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 26 

Abstract 27 

Soil and groundwater are key components in the sustainable management of the subsurface 28 

environment. Source contamination is one of its main threats and is commonly addressed using 29 

established remediation techniques such as in-situ chemical oxidation (ISCO), in-situ chemical 30 

reduction (ISCR; most notably using zero-valent iron [ZVI]), enhanced in-situ bioremediation (EISB), 31 

phytoremediation, soil-washing, pump-and-treat, soil vapour extraction (SVE), thermal treatment, 32 

and excavation and disposal. Decades of field applications have shown that these techniques can 33 
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successfully treat or control contaminants in higher permeability subsurface materials such as sands, 34 

but achieve only limited success at sites where low permeability soils, such as silts and clays, prevail. 35 

Electrokinetics (EK), a soil remediation technique mostly recognized in in-situ treatment of low 36 

permeability soils, has, for the last decade, been combined with more conventional techniques and 37 

can significantly enhance the performance of several of these remediation technologies, including 38 

ISCO, ISCR, EISB and phytoremediation. Herein, we discuss the use of emerging EK techniques in 39 

tandem with conventional remediation techniques, to achieve improved remediation performance. 40 

Furthermore, we highlight new EK applications that may come to play a role in the sustainable 41 

treatment of the contaminated subsurface.  42 

Keywords: electrokinetics, remediation, subsurface contamination, plume migration, phyto-43 

remediation, bioremediation, ISCO, nano zero valent iron (nZVI), landfill 44 

 45 

1. Introduction  46 

Soils, sediments and aquifers are fundamental bases for global environmental sustainability and 47 

provide essential resources to humans and nature alike (Godfray et al., 2010; Koch et al., 2013; 48 

McBratney et al., 2014). Anthropogenic impacts through land-use changes have affected, to differing 49 

degrees, the capacity of these geological features to maintain their basic functionality. Nutrient 50 

cycling, water retention, provision of physical/chemical stability, storage/filtering/transformation 51 

of compounds and sustaining biodiversity are some of the key functions that are an integral part of 52 

groundwater and food security (Godfray et al., 2010; Seto et al., 2011; United Nations, 2009). Most 53 

fresh water reserves (98-99%) occur in the subsurface; this means that 8-10 million km3 of 54 

freshwater is contained or in direct contact with rock and soil (Margat, 2008; Shah et al., 2007). In an 55 

increasingly populated and urbanized world, pollution is widely recognized as a significant challenge 56 

to soil and groundwater resources management (FAO, 2003). Efforts to quantify groundwater 57 

pollution (Giuliano et al., 1998; Zaporozec, 2002) are scarce and the actual scale of the problem is not 58 

well known. Point-source pollution (i.e., the source of many groundwater plumes) is often difficult to 59 

accurately locate and address, as depicted in Figure 1. The causes of point-source contamination may 60 

be varied: industrial leakage (Gent et al., 2004; Lima et al., 2012a), backfill in construction works 61 

(Laethem and Legrand, 1993), or overall urbanized environments (Callender and Rice, 2000; 62 

Yongming et al., 2006). Source pollution treatment (A in Figure 1) is key to limiting contaminant 63 

transport to the vadose zone environment (Dresel et al., 2011)  and subsequent migration to the 64 

groundwater zone (B in Figure 1). When present, low permeability lenses (Figure 1), initially act as 65 

a sink for contaminants however with time can switch to being a source of long-term contamination. 66 
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Contamination in low permeability materials remains a significant and unresolved remediation 67 

challenge. A large contaminant source has the potential to generate a significant plume in 68 

groundwater, and presents a risk to potential downgradient receptors (A in Figure 1). A unique form 69 

of contaminant transport occurs with dense non-aqueous phase liquids (DNAPLs), including 70 

chlorinated solvents, polychlorinated biphenyls (PCBs), coal tars etc. since they tend to sink to the 71 

bottom of aquifers due to their density (Macdonald et al., 2000). Contaminants in the context of 72 

groundwater exposure pathways are varied, and can consist of organic molecular compounds, nano-73 

substances, pharmaceuticals, immiscible liquids, and are often toxic at very low (part per billion) 74 

concentrations. New ingenious approaches are needed for in-situ (and ex-situ) remediation of soils, 75 

sediments and aquifers, particularly when they are comprised of low permeability materials.  76 

 77 

Recent successes in electrokinetic (EK) or EK assisted remediation programs have demonstrated that 78 

the technique may be a viable and versatile remediation tool for low permeability soils and 79 

sediments.  EK approaches generally consist of the application of a direct current (DC) electric field 80 

to the subsurface through electrodes to move porewater or migrate contaminants or remediation 81 

amendments.  EK approaches have wide applicability, from soil dewatering (Lockhart and Stickland, 82 

1984; Yang et al., 2005) to desalination of built environments (Ottosen and Rorig-Dalgaard, 2009), 83 

removal of soil metal contaminants (Jensen et al., 2007; Ottosen et al., 1997; Pamukcu et al., 1997; 84 

Pamukcu and Wittle, 1992) or degrading/removing soil organic contaminants (Lima et al., 2012a; 85 

Lima et al., 2011; Pamukcu, 1994; Reddy et al., 2011; Saichek and Reddy, 2004, 2003), including 86 

immiscible oil constituents (Ghazanfari and Pamukcu, 2014; Pamukcu et al., 2016). First used at the 87 

beginning of the last century for dewatering and stabilizing clays (Casagrande, 1949; Reuss, 1809), 88 

EK was intensively studied in the 1990s for removing metals from soils (Acar and Alshawabkeh, 89 

1993; Lageman, 1993; Ottosen et al., 1997; Ottosen and Hansen, 1992; Schultz, 1997),  as well as 90 

radionuclides and other inorganic species(Acar et al., 1995). More recently EK has been used in 91 

various formulations for the removal of organic contaminants (Lima et al., 2011; Pamukcu, 1994; 92 

