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Abstract 12 

The occurrence of mutations is a cornerstone of the evolutionary theory of adaptation, 13 

capitalizing on the rare chance that a mutation confers a fitness benefit. Natural selection is 14 

increasingly being leveraged in laboratory settings for industrial and basic science applications. 15 

Despite an increasing deployment, there are no standardized procedures available for designing 16 

and performing adaptive laboratory evolution (ALE) experiments. Thus, there is a need to 17 

optimize the experimental design, specifically for determining when to consider an experiment 18 

complete and for balancing outcomes with available resources (i.e., lab supplies, personnel, and 19 

time). To design and better understand ALE experiments, a simulator, ALEsim, was developed, 20 

validated, and applied to optimize ALE experimentation. The effects of various passage sizes 21 

were experimentally determined and subsequently evaluated with ALEsim to explain differences 22 

in experimental outcomes. Further, a beneficial mutation rate of 10-6.9-10-8.4 mutations per cell 23 

division was derived. A retrospective analysis of ALE experiments revealed that passage sizes 24 

typically employed in serial passage batch culture ALE experiments led to inefficient production 25 

and fixation of beneficial mutations. ALEsim and the results herein will aid in the design of ALE 26 

experiments to fit the exact needs of the project while taking into account the tradeoff in 27 

resources required, and lower the barrier of entry to this experimental technique. 28 

  29 
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Importance 30 

Adaptive laboratory evolution (ALE) is a widely used scientific technique to increase scientific 31 

understanding, as well as create industrially relevant organisms. The manner in which ALE 32 

experiments are conducted is highly manual and uniform with little optimization for efficiency. 33 

Such inefficiencies result is a suboptimal experiments that can take multiple months to complete. 34 

With the availability of automation and computer simulations, we can now perform these 35 

experiments in a more optimized fashion and design experiments to generate greater fitness in a 36 

more accelerated time frame, thereby pushing the limits of what adaptive laboratory evolution 37 

can achieve. 38 

 39 

Highlights 40 

- A tunable simulator, ALEsim, was constructed to simulate observed fitness increases in 41 

ALE experiments  42 

- A control ALE experiment was performed to determine an observed beneficial mutation 43 

rate and quantify the effect of passage size in an ALE experiment – the beneficial 44 

mutation rate (BMR) is consistent with previous estimates 45 

- A retrospective analysis of ALE experiments revealed limitations in experimental 46 

designs. 47 

- ALEsim can be leveraged to optimize resources and time needed to conduct an ALE 48 

experiment by determining tradeoffs between a likely fitness increase and an increased 49 

run time 50 

  51 
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Introduction 52 

Adaptive laboratory evolution (ALE) has been performed in vitro for decades and the field is 53 

expanding. ALE involves subjecting a population of organisms to a given environment, in the 54 

lab, and allowing natural selection to increase the overall fitness of the population. In laboratory 55 

settings, this is typically performed with organisms possessing short generation times. The basic 56 

principles governing ALE experiments are easily understood across a breadth of disciplines, 57 

which has led to its adoption in many laboratories (1, 2). The recent growth in the use of ALE 58 

can be attributed to the ease of access and decreasing costs of genome sequencing (3-5). Falling 59 

sequencing costs have led to the increased investigation of genomic, transcriptomic, and 60 

additional omics data types over the course of evolution (5). While the analysis of ALE 61 

experiments has grown, the manner in which the ALE experiments themselves are performed has 62 

remained relatively ad hoc. The most commonly employed techniques are chemostat adaptation 63 

and serially passaged batch culture adaptation, with batch culture adaptation being more popular 64 

as it is easily expanded and does not require setting up complex machinery (3, 6).  65 

A primary attribute of any ALE experiment is the selection pressure imposed on the culture. The 66 

selection pressure (i.e., exponential growth, biomass yield, stationary phase, or lag phase) is 67 

responsible for the outcome of the evolution study (4, 7-10). For example, in a 24hr serially 68 

passaged batch culture ALE experiment with fast growing bacteria, the culture is subjected to 69 

alternating environments of feast and famine. At the beginning of each batch there are excess 70 

nutrients but inevitably, within 24hrs, the nutrients are consumed and stationary phase is reached. 71 

Because of this alternating environment, the selection pressure is complex and fitness is achieved 72 

through various methods (e.g., stationary phase fitness, lag phase duration, and growth rate all 73 

contribute) (9). This complexity often confounds the analysis depending on the application. To 74 
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alleviate complexity, the cells can be kept in one phase (e.g. exponential phase) to mitigate most 75 

of the alternating selection and focus selection specifically on fitness gains through growth rate. 76 

In such cases, fitness will be treated as interchangeable with growth rate. The desired outcome of 77 

the experiment would dictate the ideal selection pressure to be imposed and thereby the 78 

experimental design, but the difference between the two designs is non trivial. 79 

There are several parameters that affect the outcome of a serially passaged batch culture ALE 80 

experiment. A primary parameter involved is the passage size (11-13). Specifically, passage size 81 

determines how much of the population is allowed to propagate to each subsequent batch culture. 82 

