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1. INTRODUCTION

Maximizing the fundamental eigenvalue is a basic goal in structural optimization. When self-weight
is small compared to non-structural masses, optimized structures are very similar to compliance
optimized structures. However, convergence to degenerated designs, as often seen for single load
compliance problems, is prevented due to the load independent eigenvalue objective. For cases with
small or no non-structural masses, optimized structures may be quite different from compliance
designs. The first works on topology optimization with fundamental frequency objectives are found
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in [10, 33, 20, 19]. In the case of repeated eigenvalues, simple eigenvalue gradients are no longer
valid and must be treated as suggested in [26, 27, 25].

Whereas the fundamental eigenfrequency of a structure usually is of great importance, some
situations may require different dynamic objectives such as maximum eigenvalue separation [17],
dynamic response for a given frequency [24, 18, 32, 29], frequency response over a broader
frequency range [29, 16, 11], maximization of band gaps in periodic composites [29, 28, 29], or
optimization of transient response [9].

In this paper we concentrate on the fundamental eigenvalue problem, however, we use an indirect
technique to maximize it inspired by frequency response techniques, c.f. [24, 22, 18, 32, 29, 13,
16, 11]. In those papers, frequency response as e.g. dynamic compliance is optimized for given
excitation frequencies. Here we propose a dynamic update of this driving frequency which indirectly
maximizes the fundamental eigenfrequency. We also refer to recent independent work by Olhoff
and Du [23] who suggest an incremental frequency technique somewhat related to ours, however,
requiring occasional solutions of eigenvalue problems that we try to avoid. The ideas and concepts
developed here also apply to closely associated buckling problems which will be considered in
future work.

In general, large scale topology optimization problems involving eigenvalues, such as those
arising in dynamics and stability problems, present significant challenges. Special features of these
problems that make their solution challenging include

1. Eigenvalue multiplicity
Repeated eigenvalues are a common occurrence in optimized designs and they often lead to
loss of differentiability and poor convergence. Selecting which modes must be included in the
optimization can be difficult.

2. A large number of eigenvalues and eigenvectors must be computed
As eigenvalues coalesce, many modes must be included in the analysis to account for possible
mode switching, even if the goal is to maximize only the fundamental eigenvalue.

3. Computational complexity
Large scale eigenvalue problems can be difficult to solve.

Whereas the first issue appears to have been largely resolved, issues 2 and 3 represent presently
unresolved, challenging obstacles. These obstacles prevent the development of reliable and efficient
approaches for large scale structural optimization, e.g. involving millions of design variables [1, 8].

During optimization iterations (or from the very beginning in case of symmetric structures),
the lower eigenvalues will start clustering and eventually coalesce, resulting in eigenvalue
multiplicity. Multiple eigenvalue may slow down convergence of eigenvalue solvers and cause loss
of differentiability. The latter problem can be solved (c.f. [26, 27]) but this still leaves arbitrary
decisions regarding criteria for characterizing multiplicity and requires specialized optimization
formulations that can handle varying number of constraints (c.f. active set strategies).

Even when one aims at maximizing the first eigenvalue and multiplicity is low, [7, 12] report that
a very large number of eigenvalues and modes is required for robust convergence of the optimization
algorithm, due to mode switching. For seemingly simple plate problems [7] needs to calculate
the first 100 eigenvalues (the active set) and for a moderately sized 3D problem (144,000 design
variables), [12] report that the first 50 eigenvalues and modes are required for stable convergence,
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even when optimizing for just the fundamental mode! These two references deal with buckling
problems but similar conclusions can be drawn for dynamic problems.

The solution of large scale eigenvalue problems is still a standing challenge. The first reason is
sheer computational resources. To date, the largest reported number of design variables for stiffness-
based topology optimization problem is 114 million [1], run on 1800 cores for 4.5 hours. Even if
one had access to a direct solver, solving for 50 or more eigenvalues in a problem of this size
would probably require orders of magnitude more computational effort. Furthermore, due to the
complexity of the eigenvalue space and the large number of closely spaced eigenvalues, there is
no guaranty that all eigenvalues will be found. To make matters worse, for really large problems,
direct solvers have huge memory demands and do not scale well and one must resort to iterative
schemes, applied on problems that are not positive definite and ill-conditioned due to large material
contrast. Convergence will be very dependent on the availability of efficient preconditioning (multi-
level, domain-decomposition, etc.) which at present is not well-developed for this purpose. Even
with an effective iterative solver and preconditioner, the computational effort of solving such large
scale eigenvalue problems is still prohibitively high due to the number of solutions of linear systems
required by modern Arnoldi/Lanczos procedures and the need for solutions for several shift values.