Ribeiro et al., 2005). The approach has been highly successful at the laboratory scale for both 93 

inorganic and organic contaminants and in recent field trials for organic contaminants. Field-scale 94 

in-situ applications are becoming more common, and have demonstrated the potential of the 95 

approach. In spite of promising early results at a variety of scales, the technology has not yet 96 

advanced to a commonly-accepted commercial status.  97 

 98 
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EK applications in recent years have integrated chemical surfactants, chemical amendments and 99 

chelating agents to enhance metals or organics desorption from soil (Bolan et al., 2014; Lima et al., 100 

2012b; Ottosen et al., 2012), or to degrade contaminants at their source. Migration of these chemical 101 

enhancers in low permeability soils is possible due to four key phenomena occurring when a direct 102 

current is applied to soil: electromigration (movement of charged ions), electro-osmosis (movement 103 

of pore water), electrophoresis (movement of colloids) and electrolysis (water splitting) (Acar and 104 

Alshawabkeh, 1993). Coupling these phenomena with the aforementioned  conventional remediation 105 

techniques has been the focus of recent EK research (Cameselle et al., 2013a; Lageman and 106 

Godschalk, 2007; Pamukcu et al., 2004).  In addition to coupling with existing approaches, EK has 107 

been demonstrated to be capable of stripping micropollutants, especially non-polar compounds 108 

including heavy oils, from low permeability soils and sediments, where other treatment methods may 109 

fail (Alcántara et al., 2012; Ghazanfari et al., 2012; Lima et al., 2012b; Pamukcu, 2009; Pazos et al., 110 

2010). Other EK applications are currently being researched for instance the off-site removal of soil 111 

metals (Jensen et al., 2007; Ottosen et al., 2012) and a stand-alone technique for oil transport and 112 

recovery from geological media including soils, sediments and rock formations (Chilingar et al., 1968; 113 

Ghazanfari et al., 2014; Ghazanfari and Pamukcu, 2014; Ghosh et al., 2012; Pamukcu, 1994; Pamukcu 114 

et al., 2016; Wittle et al., 2011). 115 

 116 

EK approaches  face some unique engineering challenges mainly due to the side effects associated 117 

with this technique, such as alteration of natural pH levels near the electrodes, potential enhanced 118 

weathering of the porous media during long-term applications, hydrogen and chlorine gas generation 119 

at the electrodes and/or other unpredicted redox reactions (Acar and Alshawabkeh, 1993; Ottosen 120 

et al., 2000). Some of these side-effects (Acar and Alshawabkeh, 1993) have been engineered to 121 

advantage as synergistic effects beneficial for other traditional soil techniques, such as ISCO (USEPA, 122 

2006), EISB (Mao et al., 2012; Niqui-Arroyo and Ortega-Calvo, 2007) and phytoremediation 123 

(Aboughalma et al., 2008; Cameselle et al., 2013a; Kubiak et al., 2012). Field scale application of EK-124 

combined remedies has recently been demonstrated at sites in Denmark and the USA (Mao et al., 125 

2012; Riis et al., 2012).  126 

 127 

EK has been the topic of a number of review papers, each of which focused on one facet or another of 128 

this technique. Yeung (Yeung, 2011) takes a historical approach, Cameselle et al. (Cameselle et al., 129 

2013b) focused on the combination of phytoremediation and EK, Pamukcu (Pamukcu, 2009) on 130 

electrochemical treatise, others on specific contamination (Gomes et al., 2015; Saichek and Reddy, 131 
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2005). EK is an approach with the capacity of overcoming traditional problems in soil remediation 132 

practices. The technique can be applied in-situ in a manner that avoids soil excavation and minimizes 133 

the disturbance of soil texture, porosity and biodiversity (Saichek and Reddy, 2005; Virkutyte and 134 

Sillanpaa, 2002). Treatment costs are variable depending on the contaminant, approach, and other 135 

site-specific factors, but are in line with other intrusive in-situ approaches (Virkutyte and Sillanpaa, 136 

2002). Due to low soil disturbance, low water and energy usage, EK is often less expensive than other 137 

remedial techniques (Alshawabkeh and Acar, 1992; Gomes et al., 2015; Higgins et al., 2008; Wittle et 138 

al., 2011; Yang et al., 2011). Herein, we discuss the strength of EK as a complement to traditional soil 139 

and groundwater remediation techniques and explore future avenues for EK as a sustainable 140 

subsurface remediation approach. 141 

 142 

2. Conventional soil remediation techniques for source control and their limitations 143 

Commonly practiced technologies for soil and groundwater remediation include permeable reactive 144 

barriers (PRBs) (Benner et al., 2002), bioremediation (Guerin, 1999; Tromp et al., 2012), i.e. the use 145 

of either plants (phytoremediation) or microorganisms (bioremediation) to degrade, accumulate or 146 

reduce/oxidize chemical contaminants, soil-washing (Meuser, 2012), pump-and-treat (Meuser, 147 

2012), in-situ chemical oxidation (ISCO) and in-situ chemical reduction (ISCR), the use of chemicals 148 

to oxidize or reduce redox sensitive contaminants in high porosity soils and sediments, vapour-149 

technologies to volatilize organic contaminants, thermal approaches to vapourize organic 150 

contaminants and remove them through vacuum extraction, and “dig-and-dump”. The majority of 151 

these approaches (with the exception of thermal and dig-and-dump) have significant limitations 152 

when contaminants to be treated reside in low permeability regions. Table 1 summarizes the main 153 

characteristics and main challenges of bioremediation, phytoremediation, nano-particles, ISCO, 154 

thermal, and landfilling (dig-and-dump). As mentioned previously, a number of these techniques can 155 

be combined with EK to increase their suitability for treatment of contaminants in low permeability 156 

regions.  A summary of the techniques that can be enhanced using EK, and a brief synthesis of the 157 

target contaminants and major limitations is presented in the next sections. 158 

 159 

Bioremediation is a cost-effective technique for treating a variety of contaminants, including 160 

chlorinated solvents, BTEX, selected inorganic substances (e.g., perchlorate and nitrate) and 161 

polycyclic aromatic hydrocarbons (PAHs) (Liebeg and Cutright, 1999; Sturman et al., 1995; Vidali, 162 