If a beneficial mutation occurs, but is lost when the bottleneck is imposed, the rate of evolution 83 

can be slowed or even halted. Since smaller passage sizes can hinder the rate of evolution, it is 84 

often easier to perform a serially passaged batch culture ALE under alternating environments of 85 

feast and famine where a change in passage size only effects the duration of growth and 86 

stationary phases. However, if the application requires exponential phase passaging, a change in 87 

passage size also changes the time when the culture must be passaged. Because of this, the 88 

passage size is often dictated by an individual’s schedule. Typically, the time in between 89 

passaging can be no shorter than ~12hrs. Consequentially, as the culture adapts and begins to 90 

grow faster, the passage size must be decreased. As an example, a previous study adapting E. 91 

coli to glycerol in 250mL batches started with a passage size of approximately 100µL and by 92 

experiment’s end was less than 0.1µL (14). A more in-depth retrospective analysis revealed 93 

similar trends where passage amounts were significantly decreased (14-18). In these studies, the 94 

reduction in population size, or bottleneck, (i.e., passage size) became so significant that the 95 

calculated number of cells being passed was on the order of 10 or even occasionally 1. The 96 

chance of capturing a beneficial mutation, when only passing tens of cells from a culture of 97 
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millions, is practically null over a reasonable timeframe. At this point, continuing the experiment 98 

is futile. The question then becomes at what point is the passage size too low?  99 

Passage size can have a large impact on the trajectory of an ALE experiment. This can be seen in 100 

the comparison of two studies that evolved wild-type E. coli K-12 MG1655 on M9 glucose 101 

minimal media (7, 18). One study (7) used a consistent passage size of 800µL from 25mL 102 

batches on an automated platform. The second study (18) was done “by hand” and had widely 103 

varying passage sizes that were considerably smaller than the automated study. The outcomes of 104 

the ALE experiments were quite distinct. The final growth rates achieved were 1.00±0.24 hr-1 105 

and 0.79±.01 hr-1 in the consistent and variable passage size studies, respectively. The apparent 106 

lack of fitness achieved in variable passage study was not due to a lack of available beneficial 107 

mutations (as the same strains and culturing conditions were used), but rather insufficient 108 

experimental design to find and fix them in a reasonable amount of time. Understanding why 109 

these two outcomes differ is imperative to the efficient design of ALE experiments. 110 

Theoretical studies have looked at the effect of passage size on serially passaged batch culture 111 

adaptation and resulted in varying predictions of an ideal passage size depending on the model 112 

used (19, 20). The ideal passage sizes calculated are ideal from a mathematical standpoint. This 113 

essentially gives the best chance for various mutations of different selective advantages to fix in 114 

a population. The ideal passage sizes calculated in these studies are relatively large (13.5% and 115 

20%)(19, 20). As mentioned previously, a larger passage necessitates an increase in resources. 116 

More specifically, the resources required increase exponentially with passage size, yet the gains 117 

slowly diminish. This work thus focuses on examining the diminishing returns in the context of 118 

the desired result and the resources available. We set out to examine the impact of the key ALE 119 

parameter: passage size. To address this, we created an in silico evolutionary model that 120 
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simulates the dynamics of capturing and fixing beneficial mutations in the context of an 121 

exponentially-passed batch culture ALE experiment. After building the model, we parameterize 122 

it using a combination of 30 independent ALE experiments of E. coli on glycerol minimal media 123 

across five different passage sizes (10%, 1%, 0.1%, 0.01%, and 0.001%). Using the 124 

parameterized model, we investigated the biological consequences of changing passage sizes and 125 

how close to optimal a given experiment is. With this knowledge, an experiment can be designed 126 

to fit the desired outcome, giving consideration to the resources required to achieve it, and the 127 

feasibility of performing such an experiment. 128 

  129 
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Materials and Methods 130 

Adaptive Laboratory Evolution 131 

Adaptive laboratory evolutions were started from wild-type E. coli strain MG1655 132 

(ATCC47076) glycerol frozen stock and grown up overnight in 15mL magnetically stirred 0.2% 133 

glycerol M9 minimal media supplemented with trace elements. The magnet was stirred at 134 

1150rpm, sufficient for completely aerobic growth. 30 experiments were started from 150µL 135 

aliquots from the overnight pre-culture. The experiments were subsequently grown in identical 136 

vessels and media as the pre-culture. Culture optical densities at 600nm (OD) were monitored 137 

over the course of each batch culture. When the culture reached an OD of 0.300 (±10%) as 138 

measured by a plate-reader with 100µL sample volume in a 96 well flat bottom microplate, an 139 

aliquot was taken and passed to a new batch culture filled with sterile media. An OD of 0.300 140 

was chosen to preclude reaching stationary phase in any of the cultures and ensures OD 141 

measurements have not begun to saturate. Growth rates of each culture were determined using 142 

OD measurements taken over the lifetime of each batch culture.  143 

Media 144 

All cultures were grown in 0.2% glycerol M9 minimal media. The media consisted of 0.2% 145 

glycerol by volume, 0.1mM CaCl2, 2.0mM MgSO4, Trace element solution and M9 salts. 4000X 146 

Trace element solution consisted of 27g/L FeCl3*6H2O, 2g/L ZnCl2*4H2O, 2g/L CoCl2*6H2O, 147 

