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ABSTRACT 
Within the CAZy database, there are 81 carbohydrate-binding module (CBM) families. A 
CBM represents a non-catalytic domain in a modular arrangement of glycoside hydrolases 
(GHs). The present in silico study has been focused on starch-binding domains from the 
family CBM41 that are usually part of pullulanases from the α-amylase family GH13. 
Currently there are more than 1,600 sequences classified in the family CBM41, almost 
exclusively from Bacteria, and so a study was undertaken in an effort to divide the members 
into relevant groups (subfamilies) and also to contribute to the evolutionary picture of family 
CBM41. The CBM41 members adopt a β-sandwich fold (~100 residues) with one 
carbohydrate-binding site formed by the side-chains of three aromatic residues that interact 
with carbohydrate. The family CBM41 can be divided into two basic subdivisions, 
distinguished from each other by a characteristic sequence pattern or motif of the three 
essential aromatics as follows: (i) “W-W-~10aa-W” (the so-called Streptococcus/Klebsiella-
type); and (ii) “W-W-~30aa-W” (Thermotoga-type). Based on our bioinformatics analysis it 
is clear that the first and second positions of the motif can be occupied by aromatic residues 
(Phe, Tyr, His) other than tryptophan, resulting in the existence of six different carbohydrate-
binding CBM41 groups, that reflect mostly differences in taxonomy, but which should retain 
the ability to bind an α-glucan. In addition, three more groups have been proposed that, 
although lacking the crucial aromatic motif, could possibly employ other residues from 
remaining parts of their sequence for binding carbohydrate. 
 
Key words: starch-binding domain; carbohydrate-binding module family CBM41; family 
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INTRODUCTION  

  

The carbohydrate-binding module (CBM) family 41 is one of the 81 CBM families classified  

currently within the Carbohydrate-Active enZymes (CAZy; http://www.cazy.org/) database.1  

This module folds as a single domain and, for the characterized enzymes, has been found to  

exist together with the catalytic domains of pullulanases and glycogen-degrading enzymes2,3  

of glycoside hydrolase (GH) family GH13, the main α-amylase family.4,5 This view is  

supported by the first crystal structure of a CBM41 module determined in complex with  

maltooligosaccharides in the family GH13 pullulanase from Thermotoga maritima.6 The  

CBM41 is therefore considered as one of the 13 families of starch binding domains (SBDs),  

i.e., CBM20, 21, 25, 26, 34, 45, 48, 53, 58, 68, 69 and 74 in addition to CBM41.1 In some  

cases a domain, classified as an SBD, may actually represent a glycogen-binding domain  

(GBD), e.g., in laforin, genethonin-1 or the β-subunit of AMP-activated protein kinase.7  

 In general, an SBD is a protein module consisting of approximately 100 amino acid  

residues and containing aromatic residues at certain positions (mostly tryptophans and  

tyrosines, but also phenylalanines or histidines) that are essential for the SBD to bind  

carbohydrate,7-14 i.e., raw starch and/or related α-glucans, and thus enhance the degradative  

action of the enzyme to which the SBD is attached.15,16 It is of note that raw-starch degrading  

amylases without any distinct SBD exist and are also well known.17 The individual SBDs  

(and GBDs) classified as the CAZy CBM families mentioned above can be distinguished  

from each other by the conserved positions of these aromatic residues that constitute either  

one or two starch-binding sites. In other words, although the overall tertiary structure of all  

SBDs (GBDs included) is a similar β-sandwich13,18,19 and the mode of saccharide binding may  

be conserved,7,20-22 the individual SBD families exhibit characteristic aromatic residues  

involved in binding, which are fully alignable only within a given family.7-8,12,23  

 With regard to the location of an SBD in the domain organization of a polypeptide  

chain, it may either precede6,24-32 or succeed the catalytic domain.33-40 It moreover is  

frequently found accompanied by so-called fibronectin type III domains occurring in a wide  

variety of carbohydrate-active enzymes.41 Remarkably, in a special case, the SBD is inserted  

within the domain B, which itself represents a long loop in the catalytic (β/α)8-barrel domain  