2001). Major bioremediation techniques broadly fall into two categories: biostimulation and 163 

bioaugmentation. Biostimulation most commonly refers to the addition of nutrients, such as electron 164 
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acceptors or electron donors, to promote biodegradation of contaminants by indigenous microbes. 165 

Bioaugmentation most commonly refers to the addition of microbes possessing specific capabilities 166 

to biodegrade contaminants. A number of factors can hinder bioremediation processes, including 167 

limited physical interaction between microorganisms and substances (contaminant bioavailability 168 

and/or bioaccessibility) (Semple et al., 2004); adverse site conditions (temperature, high co-169 

contamination(Straube et al., 2003), pH, salts, oxygen, etc.) that may be inhibitory or toxic to 170 

microorganisms (Wick et al., 2011); and lastly,  absence of bacterial species that can degrade the 171 

target contaminant.  172 

 173 

Phytoremediation is a low-cost and environmentally acceptable solution for the remediation of 174 

shallow soils, soil water and runoff for both metals and organic contaminants e.g., (Chaney et al., 175 

1997; McCutcheon and Schnoor, 2004; Tromp et al., 2012). Phytoremediation is highly suitable for 176 

metals contamination as plants are capable of concentrating metals and extracting them from soils 177 

(Pilon-Smits, 2005). However, remediation occurs at a shallow soil depth (root zone) and may 178 

require extended remediation time. Solutions may include deep planting of trees in boreholes (tree-179 

wells), and the use of polluted groundwater for plant irrigation (Pilon-Smits, 2005).  180 

 181 

ISCO for groundwater remediation was first introduced in the 1990s as an aggressive in situ 182 

technique to address groundwater contamination without requiring soil excavation (Innocenti et al., 183 

2014; Schnarr et al., 1998; Yukselen-Aksoy and Reddy, 2012).  Four oxidants have been commonly 184 

used: hydrogen peroxide (Fenton’s reagent), ozone, permanganate, and persulfate (USEPA, 2006). 185 

Permanganate and persulfate oxidant stability in the subsurface is high, and natural soil oxidant 186 

demand for these particular oxidants is potentially low, making ISCO an attractive, cost-effective 187 

remediation technique, especially in high hydraulic conductivity material (Ferrarese et al., 2008; 188 

O’Mahony et al., 2006; USEPA, 2006). The major limitations of ISCO are related to the hydrogeological 189 

conditions: ISCO is more effective in medium to high permeability material, while less effective in low 190 

permeability soils (such as clay, loams, glacial tills, hydromorphous soils) as advective transport of 191 

oxidants is dramatically decreased (USEPA, 2006). A high content of reduced substances, such as 192 

Fe(II), in the soils to be treated may trigger oxidant activation before delivery to the contaminant 193 

location (Benner et al., 2002; Petri et al., 2011). 194 

 195 

Nano zero valent iron (nZVI) application is a relatively recent remediation technology (Bennett et 196 

al., 2010; Elliott and Zhang, 2001; He et al., 2010; Johnson et al., 2013; Kocur et al., 2014) suitable for 197 
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contaminants that can be treated by chemical reduction. Several laboratory-scale experiments have 198 

shown that nZVI can remediate a wide range of contaminants such as nitrate anions (Suzuki et al., 199 

2012; Yang and Lee, 2005), heavy metals (Boparai et al., 2011), pesticides (Satapanajaru et al., 2008; 200 

Sayles et al., 1997), PCBs (Wang and Zhang, 1997), chlorinated volatile organic compounds (cVOCs) 201 

(Sakulchaicharoen et al., 2010; Song and Carraway, 2005) and radionuclides (Roh et al., 2000). Field-202 

scale studies have used commercially available nZVI (Henn and Waddill, 2006; Krug et al., 2010; Wei 203 

et al., 2010) or onsite synthesized nZVI (Bennett et al., 2010; Elliott and Zhang, 2001; He et al., 2010; 204 

Kocur et al., 2014; Wei et al., 2010; Zhang, n.d.) that were either unstablized (Elliott and Zhang, 2001; 205 

Zhang, n.d.) or polymer coated (0.10%-0.80%, weight/volume) to increase suspension stability 206 

(Bennett et al., 2010; He et al., 2010; Henn and Waddill, 2006; Kocur et al., 2014; Wei et al., 2010). A 207 

major challenge for nZVI is delivery time: it needs to be delivered to the target treatment zone while 208 

reactive and in suspension (e.g. days to a few weeks) (Kocur et al., 2014, 2013; Sakulchaicharoen et 209 

al., 2010). As with other chemical in-situ remediation techniques, most successful field studies have 210 

been performed in highly permeable soils. Fine grained soils limit nZVI travel distances (Chowdhury 211 

et al., 2012). 212 

 213 

Landfilling, often referred to as a “dig-and-dump” approach, is considered one of the least 214 

sustainable remediation approaches (EEA, 2009). Excavation and landfill disposal of contaminated 215 

soil resolves site problems immediately and can be used widely regardless of pollution type and soil 216 

characteristics. From a sustainability standpoint, landfills should be considered a last resort for 217 

waste. They are expensive in terms of land (area that is allocated for this purpose, with few examples 218 

of rehabilitation post-exploitation); fees for hazardous waste disposal are high (US EPA, 2014); and 219 

the environmental cost is also considerable, since leachate emission poses an additional threat to 220 

groundwater quality. Additionally, landfills constitute a subsurface legacy, transferring waste and 221 

groundwater contamination issues  to future generations (Bai and Sutanto, 2002; EEA, 2009). 222 