2g/L NaMoO4*2H2O, 1g/L CaCl2*H2O, 1.3g/L CuCl2*6H2O, 0.5g/L H3BO3, and Concentrated 148 

HCl dissolved in ddH2O and sterile filtered. 10x M9 Salts solution consisted of 68g/L Na2HPO4 149 

anhydrous, 30g/L KH2PO4, 5g/L NaCl, and 10g/L NH4Cl dissolved ddH2O and autoclaved. Final 150 

concentrations in the media were 1x. 151 
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DNA Sequencing 152 

Genomic DNA was isolated using Macherey-Nagel NucleoSpin® Tissue kit. The quality of 153 

DNA was assessed with UV absorbance ratios using a Nano drop. DNA was quantified using 154 

Qubit dsDNA High Sensitivity assay. Paired-end resequencing libraries were generated using 155 

Illumina’s Nextera XT kit with 700 pg of input DNA total. Sequences were obtained using an 156 

Illumina Miseq with a MiSeq 600 cycle reagent kit v3. The breseq pipeline version 0.23 with 157 

bowtie2 was used to map sequencing reads and identify mutations relative to the E. Coli K12 158 

MG1655 genome (NCBI accession NC_000913.2) (21). All samples had an average mapped 159 

coverage of at least 25x. 160 

Computer Modeling 161 

Modeling of simulations was computed using MATLAB 2015b on a Windows 7 professional 162 

platform. Detailed descriptions are found as comments in the supplemental m-files. The 163 

beneficial mutation rate was computed by a maximum likelihood estimation. It was calculated 164 

for making a transition from State 1 to State 2 and State 2 to State 3 for passage sizes of 0.01% 165 

and 0.001%. These passage size were chosen as they were the only ones that showed a 166 

distribution of states achieved. The transition from State 1 to State 2 was capped at 20 days to 167 

give a maximally distributed data set. The transition from State 2 to State 3 was started by 168 

assuming that State 2 was already achieved. Thus, the length of time simulated was started based 169 

of when State 2 was achieved. This was variable for different experiments. 170 

A value of 1.55x1012 cells·L-1· OD600nm
 -1 was used to estimate the number of cells in a culture 171 

for a given OD600nm with a 1 cm path length cuvette for the purposes of ALEsim. A standard 172 

curve relating the ODs measured in the plate reader with a 100µL sample volume in a 96 well 173 
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flat bottom microplate to the OD measured with a 1 cm cuvette to obtain a ratio of 3.15 for 174 

equivalent measurements between the two. The biomass (grams of dry weight) per OD600nm per 175 

volume was calculated by filtering known volumes of cultures at specific ODs though 0.22µm 176 

filters. The filters were weighed before and after filtering and drying to obtain the total dry 177 

weight of the culture. The differences in these values was used to calculate ratio of 0.45·gDW L-178 

1·OD600nm
-1. The dry mass per cell has previously been reported as 2.9×10-13gDW·cell (22). The 179 

quotient of these two values gives our final conversion factor of 1.55x1012 cells·L-1·OD-1 to 180 

estimate the cell counts of cultures at various ODs and volumes. . For E. coli, the dry mass per 181 

cell can vary over a range of growth rates (23). Using such a variable OD to cell count factor as a 182 

function of growth rate is possible with ALEsim, but incurs a marked increase in simulation 183 

time. Thus, identical simulations were performed using only the highest and lowest dry mass per 184 

cell values expected for the growth rates observed (i.e., the extremes). Only a 10% difference in 185 

the distribution of simulated endpoint growth rates were observed between the two extremes (see 186 

Supplementary Figure S1). Therefore, use of a constant average value for dry mass per cell over 187 

the range of growth rates expected was determined to be sufficient considering the benefit in 188 

computation time. 189 

Although possible with ALEsim, deleterious and neutral mutations were not considered during 190 

this study. A deleterious mutation rate of 1 in 5,000 was previously computed (24). In the 191 

application demonstrated here, the population sizes were sufficiently large (105 – 109 cells) such 192 

that the effects of deleterious and neutral mutations would be negligible. With smaller population 193 

sizes (e.g., several orders of magnitude smaller than the population sizes modeled here), the 194 

effects of these mutations become more pronounced and should not be ignored.  195 

  196 
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Results 197 

Modeling the ALE process 198 

ALEsim is a model built on the basic principles of exponential growth in order to understand the 199 

dynamics of ALE. The scope of ALEsim is to predict the observed growth rate in each batch 200 

culture of an ALE experiment while allowing individual cells to change their growth rate when 201 

dividing (i.e., a proxy for receiving a beneficial mutation). This preferentially finds only those 202 

beneficial mutations that fix. There is a likely chance that other beneficially mutations are 203 

unobserved due to clonal interference. The observed population growth rate is different from a 204 

clonal growth rate in that each batch culture of an ALE experiment is a population of multiple 205 

clones with varying growth rates. Figure 1 provides a workflow of the modeling process and the 206 

full details are in Supplementary File ALEsim.txt. Each in silico experiment begins with a clonal 207 

inoculation of a strain with a given growth rate. A population of mixed phenotypes can be used 208 

