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Abstract 47 

1. The majority of rivers around Europe have been modified in one way or another, and no 48 

longer have an original, continuous flow from source to outlet. The presence of weirs and dams 49 

has altered habitats, thus affecting the wildlife that lives within them. This is especially true for 50 

migrating rheophilic fish species, which in addition to safe passage depend on gradient and fast 51 

flowing waters for reproductive success and early development.  52 

2. Thus far, research has focused on investigating the impacts of weirs and dams on fish passage, 53 

with less attention paid to the loss of habitat entrained by such infrastructures. The loss of 54 

rheophilic habitat is particularly important in lowland streams, where gradient is limited, and 55 

dams and weirs can be constructed with less effort.  56 

3. Denmark is considered a typical lowland country, where the landscape around streams and 57 

rivers has been modified by agriculture and other human activities for centuries, leaving 58 

management practitioners wondering how much change is acceptable to maintain sustainable 59 

fish populations and fisheries practices.  60 

4. With examples from Denmark, we attempt to conceptualize the loss in habitat as a result of 61 

barriers in lowland streams and rivers, and the repercussions that such alterations may have on 62 

rheophilic fish populations. Furthermore, we emphasize the need for management to address 63 

habitat loss and its related consequences concurrently with the improvement of fish passage. 64 

 65 

Keywords: river, stream, fish, river management, catchment management, indicator species, 66 

hydropower, impoundment 67 

 68 
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Introduction 70 

The presence of barriers (such as weirs, dams and culverts) in rivers has grown immensely in the 71 

last centuries. These barriers are most often put in place to serve human needs, such as to 72 

generate electricity (Welcomme, 1995), though fish farming, irrigation and flood control are also 73 

common (Jungwirth, 1998; Jungwirth, Muhar, & Schmutz, 2000). When barriers were first 74 

established, the potential detrimental impacts to the surrounding environment were not 75 

considered (Hunt, 1988), but it quickly became apparent that they had severe consequences to 76 

river ecosystems and the organisms that live within them (e.g., Aarestrup & Koed, 2003; 77 

Alexandre & Almeida, 2010; Dynesius & Nilsson, 1994; Junge, Museth, Hindar, Kraabøl, & 78 

Asbjørn Vøllestad, 2014; Koed, Jepsen, Aarestrup, & Nielsen, 2002). 79 

 Many countries lack a complete inventory of water barriers and those that do typically 80 

register large barriers only (e.g., the United States National Inventory of Dams for dams above 81 

10m). In Denmark, the Ministry of Environment and Food has recently generated an inventory of 82 

barriers to implement the EC Waterframe Directive (Council of the European Communities, 83 

2000). Although quite comprehensive, even this inventory is unlikely to account for all Danish 84 

barriers given that smaller weirs and especially culverts often remain unregistered. While 85 

freshwater management have remedied some of the negative consequences of barriers associated 86 

with fish passage (e.g., through fish ladders, fish pass etc.), most of the habitat changes due to 87 

damming are still present and thus still threaten stream and river ecosystem sustainability. The 88 

need to take action is pressing given that riverine ecosystems are in the poorest condition of all 89 

ecosystems across the globe (WWF, 2016). To date, there has been tremendous focus on the 90 

impacts of barriers on fish passage (both upstream and downstream movements; e.g., Aarestrup 91 

& Koed, 2003), and finding ways to establish minimal flow to sustain fluvial habitat (Rood et al., 92 
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2005). While this approach has merit for management, it ignores some basic problems: (1) it 93 

does not account for the loss of habitat in the resulting “ponded” zone that results from 94 

damming, and (2) it typically ignores the small-scale migrations and movements of less known 95 

species (Larinier, 2001). Moreover, current management schemes tend to neglect effects on other 96 

aquatic organisms, such as plants and invertebrates, which are also affected by the presence of 97 

obstacles (Merritt & Wohl, 2005, Palmer, Arensburger, Botts, Hakenkamp, & Reid, 1995). 98 

