
we might have been measuring vaccine antibodies at
the time of sampling.
Herds were classified as seropositive for PRRSV

type 1 or type 2 based on the number of seropositive
samples per submission. Individual blood samples
tested by double ELISAs and IPMAs were classified
based on the latest serological results, in order to
focus on the most recent PRRSV status [33] demon-
strated that high titers in IPMA are indicative of new
PRRSV infections. In addition, [19] demonstrated that
detection in the IPMA decreases after 3–4 months
post infection, therefore making ELISA a more sensi-
tive test to detect late immune responses. In our

study, seroprevalence and the seroconversion rate
were calculated based on both types of serological
tests in order to have the maximum information
available over time for each herd.
In this study, the seroprevalence was calculated on a

monthly basis to describe the occurrence of PRRSV type
1 and 2 in Denmark. Variation in the seroprevalence for
both types might be explained by variation in the num-
ber of herds tested per month and the SPF status. Fig-
ure 3 indicates an overall decrease in prevalence for
both PRRSV strains in both herd types. A recent study
by [18] based on information available from the SPF sys-
tem database estimated that 65 % of sow herds and 60 %
of finisher herds in Denmark are PRRSV negative. In
our study, these types of herds were classed as produc-
tion herds, and our results agreed with these findings.
The high biosecurity and monthly surveillance of the
breeding herds might explain the relatively constant
seroconversion rate in Fig. 5.
The information available to us from the SPF sys-

tem database only provided the herd status on the 31
December of each year. It is therefore unknown
whether these herds were under sanitation controls,
or if their SPF status changed over time, resulting in
possible variation in the frequency of PRRSV testing,
which in turn could have influenced the number of
new PRRSV seropositive herds. For example, if the
SPF status of a PRRSV seropositive breeding herd
changed, the herd would be included as a different
type in the analysis. This would result in an unknown
PRRS status for a period of time, and classification as
newly PRRS seropositive when gaining the same SPF
status. This happened when a red herd in the SPF

Fig. 4 Number of new PRRSV type 1 and 2 seropositive breeding herds from 2008 to 2010
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database (i.e. a breeding herd) lost their SPF status
for a period of time. It was not possible to establish
the seroconversion rate for production herds due to
the long period of time between consecutive labora-
tory submissions.

The relative risk distribution maps changed over time
as a consequence of the changes in the seroprevalence.
The general decline in the extent of areas with higher
relative risk for both PRRSV types followed the same
trend as observed for the seroprevalence.

Fig. 5 Biannually smoothed relative risk surfaces in Denmark from 2007 to 2010. Smoothed surfaces of the probability of swine herds being
PRRSV type 1 (a) and type 2 (b) seropositive (relative risk) at a given location biannually during the period 2007 to 2010. Legend was defined
based on 20 % quantiles
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Conclusions
This study described the occurrence of PRRSV in
Denmark from 2007 to 2010, based on laboratory submis-
sion data. PRRSV type 1 seroprevalence was consistently
higher than type 2 seroprevalence in both production and
breeding herds. The relative risk maps showed changes in
the spatial distribution of both PRRSV types over time.
Significant spatial clusters were consistently found in
Denmark, suggesting that PRRSV is endemic in these
areas. Furthermore, relative risk distribution maps re-
vealed different patterns over time as a consequence of
the changes on the seroprevalence.
Our findings might help decision makers to re-evaluate

their conclusions on the spread of the disease and assess
the efficiency of the implemented control strategies.

Additional file

Additional file 1: Descriptive statistics of significant spatial clusters
for PRRSV type 1 and 2. (DOCX 78 kb)
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Abstract 22 

The aim of this study was to explore spatio-temporal patterns in swine mortality from 23 

Danish swine herds from December 2013 to October 2015 and discuss the use of 24 

mortality for syndromic surveillance in Denmark. The potential of using mortality for 25 

disease monitoring have previously been explored in the context of syndromic 26 

surveillance. The value of using mortality generated on a regular and mandatory basis 27 

for all swine herds remains unexplored for swine surveillance in Denmark. A total of 28 

5016 farms were included in the analysis, corresponding to 1896 weaner herds, 1490 29 

sow herds and 3839 finisher herds. The spatio-temporal analysis included data 30 

description on space and time and cluster analysis for three age groups: weaners (up to 31 

30 kg), sows and finishers. Logistic regression models were used to assess the 32 

association of potential factors for herds being included inside a cluster.  33 

A large number of single-herd clusters i.e. clusters with only one herd, and fewer 34 

multiple-herd clusters, i.e. clusters with at least 2 herds included, were found. Factors 35 

such as herd size, farm type, SPF status and Atrophic rhinitis had an impact on herds 36 

being inside vs outside multiple-herd clusters.  37 

The presence of single-herd clusters might indicate welfare and disease issues, while 38 

multi-herd clusters could be suggestive of the presence of infectious diseases within the 39 

cluster area.  40 

There is potential of using mortality for disease surveillance. However, detected clusters 41 

might not be due to disease, but the result of changes such as herd management. Further 42 
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analysis to explore other spatio-temporal monitoring methods is needed before 43 

incorporating mortality in a Danish disease monitoring system. 44 

 45 

Keywords: Mortality, swine, spatio-temporal analysis, risk factors. 46 

 47 

1. Introduction 48 

 49 

 Over the last years an increased number of studies in veterinary syndromic surveillance 50 

have been performed. Data used for syndromic surveillance relate to non-specific health 51 

indicators that enable the early identification of the impact (or absence of impact) of 52 

animal health threats (Triple S Project, 2011). Such data are often recorded for other 53 

purposes than disease surveillance. Previous studies explored the potential of using 54 

different animal health register data such as laboratory submissions (Dórea et al., 2013), 55 

meat inspection (Dupuy et al., 2015; Vial and Reist, 2015) and mortality (Alba et al., 56 

2015; Backer et al., 2011; Morignat et al., 2014; Perrin et al., 2010, 2012). Although 57 

mortality is routinely collected through national registers and movements to rending 58 

plants, it is rare to find syndromic surveillance systems implemented based on such data 59 

(Dupuy et al., 2013). The advantage of using mortality is that they are recorded to fulfill 60 

the European Commission requirements. All farmers are obliged to report their cadavers 61 

and have them removed to rendering plants for purposes of food safety and traceability 62 

in all Member States (European Union, 2000). This regulation ensures a continuous data 63 

flow and constitutes a strong basis for a surveillance system.  64 
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The value of using these data, generated on a regular basis and covering the entire swine 65 

population,  remains unexplored for swine disease surveillance in Denmark. The (near) 66 

real- time monitoring of swine mortality could be used to identify potential changes in 67 

temporal, spatial and spatio-temporal patterns, reflecting some underlying problem or 68 

cause for concern.  69 

Performing retrospective analysis of historical data might help decision makers to re-70 

evaluate their conclusions on the spread of the diseases and assess the efficiency of the 71 

implemented control strategies. For example, knowledge of the spatial distribution of 72 

herds with higher mortality can be used to facilitate control of diseases on local and 73 

regional basis, by changing management routines, trade customs etc. Additionally, 74 

exploring available data provides a cost-effective way to assess the potential and 75 

limitations of using such data for real-time disease monitoring and surveillance in 76 

Denmark. 77 

Spatio-temporal methods have been used regularly in veterinary epidemiology. The 78 

focus has been on retrospective analysis of spatial clusters and related risk factors (Lian 79 

et al., 2007; Pfeiffer et al., 2007; Themudo et al., 2011). Methods such as Spatial scan 80 

statistics (Kulldorff et al., 1998) can be used to detect purely spatial, temporal or spatio-81 

temporal clusters in the context of biosurveillance (Wagner et al., 2006). This method is 82 

commonly used due to the freely available SaTScan software (Kulldorff, 2015). This 83 

tool have been previously proved to identify disease outbreaks of (new) emerging 84 

diseases, based on laboratory submission data for cattle in Great Britain (Hyder et al., 85 

2011).  86 
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The aim of the present study was to explore spatio-temporal patterns in mortality from 87 

Danish swine herds from December 2013 to October 2015. This included: i) descriptive 88 

analysis of spatial and temporal changes in the data; ii) identification of spatio-temporal 89 

clusters of increased mortality for Danish finishers, sows and weaners herds; and iii) 90 

examination of  possible herd-level factors associated with being inside vs outside a 91 

cluster.  92 

 93 

 94 

2. Materials and methods 95 

 96 

Data  97 

The Danish Veterinary and Food Administration calculate the Danish swine mortality. 98 

The swine mortality is calculated based on public data registered in the Central 99 

Husbandry Register (CHR) and the Swine Movement Database (SMD). The CHR is the 100 

Danish national database on farm demographics. A farm is defined as a single location 101 

with its own unique CHR number. For each farm, the postal address, the Cartesian 102 

geographical coordinates and the type of farm (i.e. production farm, hobby farm, organic 103 

farm, etc) are given. At a pig farm, the number of pen-places for animals in up to three 104 

different age groups (weaners (up to 30 kg), sows and finishers) is registered. We will 105 

refer to each age group individually as herds. All movements of swine in Denmark, 106 

including movements to rendering plants must be registered to the SMD. For each 107 

movement registered in the SMD, the date and the number of dead finishers and/or sows 108 



6 

 

are recorded. For weaners, the number of small and large containers with room for 7 or 9 109 

weaners, respectively, is registered. 110 

Swine mortality from December 2013 to October 2015 were provided by the Danish 111 

Veterinary and Food Administration. The data included variables such as the monthly 112 

total number of dead animals and the monthly total number of swine for each age group 113 

per farm. Information retrieved from the CHR database was used as a proxy of the 114 

monthly number of animals present in each farm for each of the three age groups. 115 

Information about the movements from farms to rending plants was used to estimate the 116 

number of dead animals for each farm. The monthly mortality was calculated for each 117 

age group as a proportion: the number of dead animals in a given age group divided by 118 

the number of animals recorded in the CHR for that same age group. We will refer to 119 

this proportion as mortality throughout the manuscript.  120 

The Specific Pathogen Free (SPF) System is a voluntary health program with established 121 

rules for monitoring Enzootic pneumonia, Porcine pleuropneumonia, Swine dysentery, 122 

Atrophic rhinitis, Porcine Reproductive and Respiratory Syndrome (PRRS), mange and 123 

lice within farms with an SPF certificate (SPF farm) (“SPF-DANMARK,” 2015). The 124 

disease monitoring is primarily based on clinically examination of a representative 125 

number of swine, as well as blood samples and nasal swabs for the relevant SPF 126 

diseases. The visits are conducted by veterinarians from the Pig Research Centre 127 

performed on a regular basis according to the herd type. Based on the results the herd is 128 

assigned to a given SPF status declaring disease freedom or infection status. 129 

 130 
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Data management  131 

The mortality were merged with the CHR data in order to identify and include only 132 

production herds in the analysis and obtain the geographic coordinates (UTM 133 

EUREF89, zone 32) for each farm. Furthermore, only farms reporting  ≥200 finishers, 134 

≥50 sows or ≥200 weaners were included in the analysis. Data were split into three 135 

datasets by age groups and all analyses were performed independently for each age 136 

group. A farm could have different age groups and in this case, the same farm was 137 

included in different analyses. Sows and finisher herds with zero mortality in 12 138 

consecutive months were excluded from the analysis. Weaner herds with zero mortality 139 

in 2 consecutive months were also excluded from the analysis. This decision was made 140 

to ensure that only active herds were included in the study.  141 

Data extracted from the SPF System database on the 31st of December 2014 were 142 

merged with the mortality to define the SPF status and the presence, absence or 143 

unknown status of the diseases monitored within the SPF system. Due to the low number 144 

of positive herds for some diseases, only Enzootic pneumonia, Porcine 145 

pleuropneumonia, Atrophic rhinitis, and PRRS were included in the analysis. 146 

The herd size (categorized for each age group), the Specific Pathogen Free status (SPF 147 

vs. non-SPF), farm type (categorized by the different age groups present in the farm) 148 

were defined for all herds included in the study. Additionally, the disease status, e.g. the 149 

absence or presence of Enzootic pneumonia, Porcine pleuropneumonia, Atrophic 150 

rhinitis, and PRRS  was defined for all SPF herds, whereas non-SPF herds were 151 

classified as unknown disease status.  152 
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 153 

Spatial interpolation   154 

The inverse distance weighted interpolation technique (IDW) was used to visualize the 155 

spatial distribution of the mortality for each age group. The mortality at a given location 156 

was estimated as the weighted average of the mortality within a certain distance with a 157 

weighting function with the power parameter equal 2 (Huisman and By, 2009). The 158 

maximum distance used was varied from 5km to 15km to evaluate the impact of the 159 

maximum distance on the results: less spatial heterogeneity was found when using larger 160 

distances while the opposite was found for smaller distances. Therefore, a maximum 161 

distance of 7.5 km from the prediction location was defined based on the average 162 

distance between the farms and the results were plotted using grid cells of 1km×1km. 163 

The analysis was performed in R (version 3.1.1) (R Core Team, 2014) using the ’gstat 164 

package’ (version 1.1-2) (Pebesma and Graeler, 2016).   165 

 166 

Spatio-temporal local clustering analysis  167 

The Scan statistics is a powerful method for detecting spatial, temporal and spatio-168 

temporal clusters (Kulldorff, 2016). Retrospective Space-time Scan Statistics (Kulldorff 169 

et al., 1998) was used to identify local spatial-temporal clusters of mortality for each age 170 

group from December 2013 to October 2015. The Bernoulli model was used with the 171 

number of dead animals from an age group for a given farm (i.e. unique location) as 172 

cases and the number of animals reported in CHR from the same age group in the same 173 

farm as controls. The scanning spatial window was circular and no overlapping clusters 174 
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were permitted. The analysis was performed defining the maximum spatial cluster size 175 

as 10%, 25% and 50% of the population at risk and a minimum of 1 month and a 176 

maximum of 90% of the study period for the temporal cluster size. The p-value was 177 

obtained using 999 Monte Carlo simulations and a 5% significance level was used based 178 

on a likelihood ratio test. The analysis was made in SatScan version 9.4.2 (Kulldorff, 179 

2015).  180 

When examining the clusters, it was noticed that a large number had zero km radius 181 

(purely temporal clusters). The spatio-temporal clusters in which only one farm was 182 

included (zero km radius) were  named single-herd clusters and clusters with several 183 

herds included were named multiple-herd clusters throughtout the manuscript.  A post 184 

hoc description of temporal patterns of mortality in herds included in the single-herd 185 

clusters was made to inspect which changes triggered the clusters using Scan Statistics.  186 

 187 

Factors associated with the risk of a herd being inside vs ouside multiple-herd 188 

clusters 189 

It was decided to look only for risk factors in herds included in multiple-herd clusters 190 

because it might indicate the presence (i.e. spread) of infectious diseases, whereas 191 

single-herd clusters might indicate problems with herd management or diseases within 192 

the herd.  Herds were classified as being inside a multiple-herd cluster, if they belonged 193 

to a multiple-herd cluster in at least one month during the study period. 194 

Logistic regression was used to examine possible factors associated with the probability 195 

of a herd being inside a multiple-herd cluster. First, a univariable logistic regression was 196 
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carried out for each factor. Then forward selection was used to build a multivariable 197 

model, by adding the most significant variable to the model using a p-value of 0.05 as 198 

the threshold. The overall significance of each variable was tested using Chi-square test 199 

in the anova() function. For significant variables with more than 2 levels, post hoc test of 200 

pairwise comparison between levels was done using the ’lsmeans’ package (Lenth, 201 

2015) (version 2.20-23). The analysis was also performed in R (version 3.1.1) (R Core 202 

Team, 2014). 203 

 204 

 205 

3. Results 206 

 207 

Data description 208 

A total of 5010 farms (i.e. unique locations) were included in the analysis, divided 209 

among the five regions corresponding to 1057 farms in North Jutland, 1765 in Central 210 

Jutland, 1548 in Southern Denmark, 126 in Capital Region of Denmark and 514 in 211 

Zealand (Figure 1). This corresponded to 1896 weaner herds, 1490 sow herds and 3839 212 

finisher herds. The mortality for different farm types (i.e. farms with a single or multiple 213 

age groups) is represented in Table 1.  214 

The monthly median number of herds included in the study was 1776 (mininum: 1391, 215 

maximum:1834) for weaner herds, 1462 (minimum:1391; maximum: 1818) for sow 216 

herds and 3679 (minimum: 3557, maximum: 3710) for finisher herds. From December 217 

2013 to October 2015, the median mortality observed were 0.017 (minimum=0, 218 
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maximum=0.913), 0.008 (minimum=0, maximum=0.696) and 0.008 (minimum=0, 219 

maximum=0.805) for weaners, sows and finishers, respectively.  220 

The average mortality for the 5 different regions of Denmark is shown in Figure 2. No 221 

major differences were seen for the mortality among the different regions. There 222 

appeared to be an increased mortality in January 2014, July 2014, January 2015 and July 223 

2015 in all regions for the three age groups. In general, the mortality in weaner herds 224 

was double the mortality observed in sow and finisher herds. 225 

The spatial distribution of the mortality for the three age groups changed over time 226 

(Figures 3, 4 and 5) from December 2013 to October 2015. The overall distribution of 227 

the mortality in weaners showed higher values in Central Jutland. For sows, the highest 228 

mortality occurred mainly in North Jutland, Southern Denmark and Zealand. Finisher 229 

herds located in Central Jutland and Zealand presented higher mortality. The areas with 230 

higher mortality were mainly present in January and July of 2014 and 2015.  231 

 232 

 233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 
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 241 