in this framework, but here the starting population will be assumed to be isogenic with the same 209 

phenotypic behavior. This organism is allowed to replicate according to an exponential growth 210 

function. During each cell division event, there is a probability that it will mutate and start a new 211 

lineage with a mutated growth rate. This new lineage is allowed to grow alongside the parent 212 

strain according to exponential growth, but with its mutated growth rate. The new lineage is 213 

itself allowed to continue mutating in the simulation.  214 

Mutated growth rates in ALEsim must be constrained to remain biologically meaningful, i.e., 215 

growth rates that are of magnitudes that remain plausible. These rates are determined empirically 216 

by the user, as done here from the parameterization experiment (see section below). The growth 217 

rates can be constrained to allow various types of epistasis. For example, if two distinct growth 218 

rates are allowed, there is a possibility that a single cell line could mutate twice and receive both 219 
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of these mutations. ALEsim employs the flexibility to define the type of epistasis between these 220 

two mutations, if any epistasis at all is to occur. Similarly, an order to the mutations accumulated 221 

can be set, as certain mutations can be beneficial only in the presence of a pre-existing mutation 222 

(i.e., epistasis can be modeled). As the population of cells continues to replicate and mutate, their 223 

total cell count naturally increases. When the cell count reaches a given threshold, a simple 224 

random sample of cells is used to inoculate the next batch culture. The threshold corresponds to a 225 

target cell count at which to passage the cells to the next batch culture. The number of cells taken 226 

is determined by the passage size, which is a percentage of the total culture volume. After this 227 

sample is computed, a new batch culture is started with the chosen cells and corresponding 228 

growth rates. Figure 2 provides the key parameters of the model. 229 

In using the basic principles of microbial growth and a brute force computational approach, 230 

many of the fundamental attributes of natural selection are intrinsically contained in the 231 

simulation. This includes clonal interference which is pervasive to asexual evolution. ALEsim 232 

can be used to model a system where two local maxima are possible but the greater maximum 233 

can only be found by first acquiring a mutation that is initially suboptimal compared to other 234 

possible single beneficial mutations (25). How to achieve this is shown in the model 235 

documentation (ALEsim.txt). The experimental parameters can be modulated to potentially find 236 

an experiment design that would find the desired optimum or both. 237 

Given the stochastic nature of many steps in the model, the results are non-deterministic. 238 

Stochasticity is incorporated into the model in three ways: i) when a cell mutates its growth rate, 239 

ii) what growth rate a cell mutates to, and iii) what sample of cells are propagated to a 240 

subsequent batch culture. The simulation is then run multiple times to capture the dynamics of 241 

the stochasticity (26). 242 
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For a simulation to be biologically meaningful using the developed model, there are three types 243 

of parameter sets that must be determined. The first set of parameters is experimental: batch 244 

culture size, passage size, passage optical density (or cell count), and length of experiment. 245 

These can be set based on the desired experimental setup.(23) The second set is the statistical 246 

parameters: random number seed and the number of identical experiments to run. The random 247 

number seed is set by the native random number generator. The number of parallel simulations to 248 

run is determined by the statistical power needed. Depending on the magnitudes and 249 

complexities of the parameters set, the number of simulations can vary drastically. For the results 250 

shown here, 500 simulations were computed unless otherwise stated. It was found that after 500 251 

simulations there was no appreciable difference in the means or spread of the distribution of 252 

results calculated when combined with another set of 500. The third set of parameters is 253 

biological: beneficial mutation rate (BMR) and allowed increases in growth rate. These 254 

parameters are defined in the models and can be constrained by any method that can be 255 

expressed programmatically, whether this it is randomly decided within a meaningful range or 256 

set to distinct values. This set of parameters must be derived experimentally. Intuitively, these 257 

parameters can be different for different strains, conditions, and can even change along the 258 

course of a single experiment (27, 28). As long as the values determined are biologically 259 

meaningful, generalizations about the ALE process can be concluded. 260 

Alternative models of evolution and adaption have been developed to understand the dynamics 261 

of evolution. These types of mathematical models capture various aspects of adaptation 262 

including selection, drift, and clonal interference (29-31). Classically, this has been a target of 263 

the field of population genetics (32-34). An expansion of the Fisher model was developed by 264 

Wahl et. al. which conceptually relates to ALEsim in that it targets the question of passage sizes 265 
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(35). However, ALEsim deviates from the classical mathematical approach and employs the use 266 

of an in silico organism that can then replicate, mutate, and evolve. Simulations here are carried 267 

out in brute force where they are allowed to grow under the conditions laid out by the user. The 268 

advantage of such a method is that the experimental and biological parameters can be strictly 269 

controlled over the course of an experiment. The resulting simulation is able to more closely 270 

mimic the conditions of an actual laboratory evolution experiment in its entirety where 271 

parameters are not always constant throughout. This approach differs from the use of a digital 272 

organism in that it is an attempt to model specific biology instead of general evolutionary 273 

dynamics which allows for direct modeling of the ALE experiment as would be performed in a 274 

laboratory (36). 275 

Parameterization of ALEsim by evolving E. coli on Glycerol Minimal Media 276 

The two biological parameters, the beneficial mutation rate and allowed increase in growth rate, 277 

were determined using 30 independent cultures of Escherichia coli K-12 MG1655 evolved in 278 