Based on this discussion we conclude that the computational effort and other remaining
challenges associated with the solution of large scale, multiple eigenvalue problems are hindering
the development of topology optimization formulations that include stability constraints (buckling)
or design consideration based on structural frequencies. We focus here on the latter. For very
large problems, one should seek alternative formulations that achieve the goal of maximizing the
fundamental frequency without requiring solution of the large scale, multiple eigenvalue problem.

In this paper we discuss the use of frequency response to eliminate the need for solving eigenvalue
problems when maximizing the fundamental frequency in undamped, free vibration. By minimizing
a measure of “dynamic compliance”, we show that for excitation frequencies approaching
the fundamental frequency, minimizing dynamic compliance corresponds to maximizing the
fundamental frequency. The approach is demonstrated on a couple of 2D continuum test cases.
It is motivated first by means of a simple three design variable problem, used to fix ideas and to
expose some relevant features.

Although we here provide the original idea and demonstrate initial feasibility, many obstacles
have to be overcome before the approach can be applied to practical, large scale topology
optimization problems. Nevertheless, we are confident that these obstacles can be overcome, and
then the computational effort of the approach will correspond to that of solving standard compliance
problems for a limited number of simple linear load cases.

2. STANDARD FORMULATIONS FOR EIGENVALUE TOPOLOGY OPTIMIZATION IN
DYNAMICS

To fix ideas we start from the statement of the underlying eigenvalue problem and its associated
optimization. The standard eigenvalue problem in dynamics is

(KKK − ΛMMM)ϕϕϕ = 000 (1)

This article is protected by copyright. All rights reserved.
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where Λ is the eigenvalue,ϕϕϕ is the eigenvector,KKK is the stiffness andMMM is the mass matrix. Solutions
to this problem come in pairs (Λi,ϕϕϕi). We assume that both KKK and MMM are symmetric and positive
definite. Then the eigenvalues are positive and real and can be ordered such that

0 < Λ1 ≤ Λ2 ≤ Λ3 ≤ · · ·

Λ1 is the eigenvalue associated with the fundamental frequency Ω1, i.e., Λ1 = Ω1
2. To simplify

notation, in the following we will use Λ and not Ω2 but we may refer to it as the frequency.
The underlying optimization problem involving the fundamental frequency as design criterion is

of the form
max
xxx∈S

Λ1, s.t. (1) (2)

where xxx denotes the vector of design variables and S represents the feasible set, e.g.,

S = {xxx :
∑

xi ≤ V, 0 < xmin ≤ xi ≤ 1}

3. AN ALTERNATIVE OPTIMIZATION FORMULATION BASED ON FREQUENCY
RESPONSE

Associated with (1) is the following linear frequency response problem:

(KKK − λMMM)www = FFF (3)

In this problem, the system is excited at a frequency λ(= ω2) by an external force FFF , resulting in a
dynamic response of amplitude www at the same frequency. Matrix

KKKD(xxx;λ) =KKK(xxx)− λMMM(xxx) (4)

is the ”dynamic stiffness” of the system excited at a frequency λ. In this scenario, the magnitude of
the response can be measured by the dynamic compliance of the structure,

C : C(xxx;λ) = wwwTKKKDwww (5)

When the excitation frequency λ approaches Λ1, the dynamic stiffness is reduced. As a result, for a
general loadFFF , the amplitudewww of the dynamic response increases, eventually becoming unbounded
when λ = Λ1. This suggests the following optimization problem, parameterized by λ (λ < Λ1):

min
xxx∈S

|C(xxx;λ)|, s.t. (3) (6)

This is the frequency response optimization problem. Here we investigate this problem as an
alternative to the standard eigenvalue optimization formulation (2) that can produce maximum or
near maximum eigenvalues without actually solving an eigenvalue problem at all.