 223 

The following section examines how EK approaches can be used to enhance bioremediation, 224 

phytoremediation, ISCO and nZVI, since these are already tried-out combinations. Particular focus is 225 

given to bioremediation enhanced by EK (EK-BIO) which has been demonstrated to be highly 226 

effective in field-scale studies, and ex-situ soil remediation for metals.  227 

 228 

3. EK in combination with conventional techniques: How is EK overcoming limitations? 229 
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An electric field is applied to a porous media, including saturated soil or sediment, that (i) drives ions 230 

present in the media towards one of the electrodes – electromigration, (ii) moves pore water when 231 

soil porosity and zeta potential is conducive – electro-osmosis, (iii) mobilizes colloids when soil 232 

macropores are sufficiently large to enable their passage – electrophoresis, and that (iv) instigates 233 

electrolysis, i.e. generation of an acidic front from the anode and alkaline front from the cathode (Acar 234 

and Alshawabkeh, 1993; Lageman, 1993; Mitchell, 1993; Ottosen et al., 2000; Pamukcu and Wittle, 235 

1992). Due to the many different phenomena that may occur during the use of an EK approach, EK 236 

requires sound engineering to control potential side-effects.  Early applications of EK technology did 237 

not effectively manage potentially negative processes and hindered early field applications  238 

(Alcántara et al., 2012; Gent et al., 2004; Lima et al., 2012b; Reddy and Cameselle, 2009; Simons, 239 

1984).  More recent research and field experience has overcome early difficulties. EK approaches are 240 

significantly favoured over most other in-situ techniques when it comes to low permeability 241 

soils(Cameselle and Reddy, 2012; Ghazanfari et al., 2012; Paillat et al., 2000) due to the increased 242 

ability to drive remediation amendments to the contaminants, extract contaminants directly, and its 243 

limited impacts on soil structure. 244 

 245 

3.1. Sustainability of EK Approaches 246 

Sustainability principals are being increasingly recognized as important considerations in the 247 

remedy selection process (Hadley and Ellis, 2009). SURF (Sustainable Remediation Forum) defines 248 

sustainable remediation as those practices that reduce global impacts at the same time as minimizing 249 

local atmospheric effects, potential impacts on worker and community safety, and/or the 250 

consumption of natural and energy resources that might be attributable to remediation activities 251 

(Hadley and Ellis, 2009; ITRC (Interstate Technology Regulatory Council), 2011). As presented in 252 

Table 1, even the most promising techniques present limitations.  253 

 254 

EK inherently uses electrical energy, which can be from fuel sources (Lima et al., 2012a) or from 255 

renewable sources (solar, wind) (Zhang et al., 2015). Despite electric energy being at the base of the 256 

technique, the sustainability score for EK approaches is high, as the consumption of renewable 257 

resources, such as water, is low, use of electricity is small compared to other techniques, it generates 258 

minimal waste, and has limited impact on local surface activities. Recent field applications have used 259 

a closed water circuit for EK, where only groundwater is used and no external water input is 260 

necessary (Mao et al., 2012; Riis et al., 2012).  261 

 262 
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3.2. EK Enhancement of Traditional Approaches 263 

Bioremediation presents a number of limitations, including the need to control abiotic conditions, 264 

mass transfer challenges, bioavailability, bioaugmentation and potentially high operation or long-265 

term re-application costs (Vidali, 2001) (Table 1). EK has been used to surpass some of these 266 

challenges, such as control of physico-chemical conditions of soil (Niqui-Arroyo et al., 2006), 267 

decrease mass transfer limitations through nutrient transfer and stimulating bioactivity and 268 

controlling bacterial population (Mao et al., 2012; Tyagi et al., 2011). Deflaun & Condee (DeFlaun and 269 

Condee, 1997) first enhanced migration of bacteria through soil, while Mao et al. (Mao et al., 2012) 270 

applied the same principle as a bioaugmentation tool for the remediation of chlorinated solvents. 271 

Different EK principles have been used: electro-osmosis or electrophoresis to mobilize bacteria 272 

(Figure 2) (DeFlaun and Condee, 1997; Wick et al., 2004) and electromigration to drive nutrients in 273 

low porous materials (Gill et al., 2014; Mao et al., 2012). After successful lab trials, the patented EK-274 

BIO has been applied in-situ (Luo et al., 2006) with considerable success (Riis et al., 2012). Some 275 

bioremediation drawbacks (primarily challenges with nutrient distribution in low permeability 276 

soils) may thus be addressed remarkably with EK, but evidently target contaminants still need to be 277 

biodegradable. EK-BIO has been used primarily on the degradation of organic contaminants, but can 278 

also be used for biodegradation of nitrates and perchlorate (Mao et al., 2012; Riis et al., 2012). 279 

 280 

Phytoremediation has shown positive results for the in-situ remediation of both metals and organics. 281 

While promoting the degradation of organic contaminants (Kamath et al., 2004; Pilon-Smits, 2005), 282 

plants can assimilate and bioaccumulate metals (Ali et al., 2013; Chaney et al., 1997; Weis and Weis, 283 

2004). An innovative, however as yet to be field-demonstrated EK combination, is EK-phyto (Figure 284 

2) (Aboughalma et al., 2008; Cameselle et al., 2013a). EK can be used to mobilize and redistribute 285 

metals in situ, and therefore enhance their transport to the plant roots (Aboughalma et al., 2008). In 286 

addition, EK can help stimulate plant growth by mobilizing (micro)nutrients in/to the root zone. 287 

Cameselle et al. (Cameselle et al., 2013a) summarized the state-of-the-art regarding the combination 288 

of phytoremediation and EK and concluded that laboratory studies yielded the best results with the 289 

application of an alternate current (AC) electric field or low direct current (DC) voltage. Therefore, 290 

electromigration is used to transfer ions and metals to the root zone while the development of heat 291 