15mL of 0.2% glycerol M9 minimal media until a stable growth rate was observed in most 279 

experiments (38 days). One experiment only lasted 23 days after it was restarted due to 280 

contamination. The 30 experiments were separated into five groups of six passage sizes and each 281 

group was evolved under identical conditions except for the passage size. The passage sizes used 282 

were 10%, 1%, 0.1%, 0.01%, and 0.001% of the culture size (15mL). The growth rate of each 283 

experiment was monitored over the course of the experiment using optical density measurements 284 

as a proxy for cell count (Figure 3). Fitness related details can be found in the supplement 285 

(Supplementary Table 1 and Supplementary File fitness_data.xlsx). 286 

Allowed increases in growth rate were determined by identifying jumps in growth rates from the 287 

fitness trajectories. A spline was fit to the growth rate of each experiment and significant 288 
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increases in growth rate were identified as discussed previously (7). The resulting jumps in 289 

growth rates showed that the plateaus in growth occurred at specific values (Figure 3, 4). These 290 

plateaus are identified as State 1, 2, 3A, and 3B. State 3 was split into two sub-states since there 291 

is a significant difference between those in state 3A and 3B (Wilcoxon rank sum p<0.01), 292 

however there exists no identifiable increase in growth rate or gap between states that would 293 

characterize this transition. This gap is most likely obscured since the difference between the 294 

growth rates is fairly small and noise in the measurements can bleed into any gap that might 295 

exist. Figure 4 groups the jumps in fitness observed by their transition between states. Contrary 296 

to the conclusion of other ALE experiments, the largest jump in fitness was not observed first but 297 

actually followed a smaller jump. This yields an allowed increase in growth rate that can be used 298 

to constrain ALEsim. In simulations run here, the growth rates allowed were set to the mean of 299 

the range of each state. 300 

The beneficial mutation rate (BMR) can be calculated by fitting ALEsim to the distribution of 301 

the end states. Passage sizes of 10% - 0.1% did not show any appreciable variation between 302 

states, thus only the experiments with passage sizes of 0.01% and 0.001% were used for fitting. 303 

ALEsim was fit by performing simulations that only allowed for a single jump from one state to 304 

another. Multi-state jumps and two sequential jumps were not allowed. This simplification skews 305 

the BMR calculation to only include beneficial mutations that were fixed in the population. 306 

There is a potential that other beneficial mutations are possible, but were not observed due to 307 

either clonal interference or genetic drift (37). As observed in the fitness trajectories for passage 308 

sizes of 0.01% and 0.001%, not all experiments were able to make jumps to occupy all the states. 309 

For instance, with a passage size of 0.01%, only 4 of 6 experiments were able to make the 310 

transition from State 2 to State 3 by experiment’s end. In simulation, the same distribution 311 
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among the various end states is observed. The distribution observed in simulation is highly 312 

dependent on the supply of beneficial mutations captured by the BMR parameter. Thus, the 313 

BMR can be fit to yield the same distribution across states as observed experimentally. The 314 

BMR was computed using transitions from both State 2 to State 3 and from State 1 to State 2. 315 

Since all experiments made the transition from State 1 to State 2, the distribution was used at the 316 

day 20 mark where a distribution existed. The 95% confidence interval for the BMR was 317 

calculated by fitting the BMR to the 95% confidence interval of the experimental distribution of 318 

states. The results yielded a BMR of 10-6.9-10-8.4 mutations per cell division. The confidence 319 

interval was determined by a maximum likelihood estimate as implemented in the binofit 320 

function in MATLAB. 321 

Retrospective Validation of ALEsim 322 

ALEsim and the derived parameters (beneficial mutation rate and allowed increases in growth 323 

rate) were analyzed using two previously performed ALE experiments on glucose (7, 18) and a 324 

legacy experiment on glycerol (14). The outcomes of the two glucose experiments yielded 325 

disparate final growth rates despite identical strains and media (E. coli K-12 MG1655 in M9 326 

glucose minimal media), 1.00±0.02 with 6 replicates and 0.79±.01 with 3 replicates, 327 

respectively. The only differences between the experiments were three experimental parameters: 328 

batch culture volumes (250 mL vs. 25 mL), optical densities when passed (variable vs. OD600nm 329 

1.2), and passage sizes (variable vs. 800µL) in the Charusanti et al. (18) and the LaCroix et al. 330 

(7) studies, respectively. ALEsim was constrained to allow only the jumps in growth rates 331 

observed in these studies and then simulated the expected fitness trajectories for the two different 332 

experimental parameters. The only differences explicitly defined in ALEsim were the different 333 

batch culture volumes, passage optical densities, and passage volumes. The results showed that 334 
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the difference in the final growth rates achieved can be sufficiently explained by the differences 335 

in these parameters only (Figure 5). Furthermore, when simulating a legacy dataset for evolving 336 

E. coli on glycerol minimal media, ALEsim was able to successfully predict that all experiments 337 

(n=4) should reach fitness state 3 for the given experimental parameters, as reported in the study 338 