This article is protected by copyright. All rights reserved.
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(a) Spring arrangement

(b) Contours of Λ1 and gradients of C

Figure 1. 3-dof example

3.1. Motivation: A simple three-dof system

To fix ideas and to expose the principal features of using frequency response as a surrogate for
eigenvalue optimization, we look first into a simple, three-dof system, shown in Figure(1a). In
this simple example three masses m0

1 = m,m0
2 = m,m0

3 = 2m are connected by three linear
springs that also contribute to the total mass. Spring stiffness and masses are proportional to design
parameters x1, x2, and x3, respectively – one for each spring. The undamped, free vibration of this
system is modeled by eigenvalue problem (1) with

KKK = k

 x1 + x2 −x2 0

−x2 x2 + x3 −x3

0 −x3 x3


and

MMM = m

 2x1 + 2x2 x2 0

x2 2x2 + 2x3 x3

0 x3 2x3

+

 m0
1 0 0

0 m0
2 0

0 0 m0
3


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We seek to maximize the first eigenvalue of this system by varying x1, x2, and x3. A resource
constraint and bounds on the parameters are added to define the feasible set. We use

S = {(x1, x2, x3), x1 + x2 + x3 ≤ 1, 0 < xi ≤ 1, i = 1, 2, 3}

For non-zero design independent masses m0 the resource constraint is active at the optimum
solution. Thus, it is possible to reduce the problem to two design variables, x2 and x3, setting
x1 = 1− x2 − x3. Figure (1b) shows the two-dimensional feasible set and the location of the
optimum solution. Finally, the scale factor k/m is adjusted so that the maximum eigenvalue Λ1

in the feasible set is Λ1 = 1.

Now consider a gradient-based approach to maximize the first mode eigenvalue, e.g., starting
from point A in Figure (1b). In this setting, one would construct a descent direction for Λ1 at
A and move in the opposite direction (to maximize Λ1). The gradient ∇Λ1(A) is used to build
this direction. As we want to avoid solving any eigenvalue problem, we will construct the descent
direction from a properly crafted frequency response problem, and avoid solving the eigenvalue
problem altogether, as discussed next.

As an alternative to solving the eigenvalue problem directly, consider instead the following
approach: excite system A at a given driving frequency λ and compute the resulting response www

and the dynamic compliance C = wwwTKKKDwww and its gradient at A. Figure (1b) shows the gradient of
C at A for excitations λ on either side of the resonance Λ1(A). The inset in the figure shows the
(log) dynamic compliance at A, C(A;λ), as a function of excitation λ. We note that

1. Excitations below the resonance result in a descent direction ddd = −∇C(A;λ) (green vector)
that points towards increasing Λ1 while excitations λ above the resonance result in a direction
pointing towards decreasing Λ1 (red vector).

2. Gradients ∇C(A;λ) are discontinuous and undefined at λ = Λ1(A).
3. As the excitation λ approaches Λ1(A) from below, ddd = −∇C(A;λ) becomes normal to the

contour at A and points towards increasing the eigenvalue.

For this excitation load and with the appropriate choice of driving frequency λ, the previous
observations hold everywhere in the feasible domain. Gradients of C can be used as descent
directions for the fundamental frequency Λ1 anywhere in the feasible set (except of course at
the optimum solution). This is illustrated in Figure(1b), which shows contours of Λ1 and vectors
ddd = −∇C(xxx; Λ1(xxx)− δ) throughout the feasible domain.

Using these ideas we show in Figure (1b) an optimization iteration sequence xxxν , ν = 1, 2, ...,
starting from xxx1=A. In each step, a search direction dddν is set to −∇C(xxxν ;λν) and λν is chosen as
0.95 ∗ Λ1(xxx

ν) (this is for illustration only, in practice we cannot do this, since we want to avoid
computing Λ1!). The last point in the iteration sequence corresponds to an eigenvalue Λ1 = 0.998,
essentially the same as the maximum eigenvalue in the feasible domain.

These observations show that, at least in this simple example, minimizing the dynamic compliance
function C can be used as a surrogate objective in the maximization of Λ1, provided that the

This article is protected by copyright. All rights reserved.
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excitation frequency remains close to and below the resonance frequency. Ensuring that λ remains
below the resonance without actually computing Λ1 is crucial to the success of this strategy.

3.2. Sequence of optimization subproblems

The simple three-spring example serves to expose interesting features of the problem. Most
importantly, it shows that, while the frequency response optimization problem does serve as a
surrogate for the eigenvalue optimization problem, there are important caveats. In particular, the
driving frequency λ cannot remain constant throughout the optimization. Instead, the maximum
eigenvalue solution can be approached only through a sequence of frequency response optimization
subproblems, parametrized by λ. Each subproblem in the sequence ν = 1, 2, ... is of this form:

Problem P(λν): Starting from xxx0
ν , find xxx ∈ S that

minimizes C(xxx;λν) = wwwTKKKD(xxx;λν)www

subject to |xi − x0
ν
i| ≤ ∆, i = 1, . . . , n (7)

where

(KKK − λνMMM)www = FFF , (8)

the feasible set S is used to control the amount of resources, e.g.,

S = {xxx :
∑

xi ≤ V, 0 < xmin ≤ xi ≤ 1}, (9)

and ∆ is used to control step size. The solution to P(λν) is used asxxx0
ν+1 to start the next subproblem,

P(λν+1).
The sequence of problems P(λν) must be generated carefully so that descent directions for

C(xxx;λν) for each problem in the sequence points in the right direction, namely, towards increasing
Λ1. If done carefully, this guarantees that the initial design in each sequence remains in the basin
of attraction of solutions with increasing Λ1. This depends crucially on λν and FFF and a strategy to
choose these parameters is discussed next.

