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SUMMARY

To establish infection, pathogens deploy effectors to
modify or remove host proteins. Plant immune re-
ceptors with nucleotide-binding, leucine-rich repeat
domains (NLRs) detect these modifications and
trigger immunity. Plant NLRs thus guard host ‘‘guar-
dees.’’ A corollary is that autoimmunity may result
from inappropriate NLR activation because muta-
tions in plant guardees could trigger corresponding
NLR guards. To explore these hypotheses, we ex-
pressed 108 dominant-negative (DN) Arabidopsis
NLRs in various lesion mimic mutants, including
camta3, which exhibits autoimmunity. CAMTA3
was previously described as a negative regulator
of immunity, and we find that autoimmunity in
camta3 is fully suppressed by expressing DNs of
two NLRs, DSC1 and DSC2. Additionally, expression
of either NLR triggers cell death that can be sup-
pressed by CAMTA3 expression. These findings
support a model in which DSC1 and DSC2 guard
CAMTA3, and they suggest that other negative
regulators of immunity may similarly represent
guardees.

INTRODUCTION

The innate immune system includes receptors that recognize

pathogen-associated molecular patterns (PAMPs). Thus, plants

and animals have bacterial flagellin receptors that trigger immu-

nity (Gómez-Gómez and Boller, 2002). Successful pathogens

deliver effectors into host cells to suppress this layer of immunity

(Jones and Dangl, 2006). In a next layer, cytoplasmic nucleotide-

binding leucine-rich repeat domain (NLR) receptors, which are

similar to animal NOD-like receptors, directly or indirectly recog-

nize the activities of pathogen effectors. NLRs activate effector

triggered immunity (ETI) that is often associated with local host

cell death known as the hypersensitive response (HR) (Dangl

et al., 2013). Two subfamilies of plant NLRs can be defined by

the presence of either an N-terminal Toll/interleukin-1 receptor

(TIR) or a coiled-coil (CC) domain (Jones and Dangl, 2006).
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Signaling by TIR-NLRs generally requires ENHANCED DISEASE

SUSCEPTEBILITY1 (EDS1), whereas NON-RACE SPECIFIC

DISEASE RESISTANCE1 (NDR1) is important for CC-NLR-trig-

gered HR (Aarts et al., 1998). So while bacterial effectors

possess diverse activities to manipulate host responses (Speth

et al., 2007), NLRs with diverse recognition specificities and

downstream signaling are found in single plant species

(DeYoung and Innes, 2006). An example of this complexity is

the bacterial pathogen Pseudomonas syringae (Pst), which in-

jects effectors via a type III secretion system to establish infec-

tion in Arabidopsis (Buell et al., 2003). These effectors include

AvrRpm1 and AvrRpt2, which target the host protein RIN4 by

phosphorylation or degradation, respectively. These changes

in RIN4 are detected by two NLRs, RPM1 and RPS2, which

both trigger ETI (Axtell and Staskawicz, 2003; Belkhadir et al.,

2004). Importantly, loss of RIN4 results in RPS2-dependent

autoimmunity, indicating that RPS2 guards RIN4 (Axtell and

Staskawicz, 2003; Spoel and Dong, 2012).

Numerous autoimmune or lesionmimicmutants are caused by

gain-of-function mutations in NLRs (Shirano et al., 2002; Zhang

et al., 2003) or by loss of function in diverse genes thought to

act as negative regulators of immunity and the HR (Dietrich

et al., 1994; Greenberg and Ausubel, 1993; Greenberg et al.,

1994; Lu et al., 2011; Petersen et al., 2000; Shirano et al.,

2002; Zhang et al., 2003). Interestingly, the autoimmune pheno-

types of these mutants are largely the same as those for ETI,

including EDS1/PAD4 or NDR1 dependency, stunted growth,

accumulation of reactive oxygen species, and elevated defense

gene expression (Brodersen et al., 2002, 2006; Grant et al., 2000;

Sohn et al., 2014; Zhang et al., 2003). In addition, like ETI, auto-

immunity can often be suppressed by high growth temperature

(Zhang et al., 2012). Importantly, some 40% of Arabidopsis auto-

immunemutants are suppressed bymutations in NLRs and other

immune signaling components (Bruggeman et al., 2015; Rodri-

guez et al., 2016).

Other evidence linking autoimmunity and NLRs may be hybrid

necrosis. Some 2% of intraspecific Arabidopsis crosses yield F1

progeny with hybrid necrosis or autoimmunity, which can be

suppressed at higher growth temperatures (Bomblies and Wei-

gel, 2007). These incompatibility loci often map to rapidly

evolving NLR genes or gene clusters. Such hybrid necrosis

may be due to the activation of NLR-dependent defense re-

sponses due to a failure in guard-guardee interactions (Chae

et al., 2014).
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In some instances, NLR-dependent autoimmunity is well

described. ACCELERATED CELL DEATH11 (ACD11) is a cer-

amide-1-phosphate transfer protein (Simanshu et al., 2014),

and acd11 mutants exhibit autoimmunity dependent on the

NLR LAZ5. Thus, acd11 is rescued by laz5 knockout and by a

dominant-negative laz5-D2 allele, indicating that ACD11 or its

complexes/pathways are likely effector target(s) guarded by

LAZ5 (Palma et al., 2010). The laz5D-2 allele has a mutation in

the P loop (Ile/Asn) of its nucleotide-binding domain (Palma

et al., 2010). This is similar to the DN mutation (Val/Asn) of

the tobacco NLR N, which also abolishes its function (Mestre

and Baulcombe, 2006). Clearly, the P loop is important for NLR

function.

Knockout ofMAP kinase 4 (MPK4) or double knockouts of the

two upstream kinases MKK1 and 2 also lead to autoimmunity,

which is suppressed by mutations in the NLR SUMM2. Since

the MPK4 pathway is a target of the HopAI1 effector and HopAI1

activity triggers SUMM2, loss of MKK1/2 mimics the presence of

HopAI1 and triggers SUMM2-dependent autoimmunity (Zhang

et al., 2012). It is, therefore, likely that NLRs cause autoimmunity

in plants with mutations in genes encoding effector targets.

An example of such NLR-induced autoimmunity might be

the CALMODULIN BINDING TRANSCRIPTION ACTIVATOR 3

(CAMTA3) with five homologs in Arabidopsis (CAMTA1–6)

(Bouché et al., 2002). CAMTA1, 2, and 3 appear to coordinately

regulate gene expression (Kim et al., 2013), but loss of CAMTA3

is sufficient to cause autoimmunity (Galon et al., 2008). Since

CAMTA3 can bind to the promoter of EDS1 and mutations in

EDS1 rescue camta3 mutants, CAMTA3 was proposed to func-

tion as a negative regulator of immunity and EDS1 transcription

(Du et al., 2009). In contrast, CAMTAs may positively regulate

early stress response genes via a core CAMTA-binding se-

quence present in their promoters (Benn et al., 2014).