A, characteristic of all members of the α-amylase family GH13.42 The N-terminal position is  

thus typical for families CBM21, 34, 41, 45, 48, 53 and 68, while families CBM20, 25, 26, 69  
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and 74 occur in a C-terminal position, and the special case of the insertion within domain B 

involves the family CBM58.6-12,43-50 

 SBDs were originally recognized as a module found typically in microbial amylolytic 

and related enzymes. It is worth mentioning that various SBDs and GBDs have also been 

identified in other plant and animal enzymes and proteins, such as plant starch synthase 

III,28,51-53 glucan-water dikinases,26,29,31 starch-excess protein-454,55, animal laforin,56-59 

genethonin-1,60-62 as well as the β-subunit of AMP-activated protein kinase63,64 and its 

homologues in plants,65,66 and even in lytic polysaccharide monooxygenases from fungi.67 

Nevertheless, as for the microbial SBDs, generally the non-microbial SBDs or GBDs are 

always involved in metabolism of starch and/or glycogen, or other α-glucans.7 

 The family CBM41 was established based on the study by Lammerts van Bueren et al.,4 

who demonstrated binding of α-glucans containing 1,4 glycosidic bonds only (preferred) and 

with 1,4 and 1,6-bonds (tolerated) by the recombinantly produced SBD of the family GH13 

pullulanase from Thermotoga maritima. According to the division of the α-amylase family 

GH13 into subfamilies,68 this pullulanase69 belongs to subfamily GH13_14. All the CBM41 

family members are likely to adopt a distorted β-barrel fold (β-sandwich) with one 

carbohydrate-binding site,6 formed, in Thermotoga maritima pullulanase, by the side-chains 

of two tryptophans W27 and W29 responsible for hydrogen bonding and hydrophobic 

stacking interaction, respectively, with glucose moieties, and completed by a third tryptophan 

W73 also involved in a stacking interaction and contributing to binding of longer 

maltooligosaccharides. 

 As mentioned above, most CBMs classified as SBDs share a β-sandwich fold10-14,18,19 

using usually aromatic residues at binding sites. It has already been pointed out6,25 that the 

overall fold, with limited sequence identity and general architecture of the binding sites, is 

similar in CBM41, CBM20, CBM25 and CBM26. For the CBM20, it was convincingly 

shown7 that it exhibits the best similarity, including both sequence and structural 

correspondences of binding residues, to CBM48; this pronounced homology has recently been 

extended also to family CBM69.40 The two remaining families CBM25 and CBM26 have also 

been recognized as forming a closely related pair of SBDs.8,37 The fact that CBM41 is 

preferably found in pullulanases could be explained by an ability of CBM41 to accommodate 

oligo- or poly-saccharides with an α-1,6-linked glucose, which CBM20, CBM25 and CBM26 

very probably lack.6 There is no indication, however, that there is a higher affinity for a 

branched substrate. 
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 Currently, there are more than 1,600 sequences classified in the family CBM41 in the 

CAZy database.1 These are almost all from Bacteria, with a few members from Eucarya – 

currently only from green and red algae. As mentioned above, with regard to the catalytic 

domain, family CBM41 modules are mainly contained in pullulanases, glycogen-degrading 

enzymes and amylopullulanases, all classified in the α-amylase family GH13.4,5 However, in 

addition, many putative “amylases”, related enzymes and other hypothetical proteins, are 

predicted to have a CBM41.1 In addition to the CBM41 from the Thermotoga maritima 

pullulanase,6 tertiary structures are known for the CBM41 of pullulanases from Klebsiella 

pneumoniae
25 and Klebsiella oxytoca,70 both classified in the subfamily GH13_13. Moreover, 

in the solved structure of Streptococcus pneumoniae glycogen degrading enzyme SpuA from 

the subfamily GH13_12, two CBM41s are arranged in tandem, importantly in complex with a 

maltooligosaccharide.71 Further, the structure of its counterpart, the surface-anchored 

pullulanase from Streptococcus pyogenes PulA, has been determined and shown to possess 

two CBM41s in tandem.3 

 One goal of the present bioinformatics study was to attempt to divide the sequences of 

family CBM41 into groups that could potentially define subfamilies. The individual groups 

exhibit their particular sequence fingerprints, i.e. a pattern (or motif) of aromatic residues 

involved in carbohydrate binding, which are arranged at specific positions in the amino acid 

sequence and for which characteristic replacement of two of the three essential tryptophans by 

other aromatic amino acids are seen. Important further aims were to elucidate the evolutionary 

relationships among the members of the family CBM41 and to try to relate the observed 

different patterns, i.e. motifs of binding residues, to substrate specificities represented by 

subfamilies of GH13, as well as to taxonomy. 