3.3. Selecting the driving frequency

We focus first on the selection of λν . In order to make sure that descent directions in P(λν) lead to
increasing eigenvalues one has to guarantee that λν is close to and below the first eigenvalue of the
system. There are several ways to achieve this. For instance, one may use Padé approximations to
estimate the first natural frequency [4, 15, 16]. Here we use the following result from linear algebra:

If KKK and MMM are positive definite matrices, the number of eigenvalues Λ in (1) smaller than λ

equals the number of negative entries in the diagonal matrix DDD in the LU decomposition of KKKD

as KKKD = LDULDULDU .

This article is protected by copyright. All rights reserved.
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Noting that the LU decomposition of KKKD is needed to solve (8), learning weather a particular
driving frequency λ is below Λ1(xxx) requires little additional computational effort, especially if using
a direct solver. However, to ensure that the same λ remains close to and below Λ1(xxx) as xxx changes
may require the solution of this simple (but potentially costly) one-dimensional, line-search problem
that bounds the location of Λ1(xxx):

ProblemL(λmax;xxx): Let n(λ) be the number of negative entries in DDD in the LU decomposition of
KKKD(xxx;λ). Starting from λ = λmax > 0,

maximize λ

subject to n(λ) = 0

0 < λ ≤ λmax (10)

Under the stated assumptions, Problem L(λmax;xxx) has a solution for any positive λmax. The
problem can be solved using a simple line-search algorithm, for instance, one that brackets the
solution in intervals [λlow, λhi] of decreasing size that contain Λ1(xxx). We note that

1. Any feasible solution to L(λmax;xxx) is a lower bound for Λ1(xxx).
2. Λ1(xxx) ∈ [λlow, λhi] if n(λlow) = 0 and n(λhi) = 1.
3. To obtain a good estimate of Λ1(xxx), λmax should be fixed to a value larger than the expected

maximum eigenvalue solution.
4. Larger values of λmax and tighter intervals [λlow, λhi] lead to more computational expense, as

each line-search iteration requires a decomposition ofKKKD. They also result in better estimates
of Λ1(xxx).

Problem L(λmax;xxx0
ν) can be used to set the driving frequency λν . For instance, if after a couple

of iterations the bracket [λlow, λhi] contains Λ1(xxx), setting λν to a value slightly lower than λlow

leads to robust iteration strategies. We use this strategy in the examples discussed below, in Section
4.

3.4. Selecting the driving force

Finally, the driving force FFF in (8) needs to be defined. Implicit in the discussion above is the
assumption that FFF can excite the vibration mode associated with Λ1(xxx) and that this will hold for
any designxxx. As we will expose in the examples, prescribing such excitation must be done carefully,
particularly in problems where repeated eigenvalues may occur. It is easy to see that the response www
is of the form

www =
∑
i

fi
λ− Λi

ϕϕϕi (11)

where ϕϕϕi is the i− th eigenmode (see (1) ) and fi is the projection of FFF onto the mode ϕϕϕi, that is,
the dot-product (modal load factor) fi = ϕϕϕi

TFFF . . Evidently, the response from a load FFF with f1 = 0

will not exhibit a resonance behavior about Λ1. To illustrate, consider again the simple three-spring
example from Section 3.1. Two responses corresponding to two different excitation forces FFF (1)

This article is protected by copyright. All rights reserved.
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Figure 2. Simple three-spring example: frequency response from two excitations. FFF (2) does not excite the
first mode

and FFF (2) are shown in Figure 2. FFF (1) excites both modes but FFF (2) is chosen deliberately to be
orthogonal to ϕϕϕ1 and it is obvious that the corresponding response shows no resonance near Λ1.
In computations, if FFF (2) was the only load applied, the excitation frequency λ, selected by the line
search algorithm (10), would be slightly to the left of Λ1(xxx), far from the resonance, resulting in an
essentially static response.