We describe here a collection of 108 Arabidopsis NLRs

mutated in their P loops to potentially create their corresponding

dominant-negative NLR-DN alleles. We transform this collec-

tion into various lesion mimic mutants, including camta3, to

screen for suppression of autoimmunity. As proof of principle,

we first show that transgenic lines expressing RPM1-DN are

indistinguishable from rpm1–3 knockout mutants in terms of

ETI and gene-for-gene resistance. Importantly, RPM1-DN does

not interfere with common CC-NLR or TIR-NLR signaling path-

ways. In addition, we find that DN mutants of two NLRs we

name DSC1 and DSC2 fully suppress autoimmunity in the

camta3 mutant. Since DSC1- and DSC2-triggered cell death in

N. benthamiana is prevented specifically byCAMTA3 expression

and as DSC1 appears to interact with both CAMTA3 and DSC2,

autoimmunity in camta3 is probably not caused by a lack of its

proposed function as a negative regulator of genes required

for immunity. Instead, the camta3 phenotype is triggered by

the NLRs DSC1 and DSC2.

RESULTS

Function and Specificity of P Loop Mutations
Screens for suppression of one or more autoimmune mutants by

NLR loss-of-function mutations are time consuming and poten-

tially uninformative for NLRs with redundant functions. We there-

fore took an alternative, transgenic approach with a screen for
suppression in T2 transformants. Since specific mutations in

the P loop domain of NLRs can have dominant-negative effects

(Dinesh-Kumar et al., 2000; Palma et al., 2010; Roberts et al.,

2013), we examined the consequences of a P loop mutation in

the well-studied CC-NLR RPM1 (GK,221,222,AA; here named

RPM1-DN). RPM1 triggers cell death in plants infected with Pst

DC3000 (AvrRpm1) (Grant et al., 1995). We compared cell death

responses in 4-week-old Col-0, rpm1–3 knockout mutant, and

two independent RPM1-DN transformants (RPM1-DN1 and

RPM1-DN2), using an electrolyte leakage assay (Mackey et al.,

2003). As expected, cell death measured as conductance

increased in Col-0 already after 3 hr (Figure 1A). However, this in-

crease was suppressed in RPM1-DN1 and RPM1-DN2 plants to

the same extent as in rpm1–3 (Figure 1A). We also tested resis-

tance responses in 4-week-old, short-day-grown rosette leaves

syringe infiltrated with Pst DC3000 (AvrRpm1), by measuring

bacterial growth at 0 and 3 days. After 3 days, bacterial growth

was almost 100-fold higher in RPM1-DN1, RPM1-DN2, and

rpm1–3 compared to Col-0 (Figure 1B). Moreover, we did not

observe any difference in growth of virulent Pst DC3000 among

Col-0, rpm1–3 mutants, and plants expressing RPM1-DN (Fig-

ure 1C). Thus, expression of RPM1-DN in wild-type plants com-

promises the function of RPM1.

We then tested the specificity of this dominant suppression by

examining if resistance to bacteria expressing AvrRps4 and

AvrRpt2 was affected by the expression of RPM1-DN. AvrRps4

is recognized by the TIR-NLR pairs RPS4/RRS1 and RPS4B/

RRS1B (Narusaka et al., 2009; Saucet et al., 2015), whereas

resistance against AvrRpt2 is conferred by the CC-NLR RPS2

(Tsuda et al., 2013). This revealed that two RPM1-DN lines sup-

ported similar levels of growth of PstDC3000 (AvrRps4) as Col-0

and rpm1–3, while the susceptible control eds1–2 supported

significantly higher growth (Figure 2A). Similarly, expression of

RPM1-DN did not interfere with recognition of AvrRpt2, as the

RPM1-DN lines did not support more bacterial growth than

Col-0 (Figure 2B). As expected, the susceptible control ndr1 sup-

ported significantly higher bacterial growth than the other geno-

types (Figure 2B). Thus, plants expressing dominant-negative

versions of RPM1 are indistinguishable from rpm1–3 mutants

and the function of other NLRs is unaffected. Lastly, to confirm

thatmutations in specific NLRs can suppress single autoimmune

mutants, we mutated the P loop in SUMM2. Loss-of-function

mutations in the de-capping activator PAT1 (PROTEIN

ASSOCIATED WITH TOPOISOMERASE II NUMBER 1) lead to

SUMM2-dependent autoimmunity, including dwarfism and

elevated levels of the defense marker PATHOGENESIS

RELATED 1 (PR1) transcripts (Roux et al., 2015). Similar to

pat1 summ2 double homozygotes, expression of SUMM2-DN

in pat1 suppressed dwarfism, enhanced resistance, and

elevated PR1 transcript levels (Figure S1). Thus, as in pat1

summ2 plants, autoimmunity is suppressed in pat1 mutants ex-

pressing SUMM2-DN.

Introducing a P Loop Mutation in Multiple
Arabidopsis NLRs
The proof of concept with DN mutant forms of RPM1 and

SUMM2 prompted us to introduce such mutations into an addi-

tional 106 Arabidopsis NLRs (Table S1). These NLRs were used

because they were readily cloned/mutated and because they
Cell Host & Microbe 21, 518–529, April 12, 2017 519
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Figure 1. Expression of RPM1-DN Compromises RPM1 Function

and Attenuates Resistance

(A) AvrRpm1-dependent cell death is inhibited by RPM1-DN expression. Ion

leakage assay after inoculation of Pst DC3000 (AvrRpm1) into Col-0, rpm1–3,

or two transgenic lines overexpressing RPM1-DN (line RPM1-DN1 and 2) is

shown. Error bars represent ±SD. Groups with statistically different means are

indicated by different letters.

(B and C) Col-0 resistance to Pst DC3000 (AvrRpm1, B) is compromised by

RPM1-DN expression. No effect is seen in resistance to Pst DC3000 carrying

an empty vector (C). Growth of Pst DC3000 (AvrRpm1 or empty vector) at

days 0 (gray) and 3 (black) as log10-transformed colony-forming units per

square centimeter leaf tissue (CFU/cm2) is shown. Error bars represent ±SD

(n = 4). Means not sharing the same letter are significantly different.
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Figure 2. RPM1-DN Expression Specifically Inhibits RPM1 Function

and Does Not Compromise Resistance to AvrRps4 or AvrRpt2

(A and B) Wild-type resistance to Pst DC3000 (AvrRps4 and AvrRpt2) is re-

tained in transgenic RPM1-DN plants. Col-0, rpm1–3, RPM1-DN1, RPM1-

DN2, and eds1-2 or ndr1-1were inoculated with Pst DC3000 (AvrRps4, A, and

AvrRpt2, B). Bacterial growth was measured on days 0 (gray) and 3 (black).

Mean ± SD (n = 4) is shown and means not sharing the same letter are

significantly different.
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encode typical TIR- (72 genes) or CC-NLRs (34 genes) without

truncations or additional domains. With RPM1 and SUMM2,

this allele collection represents 89% (73/82) of Arabidopsis

TIR-NLRs and 73% (35/48) of CC-NLRs (Meyers et al., 2003).