 

 

MATERIALS AND METHODS 

 

Sequence collection 

All sequences containing a family CBM41 (for details, see Table SI) were collected based on 

information in the CAZy database (http://www.cazy.org/),1 and completed by a careful 

evaluation of the protein Delta-BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi)72 search 

using as queries the CBM41 modules from Thermotoga maritima GH13_14 pullulanase 

(UniProt: O33840, residues S19-P120),69 and Streptococcus pneumoniae GH13_12 glycogen-
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degrading enzyme SpuA (UniProt: Q97SQ7, two tandem modules CBM41-1 and CBM41-2 

spanning residues D135-P240 and Q241-Y350, respectively).3 Since it was evident from 

previous structural studies6,25,69 that there are two versions of CBM41 with regard to the 

position in the sequence of the three key binding tryptophan (or aromatic) residues, i.e. the 

characteristic CBM41 binding motif, sequences were selected in an effort to include all 

relevant representatives of both versions including also those with rare substitutions of the 

three tryptophan positions. 

 After a collection of 2,448 CBM41 modules (not all presently classified in CAZy) 

originating from 1,666 protein sequences, a preliminary analysis was performed indicating 

that all CBM41s can be divided into nine groups (Fig. 1 and Table SI). It was thus decided to 

select CBM41s that would represent mainly the groups 1-6, i.e. those with conserved aromatic 

residues. Since the groups 1 and 5 contained a larger number of CBM41s in comparison with 

the groups 2, 3, 4 and 6, the set was composed of 100 CBM41s from each of the former two 

groups (i.e. 200 sequences) and 50 CBM41s from each of the latter four groups (i.e. also 200 

sequences) (Table SI). These sequences were selected with regard to sequence differences and 

taxonomy within a given group in order to cover also eventual subgroups. All four eukaryotic 

representatives classified in the CAZy database (10 October 2016) were included. This 

selection has resulted, however, in finding four CBM41 copies that may be considered as 

“irregular” CBM41s, because they do not conform to the pattern of aromatic residues believed 

to be characteristic of the group to which they are assigned, but have a different aromatic 

substitution (Table SI). Concerning the groups 7-9 that were recognised as always lacking all 

three important aromatic residues, but exhibiting similarities to CBM41 within the remaining 

parts of their sequences, all 39 representatives from our original BLAST search and present in 

CAZy were used in the comparison (Table SI). 

 All full-length enzyme and protein sequences containing the CBM41 (Table SI) were 

retrieved from the UniProt knowledge database (http://www.uniprot.org/)73 and/or from 

GenBank (https://www.ncbi.nlm.nih.gov/genbank/).74 In every sequence the CBM41 

boundaries were defined based on previous structural studies,3,6,25,70,71 information available 

in the Pfam database (http://pfam.xfam.org/),75 and data obtained from the BLAST searches 

described above. These boundaries were used to define the limits of the CBM sequences 

making up the input file for their alignment. 

 

Sequence comparison and evolutionary relationships 
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The alignment was performed for the entire set of 443 CBM41 sequences originating from 

284 amylolytic enzymes and hypothetical proteins using the program Clustal-Omega with 

default parameters (http://www.ebi.ac.uk/Tools/msa/clustalo/).76 A subtle manual tuning was 

done in order to maximize similarities taking into account especially the residues identified as 

functionally important in family CBM41.6,71 The evolutionary tree was calculated from the 

final alignment as a Phylip-tree type using the neighbour-joining clustering77 and the 

bootstrapping procedure78 (the number of bootstrap trials used was 1,000) implemented in the 

Clustal-X package.79 The tree was displayed with the program iTOL (http://itol.embl.de/).80 

 