Table 1- Farms included in the study with the corresponding mortality (proportion) 242 

observed from December 2013 to October 2015 for each of the age groups. 243 

Age groups present on the farm 

  Only 

weaner 

herds 

Only 

sow 

herds 

Only 

finisher 

herds 

Weaner 

and sow 

herds 

Weaner 

and 

finisher 

herds 

Sow and 

finisher 

herds 

Weaner, 

sow and 

finisher 

herds 

Total number of 

farms 

283 276 2746 618 497 98 498 

Mortality 

for 

weaners 

Min 0.000 - - 0.000 0.000 - 0.000 

Median 0.011 - - 0.023 0.014 - 0.024 

Max 0.370 - - 0.556 0443 - 0.936 

Mortality 

for sows 

Min - 0.000 - 0.000 - 0.000 0.000 

Median - 0.008 - 0.008 - 0.008 0.008 

Max - 0.696 - 0.155 - 0.130 0.113 

Mortality 

for 

finishers 

Min - - 0.000 - 0.000 0.000 0.000 

Median - - 0.008 - 0.008 0.010 0.016 

Max - - 0.805 - 0.225 0.388 0.468 

 244 

 245 

 246 

 247 

 248 
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Figure 1- Location of the Danish swine herds included in the study by age group, (a) 249 

weaners, (b) sows, (c) finishers, and (d) description of the five administrative regions in 250 

Denmark. 251 

 252 
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Figure 2- Monthly average aggregated mortality for the three age groups of swine in the 253 

5 administrative regions of Denmark. 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 
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Figure 3- Monthly mortality in weaner herds from December 2013 to October 2015. 264 
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Figure 4- Monthly mortality in sow herds from December 2013 to October 2015. 265 
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Figure 5- Monthly mortality in finisher herds from December 2013 to October 2015. 266 
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Spatio-temporal clustering 267 

Figure 6 shows the location of significant high-mortality spatio-temporal clusters based 268 

on a maximum of 50% of the population at risk in weaners, sows and finishers. The 269 

descriptive statistics of these significant clusters and the starting and ending months are 270 

presented in Appendix A. Moreover, interactive videos with the location and duration of 271 

spatio-temporal clusters for each age group are available as Supplementary Material. A 272 

total of 68 spatio-temporal clusters, corresponding to 57 single-herd and 11 multiple-273 

herd clusters, were found for weaners. For the sows, 5 single-herd and 2 multiple-herd 274 

(total =7) clusters were found. For finishers, 49 single-herd and 27 multiple-herd (total = 275 

76) clusters were found (Appendix A). The spatio-temporal clusters in weaners were 276 

mainly located in the North and Central Jutland and had a higher occurrence between 277 

June 2014 and August 2015 where 67 clusters were simultaneously observed. For sows, 278 

the clusters were mainly located in Central Jutland and Southern Denmark and the 279 

highest simultaneous presence (5 clusters), was observed from March 2014 to 280 

September 2014. The spatio-temporal clusters for finishers were located all over 281 

Denmark and the highest number of clusters, corresponding to 68 clusters, was observed 282 

between September 2014 and October 2015.  283 

For the analysis using smaller maximum cluster sizes (10% and 25% of population at 284 

risk), the number of clusters increased up to three times. As a result of this increase, the 285 

size and duration of the clusters decreased. The clusters were present in the same areas 286 

as the clusters based on a maximum cluster size of 50% of the population at risk (results 287 

not shown).  288 
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A visual assessment of the temporal changes of mortality in single-herd clusters 289 

suggested several different patterns (Appendix B). In some cases, a cluster consisted 290 

only of few months with a distinctive “peak” in mortality. Other clusters had a longer 291 

duration, with a smaller increase in mortality.   292 

 293 

 294 
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 301 
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 308 
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Figure 6- Location of the spatio-temporal clusters of high mortality in Danish swine 310 

herds. Each spatio-temporal cluster found for (a) weaners, (b) sows and (c) finishers is 311 

identified by a number corresponding to the cluster ID (see Appendix A) and the circles 312 

represent the cluster size.   313 

 314 
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Logistic regression models 315 

Tables 2, 3 and 4 describe the frequency distribution of the herds inside vs outside the 316 

clusters stratified by the herd size, farm type, SPF status and the disease status for 317 

Enzootic pneumonia, Porcine pleuropneumonia, Atrophic rhinitis, and PRRS.  318 

The results from univariable logistic regression analyses of the herd being inside vs 319 

outside multiple-herds clusters are presented in Table 5. The variables farm type, herd 320 

size, SPF status, and Atrophic rhinitis were significant (p<0.05) when analyzed based on 321 

univariable models for weaners and finisher herds. It was not possible to perform the 322 

analysis for sow herds only 2 multiple-herd clusters were found (including 7 farms in 323 

total).  324 

In the multivariable analysis for both weaner and finisher herds, only farm type was 325 

included in the final model, as no other variables were significant.   326 

 327 
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Table 3-Frequency distribution (number and percentage) of herds inside versus outside the spatio-temporal high risk clusters 328 

stratified by farm type.  329 

  Farm type 

  Only 

weaners 

herds 

Only sows 

herds 

Only 

finishers 

herds 

Weaners and 

sows herds 

Weaners and 

finishers 

herds 

Sows and 

finishers 

herds 

Weaners, 

sows and 

finishers 

herds 

Weaners Total 283 - - 618 497 - 498 

Single-herd cluster (%) 3 (1.06) - - 33 (5.34) 2 (0.40) - 19 (3.82) 

Multiple-herd clusters 

(%) 

3 (1.06) - - 20 (3.24) 16 (3.22) - 20 (4.02) 

Non clusters (%) 277 (97.88) - - 565 (91.42) 479 (96.38) - 459 

(92.17) 

Sows Total - 276 - 618 - 98 498 

Single-herd cluster (%) - 2 (0.72) - 2 (0.32) - 1 (1.02) 0 (0.00) 

Multiple-herd clusters 

(%) 

- 2 (0.72) - 0 (0.00) - 0 (0.00) 5 (1.00) 

Non clusters (%) - 272 (98.55) - 616 (99.68) - 97 (98.98) 493 

(99.00) 

Finishers Total - - 2746 - 497 98 498 

Single-herd cluster (%) - - 19 (0.69) - 13 (2.62) 1 (1.02) 16 (3.21) 

Multiple-herd clusters 

(%) 

- - 155 (5.64) - 45 (9.05) 9 (9.18) 45 (9.04) 

Non clusters (%) - - 2572 (93.66) - 439 (88.33) 88 (89.80) 437 

(87.75) 

 330 
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Table 4- Frequency distribution (number and percentage) of herds inside versus outside the spatio-temporal high risk clusters 331 

stratified by the disease status for Enzootic pneumonia, Porcine pleuropneumonia, Atrophic rhinitis, and Porcine Reproductive 332 

and Respiratory Syndrome (PRRS). 333 

   Enzootic pneumonia Porcine pleuropneumonia Atrophic rhinitis PRRS 

Herd 

type 

Cluster 

type 

Total 

number 

of 

herds 

Positive 

(%)  

Negative 

(%) 

Unknow

n 

(%) 

Positive 

(%)  

Negative 

(%) 

Unknow

n 

(%) 

Positive 

(%)  

Negative 

(%) 

Unknow

n 

(%) 

Positive  

(%) 

Negative 

(%) 

Unknow

n 

(%) 

Wean

ers 

Single-

herd 

57 28  

(49.1) 

13 

(22.8) 

16 

(28.1) 

27  

(47.4) 

14 

(24.6) 

16  

(28.0) 

1  

(1.8) 

40  

(70.2) 

16  

(28.0) 

14 

(24.6)  

27 

(47.4)  

16 

(28.0) 

Multipl

e-herd  

59 24  

(40.7) 

16  

(27.1) 

19  

(32.2) 

  

18  

(30.5) 

22  

(37.3) 

19  

(32.2) 

0  

(0.0) 

40  

(67.8) 

19  

(32.2) 

9  

(15.3) 

31  

(52.5) 

19 

(32.2) 

Non 

Cluster 

1780 824 

(46.3) 

402 

(22.6)  

554 

(31.1)  

730 

(41.0) 

496 

(27.9) 

554 

(31.1) 

19  

(1.1) 

1207 

(67.8) 

554 

(31.1) 

415 

(23.3) 

840 

(47.2) 

525 

(29.5) 

Sows Single-

herd 

5 5  

(100.0) 

0  

(0.0) 

0  

(0.0) 

3  

(60.0) 

2  

(40.0) 

0  

(0.0) 

5  

(100.0) 

0  

(0.0) 

0 

(0.0) 

3  

(60.0) 

2  

(40.0) 

0  

(0.0) 

Multipl

e-herd 

7 2  

(28.6) 

2  

(28.6) 

3  

(42.8) 

2  

(28.6) 

2   

(28.6) 

3  

(42.8) 

0  

(0.0) 

4  

(57.1) 

3  

(42.9) 

2   

28.6) 

3  

(42.8) 

2  

(28.6) 

Non 

Cluster 

1478 739 

(50.0) 

375 

(25.4) 

364 

(24.6)  

672 

(45.5) 

442 

(29.9) 

364 

(24.6) 

21  

(1.4) 

1093 

(74.0) 

364 

(24.6) 

345 

(23.3) 

796 

(53.9) 

337 

(22.8) 

Finis

hers 

Single-

herd 

49 21  

(42.9) 

8  

(16.3) 

20 

(40.8) 

13  

(26.5) 

16  

(32.7) 

20  

(40.8) 

0  

(0.0) 

29 

(59.2) 

20  

(40.8) 

10  

(20.4) 

19  

(38.8) 

20  

(40.8) 

Multipl

e-herd 

254 79  

(31.1) 

31 

 (12.2) 

144 

(56.7) 

73  

(28.7) 

37  

(14.6) 

144 

(56.7) 

2 

(0.8) 

108 

(42.5) 

144 

(56.7) 

44  

(17.3) 

68  

(26.8) 

142 

(55.9) 

Non 

Cluster 

3536 845 

(23.9) 

402 

(11.4) 

2289 

(64.7) 

731 

(20.7) 

516 

(14.6) 

2289 

(64.7) 

19  

(0.6) 

1228 

(34.7) 

2289 

(64.7) 

456  

(12.9) 

815 

(23.0) 

2265 

(64.1) 

 334 
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Table 5- Univariable logistic regression on the association between significant variables and the probability of the herd (weaner 335 

or finisher herds) being inside multiple-herds clusters. 336 

Herd Variables Categories Estimates* Std. Err. P > Z Odds Ratio 
95%CI Odds Ratio 

Lower limit Upper limit 

Weaners Herd size 

(number of 

animals per 

herd) 

200-1799 Reference group  <0.00011    

1800-2849 -1.43 0.33 <0.0001 0.23 0.12 0.44 

Finishers 
SPF status 

Non SPF herd Reference group  0.01071    

SPF herd 0.3380 0.13 0.0101  1.40 1.08 1.81 

Farm type 

Only finisher herds a Reference group  0.00161    

Finishers and weaner 

herds bc 

0.53 0.18 0.0027 1.70 1.19 2.39 

Finishers and sow 

herds abc 

0.53 0.36 0.1413 1.70 0.05 3.26 

Finishers, sows and 

weaners herd c 

0.54 0.18 0.0025 1.71 1.20 2.40 

Atrophic rhinitis 

Negative a Reference group  0.0376 1    

Positive ab 0.18 0.75 0.8107 1.20 0.19 4.20 

Unknown b -0.34 0.13 0.0112  0.72 0.55 0.93 

1Overall significance of the variable. 337 

*Estimates with different letters as superscript are significantly different at a 5% significance level. 338 

 339 
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4. Discussion 340 

This study was performed to explore the spatio-temporal patterns of mortality in Danish swine herds. 341 

Two types of spatio-temporal clusters were found including a large number of single-herd and fewer 342 

multiple-herd clusters. Further analysis was conducted in order to investigate potential risk factors and 343 

temporal trends for these clusters.  344 

Previous studies have demonstrated the potential of using mortality for disease detection (Backer et al., 345 

2011; Perrin et al., 2012), monitoring animal health status (Alba et al., 2015) and assess the impact of 346 

unexpected environmental events (Morignat et al., 2014). However, due to the large variability of 347 

mortality (and the way it is reported) in animal populations among countries, is not possible to 348 

extrapolate the usefulness and challenges from previous studies to the Danish context.   349 

In this study, it was decided to analyze the data by age group due to the physiological difference among 350 

the groups. For example, a higher mortality is expected in weaners compared to other age groups due to 351 

parturition, nutrition, thermal stress and diseases such as post-weaning diarrhea (SEGES Danish Pig 352 

Research Centre, 2014).  353 

Applying Scan Statistics techniques at herd level allowed us to detect small changes at herd level. 354 

However, it is important to take into account that mortality is based on two different databases. The 355 

information on the number of animals for different age groups in the CHR database was used as a 356 

proxy of the number of animals present in a herd for a given month. This information is updated in the 357 

database minimum once/twice yearly by farmers or SEGES Pig Research Centre (“Pig Research Centre 358 

(VSP- SEGES),” 2016). Thus, a dynamic herd with variability in its herd size might be misrepresented 359 

in the CHR. As consequence, changes in mortality can be biased. The movements registered in the 360 

SMD are used as proxy of the number of dead animals for different age groups. The registration of 361 
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dead weaners (up to 30 Kg) are based on the number of containers (with specific dimensions) 362 

transported from a farm to the rending plant. In the mortality calculation, a fixed number is used for 363 

each container size, regardless of how many animals are actually in the container. This may also bias 364 

the mortality, thus illustrating the challenges of using mortality for monitoring purposes in Denmark.   365 

 366 

Spatial and temporal changes of mortality  367 

The spatial distribution of farms with higher mortality in weaner and sow herds concurred with higher 368 

farm density.  This might be explained by the higher prevalence of certain infectious diseases in areas 369 

with higher animal density (Mortensen et al., 2002; Poljak et al., 2008).  370 

The temporal patterns found in mortality for the three age groups suggested increases in January and 371 

July for each year. These increases do not appear to be biologically justified, but can probably be 372 

linked to infrequent updates on the CHR database.  373 

 374 

Local spatio-temporal clusters  375 

The analysis identified a large number of single-herd clusters, i.e. herds with a higher than expected 376 

mortality, where the neighbors did not experience an increased mortality. These farms may deal with 377 

welfare issues (SEGES Danish Pig Research Centre, 2014; SEGES Pig Research Centre, 2015) or the 378 

presence of diseases where good biosecurity and herd management are in place, so that the infection 379 

does not transmit to neighbors. Still, for infectious diseases such as PRRS (Mortensen et al., 2002), 380 

Swine Influenza Virus (Brown, 2000), or Porcine Circo Virus type 2 (Baekbo et al., 2012) airborne 381 

transmission to neighboring farms would be highly likely. Thus resulting in multiple-herd clusters, 382 

especially in areas with high farm density. Transmission between neighboring farms by (mechanical) 383 
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vectors also increases diseases transmission for some diseases, such as Actinobacillus 384 

pleuropneumoniae (Kristensen et al., 2004).  385 

 386 

Risk factors for herds being inside multiple-herd clusters  387 

While several potential risk factors where identified in the univariable analysis, only farm type 388 

remained in a multivariable analysis, due to a strong correlation between variables. The effect for both 389 

weaners and finishers was as expected: the specialized farms with only one age group had lower 390 

mortality than farms with more age groups. In general, these larger specialized farms have high 391 

biosecurity and working with only one age group allows more specialization of the staff.  392 

 393 

5. Conclusions  394 

This study explored spatio-temporal patterns in mortality from Danish swine herds and its potential for 395 

syndromic surveillance.  396 

This study shows the presence of a large number of significant single-herd and multiple-herd clusters 397 

for weaners, sows and finisher herds. The single-herd clusters represent potential isolated welfare and 398 

disease problems, while multi-herd clusters could be indicative of local spread of an infectious disease.  399 

There is potential of using mortality for disease surveillance. However, detected clusters might not be 400 

due to disease, but the result of changes in herd management, legislative rules and climatic factors. 401 

Hence, follow-up of detected clusters is necessary. Further analysis to explore and select the 402 

appropriate spatial, temporal and spatio-temporal monitoring methods is needed in order to incorporate 403 

mortality in Danish disease monitoring system. 404 

 405 
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Appendix A: Description of statistical significant clusters.  

Statistically significant spatio-temporal clusters (p<0.05) of high mortality in Danish weaner herds 

between December 2013 and October 2015. For each cluster, the radius as well as starting and ending 

months (month 1 corresponds December 2013 and month 23 corresponds to October 2015) are given 

along with descriptive statistics of the number farms in the cluster (Number of locations), cluster 

significance (p-value) based on 999 Monte Carlo replications, Log Likelihood Ratio (LLR) and 

Relative Risk (RR) for a maximum spatial window size of 50% of the population at risk and a 

minimum of 1 month and maximum of 90% of the study period.  