More specifically, the conserved P loop motif GXXXXGKT(T/S)

in these genes was mutated to GXXXXAAT(T/S) using mismatch

primers and a multi-fragment USER cloning approach (Geu-

Flores et al., 2007). Sequenced clones were introduced into

Agrobacterium GV3101 and then transformed into wild-type

plants and a collection of autoimmune mutants, including

camta3. Independent T1 plants (T2 seeds) were collected after

BASTA selection and screened for suppression of stunted

growth, chlorosis, or early flowering phenotypes exhibited by

the autoimmune mutants. In a screen of �60 NLR-DN-express-

ing lines, we identified one line exhibiting suppression of the

camta3 phenotype (Figure 3A). We named this line, which
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Figure 3. DSC1-DN Suppresses camta3 Autoimmune Phenotypes

(A) camta3 growth and chlorosis phenotypes are rescued by the expression of DSC1-DN. Pictures are representative for several individual lines.

(B) camta3microscopic lesions are suppressed by the expression of DSC1-DN. Trypan blue-stained leaves of Col-0, camta3, DSC1-DN, and camta3 DSC1-DN

(one representative of several individual lines) are shown.

(C) Expression of DSC1-DN suppresses resistance in camta3mutants. Plants were inoculated with Pst DC3000 and colony-forming units per square centimeter

are plotted for days 0 (gray) and 3 (black). Error bars represent ±SD (n = 4).

(D and E) PR1 and EDS1mRNA levels are elevated in camta3mutants, but they are reduced to wild-type levels in camta3 expressingDSC1-DN. ThemRNA levels

for PR1 (D) and EDS1 (E) are shown. Error bars represent mean ± SD (n = 3). Means not sharing the same letter are significantly different.
expresses the DN form of the NLR encoded by At4g12010,

DSC1-DN for DOMINANT SUPRESSOR OF camta3 NUMBER

1-DOMINANT NEGATIVE. DSC1 encodes a typical TIR-NLR

proposed to be part of an NLR pair together with the TIR-NLR

At4g12020 (Narusaka et al., 2009). This head-to-head pair may

share a small promoter region of 273 bp and both genes are

lowly expressed (AtGenExpress). However, Meyers et al.

(2003) found that DSC1 is one of only 38 NLRs for which

mRNA expression levels are affected by SA or flg22, while

At4g12020 is not. Although At4g12020 is the closest homolog

of DSC1, it contains WRKY and MAPx kinase domains and

was, therefore, not included in our NLR-DN collection.

There are six CAMTA proteins in Arabidopsis, and null alleles

of CAMTA1 or CAMTA2 in camta3 mutants enhance the latter’s
dwarfism and chlorosis (Kim et al., 2013). However, expression

of DSC1-DN in camta1 camta3 double mutants did not suppress

this growth defect. This indicates that DSC1-DN suppression is

specific to CAMTA3 (Figure S2).

NLR-Dependent Autoimmunity in camta3

T3 lines homozygous for DSC1-DN were examined for suppres-

sion in more detail. The 6-week-old camta3 mutants grown in

short days exhibited stunted growth, necrotic lesions in older

leaves (Figure 3A), and clusters of dead mesophyll cells (Fig-

ure 3B) (Du et al., 2009). In contrast, camta3 DSC1-DN appeared

wild-type (Figures 3A and 3B). Expression of DSC1-DN in Col-0

did not affect its wild-type growth and did not induce cell death

(Figures 3A and 3B).
Cell Host & Microbe 21, 518–529, April 12, 2017 521



The camta3 mutants also exhibit increased resistance toward

virulent Pst DC3000 (Galon et al., 2008). To evaluate if this trait

was also abrogated by expression ofDSC1-DN, we syringe inoc-

ulated 5-week-old plants with Pst DC3000 andmeasured bacte-

rial growth after 3 days. While bacterial growth in camta3

mutants was significantly lower than in Col-0, bacterial growth

was restored to wild-type levels in camta3 DSC1-DN (Figure 3C).

Importantly, expression of DSC1-DN in Col-0 did not affect sus-

ceptibility (Figure 3C).

The camta3 mutants constitutively express defense genes,

including PR1 (Du et al., 2009). However, PR1 mRNA levels

were restored to Col-0 levels in camta3 DSC1-DN lines, and

the expression of DSC1-DN in Col-0 did not affect PR1 mRNA

levels (Figure 3D).

Since CAMTA3 was found to bind the EDS1 promoter and

was reported to be a negative regulator of EDS1 expression,

elevated levels of EDS1 and other CAMTA3-regulated tran-

scripts were thought to cause autoimmunity in camta3 (Du

et al., 2009). While autoimmunity in camta3 mutants may be

suppressed by DSC1-DN, expression of EDS1 should remain

elevated in camta3 DSC1-DN. In agreement with previous re-

ports, we found that EDS1 mRNA levels were significantly

higher in 5-week-old camta3 compared to Col-0 plants (Fig-

ure 3E). However, the levels of EDS1 transcripts in camta3

DSC1-DN were not significantly different from those in Col-0

or DSC1-DN single mutants (Figure 3E). These results indicate

that autoimmunity in camta3 mutants is triggered by DSC1 and

not by the loss of negative regulation of EDS1 and other regu-

latory transcripts.

CAMTA3 Interacts with DSC1 and Inhibits
DSC1-Triggered HR in N. benthamiana

To further investigate the relationship between DSC1 and

CAMTA3, we expressed them in N. benthamiana as transient

overexpression of NLRs can trigger HR cell death in this system

(Césari et al., 2014). In line with this, expression of DSC1 alone

triggered strong and rapid HR-like cell death (Figure 4A). This

DSC1-triggered HR was suppressed by co-expression with

CAMTA3 (Figure 4A), while co-expression of CAMTA1 or

CAMTA2 had no influence on DSC1-triggered HR (Figure 4A).

Expression of the threeCAMTAs alone did not induce a reaction.

DSC1, therefore, acts as an HR trigger specifically in the

absence of CAMTA3.

The above results suggest that DSC1 and CAMTA3 represent

a guard/guardee pair. We therefore speculated that DSC1 and

CAMTA3 may be found together in subcellular complexes. To

assess this, we examined the localization of CAMTA3 fused to

CFP (Figure S3A) and DSC1 fused to yellow flourescent protein

(YFP) (Figure S3B). Since both showed cytoplasmic and nuclear

localization when transiently expressed in N. benthamiana, we

tested their interaction in vivo by Förster resonance energy

transfer acceptor bleaching (FRET-AB). Using CFP_CAMTA as

donor and YFP_DSC1 as acceptor, we observed a clear increase

in donor fluorescence (FRET efficiency) after photobleaching of

YFP (Figure 4B). The same FRET efficiency was not seen with

donor/acceptor pairs of CFP_CAMTA and YFP_SUMM2 or

CFP_MPK4 and YFP_DSC1, included as negative controls (Fig-

ure 4C). To confirm the positive FRET, we transiently expressed

HA_DSC1 with CAMTA3_CFP or GFP_MYC in N. benthamiana
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and immunoprecipitated DSC1 with HA-trap beads. Only

CAMTA3_CFP was detected in HA_DSC1 precipitates (Fig-

ure 4D), confirming that DSC1 and CAMTA3 can exist in com-

plexes in planta.