(14). The largely different outcome in fitness (i.e., no fitness jumps vs. a significant increase) on 339 

glucose, as well as a consistent prediction of fitness on a legacy glycerol dataset, further 340 

highlights the importance of properly designing an experiment and validates ALEsim and its 341 

parameterization.  342 

ALEsim Applications 343 

Simulations of ALE experiments with the derived beneficial mutation rate and fitness states can 344 

enable statements to be made about optimality. The time required to see a given increase in 345 

fitness was simulated for a range of increases in growth rate over a range of passage sizes 346 

(Figure 6). The results show the average length of time needed to see a measurable change in 347 

growth rate due to a beneficial mutation for a range of passage sizes. Figure 6 was derived for 348 

growth rate increases that occur from a single mutational event. Based on the passage size and 349 

length of time with no increase in growth rate, a conclusion about how close a population is to 350 

reaching another state of increased fitness. For example, if a given evolution experiment has 351 

achieved a certain growth rate, µ, and has not shown an increase in growth rate with a passage 352 

size of 0.1% for 13 days, then there is no likely increase in growth rate available which is greater 353 

than 0.10 hr-1 from a single mutational event. 354 

Increasing the passage size raises the probability of capturing a beneficial mutation however this 355 

also leads to an inflation in the resources needed to sustain the experiment (Figure 6). For 356 

example, if an ALE experiment with a passage size of 0.1% were being passed twice a day 357 
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(every 12 hours), the same experiment with a passage size of 10% would need to be passed 6 358 

times per day (every 4 hours). The magnitude of resources needed to maintain an experiment 359 

tend to scale with each batch. Thus, the more batches needing to be processed, the more media, 360 

pipette tips, culture vessels, and labor costs are required. A single person can feasibly do an 361 

experiment passed every 12 hours whereas passing every 4 hours would require coordinated 362 

effort by multiple persons or an automated platform. Therefore, understanding what is gained 363 

with the larger passage size is important before committing to such a large expenditure of 364 

resources. ALEsim can quantify the gains or losses achievable with different passage sizes to 365 

help identify the ideal experimental setup (Figure 6). 366 

 367 

Mutation Frequency Analysis by Passage Size 368 

Clones from the endpoint populations of each independent experiment were isolated and 369 

resequenced. Two clones showed hypermutating tendencies. This was identified by the number 370 

of mutations (p<0.01) and the presence of a mutation in mutY or mutL. Experiments with larger 371 

passage size led to an increase in the number of mutations found. Mutated alleles were therefore 372 

grouped by passage size. Clones isolated from larger passage size experiments, on average, had 373 

more alleles being selected (Figure 7). Of all mutations identified, those in glpK were 374 

specifically tracked. Mutations in glpK have previously been shown to be causal (with a 375 

significant impact on fitness) as well as ubiquitous, mutating more than any other alleles under 376 

glycerol growth conditions (14). Thus glpK is a good indicator of the how effective the various 377 

passage sizes are at fixing beneficial mutations. Consequently, there is a positive relationship 378 

between the fixing of glpK mutations and the passage size until saturation is reached. With the 379 
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passage size dropped to the lowest value (0.001%), the observed fraction that fixed was only 380 

0.33 (2/6).  381 
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Discussion 382 

The conceptual purpose of an ALE experiment is to move an organism towards a more optimal 383 

(fit) state in the presence of a selection pressure. Absolute optimality is difficult, if even possible, 384 

to define. It has been shown that even for a laboratory evolution, there is still room for evolution 385 

after 50,000 generations (38). The continual ability of organisms to evolve and innovate makes it 386 

difficult to analyze the results of an ALE experiment in the context of optimality. What is 387 

immediately apparent is that there are diminishing returns. As an ALE experiment progresses, 388 

the increase in growth rate or fitness tends to decrease in magnitude (1, 39-43). The smaller 389 

increases take longer lengths of time to occur and become fixed in the population 390 

(Supplementary Text). Given this property and the desire to understand and leverage the ALE 391 

process, ALEsim was built and validated through performing a control experiment. ALEsim was 392 

first parameterized with a set of control experiments using different passage sizes. 393 

Parameterization revealed a beneficial mutation rate of 10-6.9-10-8.4 mutations per cell division, 394 

consistent with previously reported values and distinct fitness states (27, 28). Validation was 395 

then carried out using additional legacy experiments and ALEsim proved sufficient for 396 

explaining the differences in observed experimental outcomes (i.e., growth rates) based on the 397 

parameters employed in each study (i.e., passage size, passage OD, and culture volume) (Figure 398 

5). Lastly, ALEsim was applied to quantify tradeoffs in experimental design considerations for 399 

desired outcomes and was used to demonstrate how it can be leveraged for determining the key 400 

aspect of experiment termination.  401 

The ability to optimize and design ALE experiments is possible with the ALEsim computational 402 

framework. Given a certain amount of resources, ALEsim can calculate how best to deploy them 403 

at different stages of an experiment to shorten project timelines and achieve desired outputs. For 404 
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example, near the beginning of the ALE experiments, the increases in growth rates found are 405 

typically quite large. Because of this, a large passage size does not have an additional benefit. 406 