Cluster 
Cluster 

type 
Radius (m) 

Start 

month 
End month 

Number of 

locations 
LLR p value RR 

1 Single-herd 0 2 21 1 7860.71 <0.001 18.85 

2 Single-herd 0 4 23 1 4821.56 <0.001 19.10 

3 Single-herd 0 3 22 1 4738.63 <0.001 24.61 

4 Single-herd 0 2 21 1 4449.98 <0.001 10.05 

5 Single-herd 0 3 22 1 4373.95 <0.001 9.42 

6 Single-herd 0 2 21 1 4305.49 <0.001 9.20 

7 

Multiple-

herd 3000 4 23 3 4043.55 <0.001 9.00 

8 Single-herd 0 1 20 1 3780.79 <0.001 19.38 

9 Single-herd 0 4 23 1 3754.97 <0.001 14.12 

10 Single-herd 0 2 21 1 3272.74 <0.001 16.73 

11 Single-herd 0 4 23 1 2968.67 <0.001 18.14 

12 Single-herd 0 3 22 1 2900.29 <0.001 15.50 

13 Single-herd 0 1 20 1 2868.94 <0.001 8.00 

14 Single-herd 0 4 23 1 2817.72 <0.001 13.56 

15 

Multiple-

herd 5214 4 23 3 2787.90 <0.001 3.63 

16 Single-herd 0 3 22 1 2723.79 <0.001 7.42 

17 Single-herd 0 3 22 1 2714.60 <0.001 14.86 

18 Single-herd 0 4 23 1 2574.72 <0.001 15.58 

19 Single-herd 0 4 23 1 2557.14 <0.001 9.43 

20 

Multiple-

herd 9506 4 23 6 2541.39 <0.001 2.55 

21 Single-herd 0 3 22 1 2432.72 <0.001 13.86 

22 Single-herd 0 1 20 1 2348.49 <0.001 13.56 

23 Single-herd 0 3 22 1 2296.20 <0.001 15.39 

24 Single-herd 0 3 22 1 2256.59 <0.001 9.27 

25 Single-herd 0 4 23 1 2219.90 <0.001 11.70 

26 Single-herd 0 4 23 1 2190.49 <0.001 5.11 
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27 

Multiple-

herd 3473 4 23 5 2095.00 <0.001 2.46 

28 Single-herd 0 4 23 1 2069.82 <0.001 14.41 

29 Single-herd 0 2 21 1 2068.02 <0.001 9.43 

30 Single-herd 0 1 20 1 2059.97 <0.001 11.18 

31 

Multiple-

herd 8962 4 23 21 1824.65 <0.001 1.62 

32 Single-herd 0 2 21 1 1784.66 <0.001 13.13 

33 Single-herd 0 2 21 1 1771.68 <0.001 8.62 

34 

Multiple-

herd 1940 2 21 2 1719.22 <0.001 7.87 

35 Single-herd 0 4 23 1 1607.22 <0.001 7.19 

36 Single-herd 0 2 21 1 1454.06 <0.001 6.80 

37 Single-herd 0 1 20 1 1445.61 <0.001 10.88 

38 Single-herd 0 2 21 1 1426.39 <0.001 3.68 

39 Single-herd 0 3 22 1 1407.50 <0.001 8.91 

40 Single-herd 0 4 23 1 1379.12 <0.001 5.99 

41 

Multiple-

herd 7360 4 23 7 1322.39 <0.001 1.90 

42 Single-herd 0 4 23 1 1302.71 <0.001 8.52 

43 Single-herd 0 4 23 1 1260.43 <0.001 4.43 

44 Single-herd 0 2 21 1 1241.02 <0.001 8.29 

45 Single-herd 0 1 20 1 1226.88 <0.001 7.00 

46 

Multiple-

herd 7569 4 23 5 1220.95 <0.001 2.16 

47 Single-herd 0 4 23 1 1033.46 <0.001 7.47 

48 Single-herd 674 1 20 2 1023.58 <0.001 3.22 

49 Single-herd 0 4 23 1 1021.36 <0.001 6.38 

50 Single-herd 0 1 20 1 999.14 <0.001 5.57 

51 Single-herd 0 2 21 1 986.77 <0.001 5.05 

52 Single-herd 0 4 23 1 907.81 <0.001 8.74 

53 Single-herd 0 2 21 1 834.83 <0.001 7.69 

54 Single-herd 0 3 22 1 803.94 <0.001 6.50 

55 Single-herd 0 7 23 1 762.21 <0.001 6.35 

56 Single-herd 0 3 22 1 744.68 <0.001 7.80 

57 Single-herd 0 1 8 1 738.10 <0.001 7.76 

58 Single-herd 0 3 22 1 721.19 <0.001 4.33 

59 Single-herd 0 1 20 1 718.37 <0.001 4.03 

60 Single-herd 0 10 23 1 608.11 <0.001 2.53 

61 

Multiple-

herd 1167 2 21 2 583.06 <0.001 2.56 

62 Single-herd 0 2 21 1 580.69 <0.001 5.48 

63 Single-herd 0 5 23 1 553.41 <0.001 2.37 

64 Single-herd 0 4 23 1 543.91 <0.001 3.81 

65 Single-herd 0 4 23 1 486.90 <0.001 1.71 
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66 Single-herd 0 4 23 1 482.74 <0.001 1.91 

67 Single-herd 0 4 23 1 472.29 <0.001 3.26 

68 

Multiple-

herd 3424 4 23 3 466.30 <0.001 1.83 
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Statistically significant spatio-temporal clusters (p<0.05) of high mortality in Danish sow herds 

between December 2013 and October 2015. For each cluster, the radius as well as starting and ending 

months (month 1 corresponds December 2013 and month 23 corresponds to October 2015) are given 

along with descriptive statistics of the number farms in the cluster (Number of locations), cluster 

significance (p-value) based on 999 Monte Carlo replications, Log Likelihood Ratio (LLR) and 

Relative Risk (RR) for a maximum spatial window size of 50% of the population at risk and a 

minimum of 1 month and maximum of 90% of the study period.  

Cluster 
Cluster 

type 
Radius (m) Start month 

End 

month 

Number of 

locations 
LLR p value RR 

1 Single-herd 0 19 19 1 663.29 <0.001 75.83 

2 Single-herd 0 4 23 1 512.14 <0.001 9.81 

3 Single-herd 0 1 20 1 434.43 <0.001 3.85 

4 Single-herd 0 21 21 1 326.75 <0.001 14.24 

5 Single-herd 0 4 23 1 221.99 <0.001 3.85 

6 
Multiple-

herd 327 3 22 2 180.42 <0.001 1.90 

7 
Multiple-

herd 6361 1 10 5 173.27 <0.001 2.25 
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Statistically significant spatio-temporal clusters (p<0.05) of high mortality in Danish finisher herds 

between December 2013 and October 2015. For each cluster, the radius as well as starting and ending 

months (month 1 corresponds December 2013 and month 23 corresponds to October 2015) are given 

along with descriptive statistics of the number farms in the cluster (Number of locations), cluster 

significance (p-value) based on 999 Monte Carlo replications, Log Likelihood Ratio (LLR) and 

Relative Risk (RR) for a maximum spatial window size of 50% of the population at risk and a 

minimum of 1 month and maximum of 90% of the study period.  

Cluster 
Cluster 

type 
Radius (m) 

Start 

month 

End 

month 

Number of 

locations 
LLR p value RR 

1 Single-herd 0 1 13 1 4410.21 <0.001 30.71 

2 Single-herd 0 2 21 1 3611.51 <0.001 5.92 

3 Single-herd 0 2 21 1 3551.23 <0.001 27.17 

4 Single-herd 0 20 20 1 1905.00 <0.001 76.53 

5 Single-herd 0 1 20 1 1852.43 <0.001 7.49 

6 Single-herd 0 1 20 1 1314.19 <0.001 4.36 

7 Single-herd 0 4 23 1 1233.35 <0.001 10.08 

8 Single-herd 0 1 20 1 1204.50 <0.001 9.94 

9 Single-herd 0 10 23 1 1168.39 <0.001 14.56 

10 Single-herd 0 1 13 1 1145.42 <0.001 16.97 

11 Single-herd 0 18 23 1 1145.34 <0.001 15.87 

12 
Multiple-

herd 14037 1 20 43 988.69 <0.001 1.43 

13 
Multiple-

herd 3915 2 21 2 907.41 <0.001 3.24 

14 
Multiple-

herd 706 7 23 2 838.51 <0.001 4.51 

15 
Multiple-

herd 758 1 20 2 838.24 <0.001 2.81 

16 
Multiple-

herd 1550 4 23 2 805.13 <0.001 6.34 

17 Single-herd 0 1 20 1 790.02 <0.001 7.76 

18 
Multiple-

herd 2295 1 20 2 781.64 <0.001 6.31 

19 Single-herd 0 4 23 1 778.93 <0.001 9.68 

20 Single-herd 0 4 23 1 751.48 <0.001 8.91 

21 Single-herd 0 2 17 1 728.69 <0.001 7.87 

22 
Multiple-

herd 6360 5 23 13 645.26 <0.001 1.64 

23 
Multiple-

herd 4357 1 20 4 611.40 <0.001 3.43 

24 Single-herd 0 1 10 1 605.94 <0.001 5.93 

25 Single-herd 0 9 9 1 578.02 <0.001 12.05 
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26 
Multiple-

herd 4800 8 23 4 564.79 <0.001 2.30 

27 
Multiple-

herd 2193 7 23 3 556.97 <0.001 3.00 

28 Single-herd 0 6 23 1 544.99 <0.001 4.99 

29 Single-herd 0 3 22 1 527.10 <0.001 6.20 

30 
Multiple-

herd 2115 3 18 2 498.72 <0.001 2.83 

31 
Multiple-

herd 36767 8 23 63 493.80 <0.001 1.30 

32 Single-herd 0 3 3 1 482.91 <0.001 36.12 

33 Single-herd 0 3 20 1 480.24 <0.001 9.24 

34 Single-herd 0 2 21 1 461.68 <0.001 6.21 

35 Single-herd 0 5 23 1 460.22 <0.001 8.73 

36 
Multiple-

herd 1180 7 23 3 450.55 <0.001 2.29 

37 Single-herd 0 4 23 1 431.08 <0.001 2.87 

38 Single-herd 0 3 14 1 420.96 <0.001 6.42 

39 Single-herd 0 3 22 1 413.98 <0.001 6.17 

40 Single-herd 0 16 22 1 409.98 <0.001 4.34 

41 Single-herd 0 2 19 1 379.82 <0.001 6.43 

42 Single-herd 0 1 19 1 378.83 <0.001 3.48 

43 Single-herd 0 1 14 1 364.08 <0.001 4.22 

44 Single-herd 0 1 9 1 353.50 <0.001 6.75 

45 Single-herd 0 3 22 1 349.64 <0.001 3.84 

46 
Multiple-

herd 2208 2 21 3 345.87 <0.001 2.13 

47 Single-herd 0 4 23 1 338.96 <0.001 2.15 

48 Single-herd 0 1 20 1 330.88 <0.001 3.64 

49 
Multiple-

herd 576 1 13 3 330.21 <0.001 2.07 

50 
Multiple-

herd 10350 6 23 38 325.08 <0.001 1.28 

51 
Multiple-

herd 3732 8 23 6 319.74 <0.001 1.90 

52 
Multiple-

herd 3323 4 23 2 319.55 <0.001 2.172 

53 Single-herd 0 15 21 1 306.01 <0.001 4.58 

54 
Multiple-

herd 4101 1 15 4 299.51 <0.001 2.67 

55 Single-herd 0 2 9 1 298.21 <0.001 4.25 

56 
Multiple-

herd 3818 4 23 4 297.77 <0.001 1.97 

57 Single-herd 0 1 20 1 294.55 <0.001 3.71 

58 
Multiple-

herd 8545 3 20 18 292.00 <0.001 1.38 

59 Single-herd 0 3 22 1 282.84 <0.001 1.97 

60 Single-herd 0 4 23 1 278.10 <0.001 2.70 
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61 
Multiple-

herd 1964 11 16 2 276.63 <0.001 3.79 

62 
Multiple-

herd 9356 2 21 2 268.76 <0.001 1.86 

63 
Multiple-

herd 3648 2 14 4 263.07 <0.001 1.67 

64 Single-herd 0 7 23 1 262.83 <0.001 2.62 

65 
Multiple-

herd 3154 20 23 4 257.56 <0.001 2.69 

66 Single-herd 0 7 23 1 252.50 <0.001 4.16 

67 Single-herd 0 5 23 1 245.45 <0.001 3.90 

68 Single-herd 0 4 23 1 217.06 <0.001 3.61 

69 Single-herd 0 2 21 1 206.69 <0.001 2.69 

70 Single-herd 0 1 14 1 205.96 <0.001 4.14 

71 Single-herd 0 8 22 1 185.51 <0.001 2.68 

72 
Multiple-

herd 6478 2 21 11 183.18 <0.001 1.39 

73 Single-herd 0 1 14 1 167.86 <0.001 2.25 

74 
Multiple-

herd 5237 2 21 8 167.82 <0.001 1.38 

75 Single-herd 0 1 20 1 165.10 <0.001 2.57 

76 Single-herd 0 4 23 1 116.18 <0.001 3.46 
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Appendix B: Temporal component description of 7 randomly selected single-herd temporal clusters in 

finisher herds. The mortality (proportion) is described for each herd, with the corresponding average 

mortality for all finisher herds (blue line) and the starting and ending period of the cluster (red arrows).  
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a  b  s  t  r  a  c  t

Surveillance  systems  are  critical  for accurate,  timely  monitoring  and  effective  disease  control.  In this
study,  we  investigated  the  performance  of univariate  process  monitoring  control  algorithms  in  detecting
changes  in  seroprevalence  for  endemic  diseases.  We  also  assessed  the  effect  of  sample  size (number  of
sentinel  herds  tested  in  the  surveillance  system)  on the performance  of the  algorithms.

Three  univariate  process  monitoring  control  algorithms  were  compared:  Shewart  p  Chart1 (PSHEW),
Cumulative  Sum2 (CUSUM)  and  Exponentially  Weighted  Moving  Average3 (EWMA).  Increases  in  sero-
prevalence  were  simulated  from  0.10  to 0.15  and  0.20  over  4, 8,  24, 52  and  104  weeks.  Each  epidemic
scenario  was  run  with  2000  iterations.  The cumulative  sensitivity4 (CumSe)  and  timeliness  were  used
to  evaluate  the  algorithms’  performance  with  a 1% false  alarm  rate.  Using these  performance  evalua-
tion  criteria,  it was  possible  to assess  the  accuracy  and  timeliness  of  the  surveillance  system  working  in
real-time.

The results  showed  that  EWMA  and  PSHEW  had  higher  CumSe  (when  compared  with  the  CUSUM)
from  week  1 until  the  end  of the  period  for all simulated  scenarios.  Changes  in  seroprevalence  from  0.10
to  0.20  were  more  easily  detected  (higher  CumSe)  than  changes  from  0.10 to 0.15  for  all  three  algorithms.
Similar  results  were  found  with  EWMA  and PSHEW,  based  on  the  median  time  to detection.  Changes  in
the  seroprevalence  were  detected  later  with  CUSUM,  compared  to  EWMA  and  PSHEW  for  the  different
scenarios.  Increasing  the  sample  size  10 fold  halved  the  time  to  detection  (CumSe  = 1),  whereas  increasing
the  sample  size  100  fold reduced  the  time  to detection  by a factor  of 6.

This study  investigated  the  performance  of  three  univariate  process  monitoring  control  algorithms  in
monitoring  endemic  diseases.  It was  shown  that  automated  systems  based  on these  detection  methods
identified  changes  in  seroprevalence  at different  times.  Increasing  the  number  of tested  herds  would  lead
to  faster  detection.  However,  the practical  implications  of  increasing  the  sample  size  (such  as  the  costs
associated  with  the  disease)  should  also  be taken  into  account.

©  2016  Elsevier  B.V.  All  rights  reserved.

Abbreviations: PRRSV, Porcine Reproductive and Respiratory Syndrome Virus;
SPF  System, Specific Pathogen Free System; EWMA,  Exponentially Weighted Moving
Average; CUSUM, Cumulative Sums; PSHEW, Shewart p Chart; UCL, Upper control
limit; CumSe, Cumulative sensitivity.

∗ Corresponding author at: Section for Epidemiology, National Veterinary Insti-
tute,  Technical University of Denmark, Bülowsvej 27, 1870 Frederiksberg C,
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E-mail address: aclan@vet.dtu.dk (A.C. Lopes Antunes).
1 Shewart p Chart (PSHEW).
2 Cumulative Sum (CUSUM).
3 Exponentially Weighted Moving Average (EWMA).
4 Cumulative sensitivity (CumSe).

1. Introduction

Surveillance systems are critical for the effective and timely con-
trol of infectious diseases. Surveillance based on the continuous
monitoring of secondary animal health data sources is a growing
field, but the ability of automated systems to detect changes in
the disease burden depends upon the choice of data source, their
representativeness and sampling strategy (Buckeridge, 2007).

Sentinel surveillance systems are used when the health status
of a population is periodically assessed based on a limited num-
ber of herds. These systems can be used for monitoring trends
in diseases, in order to identify outbreaks and monitor the bur-
den of disease in a population, providing a more cost-effective

http://dx.doi.org/10.1016/j.prevetmed.2016.03.005
0167-5877/© 2016 Elsevier B.V. All rights reserved.
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alternative to other disease surveillance methods. The testing fre-
quency and sample size required for sentinel surveillance are
dependent upon several factors, such as the goal of the surveil-
lance, the etiology of the infectious agent, and the diagnostic test
sensitivity and specificity (McCluskey, 2003).