Autoimmunity in camta3 Depends on Two NLRs
To further probe connections between DSC1 and CAMTA3, we

generated camta3 dsc1 double loss-of-function mutants. Sur-

prisingly, these double mutants appeared indistinguishable

from camta3 single mutants (Figure 5A), and, upon inoculation

with PstDC3000, they showed camta3-like enhanced resistance

(Figure 5B). In addition, like camta3, camta3 dsc1 had elevated

levels of PR1 and EDS1 expression (Figures 5C and 5D). This

suggests that DSC1-DN interferes with more than just DSC1

function. As two or more NLRs may guard the same guardee

(Belkhadir et al., 2004; Eitas et al., 2008) and as NLRs may

dimerize (Eitas and Dangl, 2010; Narusaka et al., 2009, 2013),

we speculated that DSC1 might function together with another

NLR. If so, DSC1-DN might poison their cooperativity while the

absence of DSC1 in the dsc1 mutant would not. We therefore

screened our remaining NLR-DN alleles for suppression of

camta3 autoimmunity, and we found an NLR-DN allele of

At5g18370, here called DSC2-DN, whose expression also fully

suppressed the camta3 phenotypes (Figure 6A). The closest

DSC2 homolog (At5g18350), separated from it by�10 kb encod-

ing both a TIR-NLR (At5g18360) and another gene (At5g18362),

was included in the NLR-DN screen, but it did not exhibit sup-

pression of camta3.

As for DSC1-DN, expression of DSC2-DN in camta3 abro-

gated resistance to Pst DC3000 (Figure 6B) and restored PR1

expression almost to wild-type levels (Figure 6C). Expression

ofDSC2-DN in Col-0 did not affect resistance or PR1 expression

levels. Importantly EDS1mRNA levels in camta3 DSC2-DNwere

similar to those in Col-0 and DSC2-DN (Figure 6D). We also

found that, as for DSC1, transient expression of DSC2 in

N. benthamiana triggered HR-like cell death, which was sup-

pressed by co-expression with CAMTA3 (Figure 6E). This again

indicates that autoimmunity in camta3 mutants is triggered by

NLRs and is not due to the loss of CAMTA3 as a negative regu-

lator of EDS1.

We generated camta3 dsc2 doublemutants to further examine

the connection between CAMTA3 and DSC2. Unlike camta3,

camta3 dsc2 did not exhibit dwarfism, but leaf development

was not restored to wild-type (Figure S4A). The camta3 dsc2

mutants also had only partial suppression of resistance

toward Pst DC3000 (Figure S4B), and they showed higher

expression of PR1 and EDS1 compared to wild-type (Figures

S4C and S4D).

Since camta3 dsc1 showed no suppression and camta3 dsc2

showed only partial suppression of the camta3 autoimmune phe-

notypes, we generated triple camta3 dsc1 dsc2 mutants. These

triple mutants appeared wild-type and developed like Col-0 (Fig-

ure 7A), while camta3 growth defects were restored in the triple

mutant complemented with genomic clones of either DSC1 or

DSC2 (Figure S5). Although the triple mutants did not develop

visible autoimmune phenotypes, it was possible that they re-

tained increased pathogen resistance. To test this, we inocu-

lated leaves of Col-0, camta3, and camta3 dsc1 dsc2 with Pst

DC3000. This demonstrated that camta3 dsc1 dsc2 resistance
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(D) CAMTA3 is associated with DSC1 in N. benthamiana. HA_DSC1 and CAMTA3_CFP or GFP_MYC were co-expressed in N. benthamiana and tissue was
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right panel, input; black arrow, HA_DSC1; gray arrow, CAMTA3_CFP; white arrow, GFP_MYC.
was restored to wild-type levels (Figure 7B). While increased

resistance was seen in camta3 and in camta3 dsc1 and camta3

dsc2 3 days post-inoculation (Figures 5B and S4B), bacterial
growth in camta3 dsc1 dsc2 reached the same levels seen in

Col-0 and in camta3 DSC1-DN and camta3 DSC2-DN (Figures

7B, 3B, and 6B). In addition, PR1 levels were restored to
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wild-type levels in the camta3 dsc1 dsc2 triple mutant (Fig-

ure 7C), in contrast to the higher levels in camta3 dsc1 and

camta3 dsc2 (Figures 5C and S4C). Furthermore, EDS1 mRNA

levels in camta3 dsc1 dsc2 plants were similar to those in

Col-0 (Figure 7D).

In summary, DSC1 and DSC2 contribute to autoimmunity in

camta3. Although they seem to operate independently, the fact

that the dominant-negative version of either one influences the

other suggests that DSC1 and DSC2 interact directly or indi-

rectly. To test this, we transiently expressed HA_DSC1 with

DSC2_YFP, YFP_DSC2, or GFP-MYC in N. benthamiana, and

we immunoprecipitated DSC2 with GFP-trap beads. As a spec-

ificity control, we also expressed DSC2-YFP, YFP-DSC2, and

GFP-MYC with HA-RPS4 (Zhang et al., 2004), as DCS1 and

RPS4 share 61% amino acid identity. HA_DSC1 could only

be detected in DSC2 precipitates and not in GFP_MYC precipi-

tates (Figure 7E). In contrast, RPS4 was not detected in the

DSC2_YFP precipitates, although a faint RPS4 band was

observed in the YFP_DSC2 precipitates when expressed at

similar levels to DSC1 at 24 hr post-inoculation (hpi) (Figure 7E).

In line with this, expression of RPS4 alone triggered strong and

rapid HR-like cell death only a few days after infiltration, which

was not suppressed by co-expression withCAMTA3 (Figure 7F).

These data show that DSC2 preferentially co-immunoprecipi-

tates with DSC1, indicating that they may be found in complexes

in planta.
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DISCUSSION

Arabidopsis autoimmune mutants have been intensively studied

for more than 20 years (Dietrich et al., 1994; Greenberg and

Ausubel, 1993; Greenberg et al., 1994). Many reports link auto-

immune phenotypes to NLR-signaling pathways and recently

also directly to NLR genes (Bonardi et al., 2011; Bruggeman

et al., 2015; Palma et al., 2010; Roux et al., 2015; Zhang et al.,

2012). We hypothesized that numerous phenotypes related to

autoimmunity may be caused by NLR activation. This implies

that specific mutations in host plant guardees mimic pathogen

effector activities and trigger the corresponding NLR guards.

To examine this possibility, we introduced specific mutations

into the P loops of a large collection of NLRs. This approach

was supported by (1) the conservation of the P loop in the STAND

and closely related NLR families (Leipe et al., 2004); (2) the domi-

nant-negative effects of suchmutations on theArabidopsis LAZ5

and tobacco N NLRs (Dinesh-Kumar et al., 2000; Mestre and

Baulcombe, 2006; Palma et al., 2010); and (3) the possibility

that numerous NLRs form dimers or directly or indirectly asso-

ciate in complexes (Mestre and Baulcombe, 2006), leading to

dominant-negative subunit poisoning.

