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We demonstrate systematic control of mechanical nonlinearities in micro-electromechanical

(MEMS) resonators using shape optimization methods. This approach generates beams with non-

uniform profiles, which have nonlinearities and frequencies that differ from uniform beams. A set

of bridge-type microbeams with selected variable profiles that directly affect the nonlinear charac-

teristics of in-plane vibrations was designed and characterized. Experimental results have demon-

strated that these shape changes result in more than a three-fold increase and a two-fold reduction

in the Duffing nonlinearity due to resonator mid-line stretching. The manipulation of this nonlinear-

ity has significant interest in many applications, including precise mass sensing, accurate measure-

ment of angular rates, and timekeeping. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4976749]

Resonant micro-electromechanical-systems (MEMS)

have grown in popularity over the past several decades due

to their numerous applications, which include stable fre-

quency generation and timing,1,2 robust mass and angular

rate sensing,3,4 precise signal filtering,5–7 and energy harvest-

ing.8 While the majority of MEMS resonators are designed

to operate in their linear dynamic range, research has shown

that utilizing nonlinearity in resonant MEMS sensors can

significantly improve the performance of these systems in

some of these applications.1,9 Nonlinear stiffness effects in

MEMS resonators commonly arise from multiple sources,

such as finite deformations that lead to nonlinear strain-

displacement relationships,10 and the nonlinear nature of the

electrostatic forces in capacitive MEMS.4–7,11,12

The ability to manipulate the nonlinearity in resonant

MEMS and NEMS (nano-EMS) allows one to design devices

with greater control over their dynamical responses.13 For

example, it has been shown that one can relax the constraints

in mode mismatch in MEMS gyroscopes due to fabrication

errors by independently tuning the linear and/or cubic stiff-

ness coefficients of the capacitive drive,4,14,15 and one can

achieve optimal drive conditions for micro-resonators in

order to enhance their dynamic range.16,17 Although a large

number of research efforts are focused on the understanding

of nonlinear dynamics in MEMS and their applications to

sensors and actuators, only a few have focused on the sys-

tematic optimization of nonlinearities in MEMS to achieve

desirable outputs. Ye et al. demonstrated optimization of

interdigitated comb finger actuators to achieve linear,

quadratic, and cubic driving force profiles,18 and, more

recently, Guo designed quadratic shaped comb fingers to

achieve large displacement parametric resonance, overcom-

ing the limited movement in non-interdigitated comb

drive.6,12 These studies used electrostatic effects to achieve

desired nonlinear forces. Dou et al. investigated shape opti-

mization in MEMS resonators using a gradient-based method

in order to achieve targeted mechanical nonlinear coeffi-

cients.19,20 The numerical results in Refs. 19 and 21, when

applied to a clamped-clamped (bridge) beam, showed that

the removal/addition of material (by changing the cross-

sectional area) from the areas where the slope of the resona-

tor mode shape is maximal results in a decrease/increase of

the geometric contribution to the resonator cubic nonlinear-

ity. This effect becomes more pronounced as the difference

in the maximum and minimum beam thickness increases.

The approach allows one to achieve combinations of fre-

quencies and nonlinearities not obtainable with uniform

beams.

The present experimental demonstration is based on

results from the shape optimization approach of Dou et al.19

applied to altering the nonlinearity in a set of clamped-

clamped microbeams. Beams with geometries corresponding

to different stages in the optimization process were selected

and fabricated in single-crystal silicon using standard SOI

(silicon-on-insulator) processing techniques with DRIE

(deep reactive ion etching) and released with HF vapor.

Figure 1 shows SEM images and COMSOL models of three

of representative designs of the clamped-clamped beams

under study: a beam with uniform thickness (Beam_initial)

and beams designed to minimize/maximize the cubica)lily@engr.ucsb.edu
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nonlinearity (Beam_min/Beam_max) under certain thickness

constraints. The resonant frequencies of the beams range

from 80 to 200 kHz.

In this work, we demonstrate manipulation of the

Duffing coefficient of the fundamental mode with one vari-

able parameter, the beam thickness, which can vary along

the length, while maintaining all other parameters constant.

Specifically, the beam lengths are all L ¼ 500 lm (length)

by w ¼ 20 lm (width, dimension perpendicular to the beam

deflection), and the transverse thickness, h, in the direction

of the deflection, is allowed to take on values between 2 and

6 lm, according to the optimization scheme described by

Dou et al.19 As a result, the resonant frequency of the beams

varies. While future work will allow for more practical con-

straints on the mode frequency, this work serves as initial

demonstration that simple shape alterations can lead to sig-

nificant changes in the Duffing nonlinearity of MEMS

resonators.