(AC electric field) may create ideal assimilation conditions for the plant. Since a low DC field 292 

stimulates electroosmosis (Lima et al., 2011), this might explain the improved plant performance 293 

under such conditions (Cameselle et al., 2013a). 294 

 295 
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Nano-ZVI shows potential to treat redox sensitive contaminants (i.e. organic contaminants in general, 296 

or redox sensitive metals) but also stable metal ions, such as divalent Cd2+ (Boparai et al., 2011). 297 

Polymer stabilized nZVI particles have a net negative surface charge (zeta potential of -48 to -56 mV) 298 

(Chowdhury et al., 2012; Kocur et al., 2013) and can adsorb positively charged species. EK has the 299 

potential to enhance nZVI transport by electrophoresis. Studies have reported the enhancement of 300 

nZVI delivery through coarse and medium grained soils (Chowdhury et al., 2012) while others found 301 

that electroosmosis can enhance nZVI delivery through clayey soil (Figure 2) (Gomes et al., 2013; 302 

Krishna R. Reddy, 2007). These studies suggest that EK has the potential for enhanced nZVI delivery 303 

throughout a number of different soil types to enable subsequent contaminant degradation resulting 304 

from nZVI oxidation. EK-nZVI laboratory studies have shown great potential, but field trials are 305 

needed. 306 

 307 

Like the other techniques mentioned in this review, ISCO performance in low permeability or highly 308 

heterogeneous soils is often a significant unresolved challenge. Commonly used chemical oxidants 309 

(permanganate, persulfate) are negatively charged, and highly mobile through electromigration in 310 

low permeability soils (Figure 2) (Alshawabkeh, 2009; Nieto Castillo et al., 2012). Electroosmosis or 311 

electromigration may also help mobilize specific contaminants (non-charged hydrophobic organics 312 

or metals, respectively) by encouraging desorption or transport to different phases (Isosaari et al., 313 

2007; ITRC, 2001). ISCO is a highly commercialized technology, with many different approaches and 314 

patented techniques (Table 1; see e.g. (Virkutyte and Sillanpaa, 2002)). EK-TAP (thermal activated 315 

persulfate) (Reynolds, 2015) has recently been developed and is currently undergoing field testing 316 

at a number of locations in Europe and the USA (ITRC, 2000; Roach and Reddy, 2006; Siegrist et al., 317 

2001).  EK-TAP uses a standard DC electric field to migrate persulfate into the contaminated region 318 

and then switches to AC to slightly increase the soil and groundwater temperature in the treatment 319 

zone (<40⁰C) to activate the persulfate.  320 

 321 

Remediation of fine grained soils contaminated with metals has historically been performed through 322 

landfilling(Reddy, 2010). Landfilling costs are generally higher and less sustainable in the long-term 323 

than any in-situ soil remediation (Table 1), in addition to the environmental costs and sustainability 324 

considerations addressed elsewhere in this review. When there is no in-situ solution in sight, an 325 

alternative to soil landfilling is off-site treatment of soil. This occurs often where brownfields are 326 

considered, either for metal (Merkx et al., 2013) or organic pollutants (Gomes et al., 2015; Lima et al., 327 

2012a; Pamukcu, 1994). The electrodialytic remediation (EDR) method has been proposed as a fast 328 
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and continuous in-situ or off-site alternative to landfilling for excavated soil. Promising results 329 

through the application of EDR for heavy metal polluted harbour sediment (Nystroem et al., 2005) 330 

have been obtained by treating a stirred suspension instead of a stationary matrix. The stirred system 331 

for EDR was adapted for the soil remediation, and the soil was suspended in water during the 332 

remediation (Gomes et al., 2013; Jensen et al., 2007; Lima et al., 2012b; Ottosen et al., 2012; Sun et 333 

al., 2012). Advantages of off-site EDR treatment involve (i) transient and nonlinear changes during 334 

remediation that are overcome by the continuous mixing; (ii) the removal rate of heavy metals is 335 

faster, as stirring enables mixing and desorption; (iii) easy handling for adding chemical desorbing 336 

solutions; and (iv) stirred EDR can be combined with soil washing for minimizing the volume to be 337 

treated. In this case the clean coarser fraction and the highly polluted fine fraction are separated 338 

during the soil washing and only the fine fraction is treated by EDR. Successful removal rates have 339 

been obtained for both metals (Jensen et al., 2007; Ottosen et al., 2012; Sun et al., 2012) and organics 340 

(Gomes et al., 2013; Lima et al., 2012b). 341 

 342 

Besides aiding traditional technologies, EK has been applied as: 343 

- landfill liner enhancement tool, for contaminant confinement (Ouhadi et al., 2010) 344 

- Extraction of nutrients, like phosphorus, from waste materials (Guedes et al., 2014). 345 

- Radionuclides control in soils/clays (Maes et al., 1999) 346 

- EK as enhancement technology for oxidation of emerging contaminants and pesticides (Linley 347 

et al., 2014; López-Vizcaíno et al., 2017); 348 

- And remediating soil by stabilizing/precipitating contaminants in a stable iron-rich band (Cundy 349 

and Hopkinson, 2010) 350 

 351 

Landfill-liner enhancements have undergone developments since its first patent (Wittle and Bell, 352 

2002). Most recent studies aim at combining chemical stabilisers, such as calcium carbonate, to 353 

increase landfill liner contaminant adsorption, with an addition of 28% weight mass of carbonates 354 

(Ouhadi et al., 2010). Clay liners are normally used in landfilling. Combining EK with clay liners has 355 

been the focus of numerous studies, from predicting the behaviour of swelling clays under such 356 

hydro-electric conditions (Lima et al., 2010; Moyne and Murad, 2002) to removing radioactive 357 

elements in clays (Kim et al., 2003; Maes et al., 1999; Valdovinos et al., 2016). The latter approach 358 

focused on radioactive liquid organic waste (Valdovinos et al., 2016), 24Na (15h) and 99mTc (6h) (with 359 