As proof of concept, we compromised the function of RPM1

by expressing its dominant-negative version, and we showed

that this suppression was specific and did not affect general

NLR function (Figures 1 and 2). Abolition of RPM1 function by



0

10

20

30

40

50

60

70

A camta3Col-0 DSC2-DN camta3/DSC2-DN

0

1

2

3

4

5

6

7

8

9

10

[lo
g(

C
FU

/c
m

2 )
]

Pst DC3000

ca
mt
a3

DS
C2
-D
N

ca
mt
a3

/D
SC
2-D
N

Col-
0

a a a a

b b b
c

0

2

4

6

8

10

12

14

16
R

el
at

iv
e 

ex
pr

es
si

on
PR1

ca
mt
a3

DS
C2
-D
N

ca
mt
a3

/D
SC
2-D
N

Col-
0

B C

a
a

b

c

Col-
0

ca
mt
a3

DS
C2
-D
N

ca
mt
a3
/D
SC
2-D
N

a a

b

a

EDS1

R
el

at
iv

e 
ex

pr
es

si
on

D

E
DSC2 CAMTA1

DSC2 + CAMTA1

DSC2 CAMTA2

DSC2 + CAMTA2

DSC2 CAMTA3

DSC2 + CAMTA3

Day 0
Day 3
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(A) camta3 growth and chlorosis phenotypes are rescued by the expression of DSC2-DN. Pictures are representative for several individual lines.

(B) Expression of DSC2-DN suppresses resistance in camta3 mutants. Plants were syringe inoculated with Pst DC3000 and colony-forming units per square

centimeter counted on days 0 (gray bars) and 3 (black). Error bars represent ±SD (n = 4). Bars with different letters are significantly different.

(C) PR1 mRNA levels are reduced to almost wild-type levels in camta3 mutants expressing DSC2-DN. PR1 mRNA expression levels are shown. Error bars

represent ±SD (n = 3). Letters indicate statistical significance.

(D) EDS1mRNA levels are elevated in camta3mutants, but they are similar to Col-0 levels in camta3 DSC2-DN. The mRNA levels for EDS1 are shown. Error bars

represent mean ± SD (n = 3). Means not sharing the same letter are significantly different.

(E) Expression of CAMTA3 rescues DSC2-induced cell death in N. benthamiana. Inoculation with Agrobacterium expressing DSC2 results in the induction of HR.

Co-inoculation withCAMTA3 inhibits the DSC2-induced cell death. Co-inoculation withCAMTA1 orCAMTA2 failed to inhibit HR induction. Areas of infiltration are
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P loop mutation was shown previously (Chung et al., 2011; Tor-

nero et al., 2002), but not the dominant-negative effect described

here. In addition, we found that expression of SUMM2-DN sup-

pressed autoimmunity in pat1 mutants (Figure S1). Thus, NLR-

DN alleles can be made via simple P loop mutagenesis.

We then conducted a screen to identify other NLR-DN alleles

that suppress the autoimmune phenotype of the camta3

mutant (Galon et al., 2008). This screen identified DSC1-DN

and DSC2-DN. CAMTA3 was described as a negative regulator

of immunity due to the ectopic accumulation of defense-related

transcripts, including EDS1 in camta3 mutants, and to the sup-
pression of camta3 phenotypes in camta3 eds1 double mutants

(Du et al., 2009). However, EDS1 is ectopically expressed in

many autoimmune mutants, and EDS1 mutations suppress

autoimmunity in many of them (Bruggeman et al., 2015; Rodri-

guez et al., 2016). We show here that EDS1 mRNA levels are

similar to those in wild-type when DSC1-DN or DSC2-DN is ex-

pressed in camta3 (Figures 3E and 6D). Importantly, the

increased resistance to virulent Pst DC3000 in camta3 was

also reduced to wild-type (WT) levels in camta3 expressing

either DSC1-DN or DSC2-DN (Figures 3C and 6B). These find-

ings do not support a function for CAMTA3 as a negative
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Figure 7. camta3 dsc1 dsc2 Triple Mutants

Rescue All camta3 Phenotypes

(A) camta3 dsc1 dsc2 triple mutants develop like

wild-type Col-0. Representative images of several

individual lines are shown. See also Figures 5, S4,

and S5.

(B) camta3 resistance to Pst DC3000 is sup-

pressed in the triple camta3 dsc1 dsc2 mutant.

Colony-forming units per square centimeter were

counted at days 0 (gray bars) and 3 (black). Error

bars represent mean ± SD (n = 4). Bars with

different letters are significantly different.

(C and D) PR1 and EDS1 mRNA levels in camta3

are completely abolished in the camta3 dsc1 dsc2

triple mutant. The mRNA levels for PR1 (C) and

EDS1 (D) are shown relative to wild-type Col-0.

Error bars represent mean ± SD (n = 3). Means not

sharing the same letter are significantly different.

(E) DSC2 is associated with DSC1 in N. ben-

thamiana. DSC1_HA + DSC2_YFP, YFP_DSC2, or

GFP_MYC and RPS4_HA + DSC2_YFP or YFP_

DSC2 were co-expressed in N. benthamiana. Left

panel, anti-HA IP; right panel, input; black arrow,

HA_DSC1/RPS4_HA; gray arrow, DSC2_YFP/

YFP_DSC2; white arrow, GFP_MYC.

(F) RPS4-induced cell death in N. benthamiana is

not rescued by expression of CAMTA3. Inocula-

tion of N. benthamiana leaves with RPS4 resulted

in HR induction. Co-inoculation with CAMTA3 did

not affect RPS4-induced cell death. Areas of infil-

tration are marked by dashed lines.
regulator of either EDS1 expression or resistance to the path-

ogen tested.

Nonetheless, Du et al. (2009) provided other evidence that

CAMTA3 negatively regulates EDS1 expression. First, CAMTA3

recognized an EDS1 promoter element that was responsible for

suppression of a reporter gene driven by the EDS1 promoter.

Second, chromatin immunoprecipitation in protoplasts with tran-

siently overexpressed, YFP-tagged CAMTA3 showed enrich-

ment of EDS1 promoter elements, confirming that CAMTA3
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can bind EDS1 promoter elements (Du

et al., 2009). Third, plants that overex-

pressCAMTA3 exhibit increased suscep-

tibility to virulent Pst DC3000 (Jing et al.,

2011). Nonetheless, these and other

data (Du et al., 2009; Nie et al., 2012)

do not provide direct evidence for

inhibition of transcription by CAMTA3.

More recently, the rapid stress response

element (RSRE), characterized in pro-

moters that rapidly respond to stresses

including flg22 (Walley et al., 2007), was

identified as a core CAMTA3-binding

element. In addition, CAMTA3 could

transiently activate the expression of

a RSRE:LUC reporter (Benn et al.,

2014), and a camta3 mutant exhibited

reduced RSRE:LUC activity (Bjornson

et al., 2014). Similarly, a general stress

response andRSRE induction is CAMTA3
dependent (Benn et al., 2016). These findings indicate that

CAMTA3 is a positive regulator of early stress responses. While

CAMTA3 may thus possess both positive and negative regula-

tory activities, our data indicate that autoimmunity in camta3 is

NLR triggered.