The simple example illustrates the importance of selecting an excitation load that excites the first
mode. In problems where there is potential for eigenvalues coalescing near Λ1, it is important that
the excitation force excites all modes corresponding to the coalescing eigenvalues. As the number
of possible coalescing eigenvalues is not known a priori, a good approach is to consider multiple
load cases from the start, including a rich enough set of loads in the optimization problem. This
suggest the following multiple-load alternative to (7):

Problem P(λν) (multiple loads): Starting from xxx0
ν , find xxx ∈ S that

minimizes Ĉ(xxx;λν) =
∑
l

www(l)TKKKD(xxx;λν)www(l)

subject to |xi − x0
ν
i| ≤ ∆, i = 1, . . . , n (12)

where

(KKK − λνMMM)www(l) = FFF (l), (13)

and l indexes different load cases FFF (l), l = 1, 2, ...Nl

We note that the sensitivities of FFF (l) are not included in the sensitivity analysis. There are many
possible choices of loading vectors which will result in similar results as long as the appropriate
eigenmodes are excited, however, if the vectors are included in the sensitivity analysis the optimizer
may exploit this, in turn causing unwanted results.

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
A

rt
ic

le10

3.5. The overall strategy

The overall strategy has been tested using the method of moving asymptotes (MMA) algorithm [30]
to solve the subproblems P(λν) in a standard density-based topology optimization setting (c.f. [3]),
starting from the uniform density design, through the following steps:

• Step 1: Set ν = 1 and choose the initial design xxx0
ν . For instance use the uniform density

design to start the process.
• Step 2: Choose a driving frequency λν such that λν < Λ1(xxx0

ν). Here we use the line search
problem L(λmax;xxx0

ν) to compute a lower bound λlow for Λ1(xxx0
ν) and set

λν = αλlow (14)

for a (prescribed) value of α close to (but below) 1.
• Step 3: Solve P (λν) for xxx∗ starting from xxx0

ν .
• Step 4: If convergence is detected, xxx∗ is the solution. Otherwise, set xxx0

ν+1 = xxx∗, ν = ν + 1

and return to step 2.

In practice,

• λmax in step 2 is set sufficiently large so that it is larger than any expected value of Λ1 in the
feasible set.

• Line search iterations continue until a feasible solution is found and the final interval
[λlow, λhi] is small, e.g., less than 5% of λlow.

• λν is typically set to 95 to 99% of λlow.
• Only one iteration of the MMA algorithm is applied at step 3. In other words, the MMA is

used only to compute a feasible direction and step size starting from xxx0
ν .

• λν can be used as an estimator of Λ1(xxx0
ν).

• A simple criterion for convergence is used: a combination of small step |xxx0
ν+1 − xxx0

ν | or slow
improvement |λν+1 − λν |.

We should emphasize here that our goal is simply to explore the potential of alternative methods to
solve eigenvalue optimization problems, and we made no special effort to streamline computations.
Thus, while the performance of this algorithm is not bad, it can certainly be improved, for instance,
by focusing on better line search strategies L to estimate λν and more efficient ways to improve the
solution within each subproblem P.

4. EXAMPLES OF TOPOLOGY OPTIMIZATION

The performance of the approach is explored using three simple examples, presented next. In all
cases, a SIMP model [5, 21, 35] is used to interpolate material properties, elastic modulus E and
material density ρ, via

E(x) = EL + xp(EH − EL)

ρ(x) = ρL + x(ρH − ρL)

This article is protected by copyright. All rights reserved.
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Figure 3. Example 1: Cantilever beam, geometry

(a) Iteration history, λν = 0.95λlow (b) Iteration history, λν = 0.99λlow

(c) Final layout from min C (d) Final layout from max Λ1

Figure 4. Example 1: Cantilever beam, results

where [EL, EH ] = [10−3, 1], [ρL, ρH ] = [10−3, 1] and p = 4. Poisson’s ratio ν = 0.3 is kept
constant. A projection filter ensures checkerboard-free and mesh-independent solutions using a
projection filter with radius r = 2 (unless otherwise noted), threshold value η = 1/2 and a small
projection factor of β = 1 [34]. The finite element model is standard: all elements are square, 4-
node elements in 2D elasticity. The total amount of material is constrained by V = v ×Ne in (9),
where v is the volume fraction of solid material and Ne is the total number of elements. In the
optimization subproblems P(λν), the step size ∆ is set to 0.05. The process is started from the
uniform density design, and the first iteration uses static compliance as the objective function (i.e.,
driving frequency λ is set to 0).