This is evident in the experiment performed here in that passage sizes of 0.1%, 1%, and 10% 407 

mostly reached states 1, 2, and 3A at about the same time (Figure 3). In planning future ALE 408 

experiments, the added resource usage needed to maintain an experiment at a 10% passage size 409 

does not appear to be justified. However, the added benefits become apparent when looking at 410 

the transition from state 3A to 3B. It could then be suggested that if the goal is to get as close to 411 

the absolute optimal state as reasonably possible, the added resources of maintaining a 10% 412 

passage size experiment only need to be maintained after initial large increases in growth rate or 413 

fitness are found. This would not eliminate the difficulty in maintaining such an experiment, but 414 

would at least reduce the length of time the experiment would need to be run at such a high 415 

resource ‘burn’ rate. With ALEsim, these types of resource/fitness tradeoff analyses can now be 416 

calculated and should be leveraged in experimental design. The approach of dynamic resource 417 

allocation opens the door for project optimization typical of engineering process design. 418 

Knowing the distance to optimality can aid in determining when to terminate an ALE 419 

experiment. The typical method of determining when to stop an ALE experiment is to 420 

subjectively determine that no more increases in fitness are being observed. However, this 421 

approach of waiting to observe a plateau in fitness can be artificial given a small passage size. 422 

An example of how this approach can be misleading is the observation that passage sizes of 423 

0.1% and 1% showed no increase in growth rate after reaching state 3A for at least 15 days 424 

(Figure 3). However, given that slight increases in growth rates beyond state 3A to state 3B with 425 

a passage size of 10% were observed, it can be concluded that state 3A is not the optimal state. 426 

Thus, if only a 1% passage size was used, the experiment could be terminated before finding 427 
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state 3B. Further, it would be incorrect to compare experiments with a 10% passage size to a 1% 428 

passage size without understanding the context of the effects of the different passage sizes. 429 

Perhaps the best example of this is provided through the analysis of legacy ALE experiments 430 

(Figure 5). Two experiments with the same strain and media conditions yielded vastly different 431 

fitness outcomes. This difference is subsequently explainable within the scope of ALEsim. 432 

Therefore, having access to a computational framework such as ALEsim can enable the 433 

researcher to make an informed decision about when to terminate an experiment given the 434 

capacity and resources of the experimental setup and the desired/acceptable outcome. This type 435 

of termination analysis is laid out in Figure 6 and can be calculated de novo for any experiment 436 

given the current growth rate and passage size. It also should be noted that this type of analysis 437 

could result in a standard for the ALE community as one could state the ALEsim generated Δµ at 438 

the time of termination. 439 

The ability to design and carry out complicated and high resource burn ALE experiments is 440 

likely only feasible though automation of the ALE process. Automation was utilized here and in 441 

previous studies (4, 7, 44). Manual processes are often hindered by researcher availability 442 

whereas machines can measure and pass around the clock (e.g., approximately 5-7 passages per 443 

day were performed in automated studies (4, 7, 44), compared to 1-2 per day manually (14, 15, 444 

18). Thus, the ability to automate and optimize ALE is likely to accelerate adoption of the ALE 445 

experimental technique and broaden the application areas.  Furthermore, the ALEsim framework 446 

and output can also be used as a basis for modeling much of the legacy data currently available 447 

for ALE experiments which include lag, exponential, stationary, and/or stressed phases. As the 448 

selection pressure in such experiments is more complex and growth is defined by more than the 449 

growth rate parameter (e.g. lag phase duration, stationary phase mutation rate, growth phase 450 
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transistions, etc…), ALEsim in its current format would have to be expanded. Nonetheless, 451 

ALEsim and it parameterization here demonstrates the utility of using simulated design in the 452 

ALE process and establishes a portable code base. 453 

The field of adaptive laboratory evolution is expanding, largely due to lower costs of next 454 

generation sequencing. Innovative applications are appearing and are being applied to a range of 455 

organisms (1, 3). This growth in ALE use has occurred without a standard operating procedure 456 

for performing and quantifying these experiments. Consequently, this leads to ill-defined 457 

endpoints of experiments and the inefficient use of resources. The ALEsim computational 458 

platform developed here would provide a basis with which to quantify experiments and aid in 459 

their design; matching the desired outcome with resources available. 460 

  461 
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Tables 474 

None 475 

 476 

Figure Legends 477 

Figure 1 - ALEsim Flow Chart 478 

A workflow outlining the logical steps the simulator takes when performing a single simulated 479 

ALE experiment. Due to the stochastic nature of ALE experiments, in vivo and in silico, multiple 480 

experiments are averaged together to identify general trends. 481 

Figure 2 - Governing Equations, Assumptions, and Parameters for ALEsim 482 

a) Microbe growth occurs according to an exponential growth curve where µ is the growth rate, t 483 

is the time elapsed, N0 is the initial cell count at t=0, and N(t) is the cell count at a given time, t. 484 

No lag phase or stationary phase is modeled. The total cell count (N(t)) is determined by the 485 

summation of exponential growth curves for all individual cells lines. b) Favorable mutations 486 

occur during cell growth according to a binomial distribution where each cell division represents 487 

one Bernoulli trial with a probability of success equal to the beneficial mutation rate (BMR). c) 488 