Our results are consistent with a model in which DSC1 and

DSC2 guard CAMTA3 and/or a complex or pathway in which

CAMTA3 functions. Importantly, we show that CAMTA3 may

exist in complexes with DSC1 in planta (Figures 4B–4D).



Moreover, both DSC1 and DSC2 can trigger the HR when

expressed in N. benthamiana, but co-expression of CAMTA3

prevents this (Figures 4A and 6E). Thus, these two NLRs

appear inactive in the presence of CAMTA3 but are activated

in its absence. This is analogous to immunity triggered by

RPS2 upon effector-mediated degradation of the host guardee

RIN4 (Axtell and Staskawicz, 2003; Mackey et al., 2003).

Interestingly, camta3 autoimmune phenotypes were not sup-

pressed in camta3 dsc1 or camta3 dsc2 double loss-of-function

mutants. This may be explained if both DSC1 and DSC2 can be

triggered in the absence of CAMTA3. In line with this, autoimmu-

nity was completely suppressed in camta3 dsc1 dsc2 triple loss-

of-function mutants. Thus, autoimmunity in camta3 can be

triggered by both NLRs, and the function of both must be abro-

gated to prevent autoimmunity.

These findings and the co-immunoprecipitation of DSC1

with DSC2 in N. benthamiana suggest that they interact.

Such interactions probably do not only involve direct heterodi-

merization under natural conditions, as such heterodimer

formation would be disrupted in their single dsc1 or dsc2

loss-of-function mutants, leading to the suppression of camta3

mutant phenotypes. Alternatively, the DSC1 and DSC2 co-

precipitation is consistent with indirect associations via com-

plexes with CAMTA3 or an N. benthamiana ortholog. In a

simple model, if activation of such complexes was dependent

on either or both DSC1 and DSC2, then activation might be

compromised by overexpression of the DN form of either

NLR, but not by loss of function of either single NLR.

Elucidation of such models requires further biochemical and

structural work on plant NLR self-association interfaces (Zhang

et al., 2017) in light of animal NLR oligomerization (Hu

et al., 2015).

More than one NLR may contribute to autoimmunity in

other mutants, including acd11 and mpk4. For example,

laz5-D2 can fully suppresses acd11 autoimmunity, although

acd11 laz5-1 doubly homozygous recessive mutants still

display significant cell death and activated defense under

certain growth conditions (Palma et al., 2010). Similarly,

summ2 only partially suppresses mpk4 (Zhang et al., 2012).

In addition, some NLRs function in pairs of a sensor and a

trigger (Césari et al., 2014; Sarris and Jones, 2015). However,

since both DSC1 and DSC2 can independently trigger immunity

in the absence of CAMTA3, it is unlikely they constitute a

sensor/trigger pair. It appears more likely that different activities

of microbial effectors targeting CAMTA3 or CAMTA3-contain-

ing complexes or pathways are differentially sensed by DSC1

and 2. According to the NLR phylogeny of Meyers et al.

(2003), DSC1 and DSC2 are not especially closely related.

This may not be surprising, however, as two NLRs that monitor

RIN4 function, RPS2 and RPM1, are also not especially closely

related.

We conclude that our screen to link NLR-DN alleles to poten-

tial guardees is a more robust and timely method than suppres-

sion screens of double loss-of-function mutants. Furthermore,

our dominant-negative method can identify NLRs with redun-

dant functions or working in pairs. If exploited, our collection of

NLR-DN constructs (Table S1) should clarify the relationships

between guardees and numerous negative regulators of immu-

nity and cell death in plants.
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Antibodies

Mouse monoclonal aHA-prope (F-7) Santa Cruz Biotechnology Cat# sc-7392; RRID:AB_627809

Mouse HA-Tag (6E2) mAb Cell Signaling Technology Cat# 2367S; RRID:AB_10691311

Rabbit anti GFP pAb (TP401) AMSBIO LLC Cat# TP401; RRID:AB_10890443

Anti-Rabbit IgG (H+L), HRP Conjugate antibody Promega Cat# W4011; RRID:AB_430833

Anti-Mouse IgG (H+L), HRP Conjugate antibody Promega Cat# W4021; RRID:AB_430834

Anti-Rabbit IgG (Fc), AP Conjugate antibody Promega Cat# S3731; RRID:AB_430872

Anti-Mouse IgG (H+L), AP Conjugate antibody Promega Cat# S3721; RRID:AB_430871

EZview Red Protein A Affinity Gel SIGMA-ALDRICH P6486

Lama GFP-Trap_A monoclonal Chromo Tek Cat# gta-20; RRID:AB_2631357

Bacterial and Virus Strains

Agrobacterium tumefaciens strain GV3101 Koncz and Schell, 1986 N/A

Agrobacterium tumefaciens strain Agl-1 Lazo et al., 1991 N/A

Escherichia coli strain XL-Blue Stratagene N/A

Pseudomonas syringae pv. tomato DC3000 (pVSP61) Century et al., 1995 N/A

Pseudomonas syringae pv. tomato DC3000 (AvrRpm1) Grant et al., 1995 N/A

Pseudomonas syringae pv. tomato DC3000 (AvrRps4) Hinsch and Staskawicz, 1996 N/A

Pseudomonas syringae pv. tomato DC3000 (AvrRpt2) Bent et al., 1994 N/A

Critical Commercial Assays

NucleoSpin RNA II Macherey-Nagel Cat# 740955.250

RevertAid First Strand cDNA Synthesis Kit ThermoFisher Scientific Cat# K1622

Maxima SYBR Green/ROX qPCR Master Mix (2X) ThermoFisher Scientific Cat# K0221

Monarch Plasmid Miniprep Kit NEW ENGLAND BioLabs Cat# T1010S

Experimental Models: Organisms/Strains

Arabidopsis: camta3: At2g22300 T-DNA insertion: SALK_001152 Galon et al., 2008 NASC NASC ID: N501152

Arabidopsis: dsc1: At4g12010 T-DNA insertion: Sail_49_C05 NASC NASC ID: N802333

Arabidopsis: dsc2: At5g18370 T-DNA insertion: FLAG_014A11 Versailles Arabidopsis Stock

Center

COMTV9T3

Arabidopsis: camta3 dsc1: SALK_001152, Sail_49_C05 T-DNA

insertion

This paper N/A

Arabidopsis: camta3 dsc2: SALK_001152, FLAG_014A11 T-DNA

insertion

This paper N/A

Arabidopsis: camta3 dsc1 dsc2: SALK_001152, Sail_49_C05,

FLAG_014A11 T-DNA insertion

This paper N/A

Arabidopsis: camta1 camta3: At5g09410, At2g22300 T-DNA

insertion: SALK_008187, SALK_001152

Doherty et al., 2009 N/A

Arabidopsis: DSC1-DN: At4g12010 GKT(T/S) - > AAT(T/S) This paper N/A

Arabidopsis: DSC2-DN: At5g18370 GKT(T/S) - > AAT(T/S) This paper N/A

Arabidopsis: camta3 DSC1-DN: SALK_001152, At4g12010

GKT(T/S) - > AAT(T/S)