Tertiary structure comparison 

Three-dimensional structures of CBM41 were retrieved from the Protein Data Bank (PDB; 

http://www.rcsb.org/pdb/),81 i.e., structures of the module from pullulanases of Thermotoga 

maritima (PDB code: 2J73),6 Klebsiella pneumoniae (PDB code: 2FHB)25 and Klebsiella 

oxytoca (PDB code: 2YOC)70 as well as of the two tandem modules from the Streptococcus 

pyogenes surface-anchored pullulanase PulA (PDB code: 2J43)3 and Streptococcus 

pneumoniae glycogen-degrading enzyme SpuA (PDB code: 2J44).71 All the CBM41 

structural models were created using the Phyre-2 server 

(http://www.sbg.bio.ic.ac.uk/phyre2/),82 while structures were superimposed using the 

program MultiProt (http://bioinfo3d.cs.tau.ac.il/MultiProt/)83 and displayed with the WebLab 

ViewerLite programme. 

 

 

RESULTS AND DISCUSSION 

 

CBM41 occurrence and sequence comparison 

The present study delivers the in silico analysis of SBDs classified in the CAZy database as 

the family CBM41. Based on a preliminary search comprising data from both CAZy1 and 

BLAST72 and yielding 2,448 potential CBM41 sequences from 1,666 proteins, 443 CBMs 

originating from 284 proteins (Table SI) were selected for a detailed in silico analysis. 

 With regard to occurrence throughout the taxonomy spectrum, CBM41 has been found 

to be almost exclusively of bacterial origin, i.e. of all CBM41s collected, consistent with 

CAZy,1 only four have originated from Eucarya and none from Archaea. Interestingly, all 

four eukaryotic CBM41s were of algal origin, either green algae – Chlorophyta (3 examples; 
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Bathycoccus prasinos, UniProt: K8EZ72; Ostreococcus lucimarinus, UniProt: A4RRA2; 

Ostreococcus tauri; UniProt: Q6PYZ0) or red algae – Rhodophyta (1 example; 

Cyanidioschyzon merolae, UniProt: M1VKA6). 

 Sequence comparison of the selected CBM41 modules, along with inspection of the 

available three-dimensional structures of the family CBM41 representatives belonging to 

different GH13 subfamilies of pullulanases, i.e. structures of the module from the subfamily 

GH13_13 Klebsiella pneumoniae pullulanase,25 of the module from the subfamily GH13_14 

Thermotoga maritima pullulanase6 and of the tandem modules from the subfamily GH13_12 

glycogen degrading enzyme SpuA of Streptococcus pneumoniae,
71 showed that, in most 

cases, there are two versions of arrangement in the amino acid sequence of the three crucial 

aromatic residues involved in maltooligosaccharide binding (Fig. 1). Both versions consist of 

a pair of tryptophan residues − or, in general, indispensable aromatic residues − separated in 

the sequence by only one residue (Trp-X-Trp), the former aromatic residue contributing a 

hydrogen bond involving the indole nitrogen and the latter providing a stacking interaction.6,71 

The difference between the two arrangements involves the position of the third tryptophan, 

which appears invariant and provides a stacking interaction. In one arrangement – seen, for 

example, in both modules from SpuA and also in the one from the Klebsiella pullulanase – 

the third tryptophan residue is located 10-11 residues after the second tryptophan from the 

above-mentioned pair (the Streptococcus/Klebsiella type), whereas in the other arrangement – 

evident, for example, in the Thermotoga module – this third tryptophan residue is placed 

about 30 residues toward the C-terminus from the position of the second tryptophan (i.e. the 

Thermotoga type). It is, however, worth mentioning that the third tryptophan coincides in 

space in the two versions, i.e., their side-chains are superimposable on each other in known 

three-dimensional structures.6 There are, however, sequences where some or all of these 

aromatic residues are missing. 

 With respect to the existence of the two above-mentioned aromatic binding patterns 

(motifs), the alignment of CBM41s has allowed us to divide all sequences into 9 groups 

(Table SI) as follows: (i) groups 1-6 – CBM41 modules with the CBM41 motif of the three 

aromatic residues conserved within the group; and (ii) groups 7, 8 and 9 – the probable “non-

binders” that are lacking at least one or even all the three aromatic residues from the CBM41 

motif – or, if they are able to perform binding, other residues in their sequences have to be 

involved. Note that within the groups 1-6, CBM41s with an “irregular” aromatic motif may 

exist, that do not conform to the pattern for any one group. These are rather rare (only four 

CBM41s in the group 5 in Table SI). Their sequences are closely related to the “templates” 
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from group 5, but they have a conservative substitution of one of the first two aromatic 

residues of the motif. 