71.8% and 61% removal rates respectively) (Valdovinos et al., 2016), and Uranium (23% removal 360 

rate) (Kim et al., 2003). Alternatively, more technical aspects have been used regarding EK. For 361 
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instance, electric fields have been used to generate pH and Eh gradients to induce in situ 362 

precipitation of a stable iron-rich band (Cundy and Hopkinson, 2010), or to engineering stabilise soil 363 

by dewatering/rewatering soils, (Cundy and Hopkinson, 2010).  364 

 365 

4. Future avenues for environmental EK  366 

In the decades since EK was first applied to soil with the intention of removing pollutants 367 

(Alshawabkeh and Acar, 1992; Hansen et al., 1997; Lageman, 1993; Pamukcu, 1994), EK has 368 

developed into a viable alternative for remediation of source contamination, particularly when 369 

combined with other conventional techniques for application to low permeable soils. EK approaches 370 

have numerous strengths, such as minimizing land disturbance when applied in-situ, reduced costs 371 

in terms of energy and transportation, and as an auxiliary tool to a number of new applications 372 

(section 3).  373 

 374 

Most site remediation initiatives concern point source pollution. However sources of anthropogenic 375 

groundwater pollution are numerous and, many times, diffuse. Plume migration concerns a 376 

challenging issue regarding pollution dispersion (B in Figure 1). While the Permeable Reactive 377 

Barrier (PRB) concept is currently the leading technology to target downstream pollution effects, 378 

previous combination of EK with PRB (EK-PRB) has proven advantageous in terms of treatment, PRB 379 

material longevity and cost reduction (Ramírez et al., 2015). The idea was tested at bench and field 380 

scale in the 1990ies and coined as the Lasagna Technology (Ho et al., 1995; Sa V. Ho et al., 1999a, 381 

1999b). A wealth of experimental studies have been conducted in EK-PRB (Chung and Lee, 2007; 382 

Huang and Cheng, 2012; Moon et al., 2005; Vieira dos Santos et al., 2017; Weng et al., 2007; Zhou et 383 

al., 2016) with a rekindled interest in the last 2-3 years. The older studies showed that standard PRBs, 384 

including zero valent iron filing for the treatment of chlorinated hydrocarbons and chromate in 385 

aquifer settings, can be significantly enhanced by coupling to EK. Recent studies show original 386 

combinations of pollutants and PRB treatment materials. In particular, the development of biological 387 

reactive barriers is proposed (Mena et al., 2016; Ramírez et al., 2015). In these studies bacterial 388 

cultures of active sludge from an urban WWTP and coarse mineral soil (kaolinite, gravels) are used 389 

as biobarriers. Biological growth was observed in the biobarrier, and under the effect of the electric 390 

field, bacteria from the biofilm became detached and were transported through the diesel 391 

contaminated soil in both directions (Ramírez et al., 2015). Added surfactant was transported across 392 

the treatment zone due to electromigration and electroosmosis, which resulted in diesel 393 

emulsification. After two weeks of operation, the combination of biological and EK phenomena 394 
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resulted in 39% removal of the diesel biodegradable fraction (Ramírez et al., 2015). In fact, EK has 395 

proven great applicability in addressing organic contamination, contrary to the attested regarding its 396 

first applications for metal contamination. Further studies are expected in addressing LNAPL and 397 

DNAPL plumes and exploring solutions for the interface unsaturated-saturated zones (Dresel et al., 398 

2011). There is a need for sustainable solutions to treat these deep locations and EK-PRB can be the 399 

answer to these groundwater issues.  400 

 401 

EK techniques are based on the fundamental processes of EM, EO and EP. They had been recognised 402 

all by the middle of the XXth century (Casagrande, 1949; Reuss, 1809), but, as pointed out by Yeung 403 

(Yeung, 2011), research on the understanding of fundamental phenomena is still needed. Variability 404 

in osmotic flow rate, the means of transport of electric current through the soil are still not clearly 405 

understood. Here we stress that aspects of soil-contaminant interaction can benefit from further 406 

understanding when concerning  contaminant removal. It has been shown that, under the influence 407 

of an electric field, the phenomena that take place at the interface between matrix and pore fluid are 408 

very complex and give rise not only to the dominating processes of EM, EO and EP but to subtle effects 409 

related to the complex nature of the solid-liquid and liquid-liquid interfaces present in the porous 410 

media. Effects such as diffuse double layer compression, electroosmotic drag or electroosmotically 411 

induced displacement give rise to refined or new strategies for soil extraction and remediation. Some 412 

new developments emerged that brink between laboratory and pilot scale research:  413 

 414 

- In-situ manipulation of redox-state via EK for redox sensitive metals (e.g. Cr, As, Cu) (Brosky and 415 

Pamukcu, 2013; Pamukcu et al., 2004; Sun et al., 2015)  416 

In a porous water saturated material, particles typically carry a surface charge that is compensated 417 

by the Electric Double Layer (EDL). As electric fields are imposed to this material, a faradaic current 418 

is induced which is responsible for electromigration of the unbound aqueous species in the pore 419 

water. However, because a conductivity difference exists between the outer part of the EDL and the 420 

free pore solution, that outer part – the Diffuse Double Layer (DDL) is compressed while the electric 421 

field is applied, leading to a potential difference which adds to the redox potential of the system and 422 

can contribute to its reactivity. This EK induced DDL phenomenon has been explored in a laboratory 423 

study of Cr(VI) reduction in clay. It showed that a 0.6 mA/cm2 applied current was able to increase 424 

the reduction rate of the system by a factor of 5 (Sun et al., 2015). While only Cr(VI)/Cr(III) and 425 