One example of sentinel surveillance is the Danish monitor-
ing program for Porcine Reproductive and Respiratory Syndrome
Virus5 (PRRSV), targeting swine breeding herds. Despite disease
control efforts, PRRSV has continued (since its first diagnosis in
1992) to contribute to economic losses due to mortality in piglets,
respiratory problems in growers and finishers, and reproductive
problems in sows (Kvisgaard et al., 2011). The surveillance is pri-
marily based on serological testing in order to maintain the Specific
Pathogen Free System6 (SPF System) certificate (Specific Pathogen
Free System (SPF-SuS), 2015). The frequency of testing is depen-
dent upon the health status defined as “red”, “blue” and “green”.
The majority of Danish breeding herds have the “red” health sta-
tus and therefore are tested on a monthly basis. In order to gain
or maintain the SPF status, farmers must participate in a voluntary
control program, for which they must provide health declarations
and information on their herd health status for seven diseases,
including PRRSV.

During the past decade, several studies have applied statisti-
cal quality control methods for syndromic surveillance in human
and veterinary medicine (Dupuy et al., 2015; Dórea et al., 2013a,b;
Jackson et al., 2007; Mandl et al., 2004). These studies mainly
focused on detecting simulated outbreaks representing different
scenarios of disease spread sometimes associated with emerging
or re-emerging diseases. However, it may  not be possible to gen-
eralize the performance of these algorithms in detecting disease
outbreaks when monitoring changes in the burden of endemic
diseases. Due to the availability of control measures such as vac-
cination or health management programs, the dynamic of disease
spread is expected to be different for endemic diseases, resulting
in a lower incidence rate when compared to exotic diseases. More-
over, the natural immunity developed from previous exposure to
the agent also reduces an animal’s susceptibility to endemic dis-
eases. Therefore, it is unlikely that “extreme” changes in incidence
and prevalence would be observed for diseases already present
(and controlled) in the population. The dynamics of within-herd
and between-herd endemic disease transmission also depends on
the nature of the pathogen (Carslake et al., 2011), and can contribute
to different temporal patterns of endemic disease spread.

For endemic diseases, it might be beneficial to monitor changes
in disease prevalence rather than incidence. In these cases, the data
differ from that obtained from traditional biosurveillance (gener-
ally related to incidence monitoring), as it is focused on the endemic
scenario with less frequently sampled data. Moreover, this reflects
the added complexity of monitoring endemic diseases, as disease
burden is affected not only by the incidence but also by the disease
duration and recovery rate.

In this study, we investigated the performance of three uni-
variate process monitoring control algorithms commonly used
in biosurveillance (Wagner and Moore, 2006) when applied to
endemic disease monitoring. The algorithms were chosen for this
study based on the simulated scenarios and on the type of sim-
ulated data (proportion data). The aim was to demonstrate that
monitoring based on the weekly seroprevalence of a subset of the
population for an endemic disease could be used to detect changes
in disease occurrence in an accurate and timely manner. In addi-
tion, the impact of sample size (i.e. the number of sentinels) was

5 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV).
6 Specific Pathogen Free System (SPF System).

explored. The design of our study was based on the Danish PRRSV
monitoring program.

2. Methods

2.1. The Danish PRRSV monitoring program

Compulsory serological testing is performed on a monthly basis
for all herds certified as SPF, which includes almost all Danish
breeding herds (Specific Pathogen Free System (SPF-SuS), 2015).

Laboratory submission data stored in the National Veterinary
Institute—Technical University of Denmark (DTU Vet) information
management system and in the Laboratory for Swine Diseases-
SEGES Pig Research Centre (VSP-SEGES) were used to determine the
weekly number of Danish breeding herds tested for PRRSV and the
corresponding between-herd seroprevalence from January 2007 to
December 2014. Each laboratory submission consisted of individ-
ual blood samples collected from different animals in the same herd
on the same day. Only submissions where at least two  individual
blood samples were subject to serological tests, including Block-
ing Enzyme-Linked Immunosorbent Assay (ELISA) (Sørensen et al.,
1997; IDEXX, Ludwigsburg, Germany) and/or Immunoperoxidase
monolayer assay (IPMA) (Bøtner et al., 1994), for one or both PRRSV
strains were included in the analysis. Results from experimental
studies were not included in the analysis.

Herds were classified as PRRSV seropositive when at least two
individual blood samples in each submission tested PRRSV posi-
tive, independently of the PRRSV strain. The between-herd PRRSV
seroprevalence was  calculated weekly as the proportion of PRRSV
positive herds within the total number of herds tested. The aver-
age between-herd PRRSV seroprevalence was 0.10 and the median
weekly number of herds tested for PRRSV was 54 (minimum = 4,
maximum = 85, standard deviation = 12.7).

2.2. Simulation experiment

As no additional knowledge of the true PRRSV seroprevalence
was available, a simulation experiment was  devised to derive the
number of seropositive herds over a week, in order to control the
development of changes. A baseline scenario of PRRSV seropreva-
lence of 0.1 was defined based on the data. In this scenario, the
number of positive herds (X) per week from 2007 to 2014 were
drawn from a binomial distribution (X∼bin (n, p)) with a probabil-
ity (p) of 0.1 and a sample size (n) equal to the number of Danish
breeding herds tested for PRRSV in a given week. The weekly sero-
prevalence was calculated as the simulated number of seropositive
herds, divided by the total number of herds tested that week. This
simulation produced a stationary process representing an endemic
disease under control.

The seroprevalence was increased from p = 0.1 to p = 0.15 and
p = 0.20, over 4, 8, 24, 52 and 104 weeks. These 10 scenarios were
designed to represent possible seroprevalence increases for the dis-
ease and population under study, considering the control measures
in place. The final week of the simulated increase corresponded to
the maximum increase. Following this, seroprevalence was main-
tained at the increased level (0.15 and 0.20). Two  of these scenarios
are illustrated in Fig. 1. The simulated increases in seroprevalence
were started in random weeks between 2009 and 2012, and the
weeks preceding this increase were used to train the algorithms.

2.3. Univariate process monitoring control algorithms

Three univariate process monitoring control algorithms used in
previous studies in veterinary science (Dórea et al., 2013a,b; Dupuy
et al., 2015) were investigated: Exponentially Weighted Moving
Average (EWMA), Cumulative Sums (CUSUM) and Shewart p Chart
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Fig. 1. Simulated between-herd weekly seroprevalence. The seroprevalence was simulated based on a binomial distribution with n equal to the number of Danish breeding
herds  tested for PRRS. Simulated changes in seroprevalence from 0.1 to 0.2 over (a) 4 weeks and (b) 104 weeks are represented.

Fig. 2. Cumulative sensitivity (CumSe) of the univariate process control algorithms for different scenarios. Results for EWMA  (purple), CUSUM (orange) and PSHEW (green)
are  represented in each scenario. Increases in the seroprevalence from 0.1 to (a) 0.15 and (b) 0.20 over 4 weeks (straight lines), 8 weeks (circles) and 24 weeks (diamonds)
are  represented. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(PSHEW). The PSHEW chart is used when the sampling fraction is
nonconforming, i.e., the sample size is not fixed but is taken into
account (Montgomery, 2009). The CUSUM and EWMA  are com-
monly used to detect small shifts in the process (Montgomery,
2009).

The EWMA  uses all previous time points, with a weighting
for previous observations that reduces exponentially. The EWMA

statistic Z and the upper control limit7 (UCL) were obtained from
Wagner and Moore (2006):

Zt = �pt + (1 − �) Zt−1 (1)

UCL(Z)t = Z̄t + L�Zt (2)

7 Upper control limit (UCL).
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Fig. 3. Timeliness of univariate process control algorithms for the different scenar-
ios. Comparative timeliness for changes in seroprevalence from 0.10 to (a) 0.15 and
(b) 0.20 for EWMA  (purple), CUSUM (orange) and PSHEW (green). (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the
web  version of this article.)

where � was the smoothing parameter, pt was the seroprevalence
for week t, L was the magnitude above the expected value, and Zt

was the average value of Zt and Zt−1,

�Zt
2 = var (Z<t)

(
�

2 − �

)[
1 −

(
1 − �

)2t
]

(3)

The CUSUM for week t was calculated as described in Wagner
and Moore (2006):

CUSUMt = max
{

0, pt − pt + CUSUMt−1
}

(4)

where pt was the seroprevalence in week t, and pt was the mean
seroprevalence in previous weeks. Alarms were raised if CUSUMt

exceeded a threshold H, expressed in terms of the standard devia-
tion of the control process.

The PSHEW for each week t (current time point) was  calculated
based on the average seroprevalence (pt) and its UCL, as described
in Montgomery (2009):

pt = �t−1
i=1 xi

�t−1
i=1 ni

(5)

UCL(p)t = pt + k

√
pt (1 − pt)

nt
(6)

where xi was the number of positive herds in previous weeks, ni was
the number of herds tested in previous weeks, nt was the number
of herds tested in week t, and K was the number of standard devi-
ations. An alarm was raised for week t if the seroprevalence was
higher than UCL(p)t .

2.4. Calibration of algorithms

The three algorithms were calibrated to a false alarm rate of 1%
when applied to the baseline (simulated constant seroprevalence
of 0.10), using the following approach: the first 2 years (104 weeks)
of the simulated seroprevalence were used to train the algorithm,
and the following 6 years were used to calculate the false alarm
rates. This process was simulated 2000 times for each parameter of
the algorithm under calibration. The PSHEW was calibrated with K
between 1 and 3; the CUSUM with H between 0.06 and 0.2 (corre-
sponding to between 0.5 and 2 standard deviations); and the EWMA
calibration explored � from 0.1 to 0.9 and L between 2 and 4.

Fig. 4. Impact of the sample size on the algorithms cumulative sensitivity (CumSe).
The results are represented for increases in the seroprevalence from 0.10 to 0.20 over
24  weeks. The CumSe of the EWMA  (purple), CUSUM (orange) and PSHEW (green)
are shown based on the real number of herds tested for PRRSV (straight lines), and a
10  (dots) versus 100 (diamonds) fold increase in the sample size. (For interpretation
of  the references to colour in this figure legend, the reader is referred to the web
version of this article.)

2.5. Performance assessment

Two performance indicators were defined to evaluate the accu-
racy and timeliness of the univariate process monitoring control
algorithms.

The accuracy was  evaluated using the cumulative sensitivity
(CumSe) for week i after an initiated increase. The CumSe was
defined as:

CumSei =
∑i

j=1xj

n.iter

where xj was the number of iterations in which an alarm was  given
j weeks after an increase was  started, and n.iter corresponded to the
total number of iterations used. It was considered that an increase
in the seroprevalence was detected if an alarm was generated for
i ≥ 0. This method was chosen to assess the algorithms’ perfor-
mance for each week, including weeks where the gradual increases
were simulated, in addition to the following weeks (after the end
of the period).

Timeliness was  defined as the number of weeks between the
start of an increase and an alarm by the algorithm.

2.6. Convergence rate

A total of 10,000 iterations were simulated, with an increase
in the seroprevalence from 0.10 to 0.15 achieved over 104 weeks.
The number of iterations required to reach a stable timeliness and
sensitivity (convergence) was  determined visually by plotting the
variance of the average timeliness or sensitivity with a stepwise
increase of 100 iterations up to 10,000 iterations. Stable results
were observed using 2000 iterations and hence all further simu-
lations were run with 2000 iterations.

2.7. Assessing the effect of the number of sentinel herds

In order to assess the importance of the weekly number of
sentinel herds (i.e. herds tested), the simulation experiment was
repeated with n equal to 10 or 100 times the actual number of
herds tested in a given week. For these larger samples, the three
algorithms were again calibrated for a 1% false alarm rate based
on 2000 iterations. The same scenarios and performance indicators
were used to evaluate the algorithms with higher samples sizes.

All methods were implemented in R (version 3.1.1) (R Core
Team, 2014).
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Table  1
Performance evaluation of different detection algorithms. The timeliness was calculated as the median time to detect simulated changes in seroprevalence for all simulated
scenarios for the Exponentially Weighted Moving Average (EWMA), Cumulative Sum (CUSUM) and Shewart p Chart (PSHEW).

Algorithms EWMA  CUSUM PSHEW

Sample size 1× 10× 100× 1× 10× 100× 1× 10× 100×
Changes in
seroprevalence

From 0.10 to 0.15 Duration 4 8 3 2 11 3 2 7 3 2
8  10 5 3 13 5 3 10 5 3
24  19 11 5 23 11 6 18 10 5
52  27 18 8 35 19 9 26 17 8
104 34 26 12 50 28 14 33 25 12

From  0.10 to 0.20 Duration 4 4 2 2 5 3 2 4 2 2
8  7 4 2 7 4 2 6 4 2
24  13 7 4 15 7 4 12 7 3
52  20 11 6 24 12 6 19 11 5
104 27 18 8 35 19 9 26 17 8

3. Results

The selected values used to calibrate the algorithms for a false
alarm rate of 1% corresponded to � = 0.8 and L = 3 for the EWMA,
H = 0.12 for the CUSUM and K = 2.5 for the PSHEW. The same param-
eters were retained in order to calibrate the EWMA  for a 1% false
alarm rate when the sample size increased 10 fold and 100 fold. For
these bigger sample sizes and 1% false alarm rate, the CUSUM was
re-calibrated with H = 0.035 and 0.011; the PSHEW was  set up with
K = 2.5 and 2.3.

The results for the CumSe are presented in Fig. 2. EWMA  and
PSHEW had higher CumSe when compared with the CUSUM from
week 1 until the end of the period for all simulated scenarios.
Changes in seroprevalence from 0.10 to 0.20 (Fig. 2b) were eas-
ier to detect (higher CumSe) when compared with changes from
0.10 to 0.15 (Fig. 2a) for all three algorithms. As an example, the
CumSe of the EWMA for changes from 0.10 to 0.15 over 4 weeks
was 0.23 at the end of the period, and 0.92 at 24 weeks. These values
corresponded to 0.58 and 1.0 for changes from 0.10 to 0.20.

The final achieved CumSe was the same 24 weeks after the
simulated increase for changes in the seroprevalence from 0.10 to
0.20 for the three algorithms (Fig. 2b). The increase over 24 weeks
reached the same final CumSe as in other scenarios, showing that
at the end of the period, the event would most likely already have
been detected. The CumSe achieved at end of the period was  lower
for an increase from 0.10 to 0.15, and it resulted in a lower final
CumSe after 24 weeks (Fig. 2a).

The highest CumSe for increases in seroprevalence from 0.10
to 0.15 over 52 weeks (not shown) corresponded to 0.72, 0.52 and
0.74 for EWMA,  CUSUM and PSHEW, respectively, at the end of the
period. These values rose to 0.98, 0.93 and 0.99 for EWMA,  CUSUM
and PSHEW for increases simulated over 104 weeks. Increases in
the seroprevalence from 0.10 to 0.20 over 52 weeks resulted in
CumSe of 0.99 for the three algorithms at the end of the period.
This value was  1.0 for increases over 104 weeks at the end of the
period.

Regarding the timeliness (Fig. 3), EWMA  and PSHEW showed
similar results based on the median time to detection. CUSUM
detected changes in the seroprevalence later compared to EWMA
and PSHEW for the different scenarios.

For a seroprevalence increase from 0.10 to 0.20, over 24 weeks,
a 10-fold increase in sample size reduced the time to achieve
CumSe = 1.0 from 24 weeks to 12 weeks, as shown in Fig. 4. A
100-fold increase in sample size reduced the time further to only
4 weeks. Therefore, increasing the sample size 10 fold halved the
time to detection (CumSe = 1.0), whereas increasing the sample size
100 fold resulted in the time to detection being obtained six times
faster.

Increasing the sample size also resulted in faster detections for
the three algorithms in the different simulated scenarios (Table 1).
For the 100 fold larger sample size, changes in seroprevalence were

detected 36 weeks earlier when compared with the baseline for the
CUSUM for an increase from 0.1 to 0.15 over 104 weeks.

4. Discussion

We investigated the performance of three univariate process
monitoring control algorithms in monitoring data related to the
burden of endemic diseases. The particular case study was  inspired
by seroprevalence data from the Danish PRRSV monitoring pro-
gram, which uses breeding herds as sentinels.

The simulated increases in seroprevalence were meant to reflect
expected scenarios of disease burden change in an endemic case,
differing from previous studies which focused on scenarios of
disease introduction (Dórea et al., 2013a,b; Dupuy et al., 2015).
Changes in endemic diseases are likely to have different character-
istics than emerging and re-emerging disease outbreaks (Dicker,
2012). Therefore, gradual increases in seroprevalence were simu-
lated. The simulated scenarios were chosen based on the Danish
pig production context, where almost all breeding herds are SPF-
herds and farmers must follow rules concerning biosecurity, health
control and transportation. Based on this, it is unlikely that the
seroprevalence would increase above 0.20 in breeding herds.

A predefined acceptable false alarm rate of 1% was used to
calibrate the algorithms. This decision was made to maintain con-
fidence in the system and to reduce the economic impact of
investigations due to false alarms.

EWMA  and PSHEW had similar performance, and both were bet-
ter in terms of accuracy (CumSe) and timeliness than the CUSUM
for all scenarios. The general lower performance of CUSUM can
be attributed to the noise in the simulated baseline—weeks with
negative cumulative sum reset the algorithm to zero, reducing the
chances of detecting small but sustained increases in the seropreva-
lence. This was also verified by earlier work (Dórea et al., 2013a,b).
However, Dupuy et al. (2015) demonstrated that the CUSUM had
a higher sensitivity when compared with the EWMA  for detecting
outbreaks in proportion data. This could be explained by the fact
that this author simulated outbreaks representing scenarios poten-
tially associated with emerging or re-emerging diseases, whereas
the EWMA  is known for detecting gradual increases in the mean,
as simulated in this study.