The dynamic response of a clamped-clamped micro-

beam performing flexural vibrations in its fundamental mode

when driven by a harmonic field can be modeled by the stan-

dard Duffing equation,20,21 as follows:

€x þ Q�1x0 _x þ x2
0xð1þ cx2Þ ¼ g cos xt; (1)

where x is the modal amplitude, x0 is the natural frequency

of the beam, Q is the quality factor (Q ¼ x0=2C and C being

the linear damping rate), c is the coefficient of the cubic non-

linear stiffness term (Duffing nonlinearity), and g and x are

the drive amplitude and frequency. For a uniform doubly

clamped thin elastic beam, the linear natural frequency of

the fundamental mode is given by x2
0 ¼ 4p4Eh2=ð9qL4Þ,

where E is Young’s modulus and q is the material density.

The nonlinear effect results from axial stretching due to

bending as the beam is deflected, and the corresponding

Duffing coefficient is given by c ¼ 3=ð4h2Þ.22,23 For a beam

of a given length, the ability to independently tune the natu-

ral frequency, which scales with h, and the nonlinearity,

which scales with h�2, requires the use of non-uniform

beams. One can systematically alter the Duffing nonlinearity

of such non-uniform MEMS beams using a shape optimiza-

tion process such as that described by Dou et al.19

In free vibration, the relationship between response

amplitude (ap) and the response frequency (xp) can be

approximated as xpðapÞ ¼ x0ð1þ 3
8
ca2

pÞ, which provides the

so-called Duffing backbone curve22,23 that characterizes the

system nonlinearity in the form of amplitude-frequency

dependence. Thus, in order to assess the results of the pro-

posed method on the system Duffing nonlinearity, we use the

effective Duffing coefficient, cef f ¼ 3c=8, as the objective

function to be manipulated. When the system is subjected to

harmonic drive, the critical vibration amplitude (anl) at

which nonlinear effects result in a qualitative change of the

resonator response, specifically, at which the frequency

response becomes a multi-valued function of the drive fre-

quency, is given by anl ¼ 64
27

� �1=4 1ffiffiffiffi
Qc
p , thus demonstrating

that c directly affects the vibration amplitude at which non-

linear effects come into play.

Clearly, one can alter the resonator critical vibration

amplitude by changing the Duffing nonlinearity c, and this

can be achieved by simply changing the beam thickness h. In

contrast, our goal is to systematically change the nonlinear

coefficient by allowing the thickness to vary along the beam

length, as described by Dou et al.19 Such an approach, when

generalized to allow variation in the length and width, will

provide an approach for manipulating the linear dynamic

range for a given frequency and packaging space.

In the experiment, the beams were externally actuated

by a shear piezoelectric stack actuator in order to achieve in-

plane excitation via base acceleration. The in-plane motion

of each beam was detected using a Laser Doppler

Vibrometer (LDV) by tilting the microbeams at a 45� angle

with the laser focused on the sidewalls. The actual in-plane

velocity of the microbeam can be calculated from simple

geometry. This arrangement allowed characterization of the

mechanical nonlinearity isolated from electrostatic effects.

Amplitude-frequency responses for each beam were obtained

at multiple drive amplitudes in atmospheric pressure from a

spectrum analyzer. The schematic in Fig. 2 depicts the exper-

imental setup.

The amplitude-frequency responses for the three repre-

sentative beams shown in Fig. 1 are plotted in Fig. 3. As the

driving amplitude increases, the amplitude-frequency

FIG. 1. SEM images and COMSOL

models of three representative

clamped-clamped microbeams under

study (dashed box represents beam

parts shown in SEM). “Beam_initial”

is the beam with uniform thickness,

while “Beam_min”/“Beam_max” are

designed to minimize/maximize the

resonator Duffing nonlinearity, respec-

tively. Beam dimensions are 500 lm

length by 20 lm width with 2�6 lm

variable thickness in the direction of

deflection.
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response of each microbeam exhibits hardening behavior, as

expected for a positive Duffing nonlinearity. Once the sys-

tem response enters its bistable regime, since dissipation is

small, the peaks of the steady-state response amplitude

closely follow the backbone curve, as described by xpðapÞ.
Using this result, we extracted the peak amplitudes from

Fig. 3 and plotted the frequency as a function of the peak

amplitude (ap). Curve fitting is applied to the data to match

the form xðapÞ ¼ x0ð1þ cef f a
2
pÞ, from which one can obtain

estimates for the natural frequency and cubic nonlinearity.

After these coefficients are determined, we normalized the

frequency of each beam design by its natural frequency for

direct comparison of the three representative beams (Fig. 4).

We further compared the experimental results to the numeri-

cally computed coefficients, obtained using the techniques

described in Ref. 19. Table I summarizes the comparisons

between the beam designs, including those intermediate to

the initial and optimized designs. Table I shows a

comparison of the values of ceff for beams at different stages

of the optimization iteration process with the corresponding

Duffing nonlinearity of the nominal (uniform) beam, ceff ;0.