Cu(II)/Cu(I) redox couples have been studied experimentally up to date (Brosky and Pamukcu, 426 
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2013; Pamukcu et al., 2004; Sun et al., 2015)), many redox sensitive elements (uranium, selenium, 427 

etc) may be candidates for this treatment method.  428 

 429 

- Application of EK in the field of oil extraction and oil transport in water wet porous media (Amba 430 

et al., 1964; Chilingar et al., 1968; Ghazanfari et al., 2014, 2012; Ghazanfari and Pamukcu, 2014; 431 

Haroun et al., 2013; Pamukcu et al., 2016; Shalabi et al., 2012; Wittle et al., 2011) 432 

Viscous coupling between oil and water phase takes place when an electrical interface, similar to 433 

that of clay electric double layer, develops between the two phases, provided that the oil has polarity 434 

and possesses some functional groups (i.e., O, N, S compounds, carboxylic acids, amides). 435 

Electrokinetic transport of hydrocarbon liquids in water wet porous media is governed by the 436 

principles of two-phase flow. As the water phase moves by electro-osmosis through water wet 437 

porous media, the neighboring oil phase is also transported, to an extent, depending on the strength 438 

of the viscous coupling developed between the two phases. More so, in water wet systems of 439 

clay/saline water/oil, the reactions of the electrolysis products of saline water (i.e., hydroxyl ions) 440 

with the carboxylic acids of oil result in the formation of surfactants at the water/oil interface. This, 441 

in turn, reduces significantly the interfacial tension between oil and water further aiding the oil 442 

transport by electroosmosis (Ghazanfari et al., 2012; Pamukcu et al., 2016). Another interesting 443 

phenomenon is observed when the water and oil phases are strictly immiscible and viscous coupling 444 

does not take place (Pamukcu et al., 2016). Then the electroosmotic flow of the water can pass by 445 

the nonconductive liquid ultimately displacing the oil in opposite direction of flow. This liquid 446 

separation process is shown to be particularly efficient when pore space it restricted. Also it favors 447 

increase of permeability of the porous media. 448 

 449 

Laboratory and field applications research show EK as capable of separate and recover oil from 450 

water, aqueous sediments and high clay rock formations, advancing EK to be used as a stand-alone 451 

or integrative technique for: 452 

- remediation of oil contaminated soils and sediments where spills have occurred (i.e., coastal 453 

sediments, coal gasification sites, abandoned oil production or refinery sites); 454 

- change in physical properties can be triggered via electrokinetic methods as the classic soil 455 

consolidation (Adamson et al., 1966) with the aid of calcium carbonate producing bacteria 456 

(Keykha et al., 2014); 457 

- product  extraction, with special interest for mobilization of crude oil in enhanced oil recovery 458 

(EOR) processes (Al Shalabi et al., 2012; Amba et al., 1964; Haroun et al., 2013; Shalabi et al., 459 
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2012; Wittle et al., 2011) from formations where other extraction methods (i.e., drilling) may 460 

not be feasible or environmentally viable. 461 

 462 

As a final remark, we would like to observe that EK is increasingly used in the remediation of 463 

emerging contaminants such as pesticides (López-Vizcaíno et al., 2017; Vieira dos Santos et al., 2017), 464 

perfluorinated chemicals and radionuclides (control in soils/clays (Maes et al., 1999)). Novel 465 

approaches reside in using new catalytic materials (Linley et al., 2014) or as a means for element 466 

recycling in waste materials such as phosphorous (Guedes et al., 2014). Because EK acts as a 467 

transport tool for dissolved and colloidal particles, as well as solvent through porous media, the 468 

possibilities for futures applications are varied and only limited by inventiveness and possibly 469 

limited research funds. Therefore, we highlight how EK can act as a versatile and manifold tool for 470 

the sustainable treatment of contaminated soil.  471 

 472 
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945 
Figure 1 – Schematics of a plume.  A – source pollution; B – plume migration  946 

 947 

  948 
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 949 

Figure 2 – Schematic representation of electrokinetically enhanced remediation. The left most scheme 950 
shows where, within the subsurface or underground, which EK-enhancement would be better suited. 951 
Scheme 1 (middle frame) represents the combination of EK with phytoremediation. Scheme 2 (right 952 
frame) summarizes how EK would enhance/transport/aid bioremediation, ISCO and nZVI applications. 953 

 954 



Table 1 – Summary of the main defining characteristics of soil remediation techniques, the main application challenges and how EK can overcome them 
 In-Situ 

Bioremediation 
Phytoremediation Nano-scale Zero 

Valent Iron (nZVI) 
ISCO Landfilling Thermal(Lebrón et al., 

2013; McGuire et al., 
2016) 

Target 
pollutants 

Organic contaminants 
(chlorinated solvents, 
BTEX and other 
aromatic compounds, 
pesticides); some 
metals(Vidali, 2001) 

Metals, metalloids 
(Ali et al., 2013) and 
organic 
contaminants 
(Seeger et al., 2013) 

Organochlorines, 
nitroaromatics, dyes, 
phenols, heavy 
metals, pesticides, 
and anions  
(e.g., NO3-1)  

All oxidizable 
pollutants like 
organic pollutants 
(petroleum 
hydrocarbons, 
organochlorines, 
pesticides) and 
metals(Boparai et 
al., 2011; Nieto 
Castillo et al., 2012)  

Metals, hazardous 
contaminants 
unamenable to in-situ 
remediation 

Volatile organic 
compounds 

Energy 
requirements 

Low; depends on 
contaminant, bacteria, 
and technique. 
Laboratory scale 
experiments prior to 
field applications are 
often required, as well 
as treatability studies 

Low. Plants are 
placed in-situ and 
some maintenance 
is required. 
Harvesting and 
replacement of 
plants 

Low to moderate. It 
requires pumping and 
delivery of nano-
particles to pollutant 

Moderate to high; 
higher than other in-
situ (non-thermal) 
remediation 
technologies. 
Electricity 
application from 
<0.22 – 44 kWh/ton 
of ozone activation;  
33.33 kWh/m3 for 
persulfate activation 

(USEPA, 2006; Yan 
et al.) 