 The sequences of groups 1-4 (the Streptococcus/Klebsiella type) as well as 5 and 6 (the 

Thermotoga type) possess three aromatic residues with approximately 10 and 30 residues, 

respectively, between the 2nd and the 3rd aromatic residue in the CBM41 binding motif. The 

sequences we classify in groups 1-6 possess the three aromatic residues believed to be 

important in carbohydrate binding. They are thought to represent starch- or glycogen-binding 

domains from the family CBM41, this conclusion being based on the invariant presence 

within each group of three aromatic residues forming the CBM41 characteristic binding motif 

(Fig. 1), identified in their crystal structures3,6,25,70,71 and especially of complexes with 

maltooligosaccharides.6,71 Note that although in the first two positions, a subtle variation is 

allowed, the third binding position is strictly occupied by a tryptophan residue (Fig. S1). The 

sequences that appear to contain three potential binding residues have been divided into six 

groups according to these variations and differences in the location of the third tryptophan 

residue. 

 Consideration of the Trp-X-Trp motif allows us to distinguish the sequences belonging 

to groups 1-4 from each other. In group 1 the pattern is invariantly Trp-X-Trp. In group 2 we 

see Trp-X-Phe, in group 3 Tyr-X-Trp and in group 4 His-X-Trp. Similarly, groups 5 and 6 

can be distinguished from one another using this motif. In group 5 the motif usually is Trp-X-

Trp, with a small minority of sequences (four of the sequences examined here) having Trp-X-

Phe or His-X-Trp, but classified as belonging to group 5 because of close similarities along 

the length of their sequences with other group 5 members. In group 6, by contrast, the motif is 

Tyr-X-Trp. 

 Thus, of the first two aromatic binding residues separated from each other by only one 

non-conserved residue, the nature of the second aromatic residue seems to be more strictly 

conserved, i.e. of the six groups, only in group 2 is the tryptophan replaced by phenylalanine, 

whereas in the first position, the tryptophan is replaced by tyrosine in groups 3 and 6 or 

histidine in group 4 (Fig. 1). It should be noted, however, that in a small number of group 5 

sequences the first tryptophan may be substituted by tyrosine or histidine. Group 4 is thus the 

only major group with the three aromatic binding residues conserved where one of these 

residues is histidine (Fig. S1). Interestingly, of the four CBM41s originating from Eucarya, 

three CBM41s from green algae are present in group 4. The fourth eukaryotic CBM41 from 

red algae belongs to the group 5 (Table SI). 

Page 8 of 28

John Wiley & Sons, Inc.

PROTEINS: Structure, Function, and Bioinformatics

This article is protected by copyright. All rights reserved.



9 

 With regard to the first “binding” position occupied in group 4 by a histidine, it can be 

pointed out that a hydrogen bond provider may be expected in that position, as evidenced, 

e.g., by structural details of CBM41 from Thermotoga maritima pullulanase.6 The histidine 

represents thus a logical possibility. Interestingly, in groups 1-6, which may be the only “real 

binders” of all groups 1-9 described in the present study, only a histidine, in addition to 

tryptophan and tyrosine, has been found (Fig. S1). This strongly suggests a preference for a 

residue with an aromatic ring and H-bonding capability at that position, but for direct 

interaction with carbohydrate, it is the H-bonding capacity that is important.3,6,71 Currently, 

however, the possibility that other H-bond donors might function just as well as the aromatic 

ones cannot simply be ruled out. 

 There are several other residues that play a functional role in CBM41. Thus in the 

Thermotoga type (groups 5 and 6), S35, E37, K76 and D81 were determined to be involved in 

various hydrogen bond contacts to carbohydrates.6 Sequence comparison (Fig. S1) shows that, 

whereas both S35 and E37 are quite variable, the K76 and more convincingly the D81 may 

belong to very well conserved positions not only in the groups 5 and 6, but also in a 

substantial number of CBM41s belonging to the groups 1-4 (the Streptococcus/Klebsiella 

type). 