Each flask is modeled as a completely homogenous culture. d) The number of cells represented 489 

for each cell line in each inoculum is randomly chosen according to a normal distribution with a 490 

mean and variance equal to the number of cells represented in the flask,  times the ratio of 491 

the flask volume, , to inoculum volume, . e-g) The volume of media per flask, 492 

inoculum volume, and passage optical density can be altered. h) The simulated ALE experiment 493 

can be stopped after a specified amount of time or maximum number of flasks. i) Based on the 494 
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relative growth rate increases seen in ALE experiments, a range of allowable growth rate 495 

increases is determined. j) Based on matching the evolution trajectory (plot of growth rate vs. 496 

flask #) with varying the beneficial mutation rate (BMR), the probability of a favorable mutation 497 

is obtained. k) Since each ALE is based on randomly generated mutations, multiple ALE 498 

simulations are averaged together to get repeatable results from the same parameters. The 499 

number of simulations is user controlled. 500 

Figure 3 – Fitness Trajectory of E. coli evolved on Glycerol 501 

The absolute growth rates of independently evolved cultures of E. coli as fitted by a cubic spline 502 

for all ALE experiments separated by the different passage sizes. Dashed lines represent regions 503 

where the spline fit is based on sparse data, and therefore not considered accurate. The small 504 

upturn in growth rates at the endpoint is an artifact of the spline interpolation and is ignored 505 

when determining endpoint growth rates. All except five ALE experiments reached fitness State 506 

3. The rate at which the final growth rate was achieved varied. The hypermutating strain with a 507 

passage size of 10% reached State 3 significantly faster than all others (it possessed a mutation in 508 

mutY). The purple hypermutating strain was identified as a potential hypermutating strain based 509 

on the number of mutations fixed (p=0.003, FDR=0.087) and the presence of a frame shift 510 

insertion in mutL. 511 

Figure 4 – Distribution of Fitness Increases in Glycerol ALE 512 

A histogram of the normalized increases in growth rate (µmax = 0.64 hr-1) attributed to each jump 513 

for the different experiments. The fitness increases were categorized by which state transition 514 

was made. The different passage sizes (indicated by different colors) did not show any 515 

significant variance in the ability to fix distinct increases in growth rate. A few small jumps not 516 
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shown are small observed increases in fitness that did not jump between any of the states 517 

identified. 518 

Figure 5 – Simulated vs Experimental Results with Large and Small Passage Sizes 519 

Two ALE experiments of E.coli MG1655 in glucose M9 minimal media were simulated using 520 

ALEsim. The strain and media conditions were identical in the two experiments. The only 521 

differences were in the culture volume (25ml vs. 250mL), optical density when passed (variable 522 

vs. 1.2 OD600nm), and passage volume (variable vs 800µL). The variable nature of the optical 523 

density when passed and the passage size in the latter experiment was a consequence of 524 

manually passing the culture each day. The former experiment employed an automated system of 525 

monitoring and passing the culture to maintain consistency. Despite being the same strain and 526 

conditions, the final fitness achieved in the two experiments were quite different. ALEsim was 527 

used to simulate these same experiments with the only differences being the three 528 

aforementioned parameters. Consequently, the ALEsim results showed that the differences in 529 

these parameters were sufficient to explain why the final growth rates achieved were different, 530 

further highlighting the importance of choosing these parameters properly. The simulated 531 

resulted are represented by a 95% confidence interval. The confidence interval for Experiment 532 

#2 is too small to be visible. 533 

Figure 6 – Upper Bound on possible jumps in growth rates 534 

A. Upper bounds on possible jumps in growth rates are shown. At a given point in time, a jump 535 

that reaches above the upper bound is statistically infeasible (95% confidence) from a single 536 

mutation, whereas jumps that stay below the line are possible. B. The upper bound on jumps is 537 

shown for varying passage sizes. These experiments were simulated with parameters that 538 
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matched the experimental parameter used. Increasing the passage size can have a significant 539 

impact on the upper bound. Consequently, the time required to eliminate jumps of certain 540 

magnitudes can take much longer to achieve. However, as the passage size increases there comes 541 

a point when the returns begin to diminish such that passage sizes between 0.1% and 10% did 542 

not show a large difference in the time required to find a given jump. C. Relative amount of 543 

resources needed to perform an ALE experiment normalized to the lowest passage size. As the 544 

passage size is increased the resource usage begins to increase greatly. 545 

Figure 7 – Genetic Analysis – By Passage Size 546 

A bar chart representing the observed fraction of mutations at a given passage volume. As a 547 

general trend, the larger the passage size, the greater the probability of a mutation in a given 548 

allele fixing in the population. A key mutation in the glpK gene is displayed as well as all 549 

mutations. The ordinal rank of passage size was compared to the observed fraction of mutations 550 

using a Wilcoxon rank test and resulted in p-values of 0.008 and 0.024 for all mutations and 551 

glpK mutations, respectively. 552 

  553 
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 554 

Figure 1 555 

  556 
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Figure 2 559 

  560 
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Figure 3 562 
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Figure 4 565 
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Figure 5 568 
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Figure 6 571 
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Figure 7  574 
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