4.1. Cantilever Beam

This example is based on the classical cantilever beam topology optimization problem. The example
is used to look into the convergence of the algorithm and its ability to reproduce the solution of the
maximum eigenvalue problem, exploring the effect of certain parameters on convergence.

The setup is standard: the design domain is rectangular with L = 1/3, all displacements at the
left wall are constrained (see Figure 3). A non-structural mass M0 is attached mid-height on the
right end with magnitude set to 20% of the allowed mass. 120× 40 square elements are used. The
volume fraction is v = 0.3.

Figure 4 summarizes the results. The driving frequency λν is selected using the line search
algorithm L (10). Figures 4a and 4b show iteration histories for different values of α in (14),

This article is protected by copyright. All rights reserved.
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the parameter that controls the gap between the driving frequency λν and the eigenvalue Λ1. As
expected, for α close to 1, λν is a good estimate of the true eigenvalue Λ1, also displayed in the
figures (of course, Λ1 is not used in the algorithm, it is shown only for the purpose of comparison).
Choosing λν closer to Λ1, as in 4b, results in slightly better answers but also leads to slower
convergence and more erratic C iteration history (the jagged shape of the iteration curve C is
caused by the adjustment made to the driving frequency between iterations of the MMA algorithm).
However, even when the iteration history for C is not smooth, the corresponding sequence of Λ1 is
smooth and Λ1 increases essentially monotonically, confirming the effectiveness of the approach. In
this case, both sequences converge to essentially the same layout, shown in 4c. For comparison, the
layout obtained from direct maximization of Λ1 is shown in Figure 4c. Direct maximization of Λ1

yields 8.0256× 10−2 while minimizing C yields slightly lower values: Λ1 = 7.8179× 10−2 when
λν = 0.95λlow (Figure 4a) and Λ1 = 7.8758× 10−2 when λν = 0.99λlow (Figure 4b).

For this example the external load FFF was set as

Fi = c0
∑
j

Mi,j (15)

where c0 is a positive but otherwise arbitrary scaling factor. Indices i and j represent degrees-of-
freedom, Mi,j is the i, j entry in the (structural) mass matrix M , and the same load is applied to
both nodal degrees-of-freedom (horizontal and vertical). Only one load case was considered.

Choosing FFF as the sum of mass terms in (15) sets the force to be a distributed load proportional
to the “lumped mass” assigned to each node. Applying a distributed load is beneficial in that all
regions of the structure will be loaded, thus increasing the chances that several modes be excited, as
opposed to, e.g., a point load, which could be more easily orthogonal to one or more of the relevant
modes. Making the load proportional to the mass matrix scales the force in such a way that the
force is automatically reduced in regions of the design space not occupied by material. The choice
of loading is less crucial in this example, as the eigenvalues remain well separated throughout the
optimization process and it is relatively easy to excite the first mode. The example in the following
section shows a different scenario, one where coalescence of eigenvalues can lead to sub-optimal
solutions if the load is not chosen carefully.

We note here that, as long as the force FFF excites the relevant modes, its magnitude and spatial
distribution should not determine the outcome. As we know, in a standard frequency response
problem in vibrations, the structure will be excited at resonance by a whole range of forces. The
location of the resonances in the frequency spectrum is independent of the loads (again, as long as
the load can excite the relevant mode). For this reason, we repeat that we do not consider FFF in the
computation of sensitivity information, arguing that, as in the standard frequency response problem
in vibrations, the location and mode of the resonance are independent of the load.

We finish this example with a modification to the feasible set, adding a constraint on the (static)
mean compliance. With this modification, the feasible set S in (9) becomes

S = {xxx : C0 ≤ Cmax,
∑

xi ≤ V, 0 < xmin ≤ xi ≤ 1}, (16)

where C0 = uuuTFFF 0 is the compliance resulting from the application of a static load FFF 0 and the
solution to the system
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(a) Example 1: Cantilever beam
geometry with static load

(b) Final layout from min C with
compliance constraint

(c) Final layout from max Λ1 with
compliance constraint

Figure 5. Example 1: Cantilever beam, results with static compliance constraint

KuKuKu = FFF 0 (17)

A downward unit load FFF 0 is applied as shown in Figure 5a and Cmax is set to half the static
compliance associated with the first solution (Figure 4a). Here we show in Figure 5b the results
obtained using the surrogate frequency response problem P (7) and, for comparison, in Figure
5c the result obtained using the standard eigenvalue maximization problem. The final layouts are
slightly different – this is not surprising, as these problems are not convex and potentially have
many local minima, reachable from different paths in the feasible set generated by the solution
algorithm. However, the performance associated with both layouts is rather similar, respectively
Λ1 = 7.3670× 10−2 and Λ1 = 7.2624× 10−2, the surrogate problem yielding the slightly better
answer!