As expected, our results revealed that faster increases resulted
in a more rapid rise in CumSe. However, it is interesting to note that
the final CumSe after 24 weeks is similar, showing that at the end of
the period, the event would most likely have been detected for the
simulated scenarios. The lower CumSe achieved at the end of fast
increases (4 and 8 weeks) could be linked to the fact that all obser-
vations (simulated seroprevalence) until week i were used to fit
the algorithm and to calculate the threshold, including weeks with
simulated increases in seroprevalence. In this case, faster increases
will reproduce higher thresholds, resulting in a lower sensitivity
(i.e. less detections). This could be a limitation for a monitoring and
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surveillance system working in real-time, resulting in an excessive
number of alarms missed due to the low sensitivity. In order to over-
come this issue, the approach suggested by Dórea et al. (2013b) –
in which the baseline will be auto-corrected in case of an alarm –
can be adopted in order to obtain a higher sensitivity.

The time to detection was shorter for faster increases in sero-
prevalence. Similar results were found in earlier work (Stoto and
Schonlau, 2004), where simulated signals that increased in mag-
nitude quickly over time tended to be detected more rapidly than
slowly rising signals. The balance between the sensitivity, time-
liness and specificity of the surveillance system is essential; the
decision regarding which attribute to prioritize depends on the
objectives of the system, the communication strategy between all
surveillance stakeholders, and the financial resources used in inves-
tigations (Dupuy et al., 2015). Furthermore, the epidemiology of the
disease, including the incubation time, the transmission mode, the
current context (Wang et al., 2010) and its economic impact, should
also be considered when deciding which attributes to prioritize.

Changing the number of herds tested had an impact on the sim-
ulated seroprevalence, contributing to the variation of the noise
in the baseline. Increasing the sample size reduced the under-
lying variance in the seroprevalence, which justifies the need to
re-calibrate the algorithms using different parameters. Further-
more, this reduced variation might also explain the almost identical
performance of the CUSUM when increasing the sample size.

A 10-fold increase in sample size resulted in certain detection
in half the time, whereas a 100-fold increase reduced this time by
a factor of 6. However, the practical implications of increasing the
number of tested herds, in particular the associated costs, should
also be taken into account. An economic assessment of the impact of
the disease and the cost of changing the current disease surveillance
protocol would be needed to evaluate the gain in days/weeks of
early detection.

5. Conclusions

This study investigated the performance of three univariate
process monitoring control algorithms in monitoring endemic
diseases. It was shown that automated systems based on these
detection methods would eventually detect most changes in sero-
prevalence. Increasing the number of tested herds provided faster
detection. However, the practical implications of increasing the
sample size, such as the costs associated with the disease also need
to be taken into account.
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DYNAMIC GENERALIZED LINEAR MODELS FOR MONITORING ENDEMIC 

DISEASES: MOVING BEYOND UNIVARIATE PROCESS MONITORING CONTROL 

ALGORITHMS 

 

A.C. LOPES ANTUNES*, D. JENSEN, T. HALASA, N. TOFT 

 

 

SUMMARY  
 

The objective was to use a Dynamic Generalized Linear Model (DGLM) based on a 

binomial distribution with a linear trend, for monitoring the PRRS (Porcine Reproductive and 

Respiratory Syndrome sero-prevalence in Danish swine herds. The DGLM was described and 

its performance for monitoring control and eradication programmes based on changes in 

PRRS sero-prevalence was explored. Results showed a declining trend in PRRS sero-

prevalence between 2007 and 2014 suggesting that Danish herds are slowly eradicating 

PRRS. The simulation study demonstrated the flexibility of DGLMs in adapting to changes in 

trends in sero-prevalence. Based on this, it was possible to detect variations in the growth 

model component. This study is a proof-of-concept, demonstrating the use of DGLMs for 

monitoring endemic diseases. In addition, the principles stated might be useful in general 

research on monitoring and surveillance of endemic and (re-)emerging diseases. 

 

INTRODUCTION 

New methods for monitoring animal diseases continue to be an active area of research. In 

the past decade, several studies applied statistical quality control methods for syndromic 

surveillance in human and veterinary medicine (Buckeridge et al., 2005; Jackson et al., 2007; 

Dórea et al., 2013). Many of these studies applied univariate process monitoring control 

algorithms to detect outbreaks of re-emerging diseases. In these cases, control and/or 

eradication measures are implemented whenever certain threshold levels related to the 

infection or disease status have been exceeded. However, the term “monitoring” can also be 

used to describe actions, where a continuous process of collecting data on animal diseases is 

ongoing, but without any instant control activities (Salman, 2003).  

For endemic diseases, it is common to implement control and eradication programmes at 

herd and regional levels to reduce the economic impact of diseases. Often, these programmes 

are based on laboratory diagnostics. One example is the Danish monitoring programme for 

Porcine Reproductive and Respiratory Syndrome (PRRS).  

                                                 
* Ana Carolina Lopes Antunes, National Veterinary Institute, Technical University of 

Denmark, Bülowsvej 27, 1870 Frederiksberg C, Denmark. Email: aclan@vet.dtu.dk  
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Despite disease control efforts in Denmark, PRRS continues to contribute towards the 

economic losses of the industry since its first diagnosis in 1992. PRRS monitoring is 

primarily based on serological testing performed on regular basis from herds that have the 

Specific Pathogen Free System (SPF) certificate (Specific Pathogen Free System (SPF-SuS), 

2015). The frequency of testing depends on the SPF herd type, being performed once a month 

for breeding herds and once a year for finisher herds. The SPF herds represent about 40% of 

all Danish swine (SPF-SuS, 2015). For non-SPF herds, PRRS diagnostic test are not 

mandatory and different reasons might explain the variation in frequency of laboratory 

testing. Thus, diagnostic laboratory submissions of PRRS are collected based on different 

purposes and frequencies in Denmark.  

For disease monitoring, the resulting time series are characterized by observational noise 

as a result of the variation in the disease prevalence and of the number of samples and herds 

tested over time. Furthermore, its randomness and non-stationary nature are difficult to 

model. In these cases, it is necessary to use models with a more dynamic structure, where it is 

possible to add trends, cyclic patterns and also allow the parameters to change over time. 

State space models are one possible approach in which relevant prior knowledge and current 

information are combined. While state space models have been adopted in herd management 

(Jensen et al., 2015; Madsen & Kristensen, 2005; Ostersen et al., 2010), their use has been 

underutilized in veterinary sciences for diseases surveillance purposes. In the literature, there 

are few studies using these type of models for disease monitoring and surveillance in humans 

(Cao et al., 2014; Cowling et al., 2006).  

The objective was to use a state space model for monitoring the PRRS sero-prevalence in 

Danish swine herds. The binomial DGLM with a linear growth was described and its 

performance for monitoring control and eradication programmes based on changes in PRRS 

sero-prevalence was explored. This study is a proof of concept, demonstrating the use of 

DGLMs for monitoring endemic disease, but the principles stated might also be useful in 

general research on monitoring and surveillance of endemic and (re-)emerging diseases.  

 

MATERIALS AND METHODS 

Data source  

Laboratory submission data stored in the National Veterinary Institute – Technical 

University of Denmark (DTU Vet) information management system and in the Laboratory for 

Swine Diseases-SEGES Pig Research Centre (VSP-SEGES) were used to determine the 

weekly PRRS sero-prevalence in Danish swine herds from January 2007 to December 2014.  

Each laboratory submission consisted of individual blood samples collected from the same 

herd on the same day from different animals. Only submissions where at least 2 individual 

blood samples were tested by serological tests including Blocking Enzyme-Linked 

Immunosorbent Assay (ELISA) and/or Immunoperoxidase monolayer assay (IPMA) for one 

or both PRRSV (Porcine Reproductive and Respiratory Syndrome Virus)strains were 

included in the analysis. These serological tests used were a DTU Vet “in-house” ELISA 

(Sørensen et. al, 1997) and IPMA (Bøtner et al., 1994). Furthermore, diagnostic test results 

performed at VSP-SEGES were based on IDEXX PRRS X3 Ab ELISA test (IDEXX, 

Ludwigsburg, Germany). Results from experimental studies were excluded from the analysis.  
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Herds were classified as PRRS sero-positive when at least 2 individual blood samples in 

each submission tested PRRS positive, independently of the PRRS strain. The between-herd 

PRRS sero-prevalence was calculated weekly as the proportion of PRRS positive herds from 

the total number of herds tested for PRRS.  

Modelling  

A binomial DGLM with a linear growth as described by West and Harrison (1997) was 

used to model the data. The general purpose of the DGLM is to estimate the underlying 

parameter vector from the observed data (𝛳) combined with any prior information available 

at time 0 (D0) before any observation is made. This can be achieved sequentially where the 

estimated value is updated each time a new value (PRRS sero-prevalence) is obtained. In this 

case, the conditional distribution of 𝛳𝑡 given by D𝑡 (𝛳𝑡|D𝑡) was estimated. These models can 

be used to estimate a one-step forecast of the mean, allowing for a comparison with the actual 

observed PRRS sero-prevalence. Moreover, the linear growth component includes a time-

varying slope (or local linear trend), allowing the system to adapt to a possible positive or 

negative growth for each t.  

In general, the DGLM consists of an observation equation (Eq. 1) and a system equation 

(Eq. 2): 

 ɡ(𝑝𝑡) = 𝐹𝑡
′𝛳𝑡 (1) 

 𝛳𝑡 = 𝐺𝑡𝛳𝑡−1  +  𝑊𝑡 (2) 

Equation 1 describes how the values of an observation (PRRS sero-prevalence) derive 

from ɡ(𝑝𝑡), depends on an unobservable parameter vector (𝛳) for time t based on a linear 

function. For the model specification, ɡ() is the identity function. Equation 2 describes the 

dynamic properties of the unobservable parameter vector 𝛳. In this study, the transposed 

design matrix (𝐹𝑡
′) has the structure presented in Table 1, in order to estimate underlying 

values of PRRSV sero-prevalence according to Eq 1. The system matrix (𝐺) used to update 

the mean of the PRRSV sero-prevalence for each time step taking into account the trend. 

Both matrix structures were constant for each t (week). The variance-covariance matrix (𝑊𝑡) 

describes the evolution of variance and covariance of each parameter for each time step. 

Rather than estimating (𝑊𝑡), the system variance was modelled using a discount factor (see 

Eq. 4). 

Table 1. Matrices structure used in Eq. 1 and 2. 

𝐹𝑡
′  𝐺𝑡 

[1 0] [
1 1

0 1
] 

 

The DGLM update for each time step 𝑡 was performed as follows: 
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a) the posterior distribution for 𝛳𝑡−1 was expressed by a prior mean (𝑚𝑡−1) and a 

variance (𝐶𝑡−1), (𝛳𝑡−1 |𝐷𝑡−1)~[𝑚𝑡−1, 𝐶𝑡−1];  

b) the prior distribution for 𝛳𝑡 (𝛳𝑡 |𝐷𝑡−1)~[𝑎𝑡, 𝑅𝑡] was made based on the prior mean 

(𝑎𝑡) and prior variance (𝑅𝑡) which were calculated as described in Eq. 3 and 4. The 

specification of the variance components was specified using a discount factor (𝛿);  

 𝑎𝑡 = 𝐺𝑡𝑚𝑡−1 (3) 

 
𝑅𝑡 =

1

𝛿
𝐺𝑡𝐶𝑡−1𝐺𝑡

′ 
(4) 

c) the prior distribution for 𝑌𝑡 (𝑌𝑡 |𝐷𝑡−1)~[𝑓𝑡, 𝑞𝑡] was calculated based on the forecast 

mean (𝑓𝑡) and forecast variance (𝑞𝑡) (Eq. 5 and 6); 

 𝑓𝑡 = 𝐹𝑡
′𝑎𝑡 (5) 

 𝑞𝑡 = 𝐹𝑡
′𝑅𝑡𝐹𝑡 (6) 

d) the posterior mean (𝑓𝑡
∗) and variance  (𝑞𝑡

∗) were calculated as described in Eq. 7 and 8. 

In this case, it was assumed that the prior probability 𝑝 (PRRS sero-prevalence) of a 

binomial distribution was Beta(𝛼, 𝛽). If  𝜅 successes (PRRS positive herds) out of 𝑛 

trials (number of herds tested for PRRS) were observed, the posterior p, given the new 

observation was Beta(𝛼𝑡 + 𝜅𝑡 , 𝛽𝑡 + 𝑛𝑡 −  𝜅𝑡). The parameters 𝛼𝑡 and 𝛽𝑡 were 

calculated according to Eq. 9 and 10. 

 
𝑓𝑡

∗ =  
𝛼𝑡  + 𝜅𝑡

𝛼𝑡 + 𝛽𝑡 +  𝑛𝑡
 

(7) 

 
𝑞𝑡

∗ =  
𝑓𝑡

∗(1 −  𝑓𝑡
∗)

𝛼𝑡 + 𝛽𝑡 +  𝑛𝑡 + 1
 

(8) 

 
𝛼𝑡 = 𝑓𝑡 (

𝑓𝑡(1 − 𝑓𝑡)

𝑞𝑡
− 1) 

(9) 

 
𝛽𝑡 = (1 − 𝑓𝑡) (

𝑓𝑡(1 − 𝑓𝑡)

𝑞𝑡
− 1) 

(10) 

e) the posterior distribution for 𝛳𝑡−1 in a) was calculated based on its mean matrix 𝑚𝑡 

and its variance-covariance matrix 𝐶𝑡 as demonstrated in Eq. 11 and 12.  

 𝑚𝑡 =  𝑎𝑡 + 𝑅𝑡𝐹𝑡(𝑓𝑡
∗ − 𝑓𝑡)/𝑞𝑡 (11) 

 𝐶𝑡 =  𝑅𝑡 − 𝑅𝑡𝐹𝑡𝐹𝑡
′𝑅𝑡(1 − 𝑞𝑡

∗ 𝑞𝑡⁄ )/𝑞𝑡 (12) 
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Model initialization: Reference analysis was used to estimate the initial parameters 

𝐷0~[𝑚0, 𝐶0] as described by West and Harrison (1997). We defined the matrices 𝐾𝑡 and 𝐻𝑡 

and the vectors 𝑘𝑡 and ℎ𝑡 for the first two observations 𝑝1:2.  

For 𝑡 = 1, the initial parameters were defined as 𝐻1=0, ℎ1=0, 𝐾1 = 𝐻1+ 𝐹1𝐹1
′ and 𝑘1 = ℎ1 +

𝐹1𝑝1. For 𝑡 = 2, the vectors and matrices were updated as described in Eq. 13 to Eq. 16.  

 𝐻2 = 𝐺2
−1′𝐾1𝐺2

−1 (13) 

 ℎ2 =  𝐺2
−1′𝑘1 (14) 

 𝐾2 = 𝐻2+ 𝐹2𝐹2
′ (15) 

 𝑘2 = ℎ2 + 𝐹2𝑝2 (16) 

Then, the prior distribution for 𝑡 = 3 was calculated according to Eq. 17 and 18.  

𝑚2 = 𝐾2
−1𝑘2 (17) 

𝐶2 = 𝐾2
−1 (18) 

System variance: The DGLM model was run based on different discount factors (𝛿) ranging 

from 0.1 up to 1 by increments of 0.01. The discount factor which minimized the sum of the 

squared forecast errors based on the first two years of the data was chosen for the analysis.  

Monitoring model components: The values obtained from the 𝑚 vector for each time step t 

were used to decompose the time series and obtain the model growth (PRRS sero-prevalence 

trend). The variance on the growth parameter was calculated from the 𝐶 matrix and used to 

calculate 95% confidence intervals (CI).  

Simulated scenarios: PRRS sero-prevalence baseline was simulated for 8 years, in which the 

number of positive herds (X) per week was drawn from a binomial distribution 

(𝑋 ~ 𝑏𝑖𝑛(n, p)) with a probability (p) (PRRS sero-prevalence) and a sample size (n) equal 

to the number of Danish herds tested for PRRS per week between 2007 and 2014. The 

weekly sero-prevalence was calculated as the simulated number of sero-positive herds 

divided by the total weekly number of herds tested. The first 104 weeks were simulated with 

a constant initial prevalence of 0.24, corresponding to the average PRRS sero-prevalence in 

Danish herds observed based on the laboratory diagnostic data from 2007 to 2014. In the first 

scenario (Scenario A), a constant decrease from p=0.24 to p=0.10 during 4 years followed by 

constant sero-prevalence was simulated. The second scenario (Scenario B) represented a 

decrease in the sero-prevalence from p=0.24 to p=0.10 during 2 years, followed by an 

increase to p=0.18 during the subsequent 2 years. 

The sensitivity (Se) and timeliness were used to evaluate the performance of the DGLM to 

detect significant changes in the simulated scenarios. The Se was defined as the proportion of 
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simulations in which significant changes in the model growth component from zero were 

found. Timeliness was defined as the number of weeks between a change in the PRRS sero-

prevalence (decrease, increase, constant) was simulated and detected.  

Convergence rate: A total of 20,000 simulations of weekly PRRS sero-prevalence with a 

constant decrease from 0.24 to 0.05 over 5 years were carried out. The number of iterations 

needed to reach a stable variance in the average time to detect significant changes 

(convergence) was determined visually by plotting the variance of the average timeliness 

with a stepwise increase of 100 iterations up to 20,000 iterations against the number of 

iterations. Stable results were observed when using only 10,000 iterations and hence all 

further simulations were run with 10,000 iterations. 

All analyses were performed using R (version 3.1.1) (R Core Team, 2014).  