 Here, we briefly describe the important consequences of barriers for rheophilic fish 99 

species (i.e., species that live in fast-moving, oxygen-rich water), with greater focus on (1) 100 

quantity of habitat lost due to a loss in gradient, and (2) lowland streams/rivers given that 101 

gradient is a limiting factor for rheophilic fish reproduction and development in such 102 

watercourses. We attempt to conceptualize the loss in habitat as a result of barriers, and present a 103 

“quick and dirty” method that could be applied to management scenarios which aim to restore 104 

the river continuum and natural habitats for rheophilic fish species. 105 

 106 

Habitat changes as a consequence of barriers 107 

Barriers result in fragmentation and decoupling of hydrological, geomorphological and 108 

ecological aspects of a river, thereby modifying habitat and restricting movement between them 109 

(Lucas & Baras, 2000; McCluney et al., 2014; Nilsson, Reidy, Dynesius, & Revenga, 2005; Poff 110 

et al., 1997; Ward & Stanford, 1983, 1995). Specifically, the upstream section becomes a 111 

“ponded zone” and the length of this zone depends on the height of the dam and the watercourse 112 

gradient (Petts, 1984; Poff et al., 1997; Stanford et al., 1996; Figure 1). In turn, this completely 113 

changes the river habitat upstream of the barrier, such as increasing homogeneity of substrates 114 

and vegetation (Nilsson & Jansson, 1995; Poff, Olden, Merritt, & Pepin, 2007), increasing depth, 115 
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reducing current speed, reducing oxygenation, causing sedimentation and changing water 116 

temperatures (Petts, 1984; Poff & Hart, 2002). The downstream habitat also becomes altered, but 117 

for the purpose of this paper, we focus primarily on the upstream geomorphological changes 118 

induced by barriers.  119 

 120 

Lowland streams and rivers: case studies from Denmark 121 

In lowland streams, the areas with relatively high gradients are preferentially selected to 122 

construct barriers because of their greater relative potential for energy (Hoffman & Dunham, 123 

2007). Damming effects also vary depending on the size of the watercourse and the location of 124 

the dam. Generally, a dam located closer to the source of a river will have fewer repercussions 125 

than one located further downstream (Figure 1), because the gradient of the river is typically 126 

greater in the upper regions, and therefore a smaller proportion of the watercourse is affected by 127 

the damming. Furthermore, upstream parts of a river tend to be narrower than downstream 128 

sections, thus the total damming impacts are considerably lower when a barrier is upstream 129 

(Figure 1), though may still have important consequences for local species.  130 

In Denmark, a country consisting solely of lowland landscapes, rivers are typically small, 131 

and have smaller gradients than those from more mountainous countries. While a river in 132 

Norway, for example, can easily provide a drop of 500m, even the larger Danish rivers typically 133 

begin below 100m above sea level. Large gradients are therefore a limited resource in Denmark. 134 

Nonetheless, much of the wildlife in Danish rivers relies on these scarce habitats (especially 135 

rheophilic fish), making them especially important to protect. Within lowland rivers, the areas 136 

where the gradient is (relatively) large, there is greater potential for harnessing water power, 137 

often leading to the establishment of more than a single dam throughout the river course. For 138 
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example, River Grejs (Vejle, Denmark) runs for approx. 15km, and has a total drop of 55m from 139 

source to outlet, where a total of 11 dams were established by 1986.  140 

An altered flow regime caused by dams affects the wildlife present, typically reducing 141 

biodiversity (Bunn & Arthington, 2002; Power, Dietrich, & Finlay, 1996) and population size of 142 

migratory species (Hubbs & Pigg, 1976; Zhong & Power, 1996). This is especially true for 143 

rheophilic species (Hoffman & Dunham, 2007). Hence, the increase in water level (i.e., 144 

increased depth) and current decrease may be used as indicators of the loss in geomorphological 145 

variability and thus a river’s ability to maintain biodiversity, as well as a rough measure of 146 

potential rheophilic habitat loss. This is important because a relatively large proportion of species 147 

that inhabit freshwater streams require relatively fast flowing and oxygen-rich water with varied 148 

substrate conditions in order to thrive; the most common threat to freshwater species (i.e., fish, 149 

amphibians, reptiles, mammals and birds) is habitat loss and degradation from anthropogenic 150 

activities (Freyhof & Brooks, 2011). 151 

Given the extent of dam establishment in some lowland rivers, much of what used to 152 

constitute adequate habitats for these species is no longer available. For example, habitat quality 153 

indicator species in Danish rivers, such as Atlantic salmon (Salmo salar) and brown trout (Salmo 154 

trutta), spawn and grow (during early life stages) in stretches where habitat is typified as riffle 155 

areas with gravel or cobble substrate, with low gradients (Gibson, 1993, Gibson, Bowlby, & 156 