This paper N/A

Arabidopsis: camta3 DSC2-DN: SALK_001152, At5g18370

GKT(T/S) - > AAT(T/S)

This paper N/A

Arabidopsis: camta1 camta3 DSC1-DN: SALK_008187,

SALK_001152, At4g12010 GKT(T/S) - > AAT(T/S)

This paper N/A

Arabidopsis: rpm1-3: At3g07040 T1157A - > Y87STOP: Grant et al., 1995 NASC ID: N68739

Arabidopsis: eds1-2: At3g48090 900bp deletion Aarts et al., 1998 N/A

(Continued on next page)
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Arabidopsis: ndr1-1: At3g20600 Century et al., 1995 N/A

Arabidopsis: pat1-1: At1g79090 T-DNA insertion: SALK_040660 Roux et al., 2015 NASC NASC ID: N657369

Arabidopsis: summ2-8: At1g12280 T-DNA insertion: SAIL_1152_A06 Zhang et al., 2012 NASC NASC ID: N842411

Arabidopsis: pat1 summ2: At1g79090, At1g12280 T-DNA insertion Roux et al., 2015 N/A

Oligonucleotides

Primers for qPCR, see Table S2 This paper; Roux et al., 2015 N/A

Primers for genotyping, see Table S2 This paper; Roux et al., 2015 N/A

Primers for cloning, see Table S2 This paper N/A

Recombinant DNA

P-loop mutated NLRs, see Table S1 This paper N/A

CAMTA1(At5g09410) in pENTR/D-TOPO ABRC Stock TOPO-U21-C07

CAMTA2 (At5g64220) in pENTR/D-TOPO ABRC Stock TOPO-U19-B06

pBin19 g-35S:RPS4-HA Zhang et al., 2004 N/A

pGWBs Nakagawa et al., 2007 N/A

pENTRU: pENTR modified for USER cloning This paper N/A

pENTRU_CAMTA3 (gDNA -STOP) This paper N/A

pENTRU_DSC1 (gDNA -STOP) This paper N/A

pENTRU_DSC2 (gDNA -STOP) This paper N/A

35S::CAMTA3_HA (pGWB514) This paper N/A

35S::CFP_CAMTA3 (pGWB645) This paper N/A

35S::HA_DSC1 (pGWB515) This paper N/A

35S::YFP_DSC1 (pGWB542) This paper N/A

35S::DSC2_YFP (pGWB541) This paper N/A

35S::YFP_DSC2 (pGWB542) This paper N/A

35S::GFP_MYC (pGWB517) This paper N/A

35S::CFP_CAMTA1 (pGWB645) This paper N/A

35S::CFP_CAMTA2 (pGWB645) This paper N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Morten

Petersen (shutko@bio.ku.dk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Arabidopsis thaliana

Arabidopsis plants were grown in 9 3 9 cm pots in growth chambers at 22�C and �70% relative humidity and with an 8 hr photo-

period. The intensity of the light was set at �140 mE m-2s-1. The following Arabidopsis lines were used in this study: wild-type

Colombia (Col-0), camta3-1 (referred to as camta3), SALK_001152 (Galon et al., 2008); dsc1, Sail_49_C05; dsc2, SALK_009668;

rpm1-3 (Grant et al., 1995); pat1-1, summ2-8 (Zhang et al., 2012); pat1/summ2 (Roux et al., 2015); ndr1-1 (Century et al., 1995)

and eds1-2 (Parker et al., 1996; Aarts et al., 1998). All lines have been authenticated by genotyping; the primers used are listed in

Table S2. All P loop mutated NLR lines created in this study is listed in Table S1.

Nicotiana benthamiana

Plants were grown in greenhouses under controlled conditions (24�C and 40%–65% relative humidity), and a long-day photoperiod

(16 hr light and 8 hr dark). Illumination were set to �130-150 mE m-2 sec-1.

Escherichia coli

E.coli (XL blue) were grown on LB plates with appropriate antibiotic at 37�C and kept at 4�C for up to two weeks. For liquid cultures a

bacterial scrape were inoculated in 5 mL LB supplemented with appropriate antibiotics and grown at 37�C under shaking.
Cell Host & Microbe 21, 518–529.e1–e4, April 12, 2017 e2
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Agrobacterium tumefaciens

Strains of Agrobacterium (GV3101 and Agl-1) were grown on YEP plates with appropriate antibiotic at 28�C and kept at 4�C for up to

two weeks. For liquid cultures a bacterial scrape were inoculated in 5 mL YEP supplemented with appropriate antibiotics and grown

at 28�C under shaking. After 24 hr, YEP was added to a total volume of 11 ml.

Pseudomonas syringae pv. tomato DC3000
Pst. DC3000 strainswere grown onNYGplants containing 100 mg/ml rifampicin, 12.5mikrogram/ml kanamycin, and 50mikrogram/ml

cyclohexamide at 28�C for two days. For liquid cultures 5mLNYC supplemented with kanamycin and rifampicin were inoculated with

a slab of bacteria.Pst.DC3000 containing the avirulence genes avrRpm1 (Grant et al., 1995), avrRps4 (Hinsch and Staskawicz, 1996),

avrRpt2 (Bent et al., 1994) in the broad host range vector pVSP61, or DC3000 containing empty pVSP6, were used in this study.

METHOD DETAILS

Cloning
WTCAMTA3, DSC1 and DSC2was amplified from genomic DNA (fromCol-0 plants) without STOP codon and cloned into amodified

USER compatible pENTR vector using uracil-excision based cloning (USER, New England Biolabs). Cloning primers were tagged

with 5’-ggcttaaU3’ for the forward primer and 5’-ggtttaaU3’ for the reverse primer. Constructs were transferred to Gateway-compat-

ible constitutive expression vectors by LR recombination reaction (Invitrogen). Plasmids were verified by sequencing and then elec-

troporated into Agrobacterium tumefaciens GV3101.

For subcellular localization, FRET, cell death and immunoprecipitation, CAMTA3 were transferred to pGWB645 (35S pro, N-termi-

nal CFP) and pGWB514 (35S pro, C-terminal HA); DSC1 were transferred to pGWB542 (35S pro, N-terminal YFP) and pGWB515

(35S pro, N-terminal HA) and DSC2 were transferred to pGWB541 (35S pro, C-terminal YFP) and pGWB542.

GFP was PCR amplified from plasmid template and cloned into pENTR/D-TOPO (Invitrogen). The construct was subsequently

transferred to the Gateway-compatible constitutive expression vector pGWB517 (35S pro, C-terminal MYC) by LR recombination

reaction (Invitrogen). The plasmid were verified by sequencing and then electroporated into Agrobacterium tumefaciens Agl-1.

CAMTA1 and CAMTA2 in pENTR/D-TOPOwere obtained from the ABRC Stock center. CAMTA1 and CAMTA2were transferred to

pGWB645 (35S pro, N-terminal CFP) by LR recombination reaction (Invitrogen). Plasmids were verified by sequencing and then elec-

troporated into Agrobacterium tumefaciens GV3101.