 

RESULTS  

Data description 

A total of 56,341 laboratory submissions from 5,390 Danish swine were included in the 

analysis. The average weekly number of herds tested for PRRSV was 130 (min=9, 

max=206); the mean weekly number of PRRS positive herds was 31 herds (min=0, max= 

60). The weekly average PRRS sero-prevalence was 0.24 (min=0, max=0.38). The yearly 

average of PRRS sero-prevalence declined from 0.28 in 2007 to 0.20 in 2014, with an 

average decrease of 0.01 per year.  

Model initialization and discount factor  

Table 2 shows the posterior 𝐶2 and 𝑚2 matrices obtained from the reference analysis and 

used as priors for the DGLM model for  𝑡 = 3. The discount factor which minimized the sum 

of forecast errors for the data was 𝛿=0.98.    

Table 2. Priors for t = 3 obtained from the reference analysis. 

𝑚2  𝐶2 

[
0.30

0.07
] [

1 1

1 2
] 

 

 

Modelling and decomposing DGLM  

Results show a declining trend of PRRS sero-prevalence between 2007 and 2014. 

Significant decreases (95% CI excluding zero) were detected mainly in the last 6 months of 

2007; end of 2008 to the first semester of 2010 and from the last quarter of 2010 until the 

beginning of 2013 (Fig. 1). No significant increases in PRRS sero-prevalence were observed 

and all values for the growth component were below 0.  
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Fig. 1 Using a DGLM to monitor PRRS sero-prevalence in Danish swine herds from 2007 to 

2014. Results show the weekly PRRS sero-prevalence and the filtered mean (black) (a) and 

the corresponding DGLM growth component (b). The black rugs indicate were the growth 

component is significantly different from zero. 

Simulated scenarios  

The simulated scenarios are represented in Fig. 2 and 3. The results for the simulation 

study are presented in Table 3. Significant changes in the model growth component from zero 

were found in both scenarios. However, the DGLM detected changes in the growth with a 

higher sensitivity for decreasing changes when compared to constant growth in the time 

series. The lowest sensitivity was found for Scenario A when the PRRS sero-prevalence 

became constant after the decrease, with the DGLM growth component being non-

significantly different from zero in 39.02% of the simulations. 

Table 3. Timeliness (weeks) and Se for the simulated scenarios. 

 Scenario A  Scenario B 

Intervention Decrease Constant Decrease Increase 

Timeliness (median)  

(min-max) 

Se (%) 

47  

(0-89) 

100 

96  

(57-106) 

39.02 

27  

(0-56) 

100 

146  

(110-257) 

99.64 

a 

b 
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Fig. 2 Simulated control program Scenario A. PRRS sero-prevalence was constant during 104 

weeks, followed by a decrease to 0.10 during 208 weeks and then a constant prevalence. The 

DGLM filtered mean (black line) (a) and the corresponding DGLM growth component (b) 

(grey lines) are presented. The black rugs indicate a significant negative the growth 

component based on 95% CI. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Simulated control program Scenario B. PRRS sero-prevalence was constant during 104 

weeks, followed by a decrease to 0.10 during 104 weeks and an increase up to 0.18 during 

104 weeks. The DGLM filtered mean (black line) (a) and the corresponding DGLM growth 

component (b) (grey lines) are presented. The black and grey rugs indicate significant 

declines and increase in the growth component based on 95% CI, respectively. 

a 

b 

a 

b 
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DISCUSSION 

The objective of this study was to use a binomial DGLM with a linear growth component 

for monitoring PRRS sero-prevalence in similar contexts to the Danish Pig Industry. The 

same model can be used for monitoring other prevalence data. These types of models can also 

be derived for Poisson distribution for monitoring count data, such as the number of samples 

submitted for analysis etc. Moreover, an ordinary Dynamic Linear Model (DLM) can be used 

if the data are normally distributed. They also allow for modelling interventions as well as 

changes in level shift through multi-process models (Thysen, 1993). The DGLM provide a 

flexible framework in which it is possible to include different data sources in a multivariate 

process as shown by (Jensen et al., 2015). Moreover, the use of this method allows 

monitoring of trends and also other components of time series such as seasonal, regression 

and autoregressive effects components which have a wide interest in biomedical time series 

applications (West & Harrison, 1997).   

As no information on PRRS outbreaks and eradication programmes is available for 

Danish swine herds, a simulation study was conducted. One limitation of this study is related 

to the simulation approach used; the simulated sero-prevalence was based on a binomial 

distribution. The variation in the number of herds tested had an impact on the simulated 

prevalence contributing to the variation (noise in the baseline). As a consequence, the 

timeliness to detect interventions showed a wide range of values and the sensitivity was not 

similar for all interventions. One approach to overcome this issue could be to aggregate the 

data on a monthly basis, thus reducing the noise in the baseline and possibly improve the 

performance of the model to adapt to changes in the trend.  

The DGLM model was able to detect changes in both scenarios. However, it is important 

to notice that decreases were larger compared to the increases, corresponding to an absolute 

decay in sero-prevalence of 0.145 and absolute increase of 0.08. For scenario B, significant 

positive changes in the model growth component were found after a period in which non-

significant changes were found. These justify the longer time needed to detect increases. The 

variation in the growth parameter was monitored based on 95% CI’s. Different approaches 

could be, e.g. Shewart control charts, cumulative sensitivities, V-mask (Montgomery, 2013) 

or target values, which might yield improved the performances.    

In a Bayesian framework the choice of priors is critical for making inference. Reference 

analysis was used to initiate the DGLM model. From a practical point of view, when a system 

is set up, the number of observations is low to make the influence of the priors significant. In 

this case, the use of “non-informative” priors can be used. This method offers an easily 

applied default analysis (West & Harrison, 1997) when running a DGLM. However, it can be 

seen from the simulated scenarios that the DGLM takes 3 months to adapt to the data. For 

this reason, it is important to have historical data (retrospective analysis) to train the model 

when setting up a monitoring system.  

The systems variance was defined based on a discount factor, expressing the decay of 

information in the system. Defining 𝛿=0.98 implies a small systems variance with a very 

slow adaptation to new observations. This value was defined using the same method 

described in Kristensen et al. (2010), where 𝛿 should optimized for the performance of the 

model in making forecasts, i.e., minimizing the forecast errors for the first two years of data 

(retrospective analysis). In recent literature (Bono et al., 2012; Jensen et al., 2015), the 

Expectation-Maximization algorithm (Dempster et al., 1977) was used to define the 𝑊 

variance-covariance matrix. This approach offers a general approach to iterative computation 
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of maximum-likelihood estimates when the observations can be viewed as incomplete data. 

The use of a discount factor provides a parsimonious approach when compared to the full 

estimation of 𝑊.  

In summary, results show a declining trend on PRRS sero-prevalence between 2007 and 

2014 suggesting more Danish herds are eradicating PRRS. The simulation study highlighted 

that DGLM are flexible models able to adapt to changes in the time series. It was possible to 

detect variations in the growth component of simulated scenarios. This study is a proof of 

concept, demonstrating the use of DGLMs for monitoring endemic disease, but the principles 

stated might also be useful in general modelling, monitoring and surveillance of (re)emerging 

diseases. Further analysis to compare the performance of the DGLM, including different 

components, to other models will be investigated in future studies.  
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Abstract 11 

Disease monitoring and surveillance play a crucial role in control and eradication 12 

programs, as it is important to track implemented strategies in order to reduce and/or 13 

eliminate a specific disease. The objectives of this study were to assess the performance 14 

of different statistical monitoring methods for endemic disease control program 15 

scenarios, and to explore what impact of variation (noise) in the data had on the 16 

performance of these monitoring methods.  17 

We simulated 16 different scenarios of changes in weekly sero-prevalence. The 18 

changes included different combinations of increases, decreases and constant sero-19 



2 

 

prevalence levels (referred as events). Two space-state models were used to model the 20 

time series, and different statistical monitoring methods (such as univariate process 21 

control algorithms and monitoring of the trend component) were tested. Performance 22 

was evaluated based on the number of iterations in which an alarm was raised for a 23 

given week after the changes were introduced. 24 

Results revealed that the Shewhart Control Chart was better at detecting 25 

increases over decreases in sero-prevalence, whereas the opposite was observed for the 26 

Tabular Cumulative Sums. The trend-based methods detected the first event well, but 27 

performance was poorer when adapting to several consecutive events. The V-Mask 28 

method seemed to perform most consistently, and the impact of noise in the baseline was 29 

greater for the Shewhart Control Chart and Tabular Cumulative Sums than for the V-30 

Mask and trend-based methods.    31 

The performance of the different statistical monitoring methods varied when 32 

monitoring increases and decreases in disease sero-prevalence. Combining two of more 33 

methods might improve the potential scope of surveillance systems, allowing them to 34 

fulfill different objectives due to their complementary advantages.  35 

 36 

Introduction 37 

Surveillance and monitoring systems are critical for the timely and effective 38 

detection of changes in disease status. Over the last decade, several studies have applied 39 

different statistical monitoring methods for detecting outbreaks of (re-)emerging 40 

diseases in the context of syndromic surveillance in both human and veterinary medicine 41 
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[1–3]. Different types of models (such as linear models, logistic regression and time-42 

series models) have been implemented in the context of syndromic surveillance in order 43 

to evaluate the  performance and implementation of these methods [4]. 44 

However, it may not be possible to make generalizations about the performance 45 

of these methods when used for monitoring endemic diseases and control programs. In 46 

this case, the availability of control measures (such as vaccination or health-management 47 

programs) results in lower incidence rates for endemic diseases than for (re)-emerging 48 

diseases. The dynamics of disease spread and immunity within a population from 49 

previous exposure also contribute to a lower incidence, resulting in slow and gradual 50 

changes in incidence and prevalence for endemic diseases [5].  It is important to follow-51 

up on implemented control strategies in order to reduce and/or eliminate a specific 52 

disease [6]. Unexpected changes (such as an increase in disease prevalence or a failure 53 

to achieve a target value of disease prevalence within a certain period of time) indicate 54 

that the implemented strategies should be revised. When a control program fails to 55 

achieve certain goals, it can have a devastating impact on herds with susceptible 56 

animals.  57 

In previous work, we assessed the performance of univariate process control 58 

algorithms (UPCA) in monitoring changes in the burden of endemic diseases based on 59 

sentinel surveillance [7]. However, these methods were not tested in the context of 60 

voluntary disease control and monitoring programs. In such cases, the frequency of 61 

testing depends on the monetary value of the animal and not just on the impact of the 62 

disease [6]. Programs for monitoring endemic diseases include the Danish Porcine 63 



4 

 

Reproductive and Respiratory Syndrome Virus (PRRSV) monitoring program. Despite 64 

disease-control efforts, PRRSV has contributed to economic losses since its first 65 

diagnosis in 1992 [8]. Monitoring of PRRSV is primarily based on serological testing 66 

within the Specific Pathogen Free System (SPF System) [9]. The frequency of testing 67 

depends upon the health status of the herd within this system. As a consequence, the 68 

number of samples is not constant and it is necessary to use methods with a more 69 

dynamic structure, allowing the parameters to change over time, thus taking into account 70 

the variation in sample size. Previous studies have also discussed the influence of 71 

variation in the number of samples (i.e. the noise present in data) on the performance of 72 

different monitoring methods [7,10].  73 

State-space models have a flexible structure, allowing parameters to be updated 74 

for each time step [11]. In addition, they can be decomposed, and changes in the 75 

components (such as trends and seasonal patterns) can be monitored for inference [12]. 76 

While state-space models have been used to monitor influenza in humans [13–15] as 77 

well as and for herd-management decisions [16–19], it has not yet been determined how 78 

useful these techniques are for monitoring endemic diseases.  79 

The objectives of this study were to assess the performance of different statistical 80 

monitoring methods for endemic disease control programs, and to explore what impact 81 

of variation (noise) in the data had on the performance of these statistical monitoring 82 

methods. The simulation study was motivated by the Danish PRRSV monitoring 83 

program.   84 
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Two state-space models were chosen for this study based on their ability to 85 

monitor changes in different time-series components [11]. Five different statistical 86 

monitoring methods were evaluated for each model: three UPCA used in process-control 87 

monitoring [20], and two methods for monitoring changes based on the trend component 88 

of the time series.  89 

  90 

Materials and Methods 91 

All methods described in this section were implemented using R version 3.1.1 92 

[22]. 93 

 94 

Data 95 

Laboratory submission data stored in the National Veterinary Institute – 96 

Technical University of Denmark (DTU Vet) information management system and in 97 

the Laboratory for Swine Diseases –SEGES Pig Research Centre (VSP-SEGES) were 98 

used to determine the weekly PRRS sero-prevalence in Danish swine herds between 99 

January 2007 and December 2014 (418 weeks in total). The weekly PRRS sero-100 

prevalence was calculated using the same method described in a previous study [7]. A 101 

total of 51,639 laboratory submissions from 5,095 Danish swine herds were included. 102 

The average between-herd PRRS sero-prevalence was 0.24 (minimum=0, 103 

maximum=0.38) and the median number of herds tested for PRRS was 122 104 

(minimum=8, maximum=191) per week.  105 
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Simulation study 106 

A baseline scenario for sero-prevalence was defined based on the method 107 

described by Lopes Antunes et al. [7], where the number of positive herds per week was 108 

derived from a binomial distribution with probability (p) and sample size (n) equal to the 109 

number of Danish herds tested for PRRS in a given week. The data is publicly available 110 

at the following link: https://figshare.com/s/8760d1be0d738e57292b. The weekly sero-111 

prevalence was calculated as the simulated number of sero-positive herds divided by the 112 

total number of herds tested per week. 113 

There was a constant initial sero-prevalence of 0.24 for the first 104 weeks of all 114 

simulated scenarios, corresponding to the average PRRS sero-prevalence observed in 115 

Danish herds in the diagnostic laboratory data from 2007 to 2014 (Fig 1). In Scenario A, 116 

this period was followed by an increase in the weekly sero-prevalence (Event 1), a 117 

constant level, and then a decrease (second event). Scenario B consisted of a decrease in 118 

the sero-prevalence (Event 1) followed by a constant level, then an increase during the 119 

subsequent weeks (Event 2). Each scenario was simulated with changes in the weekly 120 

sero-prevalence, including gradual increases to 0.33 and 0.38 (for Scenario A) and 121 

gradual decreases to 0.15 and 0.10 (for Scenario B) over 52 and 104 weeks. Different 122 

combinations and durations of events (increases/decreases in sero-prevalence) were 123 

tested for each scenario, resulting in a total of 16 simulated scenarios (Table 1). Event 1 124 

of each scenario was started at a random time between weeks 104 and 156, and Event 2 125 

was started after a random interval of between 52 and 104 weeks following the end of 126 

Event 1.  127 

https://figshare.com/s/8760d1be0d738e57292b
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Fig 1. Simulated scenarios representing endemic disease monitoring. The 128 

between-herd weekly sero-prevalence was simulated using a binomial distribution based 129 

on the Danish herds tested for PRRSV during the corresponding week. An initial sero-130 

prevalence of 0.24 was maintained for at least 104 weeks. This was followed by either 131 

an increase to 0.38 or a decrease to 0.10 over 52 weeks in two different events. The 132 

different statistical monitoring methods were evaluated for each event.  133 

 134 

 135 
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Table 1. Description of the 16 simulated scenarios representing changes in 136 

endemic diseases.  137 

 
 Event 1 Event 2 

 Initial sero-

prevalence 

Sero-

prevalence 

achieved at the 

end of the event 

Duration of 

the event 

(weeks) 

Sero-

prevalence 

achieved at the 

end of the event 

Duration of 

the event 

(weeks) 

S
ce

n
a
ri

o
 

S
ce

n
a
ri

o
 A

 

0.24 

0.33 

52 

0.24 

52 

52 104 

104 52 

104 104 

0.38 

52 52 

52 104 

104 52 

104 104 

S
ce

n
a
ri

o
  

S
ce

n
a
ri

o
 B

 