 With regard to groups 7-9, there is no experimental evidence in the literature on whether 

or not these CBM41s are able to bind α-glucans. Therefore, in accordance with their 

alignment (Fig. S1), the CBM41s classified into the groups 7-9 likely represent subfamilies of 

CBM41 “non-binders”. Alternatively other (aromatic) residues may have adopted binding 

roles. Indeed the present in silico analysis revealed that several positions (occupied mostly by 

aromatic residues), in addition to the three essential ones, are more-or-less conserved (Fig. 

S1). These are H13, Y14, Y21, W24, F43, F49, F83, W94 and F103 (numbering according to 

in Thermotoga maritima pullulanase6). It is of interest that at least some of them are invariant 

among the CBM41 representatives of the groups 7-9 (H13, Y14, Y21 and W94) or are 

substituted by another aromatic residue or, due to uncertainty in the alignment, have an 

aromatic counterpart in the adjacent position(s) (Fig. S1). Since these additional positions 

containing aromatic residues are neither totally conserved, nor have any functional role 

ascribed based on solved CBM41 structures,6,71 it is hypothesised that these positions may 

represent a relict from a primordial CBM ancestor before the current CBM41s specialized 

during evolution. Certainly most of these residues are not close, as deduced from comparison 

with the Thermotoga maritima CBM41 module, to the carbohydrate binding site and may 

simply play a role in stabilising the folding of the module. It has already been revealed that 
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some, but probably not all, CBM families considered to be SBDs have related folds, and form 

either something like a CBM clan20 or exhibit sequence similarities sharing a mode of α-

glucan binding characteristic of a CBM.7-14 

 

Domain arrangement 

Figure 2 shows the domain arrangement of selected representative proteins bearing the 

CBM41s that belong to the individual groups identified here. The main catalytic domain of 

each of these proteins is from the α-amylase family GH134,5 and mostly with the specificity of 

a pullulanase. This is supported by solved tertiary structures3,6,25,70,71 as well as by affiliation 

of these sequences to GH13 subfamilies 12, 13 and 14 which represent the pullulanase 

enzyme specificity (EC 3.2.1.41).66 Many sequences studied here share a domain arrangement 

observed for bacterial pullulanases from Klebsiella pneumoniae
25,84 and Thermotoga 

maritima
6,69 and their hypothetical homologue from green algae Ostreococcus tauri (UniProt: 

Q6PYZ0), representing the groups 3, 5 and 4, respectively, regardless of their pullulanase 

GH13 subfamily (Fig. 2). Simultaneously, there are many pullulanases and/or their putative 

counterparts that possess more than one CBM41 copy. These multiple copies may or may not 

belong to the same group, e.g., the glycogen degrading enzyme SpuA from Streptococcus 

pneumoniae
71 and the putative pullulanase PulA from Streptococcus pyogenes

3 each have two 

copies of CBM41, but in the former case both copies belong to group 1, whereas in the latter 

case the first copy belongs to group 1 and the second copy to group 2 (Fig. 2). 

 Another example of domain organization can be illustrated by α-amylase-pullulanases 

consisting of two independent catalytic domains – an α-amylase of subfamily GH13_32 and a 

pullulanase of subfamily GH13_14 – bearing, in the case of the enzyme from Bifidobacterium 

breve (UniProt: F9Y041), two CBM41 copies belonging to groups 6 and 5 in that order (Fig. 

2). It should be pointed out that there are also enzymes having four copies of CBM41 (Table 

SI), either with all four copies within a single group or with two copies from one group and 

two copies from another, e.g., putative pullulanases with two catalytic domains from 

Streptococcus gallolyticus (UniProt: F5WVK9 – group 1) and Bacillus akibai (UniProt: 

W4QRN9 – groups 5 and 1 in that order). 

 Concerning the CBM41s from group 7, they are usually found in tandem succeeded by 

their counterparts from group 4 (Table SI), both copies being located C-terminally with regard 

to position of the catalytic domain of enzymes from the subfamily GH13_13 (not shown). On 

the other hand, the CBM41s from groups 8 and 9 belong to putative pullulanases from the 

subfamily GH13_14 with a domain arrangement similar to that seen in the Thermotoga 
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maritima pullulanase,6,69 with the CBM48 being positioned closer to the C-terminus of 

CBM41 (cf. Fig. 2). Finally, some CBM41s are present within shorter proteins (~200-300 

residues) seemingly without any catalytic domain (Table SI). 