Generation of transgenic Arabidopsis lines
To generate the double mutants, camta3-1 homozygous plants were crossed with homozygous dsc1 or dsc2. Homozygous double

mutant plants were identified in the F2 progeny by PCR. For the camta3/dsc1/dsc2 triple mutant, homozygous camta3/dsc1 double

mutants were crossed with homozygous camta3/dsc2. Homozygous triple mutants were identified in the F2 progeny by PCR.

Homozygosity and correct insertion T-DNA sites were verified by PCR using standard conditions. Genotyping primers for T-DNA

lines are provided in Table S2.

Generation of camta1 camta3 DSC1-DN lines was done by genetic crossing of homozygote lines of the camta1 camta3 double

mutants and DSC1-DN. Homozygous triple mutants were identified by PCR. Homozygosity and correct insertion T-DNA sites

were verified by PCR using standard conditions. Genomic constructs used to complement camta3 dsc1 dsc2 triple mutants was in-

serted in pGWB601. Plants were transformed by floral dip (Clough and Bent, 1998).

NLR P loop collection
P loop mutated NLRs were created from genomic DNA by USER mutagenesis (Nour-Eldin et al., 2006) and cloned into a modified

USER compatible pCAMBIA-3300, using uracil-excision based cloning (USER, New England Biolabs). Cloning primers were tagged

with 5’-ggcttaaU3’ for the forward primer and 5’-ggtttaaU3’ for the reverse primer. Mutagenesis primers were made containing the

P loop mutation GXXXXGKT(T/S) to GXXXXAAT(T/S) of the P loop motif and appropriate uracil’s incorporated to give seamless over-

lap of two fragments (Geu-Flores et al., 2007) generated with PfuX7 (Norholm, 2010).

The final constructs were verified by sequencing, electroporated into Agrobacterium tumefaciens strain GV3101 and used to trans-

form camta3 or wild-type plants by the floral dip method (Clough and Bent, 1998). Transgenic plants were selected on soil with

BASTA (10 mg/L).

Ion leakage
Four-week-old plants were syringe inoculated with Pst. DC3000 (avrRpm1) at OD600 = 0.2. Four leaf discs were punched out. Sam-

ples were taken from one side of the leaf between the central vein and leaf margin. Leaf discs were washed in distilled H2O to

eliminate signal derived from wounded cells. Four discs from each line were then placed in tubes containing fresh distilled H2O,

and measurements of solution conductivity were taken at the indicated time points using a conductivity meter.

Resistance assay
For bacterial growth assays, leaves of 5-week-old soil grown plants were inoculated by syringe infiltration (OD600 = 0.001) with Pst

DC3000 either containing avirulence genes or the empty vector. Bacterial growth (Colony forming units per cm2) was determined
e3 Cell Host & Microbe 21, 518–529.e1–e4, April 12, 2017



3 days post inoculation, day 0 counts were analyzed in infiltrated leaves to ensure that no statistical difference was present at inoc-

ulation and that day 3 showed positive growth. The experiments were repeated in at least three individual biological replicates, each

with three technical replicates.

Trypan blue staining
Leaves of 6week-old plants were boiled in Trypan blue 2-3min and destained in chloral hydrate. Leaveswere placed on slides in 50%

glycerol for visualization of dead cells.

Quantitative Real-Time PCR
RNA was extracted from plant leaves using the NucleoSpin RNA Plant kit (Machery-Nagel). First-strand cDNA synthesis was carried

out using RevertAid First Strand cDNA Synthesis Kit according to the manufacturer’s instructions (Thermo Scientific). The constitu-

tively expressed UBQ10 gene was used as an internal control. qRT-PCR analysis was performed on a Bio-RAD CFX96 system with

the dye SYBR Green (Thermo Scientific). All experiments were repeated at least three times each in technical triplicates. Primer

sequences are listed in Table S2.

Cell death
For transient expression N. benthamiana was syringe infiltrated with Agrobacterium at OD600 = 0.5 expressing indicated constructs.

GV3101 carrying 35S p19 was co-infiltrated at OD600 = 0.2. For cell death assays leaves were analyzed �3 dpi.

Subcellular localization and FRET
N. benthamiana was infiltrated with Agrobacterium at OD600 = 0.5 expressing indicated constructs. For subcellular localization and

FRET, leaf disks were analyzed 2 or 3 dpi. Subcellular localization was done using a LSM700 Zeiss confocal microscope. All samples

were imagedwith a 63Xwater objective. The confocal imageswere edited with Zen2012 (Zeiss) software. FRET-ABwas done using a

Leica SP5-X inverted confocal microscope. All experiments were done with a 63X water objective. FRET analysis was performed

using Leica FRET-AB wizard software.

Protein extraction and Co-immunoprecipitation
N. benthamianawas infiltratedwithAgrobacterium at OD600 = 0.5 expressing indicated constructs. GV3101 carrying 35S p19was co-

infiltrated at OD600 = 0.2. Protein were extracted 24 hpi in 50mMTris-HCl pH 7.5; 150mMNaCl; 10% (v/v) glycerol; 10mMDTT; 10mM

EDTA; 0.5% (v/v) PVP; protease inhibitor cocktail (Roche); 0.1% (v/v) Triton X-100 added at 2ml/g tissue powder. Following 20 min

centrifugation at 4�C and 13000 rpm sample supernatants were adjusted to �3mg/ml protein and incubated 2 hr at 4�C with

GFPTrap-A beads (Chromotek) or anti-HA antibody (Santa cruz) and EZview protein A agarose beads (Sigma). Beads were washed

[20mM Tris pH 7.5; 150mM NaCl; 1mM EDTA] before adding 2x SDS and heating at 80�C.

SDS-PAGE and immunoblotting
Protein samples were separated on 8% SDS-PAGE, electroblotted to PVDF membrane (GE Healthcare), then blocked (1 hr in

5% (w/v) BSA or 5% (w/v) milk in TBS-Tween (0.1%)) and incubated 2 hr to overnight with primary antibodies: anti-GFP 1:5000

(AMS Biotechnology), anti-HA 1:1000 (Santa Cruz), anti-HA 1:1000 (Cell Signaling). Membranes were incubated in secondary anti-

bodies, anti-rabbit or anti-mouse AP or HRP conjugate (Promega; 1:5000) for 1 hr. Chemiluminescent substrate (homemade or ECL

Plus, Pierce) was applied before exposure to film (AGFA CP-BU) or camera detection. For AP-conjugated antibodies, membranes

were incubated in NBT/BCIP (Roche) until bands were visible.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details of experiments are reported in the figures and figure legends. In short, n = 3 for all samples if nothing else is stated

and ± standard deviation of the mean is indicated by error bars. Means not sharing the same letter are significantly different. Statis-

tical significance between groups was determined by ANOVA One-Way comparison followed by Tukey’s HSD (honest significant

difference) test, p < 0.05, was used unless otherwise stated. At least three individual replicas were always included. All statistics

were done using the software OriginPro (OriginLab).
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