0.24 

0.15 

52 

0.24 

52 

52 104 

104 52 

104 104 

0.10 

52 52 

52 104 

104 52 

104 104 

An initial constant sero-prevalence of 0.24 was simulated over 104 weeks. This 138 

was followed by an increase in sero-prevalence to 0.33 or 0.38 (Scenario A) or a 139 

decrease to 0.15 and 0.10 (Scenario B) over 52 and 104 weeks (Event 1). Event 1 was 140 

followed by a constant level of sero-prevalence, then by a second event (Event 2), 141 

corresponding to a decrease (Scenario A) or an increase (Scenario B) to the initial value 142 

of 0.24 over 52 and 104 weeks. Different combinations of event durations and changes 143 

in the sero-prevalence were tested, resulting in a total of 16 scenarios. 144 

 145 

 146 

 147 

 148 

 149 

 150 
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Modeling  151 

A Dynamic Linear Model (DLM ) and a Dynamic Generalized Linear Model 152 

(DGLM ), both with a linear growth component as described previously [11], were used 153 

to model the simulated data. 154 

The general objective of state-space models is to estimate an underlying 155 

parameter vector from observed data (𝛳) combined with any prior information available 156 

at time 0 (D0), i.e. before an observation is made. The estimated parameter vector is 157 

updated each time every time there is a new observation (e.g. of the PRRS sero-158 

prevalence). Specifically, the distribution of 𝛳𝑡 conditional on D𝑡  (𝛳𝑡|D𝑡) is estimated 159 

for each time step t. These models can be used to estimate a one-step forecast of the 160 

mean, allowing for a comparison between observed and forecasted values.  161 

Briefly, the DLM is represented by a set of two equations, defined as the 162 

observation equation (Eq. 1) and the system equation (Eq. 2).  163 

𝑌𝑡 = 𝑭′𝜽𝑡 + 𝑣𝑡 , 𝑣𝑡~𝑁(0, 𝑉𝑡)   (1) 164 

𝜽𝑡 = 𝑮𝜽𝑡−1 + 𝑤𝑡,, 𝑤𝑡~𝑁(0, 𝑊𝑡)  (2)  165 

 166 

where 𝑉𝑡 and 𝑊𝑡 are referred to as the observational variance and system variance, 167 

respectively. In our study, the observational variance was adjusted for the number of 168 

submissions in a given week (see Eq. 5 below). The transposed design matrix (𝑭′) had 169 

the following structure: 170 

       𝑭′ = [1 0]                                                         (3) 171 

 172 
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Eq. 2 describes the evolution of 𝜭  from time t-1 to t. The system matrix (𝑮) for a local 173 

linear trend model is given as: 174 

                                                              𝑮 = [
1 1

0 1
]                                                 (4) 175 

 176 

The linear trend component enabled us to include a time-varying slope (or local 177 

linear trend), allowing the system to adapt to a potential positive or negative trend for 178 

each t. Assuming that the PRRS sero-prevalence was not auto-correlated over time, the 179 

observational variance was defined as: 180 

                               𝑉𝑡 =
Yt−1 (1−Yt−1)

nt
                            (5) 181 

where 𝑌t  was the observed sero-prevalence for week t, and nt was the number of herds 182 

tested for PRRS that week.   183 

Unlike the DLM, the DGLM was based on a binomial distribution. The 184 

observation equation (Eq. 6) for the DGLM was defined as:  185 

                                    𝑝𝑡 = 𝑭𝑡
′ 𝜭𝑡                               (6) 186 

For both DLM and DGLM, the variance-covariance matrix (𝑊𝑡) describes the 187 

evolution of variance and covariance of each parameter for each time step. Rather than 188 

estimating 𝑊𝑡, the system variance was modeled using a discount factor (δ), as 189 

previously described by [21] and [17]. 190 

 191 
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State-space model initialization and discount factors 192 

Reference analysis was used to estimate the initial parameters 𝐷0~[𝑚0, 𝐶0 ] as 193 

described by West and Harrison [11].  194 

The discount factors (δ) were defined using the method described by Kristensen 195 

[22], and were selected in order to optimize the performance of the model forecasts (i.e. 196 

minimizing the normalized forecast errors 𝑒𝑡
𝑛𝑜𝑟𝑚). The DLM and the DGLM models 197 

were run for 418 weeks with a constant simulated sero-prevalence of 0.24, using 198 

different δ-values ranging from 0.1 up to 1 in increments of 0.01. The δ-value that 199 

minimized the sum of the squared normalized forecast errors was chosen for the 200 

analysis. For both models, the forecast errors were normalized with respect to the 201 

forecast variance Qt, such that  𝑒𝑡
𝑛𝑜𝑟𝑚  =  𝑒𝑡 /√Qt .  202 

 203 

Monitoring methods 204 

Univariate process control algorithms (UPCA) 205 

Three monitoring methods were used to generate alarms: the Shewhart Control 206 

Chart, Tabular Cumulative Sums, and V-Mask [20]. These methods are useful when 207 

only small changes are expected in  the data [20]. 208 

The Shewhart Control Chart and Tabular Cumulative Sums were applied to the 209 

normalized forecast errors, whereas the V-Mask was applied to simple cumulative sums 210 

of the normalized forecast errors. The first 104 weeks of data were used as a “burn-in” 211 
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period for the models and the alarms were generated from the third year onwards (>108 212 

weeks) when the simulated events started.  213 

The fixed upper and lower control limits (UCL and LCL) required for the 214 

Shewhart Control Chart to generate alarms in a given week were calculated based on the 215 

following equations [20]: 216 

𝑈𝐶𝐿(𝑓)𝑡 = 𝜇𝑡 + 𝐿 𝜎𝑡         (7) 217 

𝐿𝐶𝐿(𝑓)𝑡 = 𝜇𝑡 − 𝐿 𝜎𝑡          (8) 218 

where 𝜇𝑡 is the center line (𝜇𝑡 = 0), L is the selected number of standard deviations and 219 

𝜎𝑡 is the standard deviation of the normalized forecast errors from t>104.  220 

The Tabular Cumulative Sums for week t were calculated as described by 221 

Montgomery [20]. This method accumulates derivations from 𝑇0 (target value) that are 222 

above the target with one statistic 𝐶+, and below the target with another statistic 𝐶−. The 223 

𝐶+and 𝐶− for a given week (t) were calculated as:  224 

𝐶𝑡
+ = 𝑚𝑎𝑥{0,   𝑒𝑡

𝑛𝑜𝑟𝑚  − (𝑇0 + 𝐾) + 𝐶𝑡−1
+ }               (9) 

𝐶𝑡
− = 𝑚𝑖𝑥{0,  (𝑇0 − 𝐾) 𝑒𝑡

𝑛𝑜𝑟𝑚  + 𝐶𝑡−1
− }                   (10) 

 

where 𝑇0 = 0 and K is the reference value expressed as K=(1*𝜎𝑡)/2. Alarms were raised 225 

if 𝐶𝑡
+ or 𝐶𝑡

− exceeded a threshold H (expressed in terms of the standard deviation) in a 226 

given week t. The starting values of 𝐶0
+ and 𝐶0

− were defined as zero.  227 

The V-Mask was applied to successive values of the cumulative sum of 228 

normalized forecast errors, which was calculated as follows [20]: 229 
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cumulative sum 𝑡 = ∑  𝑒𝑡
𝑛𝑜𝑟𝑚 𝑖

𝑗=1                                       (11) 230 

The V-Mask is defined by the lead distance d and the angle 𝛹, which were 231 

equivalent to the cumulative sum as described by Montgomery [20] (Fig 2). The point 232 

O of the V-Mask was directly applied to each value of the cumulative sum𝑡 with the 233 

line OP parallel to the horizontal axis. The V-Mask was applied to each new point on the 234 

cumulative sum chart and the arms extended backwards towards the origin. If all the 235 

cumulative sums in previous time steps were within the two arms of the V-Mask, the 236 

process was considered to be ‘in-control’; if any of the cumulative sums lay outside of 237 

the arms, the process was considered ‘out-of-control’ and an alarm was given. The value 238 

of the cumulative sum𝑡 was reset to zero each time an alarm was given.  239 

 240 

 241 

 242 

 243 

 244 

 245 

 246 

 247 

 248 

 249 

 250 
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Fig 2. V-Mask description: (a) Parameters used to define the V-Mask; (b) 251 

Illustration of the V-Mask applied to the cumulative sum. The point O is positioned 252 

on the cumulative sum for each time t, and the line OP defines the lead distance d of the 253 

V-mask as expressed using horizontal plotting time steps.    254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 

Calibration 266 

In order to calibrate the process control algorithms, the generalized DLM and 267 

DGLM were applied to 418 weeks of simulated data with a constant sero-prevalence of 268 

0.24. The process control algorithms were calibrated for a false alarm rate of 1% when 269 

applied to the weekly  𝑒𝑡
𝑛𝑜𝑟𝑚  (excluding the first 104 weeks, which represented the 270 

“burn-in” period of both models). The Shewhart Control Chart was calibrated with L 271 

Ψ 
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ranging from 1 to 4 standard deviations of the  𝑒𝑡
𝑛𝑜𝑟𝑚, and  𝜇𝑡 was defined as zero. For 272 

the Tabular Cumulative Sums, values of H ranging from 1 to 4 standard deviations of 273 

the  𝑒𝑡
𝑛𝑜𝑟𝑚 were tested. This process was simulated 2,000 times for each parameter of the 274 

algorithm during calibration, and the median value of the false alarm rate was used as 275 

the summary statistic for evaluation.  276 

Montgomery [20] suggested using 𝛹 = tan−1(𝐾) and d = 𝐻/𝐾 in order for the 277 

V-Mask to be comparable to the Tabular Cumulative Sums. For this reason, these values 278 

were adopted for the implementation of the V-Mask in this study.  279 

 280 

Monitoring the time-series trend 281 

For both the DLM and DGLM, the trend was extracted from the θ vector for 282 

each time step t. The variance of the trend parameter was calculated from the variance-283 

covariance matrix for the posterior distribution, as previously described [11]. This 284 

variance was used to calculate 99% confidence intervals (CI) (Fig 3). Alarms were 285 

generated based on the trend when significant differences above and below zero were 286 

found according to the 99% CI. In addition, a second method was used to generate 287 

alarms when the absolute values of the trend component changed the sign from positive 288 

to negative and vice versa (Trend Sign).  289 

 290 

 291 

 292 
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Fig 3. The results show the simulated weekly sero-prevalence and the 293 

filtered mean obtained from the DLM (black dashed line) and DGLM (solid black 294 

line), and the corresponding DLM and DGLM trend component. The rugs indicate 295 

where the trend component was significantly above (red) or below (blue) zero. 296 

 297 

 298 

 299 

 300 

 301 
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Performance assessment  302 

The performance was also assessed using the method proposed by Lopes 303 

Antunes et al [7]. The cumulative sensitivity (CumSe) was calculated as: 304 

                                          𝐶𝑢𝑚𝑆𝑒𝑖 =  
∑ 𝑥𝑗 

𝑖

𝑗=1

𝑁𝑖𝑡𝑒𝑟
                                      (12) 305 

where 𝑥𝑗   is the number of iterations in which an alarm was given j weeks after an event 306 

started, and 𝑁𝑖𝑡𝑒𝑟 is the total number of iterations. An increase in the sero-prevalence 307 

was considered to have been detected if an alarm was generated for each week i after the 308 

event was started (i ≥ 0).  309 

 310 

Convergence  311 

A total of 10,000 iterations were simulated, with an initially constant sero-312 

prevalence of 0.24 followed by a steady decrease to 0.15 over a period of 52 weeks. The 313 

decrease was randomly started between weeks 104 and 156. The number of iterations 314 

required to reach a stable detection time was determined visually using a plot of the 315 

variance in time to generate an alarm. This was done for each of the five statistical 316 

monitoring methods based on both types of models after the event was started with a 317 

stepwise increase of 100 iterations. Stable variance was observed after 2,000 iterations, 318 

therefore all simulated scenarios were run using this number of iterations. 319 

 320 
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Assessing the impact of noise in the data on the performance 321 

of detection methods 322 

In order to assess the impact of noise in the data, the simulation study was 323 

repeated with n fixed at 600 herds tested per week. This value corresponds to a five-fold 324 

increase in the average number of Danish swine herds tested for PRRSV per week 325 

between 2007 and 2014, and it reduced the variation in the baseline (Fig 4).  326 

 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 
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Fig 4. Simulated sero-prevalence representing endemic disease monitoring. 338 

The weekly sero-prevalence was simulated using a binomial distribution based on the 339 

Danish herds tested for PRRSV during the corresponding week (grey line), and with five 340 

times the average number of Danish herds (n=600) tested for PRRSV (blue line). The 341 

red straight lines indicate the actual values of the simulated sero-prevalence. 342 

 343 

Results 344 

Parameters used for calibration 345 

The selected values used to define a 1% false alarm rate for the UPCA based on 346 

the DLM model corresponded to L=2.6 for the Shewhart Control Chart, H=6 and K=6 347 

for the Tabular Cumulative Sums, and a distance of 2 units for the V-Mask. For the 348 
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DGLM model, the values corresponded to L=2.5, H=16, K=5, and a distance of 3.2 349 

units. These parameters were recalibrated to maintain a 1% false alarm rate when the 350 

number of herds tested per week was increased to 600, in order to simulate the baseline. 351 

The DLM model used parameters of L=2.3 for the Shewhart Control Chart, 𝐻=1.8 and 352 

𝐾=1 for the Tabular Cumulative Sums and a distance of 1.8 units for the V-Mask for a 353 

constant number of herds tested. For the DGLM model, these parameters were defined 354 

as L=2.2, 𝐻=11, K=6 and a distance equal to 1.07 units.  355 

A discount factor δ=0.99 was used to define the system variance for the DLM 356 

and the DGLM.  357 

 358 

Statistical monitoring methods based on the DLM 359 

The number of weeks needed to identify 50% of all iterations simulated 360 

(CumSe=50%) for each event is given in Table 2. A CumSe=50% was achieved most 361 

rapidly by the Trend Sign, followed by the V-Mask for Event 1 of Scenario A based on 362 

the DLM. For Event 2, the fastest CumSe=50% was achieved using the V-Mask and 363 

Shewhart Control Chart. Using the Trend Sign to monitor the changes, we noted an 364 

increase in the number of weeks needed to achieve CumSe=50% when comparing Event 365 

1 and Event 2. As an example: for Event 1, 37 weeks were required to detect an increase 366 

in sero-prevalence from 0.24 to 0.38 over a period of 104 weeks based on 99% CI, and 2 367 

weeks were required for the same increase and time period based on the Trend Sign. The 368 

same CumSe was achieved 74 and 59 weeks after the start Event 2 for the 99% CI and 369 

the Trend Sign, respectively. Furthermore, the Tabular Cumulative Sums detected 370 
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changes in Event 1 of Scenario A more quickly than Event 2, with the exception of 371 

scenarios where changes occurred over 104 weeks. The main differences found when 372 

comparing scenarios A and B (Table 2) were: the Tabular Cumulative Sums was able to 373 

achieve a CumSe=50% more quickly Event 2 of Scenario B than Scenario A; the 374 

Shewhart Control Chart achieved CumSe=50% faster during Event 1 of Scenario B, and 375 

this value could not be achieved for Event 2 (expressed as NA in Table 2); the V-Mask 376 

quickly detected changes in Event 2 for Scenario B. Moreover, the 99% CI and the 377 

Trend Sign had similar results in both scenarios.  378 
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Table 2. Number of weeks needed to achieve a CumSe=50% for the different statistical monitoring methods based 379 

on the DLM model.  380 

  Event 1 Event 2 

 Sero-

prevalence 

achieved  

Duration 

(weeks) 

Shewhart 

Control 

Chart1 

Tabular 

Cumulative 

Sums1 

V-

Mask2 

99% 

CI3 

Trend 

sign3 

Duration 

(weeks) 

Shewhart 

Control 

Chart 

Tabular 

Cumulative 

Sums 

V-Mask 
99% 

CI 

Trend 

sign 

S
ce

n
ar

io
 A

 

0.33 52 119 27 18 34 2 52 31 52 18 121 93 

0.33 52 123 27 17 34 3 104 13 32 9 93 68 

0.33 104 146 44 20 50 1 52 30 52 18 113 89 

0.33 104 131 49 19 48 2 104 13 33 10 82 58 

0.38 52 121 19 13 27 2 104 26 43 16 109 93 

0.38 52 123 19 13 22 1 52 6 17 6 84 69 

0.38 104 158 33 18 39 1 104 25 43 16 103 89 

0.38 104 144 38 18 37 2 104 6 18 6 74 59 

S
ce

n
ar

io
 B

 

0.15 52 25 42 14 30 0 52 193 23 17 111 90 

0.15 52 25 42 13 30 0 104 NA 1 6 83 62 

0.15 104 35 70 18 46 0 52 NA 23 17 106 88 

0.15 104 39 75 18 43 0 104 NA 1 8 73 52 

0.10 52 19 29 10 23 0 52 NA 8 11 99 89 

0.10 52 19 28 10 23 0 104 NA 0 2 70 57 

0.10 104 28 51 14 35 0 52 NA 7 10 98 88 

0.10 104 32 58 16 33 0 104 NA 0 2 62 49 

 381 

NA indicates that a CumSe=50% was not achieved by the monitoring method. 382 
1 Statistical monitoring methods applied to normalized forecast errors. 383 
2Statistical monitoring methods applied to the simple cumulative sum of normalized forecast errors. 384 
3 Statistical monitoring methods applied to the trend component. 385 
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Table 3 shows the CumSe52 (CumSe achieved 52 weeks after the event started) for the different 386 

statistical monitoring methods based on the DLM, indicating the likelihood of detecting the simulated 387 

events in the baseline for each method. For Scenario A, higher CumSe52 was achieved by the trend-388 

based methods (99% CI and Trend Sign) and the V-Mask for Event 1. For Event 2, the Shewhart 389 

Control Chart and the V-Mask had higher CumSe52, and the trend-based methods were the worst 390 

performing (CumSe52≤0.3). When comparing scenarios A and B, the major differences were seen for 391 

the Shewhart Control Chart, corresponding to a better performance (higher CumSe52) for Event 1and a 392 

poorer performance for Event 2 of Scenario B. The other statistical monitoring methods presented 393 

similar results in both scenarios.  394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 
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Table 3. CumSe achieved 52 weeks after the events were started for the different statistical monitoring methods 402 

based on the DLM model. 403 
 

 
Event 1 Event 2 

 

Sero-

prevalence 

achieved 

Duration 

(weeks) 

Shewhart 

Control 

Chart1 

Tabular 

Cumulative 

Sums1 

V-

Mask2 

99% 

CI3 

Trend 

sign3 

Duration 

(weeks) 

Shewhart 

Control 

Chart 

Tabular 

Cumulative 

Sums 

V-

Mask 

99% 

CI 

Trend 

sign 

S
ce

n
ar

io
 A

 