These characterization results show that the resonator shape

optimization results in the natural frequency varying from its

nominal, uniform beam, value. They also demonstrate that

the designs that minimize the nonlinear coefficient reduce

the Duffing nonlinearity by a factor of 2.6 when compared to

the initial uniform beam, which corresponds to a factor 1.27

increase in the critical vibration amplitude at which the reso-

nator becomes nonlinear, when accounting for the differ-

ences in quality factor among the two beams.22 Similarly,

the beam design resulting in the maximum nonlinear coeffi-

cient achieves a 3.3 times increase in the Duffing nonlinear-

ity as compared to the uniform beam. Table I shows that the

experimental results for minimizing beam nonlinearity

match computational results quite well, while those for max-

imizing the beam nonlinearity are off by a factor of two or

more. Note that simply changing the thickness of the uni-

form beam to the maximum/minimum allowable thickness

(6 lm/2 lm) results in factors of 2.25 (reduction)/4.0

(increase) compared to the uniform beam of thickness 4 lm.

While these non-uniform beams are not significantly differ-

ent in this regard, these changes are achieved with less sig-

nificant effects on the natural frequency. Specifically, a

uniform beam of the type under consideration with thickness

6 lm (2 lm) has a natural frequency of about 202 kHz

(67 kHz), whereas the corresponding non-uniform beams

have frequencies of 192 kHz (80 kHz), demonstrating some

level of independent control over frequency and nonlinearity

for beams of fixed length.

While the proposed designs have variable cross-

sectional area, we account for the overall effect of h by con-

sidering the average thickness along the beam for the opti-

mized designs. To illustrate the applicability of shape

optimization methods for altering the nonlinearity, Fig. 5

shows a comparison of the nonlinear coefficients for the

shaped beams with uniform beams with the same average

thickness. These results show that to achieve the same

FIG. 2. Experimental setup schematic. Microbeams are actuated externally

by a shear piezoelectric stack. The in-plane responses are measured with a

Laser Doppler Vibrometer (LDV, Polytec MSA-400) by tilting the beams at

45� with the laser focused on the sidewalls (lower right corner image). The

laser is focused at the midpoint of the beam where maximum displacement

occurs. The amplitude-frequency response curves are obtained from the

spectrum analyzer (HP 88410A).

FIG. 3. Amplitude-frequency responses of three representative microbeams

at varying drive levels. The drive voltages for the three beams from top to

bottom are: 0:2 : 0:1 : 1:4 V; 0:7 : 0:5 : 4:7 V, and 0:2 : 0:4 : 4:0 V,

respectively.

FIG. 4. Amplitude-frequency characteristics of three representative

microbeams. Solid, dotted, and dashed curves represent least-square fitting

of experimental results for “beam_initial,” “beam_min” (final), and

“beam_max” (final), respectively.
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amount of change in nonlinearity, the optimized beams

required less average thickness changes when compared

with uniform beams, thus allowing one to achieve a given

nonlinearity with less shift in the natural frequency. We also

performed numerical computations on the same beam geom-

etries using the techniques described by Dou et al.19 for com-

parison. Comparison of the experimental results with the

numerical predictions (Table I) shows that the minimized ceff

agrees with the computed value within 8%. A larger discrep-

ancy occurs in the maximization of ceff; however, the trend

qualitatively agrees with the numerical results. We believe that

the difference between numerical and experimental results for

the beams designed to maximize ceff is due to the abrupt

changes in the beam thickness profile, which causes errors in

the numerical algorithm that utilizes simple beam elements. In

contrast, beams designed to minimize ceff result in relatively

small errors due to their relatively smooth beam profiles.

The ability to adjust the Duffing nonlinearity through

design is especially useful in increasing the linear dynamic

range of resonators, which plays a pivotal role in reducing

phase noise in MEMS oscillators and for increasing the signal-

to-noise ratio in resonant sensors.24 The experimental results

shown in this work are in good agreement with numerical

predictions19 for the important case of minimizing the non-

linearity, and they demonstrate that one can utilize shape

optimization methods for adjusting the resonator nonlinearity

in a well-controlled manner. For more practical designs, it is

desirable to include more variable parameters and constraints

in the optimization process, for example, so that one can

maintain the same resonant frequency or satisfy additional

dimension constraints. Another important consideration is

optimization for both mechanical and electrostatic effects

and their relative contributions to the resonator parameters,

such as stiffness coefficients and motional impedance. The

latter is of significant importance for applications requiring

low power consumption. These are possible and we are cur-

rently working on systematic designs of resonators with

more freedom in the tuning of these parameters. Finally, the

results presented provide strong confidence that nonlinear

shape optimization methods can be applied in the design of

MEMS resonators with more complicated geometries, with

multi-physics effects, e.g., piezo-electric resonators, and for

different nonlinear parameters, including difficult-to-control

modal coupling coefficients.19 Additionally, it is possible to

combine shape optimization with topology optimization

algorithms to achieve the full potential of finite element

modeling with considerations of fabrication constraints for

targeted dynamical responses.
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