4.2. Cross - repeated eigenvalues

For this example, the geometry is as shown in Figure (6). The problem is set up so that repeated
eigenvalues are likely at the optimum solution. Boundary conditions are as shown in the figure
and the design domain is almost square: Lx = 1 and Ly = 0.9. Three nodes are fully restrained
at the center of each outer edge. A non-structural mass M0 is placed at the center of the domain
with magnitude set to 20% of the mass of the structure. 80× 72 square elements are used. The
volume fraction is v = 0.2. The design (but not the displacement field) is fixed to be horizontally
and vertically symmetric, i.e. only a quarter of the elements are used as design variables. In this way
we force the optimization to stay in the challenging multiple eigenvalue situation.
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The choice of load is crucial in this problem. As in the previous example, we apply mass-
proportional loads, but in this case the proportionality constant c : c(x, y) is spatially varying,
allowing excitation of symmetric and anti-symmetric modes independently, i.e.,

Fi = c(xi, yi)
∑
j

Mi,j (18)

where (xi, yi) is the location of the node associated with degree-of-freedom i. The results shown
below were obtained using sinusoidal variations of the form

c(m,n)(xi, yi) = c0 sin(
mπxi

Lx
) sin(

nπyi
Ly

), m, n = 1, 2, ... (19)

We consider first only one load case, corresponding to (m,n) = (1, 1). This load is asymmetric
(it excites the structure in a 45 degree direction). The results are summarized in Figure 7. Figure
7a shows the iteration history. In this problem the first two eigenvalues are almost repeated at the
initial design. As iterations progress, they grow while remaining close, until they cross with the
third eigenvalue at iteration 46 (Figure 7b). After this point, the two originally lowest eigenvalues
continue growing, whereas the originally third eigenvalue stagnates. The reason is that the original
third mode, which becomes the lowest mode after 46 iterations, is a rotational mode (oscillating
around the center), which is not excited by the applied single load. Hence, it does not contribute to
C and hence is not further improved. This aspect is further illustrated in 7c, which shows that the
modal load factor f3 is zero throughout the iteration history and hence this mode is never excited. In
contrast, original modes 1 and 2 have high modal load factors f1 and f2 throughout. It is hence clear
that the single load case surrogate problem does not account well for this case of multiple active
eigenvalues. The final layout is shown in Figure 7d, with corresponding Λ1 = 1.2093. Clearly this
design is not very efficient towards rotational vibrations unlike the optimized structure coming up
next.

We now consider four separate load cases, FFF (1) through FFF (4), corresponding to (m,n) =

(1, 1), (1, 2), (2, 1) and (2, 2) in (19). These loads will excite symmetric as well as anti-symmetric
and rotational modes. The results are summarized in Figure 8. Considering the iteration history in
Figure 8b, as iterations progress, the first two modes move together throughout iterations, while
this time eigenmodes 3 (and 4) are also excited and hence increase as well. This aspect is further
illustrated in Figure 8c which shows the sum of modal load factors for each mode. The combination
of all loads thus excites the first four modes throughout the iteration history and, as a result, they
all contribute to the objective function Ĉ, resulting in a successful outcome of the optimization
process. The final layout is shown in Figure 8d, with Λ1 = 2.002, much higher than before. It is
seen how the optimized structure now also is stiff with respect to rotational vibration and hence the
third eigenmode has this time indeed contributed to the optimization process.

4.3. Computational efficiency

The previous examples have demonstrated feasibility of the proposed approach. However, rather
costly line search operations were used in order to update the frequency at each step. Nevertheless,
numerical studies indicate that the CPU time, even for the small examples considered, is comparable
to solving the standard eigenvalue optimization problem. This last example suggests a simplified
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Figure 6. Example 2: Cross, geometry
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(a) Iteration history (b) Eigenvalues colored according to mode shape

(c) Sum of modal load factors fi for each mode (d) Final layout

Figure 7. Example 2: Cross, results using one load case

procedure that even for small scale problems shows large speed improvements compared to the
standard eigenvalue formulation. We envision many possibilities for further savings but deeper
studies on efficiency improvements are left for future work.