Amiro, 2008). Dammed rivers reduce the availability of such stretches, and have been shown to 157 

reduce overall salmonid populations (Welcomme, 1985). 158 

 Recognizing the consequences of barriers on freshwater ecosystems has led to the pursuit 159 

of mitigation strategies. For example, some municipal and governmental agencies have put in 160 

place new infrastructures to address environmental concerns (e.g., periodic high flows, fish 161 
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ladders; Auer, 1996). A common approach is the installation of nature-like fish passes. These 162 

bypasses can be useful in allowing fish to move upstream and downstream of a barrier (e.g., 163 

Calles & Greenberg 2005) but do not remedy the underlying habitat alterations caused by 164 

barriers (Dadswell, 1996), and have been found to have limited success (Bunt, Castro-Santos, & 165 

Haro, 2012). Recent evidence suggests that dam removal provides an efficient management tool 166 

for ecological restoration of freshwater ecosystems (reviewed in Bednarek, 2001), and should be 167 

considered where possible. In fact, complete dam removal restores habitat quality, quantity and 168 

connectivity, thus restoring previously lost habitat (Pess, McHenry, Beechie, & Davies, 2008), 169 

enabling rheophilic fish populations to re-establish and also enabling fish to migrate (both on 170 

small and large scales), regardless of how much knowledge we have on a species. 171 

 172 

Conceptualizing habitat loss: applications for management 173 

In Table 1, we provide data for three Danish rivers that vary in size from 3m to 40m in width and 174 

from 20km to 149km in length. We present the total drop from spring to outlet, the summed drop 175 

resulting from barriers, the total length of the river, and the summed length of the ponded zone. 176 

This data was then used as a rough estimate of vertical and horizontal habitat loss (Table 1). This 177 

specific information was chosen given that it is typically easily accessed and could easily be 178 

applied to management strategies. We acknowledge that the habitat loss may not be proportional 179 

to the loss in gradient (as this approach suggests). In fact, the relationship between habitat loss 180 

and gradient is likely more complex, especially if barriers are present further upstream, but this 181 

approach has merit to rapidly address some of the management concerns we are currently facing. 182 

This approach shows that a large proportion of the potential rheophillic habitat is lost in 183 

the ponded zones (Table 1). River Gudenaa, the longest river in Denmark, was historically one of 184 
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the most important Danish rivers with large populations of anadromous salmonids. It has seven 185 

barriers in the main stem predominantly for hydro power generation, yielding a total relative loss 186 

of the potential spawning and juvenile development habitat of 36% (Table 1). This loss increases 187 

to approx. 60% if we exclude the upper 10% of the watercourse where the river is narrow, the 188 

gradient is significantly larger, and salmon production is historically non-existent. The smaller 189 

Rivers Villestrup and Omme, on the other hand, have barriers established for fish farming or old 190 

watermill purposes, but nonetheless result in a similar loss in habitat. Furthermore, this estimated 191 

habitat loss is likely underestimated at fish farm sites, because the stretch of the river between a 192 

weir and the outlet of a fish farm is often several hundreds of meters apart, with very little water 193 

flow during a large part for the year. The habitat quality in these stretches is limited as a 194 

consequence of the reduced water flow alone, but may also represent an area of high predation 195 

(Jepsen, Aarestrup, Økland, & Rasmussen, 1998; Poe, Hansel, Vigg, Palmer, & Prendergast, 196 

1991; Ruggerone, 1986). 197 

The three rivers discussed in the above paragraph run mainly through agricultural land. 198 

However, rivers running through urban areas may be subjected to even more severe habitat loss 199 