Moderate to high. Mainly 
for excavation and 
transportation  

High.  The approach 
requires heating of 
impacted soil and 
groundwater to (at a 
minimum) the boiling 
point of water) 

Water usage Low to moderate; 
depends on nutrient 
requirements 

Low to moderate; 
depends on 
vegetative cover. 

Moderate. ZVI needs 
to be diluted in water 
(e.g. 68 m3 of water 
with a concentration 
of 2 g/L of nZVI(US 

Moderate. Oxidant 
needs to be diluted 
in water (e.g. 8 – 
14.5 m3 of water for 
persulfate 

Low. Landfill leachate 
needs to be treated, but 
does not add to water 
requirements 

Low.  Water may be 
used to increase 
contact with the soil to 



Continued irrigation 
is required 

EPA and USEPA, 
2000)). Intensive at 
the beginning stages 

dilution(Yan et al.)). 
Intensive at the 
beginning stages 

be treated or to cool 
electrodes. 

Maintenance 
requirements 

Low to moderate 
(nutrient additions); 
pH, oxygen content, 
nutrient 
regulation(Vidali, 
2001) 

Low to moderate. 
Maintenance 
requirements  

Low  Low to moderate 
depending on 
oxidant choice, 
soil/site conditions 

Moderate; landfill 
maintenance and 
leachate management 

Moderate. 

Duration Long (can last years); 
depends on 
microorganisms, 
contaminant 
availability (US EPA 
and USEPA, 2000), 
and soil heterogeneity  

Long (up to 30 years 
or more(Kamath et 
al., 2004)) 

Short (depends on 
transport of ZVI to 
target area). However 
recent studies suggest 
that nZVI can 
stimulate 
bioremediation 
(Kocur et al., 2015) 

Short to moderate. 
Variable depending 
on nature of 
contaminant 
(sorbed, free phase, 
solubility, etc.) 

Long. Waste is deposited 
in landfill, contamination 
transference 

Short.  Remediation 
programs are often on 
the order of weeks to 
months. 

Distu
rban
ce of 
the 
subs
urfac
e 

Mech
anica
l 

Low Low Low Low High Moderate. Potential for 
changes to soil 
structure. 

Biolo
gical/
chem
ical 

Moderate  Low Moderate.  Change of 
geochemical 
conditions 

Moderate. Change of 
geochemical 
conditions 

High Moderate.  Biological 
polishing following 
thermal treatment has 
been demonstrated as 
effective 

Cost (all 
values in 
USD) 

Wide range of low to 
high. From $30  – 
100/m3 (aerobic 
degradation field 
demonstration); 

Low. $15 -25/m3 
(calculated based on 
the treatment of 
upper 1 m 

High. $255,000 to 
$1,400,000 for 2987 
ha (numbers based on 
a specific 
site)(Gavaskar et al., 

Moderate. Median 
cost of $123/ m3 
based on 33 case 
studies (Krembs et 
al., 2010) but can 

Low to moderate. 
Landfill disposal costs 
between $250 –  350/m3 
(US EPA, 2014), and with 
possible total costs 

High. 



$323,000 for a 
specific site of 480 m2, 

(based on project 
costs) (US EPA and 
USEPA, 2000; USEPA 
and US EPA, 1998) 

layer)(McCutcheon 
and Schnoor, 2004) 

2005). Nano-particles 
cost is $50/kg of nZVI 

amount to $527/m3 
(Innocenti et al., 
2014) 

(excavation, transport, 
disposal, labour) 
amounting to $650/m3 

(personal 
communication, 
Geosyntec) 

Main 
challenge 

Limited to 
biodegradable 
compounds, where 
degradation products 
may be more 
persistent or toxic 
than parent 
compounds. Long 
remediation times for 
some compounds 
(Singh and Ward, 
2004) 

Long remediation 
times. Address 
contaminant mainly 
at the relatively 
shallow subsurface 
(root zone)  

nZVI particles need to 
be delivered to 
contaminant zone.  
Limited reactive 
lifetime of nZVI 

Slow mass transfer, 
transport, and less 
control over oxidant 
due to limiting 
hydrogeological 
settings (USEPA, 
2006). Rapid 
oxidant reaction 
rates (esp. H2O2, 
Fe2+, and O3) where 
oxidant demand 
may be high in some 
soils/aquifers 

Contamination 
transference: 
environmental issues 
concerning soil are 
merely leachate 
transferred  to landfill 
site 

High energy costs and 
potential difficulties 
due to surface 
infrastructure 
requirements.  Not 
suitable for inorganic 
contaminants 

How EK can 
help 

Electromigration 
and/or electro-
osmosis can deliver 
nutrients, 
microorganisms to 
target zone 

 

Electromigration 
can bring pollutants 
to roots for easier 
phytostabilisation, 
rhizofiltration or 
rhizodegradation(A
boughalma et al., 
2008; Cameselle et 
al., 2013a) 

Electrophoresis (if 
sandy soil) and/or 
electro-osmosis (if 
clayey soil) can 
enhance nanoparticle 
delivery to 
contaminated 
regions; faster 
nanoparticle 
transport than 
natural hydraulic 
conductivity  

Oxidant delivery to 
contaminated 
regions; faster 
oxidant delivery 
than natural 
hydraulic 
conductivity   

Electro-osmosis can be 
used to dewater 
soil/sediment/waste and 
reduce total residue 
weight/volume for 
landfilling; metals or 
organic contaminants 
can be extracted ex-situ 
through the 
electrodialytic method 
and avoid landfill all-
together (Pernille E. 
Jensen et al., 2007; Ana T 
Lima et al., 2012; 

Not amenable to 
improvement through 
EK approaches 



Nystroem et al., 2005; 
Ottosen et al., 2012; Sun 
et al., 2012)  
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