 Although the CBM41s may clearly sometimes exist in tandem (especially in groups 1 

and 2), this is not always true (Fig. 2). Nevertheless, at least in the case of glycogen degrading 

enzyme from Streptococcus pneumoniae and pullulanase from Streptococcus pyogenes (and 

their homologues), the two CBM41 modules of each enzyme molecule form dyads that act 

together to help in binding the substrate.3,71 There are examples of existence in tandems for 

SBDs from other families, e.g., CBM25 and CBM26 both in GH13 α-amylases8,11,36,85-87 as 

well as CBM20 in GH77 4-α-glucanotransferases (disproportionating enzymes DPE2),7,88,89 

but for none of these a three-dimensional structure was solved. This co-operative action in a 

dyad cannot be the case for enzymes with only one CBM41. If the CBM41 is a part of a 

family GH13 enzyme, however, available evidence suggests there is always a CBM48 

directly preceding the catalytic GH13 domain (Fig. 2). In the pullulanase from Klebsiella 

pneumoniae, an additional domain with a CBM-like fold is present between the CBM41 

(from the group 3) and the CBM48.25 Both known CBMs of this pullulanase, i.e. CBM41 and 

CBM48, seem to be far enough apart in the three-dimensional structure that they are unlikely 

to interact with one another. The possibility of an enzyme acting as a dimer, however, should 

be taken into account. As described for members of the neopullulanase subfamily possessing 

the CBM34,90-92 in these enzymes their CBM34 of one molecule interacts with the active site 

and bound substrate of the other molecule of the dimer.24,93-95 This is exactly what was 

observed in the crystal structure of Klebsiella pneumoniae pullulanase after the substrate was 

bound.25 Moreover, a very close homologue, the pullulanase from Klebsiella aerogenes is 

believed to act as a monomer in solution96 so here there is no indication of CBM41s acting as 

a dyad. 

 With regard to catalytic domain in terms of the affiliation to the main α-amylase family 

GH134,5 and taking into account the information on available tertiary structures,3,6,25,70,71 we 

see that the groups 1, 3 and 5 are represented typically in the subfamilies GH13_12 

(Streptococcus glycogen-degrading enzyme), GH13_13 (Klebsiella pullulanases) and 

GH13_14 (Thermotoga pullulanase), respectively (Fig. 2; cf. Table SI). 

 

Structural comparison 

For structural comparison of CBM41s belonging to the individual groups 1-9 defined in the 

present study (Table SI), representative tertiary structures were either retrieved from PDB81 
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(CBM41s from groups 1, 2, 3 and 5) or modelled via the Phyre-2 server82 (CBM41s from 

groups 4, 6, 7, 8 and 9). It is worth mentioning here that all models were produced allowing 

the server to choose the best templates. In each case, i.e. for the representatives of the groups 

4, 6, 7, 8 and 9, the modelling resulted in 10 meaningful models (with 100% confidence) 

based solely on CBM41 templates that span at least 94-95% of the modelled sequence. 

Among all the relevant CBM41 templates, the one from Thermotoga maritima pullulanase 

(PDB code: 2J73)6 exhibited the highest sequence identity with the representative of each 

group; therefore the models based on this template were selected for further analysis. 

However, since the preliminary tertiary structure inspection indicated inappropriate 

orientation of one of the three potential binding residues in the CBM41 from Ostreococcus 

tauri, the model constructed according to the CBM41 template from Klebsiella pneumoniae 

pullulanase (PDB code: 2FHF)25 was definitively selected although there was a lower 

sequence identity between the template and modelled sequences (Fig. 3). Using this latter 

template then gave a model with orientation of binding residues very similar to those found in 

the models for the other CBM41s that were based on the Thermotoga maritima pullulanase. 

 Despite some differences, the overall fold adopts a typical CBM41-like β-sandwich 

structure17 identified previously in CBM modules of typical family GH13 

pullulanases3,6,25,70,71 (Fig. 3). These modules have the CBM41-characteristic motif of three 

aromatic residues involved in binding α-glucans seen in the representatives of groups 1-6 

(Fig. 3a-f). It has already been demonstrated for CBM41 structures from Klebsiella and 

Thermotoga pullulanases6 that all the three functional aromatic residues are fully 

superimposable, i.e. they are structurally conserved despite the fact that, at the sequence level, 

the third aromatic binding residue (tryptophan) of groups 1-4 does not correspond to the 

equivalent tryptophan residue of groups 5 and 6 (Fig. 3). Variations seem to be allowed – at 

least according to our current knowledge – only at the first two positions of the motif since 

the third position is always occupied by a tryptophan. Group 4 with the histidine residue in 

the motif His-X-Trp (Fig. 3d) is presented for CBM41 for the first time here. 