0.33 52 0.13 0.95 0.89 1.00 1.00 52 0.83 0.51 0.92 0.00 0.00 

0.33 52 0.11 0.94 0.87 1.00 1.00 104 0.98 0.70 0.96 0.00 0.12 

0.33 104 0.22 0.61 0.80 0.60 1.00 52 0.81 0.51 0.91 0.00 0.00 

0.33 104 0.24 0.52 0.81 0.65 1.00 104 0.98 0.68 0.96 0.01 0.37 

0.38 52 0.08 1.00 0.96 1.00 1.00 52 0.91 0.66 0.96 0.00 0.00 

0.38 52 0.07 1.00 0.96 1.00 1.00 104 1.00 0.93 0.99 0.00 0.08 

0.38 104 0.15 0.81 0.84 0.98 1.00 52 0.92 0.68 0.96 0.00 0.00 

0.38 104 0.18 0.70 0.82 0.97 1.00 104 1.00 0.91 1.00 0.04 0.33 

S
ce

n
ar

io
 B

 

0.15 52 0.94 0.66 0.95 1.00 1.00 52 0.14 0.93 0.90 0.00 0.00 

0.15 52 0.94 0.66 0.97 1.00 1.00 104 0.05 1.00 0.94 0.00 0.26 

0.15 104 0.71 0.37 0.86 0.74 1.00 52 0.16 0.93 0.91 0.00 0.00 

0.15 104 0.63 0.36 0.84 0.77 1.00 104 0.07 1.00 0.94 0.04 0.50 

0.10 52 1.00 0.93 0.99 1.00 1.00 52 0.08 1.00 0.96 0.01 0.01 

0.10 52 1.00 0.93 0.99 1.00 1.00 104 0.04 1.00 0.99 0.06 0.37 

0.10 104 0.84 0.52 0.94 1.00 1.00 52 0.17 1.00 0.97 0.00 0.00 

0.10 104 0.77 0.46 0.89 0.99 1.00 104 0.05 1.00 0.98 0.27 0.58 

 404 

1Statistical monitoring methods applied to normalized forecast errors. 405 
2 Statistical monitoring methods applied to the simple cumulative sum of normalized forecast errors. 406 
3 Statistical monitoring methods applied to the trend component. 407 

 408 



25 

 

Comparing the results from both models  409 

Results revealed that the statistical monitoring methods required more time to achieve 410 

CumSe=50% when applied to DGLM (Table 4) compared to DLM (Table 2), with the exception of 411 

monitoring the Trend Sign in Event 1 (Scenario A) and the V-Mask in Event 1 (Scenario B). In these 412 

cases, CumSe=50% was achieved at least twice as quickly for the DLM.  413 

The trend-based methods produced identical results based on the DGLM (Table 5) and the 414 

DLM (Table 3). In general, these methods achieved the highest CumSe52 based on the DLM for all 415 

simulated scenarios.  416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 

 428 

 429 

 430 
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Table 4. Number of weeks needed to achieve a CumSe=50% for the different statistical monitoring methods based 431 

on the DGLM model.   432 

  Event 1 Event 2 

 Sero-

prevalence 

achieved  

Duration 

(weeks) 

Shewhart 

Control Chart1 

Tabular 

Cumulative 

Sums1 

V-

Mask2 

99% 

CI3 

Trend 

sign3 

Duration 

(weeks) 

Shewhart 

Control 

Chart 

Tabular 

Cumulative 

Sums 

V-

Mask 

99% 

CI 

Trend 

sign 

S
ce

n
ar

io
 A

 

0.33 52 123 38 5 33 0 52 31 95 73 124 95 

0.33 52 127 37 6 35 0 104 11 72 71 96 69 

0.33 104 159 70 6 49 0 52 24 67 71 119 91 

0.33 104 157 214 3 47 0 104 12 81 68 83 58 

0.38 52 118 26 5 25 0 52 23 64 43 113 96 

0.38 52 120 25 5 21 0 104 5 38 88 86 71 

0.38 104 157 48 5 38 0 52 19 53 82 108 93 

0.38 104 152 95 3 36 0 104 5 41 77 75 59 

S
ce

n
ar

io
 B

 

0.15 52 52 128 5 32 1 52 162 27 9 101 82 

0.15 52 52 131 5 33 0 104 129 2 8 78 56 

0.15 104 93 172 5 48 0 52 141 24 8 97 80 

0.15 104 290 171 3 46 1 104 127 2 7 68 47 

0.10 52 36 117 5 25 1 52 164 17 10 84 76 

0.10 52 36 118 5 25 0 104 135 0 9 61 48 

0.10 104 65 161 5 37 0 52 153 13 8 82 74 

0.10 104 NA 154 3 34 0 104 133 0 7 52 39 

 433 

NA indicates that a CumSe=50% was not achieved by the monitoring method. 434 
1Statistical monitoring methods applied to normalized forecast errors. 435 
2 Statistical monitoring methods applied to the simple cumulative sum of normalized forecast errors. 436 
3 Statistical monitoring methods applied to the trend component. 437 

 438 

 439 



27 

 

Table 5. CumSe achieved 52 weeks after the events were started for the different statistical monitoring methods 440 

based on the DGLM model. 441 
 

 
Event 1 

Event 2 

 

Sero-

prevalence 

achieved 

Duration 

(weeks) 

Shewhart 

Control 

Chart1 

Tabular 

Cumulative 

Sums1 

V-

Mask2 

99% 

CI3 

Trend 

sign3 

Duration 

(weeks) 

Shewhart 

Control 

Chart 

Tabular 

Cumulative 

Sums 

V-

Mask 

99% 

CI 

Trend 

sign 

S
ce

n
ar

io
 A

 

0.33 52 0.05 0.80 0.98 1.00 1.00 52 0.83 0.13 0.24 0.00 0.00 

0.33 52 0.04 0.78 0.98 1.00 1.00 104 0.99 0.39 0.22 0.00 0.09 

0.33 104 0.08 0.33 0.98 0.65 1.00 52 0.88 0.36 0.23 0.00 0.00 

0.33 104 0.07 0.12 1.00 0.70 1.00 104 0.99 0.37 0.26 0.00 0.36 

0.38 52 0.03 1.00 0.98 1.00 1.00 52 0.94 0.30 0.08 0.00 0.00 

0.38 52 0.03 0.99 0.98 1.00 1.00 104 1.00 0.63 0.09 0.00 0.05 

0.38 104 0.06 0.58 0.98 0.99 1.00 52 0.97 0.50 0.15 0.00 0.00 

0.38 104 0.05 0.22 1.00 1.00 1.00 104 1.00 0.60 0.15 0.02 0.32 

S
ce

n
ar

io
 B

 

0.15 52 0.51 0.03 0.98 1.00 1.00 52 0.03 0.90 0.98 0.00 0.00 

0.15 52 0.50 0.04 0.99 1.00 1.00 104 0.13 1.00 0.89 0.01 0.41 

0.15 104 0.26 0.03 0.99 0.69 1.00 52 0.20 0.94 0.96 0.00 0.00 

0.15 104 0.14 0.04 1.00 0.77 1.00 104 0.12 1.00 0.91 0.13 0.67 

0.10 52 0.82 0.04 0.98 1.00 1.00 52 0.01 0.99 0.98 0.00 0.01 

0.10 52 0.81 0.04 0.99 1.00 1.00 104 0.07 1.00 0.78 0.26 0.63 

0.10 104 0.38 0.03 0.99 1.00 1.00 52 0.11 0.99 0.96 0.00 0.02 

0.10 104 0.16 0.04 1.00 1.00 1.00 104 0.07 1.00 0.81 0.51 0.83 

 442 

1Statistical monitoring methods applied to normalized forecast errors. 443 
2Statistical monitoring methods applied to the simple cumulative sum of normalized forecast errors. 444 
3 Statistical monitoring methods applied to the trend component. 445 

 446 

 447 
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Impact of noise on the different detection methods 448 

Reducing noise in the data (by increasing the sample size to 600 herds tested per week) resulted 449 

in higher CumSe for the statistical monitoring methods (Fig 5). The time required to achieve a 450 

CumSe=1 was reduced by a factor ≥2 for the Shewhart Control Chart and Tabular Cumulative Sums. 451 

Similar results were found for the remaining 15 simulated scenarios (including Scenario B). The time 452 

required to achieve CumSe=50% was reduced by 117 weeks for the Shewhart Control Chart for Event 453 

1 of Scenario A, with an increase in sero-prevalence from 0.24 to 0.33 over 52 weeks based on the 454 

DLM. The Tabular Cumulative Sums achieved similar CumSe 8 weeks earlier based on the DLM than 455 

when based on the DGLM. The impact of baseline noise in the V-Mask and both trend-based methods 456 

had similar results, with only small differences (up to 2 weeks) in the time required to achieve 457 

CumSe=50%.  458 

 459 

 460 

 461 

 462 

 463 

 464 

 465 

 466 

 467 

 468 

 469 
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Fig 5. The impact of baseline variation on the cumulative sensitivity (CumSe) of the 470 

algorithms. The results are shown for Scenario A, corresponding to an increase in sero-prevalence 471 

from 0.24 to 0.33 over 52 weeks (Event 1), followed by a decrease from 0.33 to 0.24 over 52 weeks 472 

(Event 2). The CumSe of the Shewhart Control Chart (purple), Tabular Cumulative Sums (green), V-473 

Mask (orange), 99% CI (grey) and Trend Sign (black) are shown based on the actual number of herds 474 

tested for PRRSV (straight lines) and on a fixed number (n=600) of herds tested per week (dashed 475 

lines). The horizontal and vertical blue lines represent a CumSe=50% and the CumSe achieved 52 476 

weeks after the start of the event, respectively.  477 

 478 

 479 

 480 

 481 
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Discussion 482 

We investigated the performance of different methods for detecting changes in endemic disease 483 

(sero-) prevalence. The study included: 1) univariate process control methods applied to residuals, and 484 

2) monitoring changes in the trend component of the time series based on CI and absolute values. The 485 

Shewhart Control Chart detected increases in sero-prevalence better than decreases for both scenarios, 486 

whereas the opposite was observed for the Tabular Cumulative Sums. The trend-based methods were 487 

effective when detecting Event 1, but their performance was inferior when adapting to several 488 

consecutive events. The V-Mask seemed to be the method with the most consistent performance 489 

seemed to be. Additionally, the impact of noise in the baseline was  more profound for the Shewhart 490 

Control Chart and Tabular Cumulative Sums,  and lower for the V-Mask and the trend-based methods.   491 

 492 

Study design  493 

This study was conducted based on sero-prevalence data from the Danish PRRS monitoring 494 

program. The different simulated scenarios were chosen to represent potential changes in sero-495 

prevalence in the context of disease control programs, and were based on Danish pig production, where 496 

almost 40% of herds must follow rules concerning biosecurity, health control and transportation [9].  497 

The approach used to simulate sero-prevalence was based on a binomial distribution defined by 498 

n and p. Both parameters have an effect on the variance of the binomial distribution, as higher values of 499 

p (up to 0.5) result in greater variance in the data obtained in each trial for a constant n, and lower 500 

values of p reduce the variance [23]. Event 1 of Scenario A and Event 2 of Scenario B represented an 501 

increase in sero-prevalence (p), resulting in greater variance of the data, which might have affected the 502 

detection rates presented in this study. However, higher values of n for the same value of p also have an 503 
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impact on the variance of the simulated data, which facilitates the reduction of noise in the simulated 504 

time-series by defining n as five times the average number of herds tested.  505 

A predefined false alarm rate of 1% was used for standardization, and to enable comparison 506 

between the different statistical monitoring methods. The value of 1% was chosen as a compromise 507 

between false alarms and maintaining confidence in the system.  508 

 509 

Results of the performance evaluation 510 

Event 1 was started after 104 weeks in order to guarantee that the “burn-in” period of the model 511 

was sufficient for representative inferences to be made. From a practical point of view, false alarms can 512 

be generated, and true alarms can be masked thus reducing the sensitivity of the system for monitoring 513 

changes during this period.   514 

As anticipated, larger changes in sero-prevalence were indicated earlier. These results are 515 

consistent with the expected performance of control charts [20].  516 

The simulations showed that the Shewhart Control Chart was faster than the Tabular 517 

Cumulative Sums for detecting decreases in sero-prevalence. Conversely, the Tabular Cumulative 518 

Sums was faster at detecting increases. According to Montgomery [20], the Tabular Cumulative Sums 519 

is the recommended method for detecting gradual changes. However, the same author also mentioned 520 

that the Shewhart Control Chart might detect decreases earlier than the Tabular Cumulative Sum, as 521 

verified in this study. In addition, the variance in the simulated time-series was higher (due to a higher 522 

p) during Event 2 for Scenario B, which might explain the superior performance of the Tabular 523 

Cumulative Sums. Furthermore, the results for the trend component showed that both models needed 524 

time to adapt to Event 2 of both scenarios. It is possible that the models are forced to adapt to three 525 
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consecutive stages of the sero-prevalence (“constant-event-constant”) prior to Event 2. This occurred 526 

because the system variance (modeled using a discount factor) was optimized for a constant level, 527 

resulting in slower model-trend changes for Event 2. As a consequence, the normalized forecast errors 528 

were higher and the Tabular Cumulative Sums generated alarms earlier, and as a result CumSe=50% 529 

was achieved more quickly. The same argument can also be used to explain why the V-Mask attained a 530 

faster CumSe=50% in Event 2 of Scenario B.  531 

The V-Mask showed the most consistent results among the univariate methods in relation to the 532 

number of weeks required to achieve a CumSe=50%. This can be explained by the greater flexibility of 533 

the V-Mask method compared to other univariate process control methods based on pre-defined control 534 

limits.  535 

Regarding the trend-based methods, the Trend Sign was quicker at detecting changes than the 536 

99% CI. However, it is possible that the instantaneous detection of Event 1 for both scenarios based on 537 

the Trend Sign might occur due to the variation (above and below zero) of the trend component. In this 538 

case, changes in the sign (from positive to negative and vice versa) might occur by chance.  539 

 540 

Impact of noise in the baseline 541 

Decreasing the noise in the time-series resulted in higher CumSe for the Shewhart Control 542 

Chart and Tabular Cumulative Sums, whereas no important changes were found for the V-Mask or the 543 

trend-based methods. This shows the impact of variation in the time series and the importance of 544 

choosing the correct monitoring method. When the Shewhart Control Chart and Tabular Cumulative 545 

Sums were used, alarms were generated according to the intensity of noise in the data, regardless of 546 

whether they were applied to forecast errors or directly to the data. The superior performance of the 547 
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Shewhart Control Chart may be due to the upper and lower control limits being defined based on data 548 

with less variation. Despite recalibrating to a 1% false alarm rate, the applied control limits were 549 

defined based on lower standard deviations, which contributed to the alarms being generated earlier. 550 

One possible explanation for the superior performance of the Tabular Cumulative Sums is that the 551 

noise in the simulated data was greater during the increase in sero-prevalence, thus increasing the 552 

chances of alarms being generated. There has also been previous reference to the impact of noise in the 553 

data on the Tabular Cumulative Sums [1,7]. 554 

Decomposing the time-series also offers a way to monitor the underlying trend usually masked 555 

by random noise in the data. Monitoring the trend component based on CI or target values provides a 556 

more stable pattern compared to monitoring the forecast errors.  557 

 558 

Perspectives 559 

Choosing the correct methods for the prediction and determination of anomalies is critical for 560 

their effective detection [24]. Over the last decade, research has focused on the detection of 561 

(re-)emerging disease outbreaks [1–3]. Nevertheless, it is also important to follow up on implemented 562 

strategies in order to reduce and/or eliminate specific endemic diseases [6], and control and eradication 563 

programs play an important role within this context [25].  564 

In this study, we showed that there is no robust method for all scenarios. Similar conclusions 565 

were drawn in previous studies on syndromic surveillance for (re)-emerging diseases [1,2,26,27], 566 

where the authors concluded that no single method was suitable for use with all outbreak signals. A 567 

surveillance system should be able to detect a variety of outbreaks with different characteristics 568 

[28,29]. This is important when the outbreak signature is unknown. The same challenges are 569 
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extrapolated to the context of endemic diseases and eradication programs for monitoring changes in 570 

(sero-)prevalence.  571 

The efficiency with which changes in prevalence were monitored varied among the different 572 

methods. Choosing one specific monitoring method is therefore challenging, and the objectives of the 573 

monitoring program and the performance of the statistical monitoring methods in different time 574 

patterns should be taken into account [30]. Furthermore, it is important to consider the objectives of the 575 

control program, the nature of the disease, political and economic factors, and the infrastructure of the 576 

country in which it will be implemented [31].  577 

In this study, state-space models were used to monitor endemic disease and control programs 578 

using two distinctive monitoring approaches for the time-series components. The principles can also be 579 

applied to general modeling, and the monitoring and surveillance of (re-)emerging diseases in human 580 

and veterinary sciences. The need to monitor declining changes in the context of veterinary syndromic 581 

surveillance has previously been discussed [32]. This author referenced the importance of monitoring 582 

decreases in the number of submissions (such as a decrease in the compliance of farms with passive 583 

disease surveillance) and the need for detection and action in the context of active surveillance.  584 

 585 

Conclusions 586 

Surveillance and monitoring systems are critical for the timely and effective control of 587 

infectious diseases. The different statistical monitoring methods used in this study performed 588 

differently in monitoring changes in disease sero-prevalence. In this context, choosing a single method 589 

is challenging, and the objectives of the monitoring program as well as the performance of the 590 
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statistical monitoring methods in different time patterns should be taken into account. Furthermore, 591 

noise in the simulated baseline had an impact on the Shewhart Control Chart and the Tabular 592 

Cumulative Sums, whereas no substantial changes were found for the trend-based methods. Using the 593 

V-Mask or monitoring the trend component provided a consistent approach to monitoring changes in 594 

disease sero-prevalence.  595 
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