(Birnie-Gauvin, Peiman, Gallagher, de Bruijn, & Cooke 2016). River Mølleaa is approx. 13km 200 

long, and flows through Northern Copenhagen into the Øresund strait. The river has nine dams, 201 

which together remove an estimated 75% of the river gradient. There is virtually no natural 202 

gradient left, and thus no adequate habitat for rheophilic species.  203 

 204 

Conclusions  205 

The productive potential of rheophillic species in lowland freshwater rivers is greatly reduced by 206 

the presence of dams and weirs. Typical management interventions aim to address issues 207 
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concerning fish passage, but often omit to consider the habitat that has already been lost as a 208 

result of barriers for which we lack empirical data (Abell, 2002). Given the relatively limited 209 

gradient available in Danish rivers (and in lowland rivers across the world in general) and the 210 

potential habitat loss associated with the latter, the overall effects of water barriers on habitat 211 

should be included in assessments of watercourses. These actions should be undertaken 212 

concurrently with the improvement of fish passage and other typical management-related 213 

challenges. To improve the state of regulated lowland rivers may mean that many of these river 214 

obstacles need to be removed in order to reinstate the former gradient and habitat, which may re-215 

establish proper fauna passage in itself.  216 

The purpose of this paper was to shine a light on a problem that is often ignored in 217 

traditional fish management to this day: rheophilic habitat loss resulting from barriers. Too often, 218 

the focus of management is on fish passage alone, ignoring other important effects of damming. 219 

This may be particularly true for lowland rivers. Given the number of dams and weirs in rivers 220 

across the world, we acknowledge that acquiring complete knowledge on habitat loss and fish 221 

passage is a daunting task. However, if the majority of rheophilic-appropriate habitat is lost, 222 

improving fish passage may be pointless. We therefore suggest the use of a “quick and dirty” 223 

method (Table 1) to evaluate the potential loss in habitat as a result of barriers. This approach 224 

may provide managers with an improved overview of the state of rivers, and allow for better 225 

management strategies to be implemented. Further studies should be undertaken to evaluate the 226 

validity of the approach. 227 
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Table 1. Conceptualizing rheophilic habitat loss. Using three Denmark rivers, the ratio of the 411 
total drop as a result of barriers (m) to the total drop of the river from source to outlet (m) was 412 
used as a proxy for vertical habitat loss (%).The ratio of the summed ponded zones (km) to the 413 
total river length (km) was used as a proxy for horizontal habitat loss (%). This “quick and dirty” 414 
approach to estimate habitat loss from barriers provides managers with a low cost and effective 415 
method to get a rapid overview of the current state of freshwater streams and rivers, and may 416 
enable the implementation of more effective management strategies. 417 
 418 

River 

(# of dams) 

Total drop 

from 

source to 

outlet (m) 

Summed 

drop from 

barriers (m) 

Vertical 

habitat loss 

(%) 

Total 

river 

length 

(km) 

Summed 

ponded 

zones 

(km) 

Horizontal 

habitat 

loss (%) 

Villestrup (6) 22 8.8 40 20.0 5.8 29 

Omme (14) 75 17.7 24 55.0 11.35 21 

Gudenaa (7) 69 24.9 36 149.0 -* -* 

* Information not available given that the weirs and dams are too old to accurately estimate the 419 
length of ponded zones.   420 
 421 
 422 
 423 
 424 
 425 
 426 
 427 
 428 
 429 
 430 
 431 
 432 
 433 
 434 
 435 
 436 
 437 
 438 
 439 
 440 
 441 
 442 
 443 
 444 
 445 
 446 
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Figure 1. Effects of dams on rivers. Conceptualized diagram of the effects of dams on rivers 447 
showing two (A and B) identical weirs (i.e., same stemmed height). Depending on the gradient 448 
of the river, the ponded zone differs. As the gradient typically decreases, and the river size 449 
increases, from source to outlet, a similar sized weir closer to the outlet will have a larger ponded 450 
zone, both in terms of length and surface area. Downward-pointing arrows (↓) represent a 451 
decrease. 452 
 453 

 454 