We solve again the cantilever beam example of Sec. 4.1 now for four mesh resolutions
M1 = 120× 40, M2 = 240× 80, M3 = 480× 160 and M4 = 720× 240. The driving frequency
is updated once every 25 iterations, performing 10 steps of the bracketing algorithm discussed
in Sec. 3.3. The standard eigenvalue optimization problem involves solving for the three lowest
eigenvalues for each optimization step.

The final topologies, shown in Figure 9, are nearly indistinguishable from the corresponding
ones obtained with standard eigenvalue optimization. However, Figure 9a shows that due to the
occasional update of λ, the evolution of Λ1 using the surrogate approach is quite different from the
direct approach. Nonetheless, the increase is essentially monotonic and the final values of Λ1 are
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(a) Iteration history (b) Eigenvalues colored according to mode shape

(c) Combined modal load factors fi as sum of modal load
factors from each load case

(d) Final layout

Figure 8. Example 2: Cross, results using four load cases

very close. Interestingly, the surrogate approach seems to converge somewhat slower for the finer
mesh resolutions. We attribute this to the changing loads of the surrogate problem. Essentially, every
25 iterations the load case of the associated dynamic compliance problem is changed and hence the
topology will have to adapt to this. For finer meshes, adaption to varying loading conditions is
slower.

In each case the final value of the fundamental frequency obtained with the surrogate approach
is just a few percent lower than the one obtained from the direct approach, see Tab. I. CPU times
(obtained for a single processor Matlab implementation) are listed in Tab.I and scaling curves are
shown in Figure 10. Comparing data and figures it is clear that quite significant savings can be
achieved with the surrogate approach even for the small problems considered in this example. The
predominant cost of the procedure is due to the solution of the linear system and not to the search
for the driving frequency. The more than five times reduction in CPU time comes at the cost of a
slight reduction in the achieved eigenfrequencies and somewhat increased iteration numbers.

Above timing study is based on standard Matlab implementations. That is, all system matrices
are stored in sparse format and the standard backslash operator is used for linear system solving
and subroutine “eigs” is used for solving for the five lowest eigenvalues in the standard formulation.
Further savings may be achievable by exploitation of solver options or alternative solvers.
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Final Λ1(10
−2) Computational time (s)

ndof standard surrogate r.d. Tλ TC tls tfu TC/Tλ

9,840 8.0422 7.9902 0.6 39.6 6.4 4.7 1.7 0.161
38,880 7.6113 7.5697 0.6 168.7 29.2 21.1 8.1 0.173

154,560 7.5654 7.3750 2.5 740.6 143.9 104.0 39.9 0.194
347,040 7.5543 7.3590 2.6 1895.8 359.3 257.4 101.9 0.189

Table I. Performance of the standard and surrogate formulations for four discretizations. The first two
columns list the final value of the eigenvalue and the third contains relative differences . The next columns
report the computational time for the operations described in Figure 10. The last column shows the time

savings achieved with the new surrogate approach.
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(a) Evolution of the fundamental eigenvalue from direct eigenvalue optimization
(solid curves) and from frequency response minimization with occasional frequency

update (dashed curves)

(b) M1 (c) M2

(d) M3 (e) M4

Figure 9. Comparison of eigenvalue evolution curves and final topologies obtained with the frequency
response surrogate formulation on the four meshes.
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Figure 10. Scaling curves for the two approaches. Tλ is the time required by eigenvalue analysis in the
standard approach and Tc is the time required by solving the state problem in the surrogate approach. The
latter is split into the time for the solution of the linear system (tls) and the time spent for searching the

frequency (tfu)

5. CONCLUSIONS

Adaptive frequency response optimization, as proposed, offers an alternative to solving the
eigenvalue maximization problem without having to actually compute eigenvalues. The main
application of this alternative approach is expected to be large scale problems and problems with
multiple eigenvalues, where there may be no choice but to find an alternative strategy. However, the
surrogate problem must be built carefully, choosing the proper driving frequency and a sufficiently
complete set of loads, particulary when repeated eigenvalues are involved. Mass-proportional,
spatially distributed loading appears to be an effective choice for external loading.

Computational efficiency was only explored briefly. The more time consuming and delicate part
of the algorithm involves the adjustment of the driving frequency to be as close as possible but
below the target eigenvalue. The initially formulated line search algorithm does the job, but at
considerable expense. A simplified version with only occasional updates and reduced search points
at potential saving factors in CPU time of more than five. Alternative approaches, e.g., using Padé
approximations to estimate the frequency response curve, may potentially be even more efficient.
While such investigations remain to be done, we believe that the evidence presented supports the use
of frequency response as a surrogate for eigenvalue optimization and motivates further exploration
of this approach.
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