 As far as CBM41s from the “non-binders” groups 7, 8 and 9 are concerned, all of them 

have been modelled using the CBM41 of the pullulanase from Thermotoga maritima
6 as the 

best template. Since these sequences have already been classified into the family CBM41 in 

CAZy1 (cf. Table SI), they, as expected, exhibit a fold typical for this SBD family (Fig. 3g-i) 

despite the fact that they do not possess the three aromatic residues recognised as the CBM41 

binding motif. Each representative structure from the groups 7-9 gives a convincing result for 

superimposition with the structure of its template, i.e. the overlays cover in each case almost 
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the entire sequence length with a meaningful value of root-mean square deviation (RMSD). 

This enables identification even of residues corresponding with the binding motif (Fig. 3j-l), 

which were arginine, glycine and lysine for the group 7 (Fig. 3j), serine, lysine and none as 

the third residue for the group 8 (Fig. 3k), and valine, serine and glutamine for the group 9 

(Fig. 3l). But for all these, additional experimental work focusing on biochemical 

characterization is necessary to either prove or eliminate their carbohydrate-binding ability, 

since at present they all are only in the CAZy database1 as putative proteins released from 

genome sequencing projects. It is, however, worth mentioning that there are several other 

positions with aromatic residues in their sequences (Fig. 1) that are well conserved throughout 

these groups (Fig. S1) that could be checked by, e.g. site-directed mutagenesis in order to 

verify whether or not they have a binding role. 

 It is of note that the binding residues – or residues corresponding to them – were in each 

case deduced by inspection of structure-based sequence alignment provided by the Phyre2 

server82 and supported by superimposition of a structural model with its template performed 

by MultiProt server.83 The results from both servers suggest that all the three potential binding 

aromatic residues in the CBM41 models of the groups 4 and 6 (Fig. 3d,f) have been identified 

correctly and that there are most probably no aromatic residues in the CBM41 models of the 

groups 7, 8 and 9 that would correspond with binding residues from the known CBM41 

structures (Fig. 3j-l). 

 

Evolutionary relationships 

The phylogenetic tree of the members of the SBD family CBM41, divided into nine groups 

according to their CBM41-characteristic binding motif, is illustrated in Figure 4 and 

demonstrates the overall evolutionary picture, i.e. clustering of all 443 CBM41s from the 

present study (Table SI). The same tree with necessary details on all the individual 443 

CBM41s is shown in Figure S2. 

 It is evident that there are two main parts in the evolutionary tree: (i) the “binders” 

groups 1-4 that includes also the “non-binders” group 7; and (ii) the “binders” group 5 and 6 

covering also the “non-binders” groups 8 and 9. Thus the two parts of the tree reflect the basic 

difference between the CBM41-characteristic binding motif, i.e. the distance between the 

second aromatic binding residue and the third tryptophan being either ~10 or ~30 amino acid 

residues (cf. Figs. 2 and 3). 

 With regard to the part of the tree comprising the groups with the shorter distance 

between the two above-mentioned residues, it is clear that groups 1 and 2, originating mostly 
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from the genus Streptococcus, are closely related as are groups 3 and 4 having predominantly 

the Klebsiella, Vibrio and Streptomyces origin, the last- mentioned cluster comprising also the 

three CBM41s of eukaryotic origin (green algae). The group 7 with all of its members being 

from the genus Streptomyces is found to be most closely related with their taxonomical 

counterparts of group 3 (Fig. S2). 

 As far as the second part of the tree is concerned, involving the groups with the longer 

distance in the CBM41 binding motif, the groups 8 and 9 (again all from the genus 

Streptococcus) are located on adjacent branches sharing a cluster with streptococcal 

representatives from group 5. Taxonomy in this part of the tree is further reflected especially 

for bacilli from the genera Bacillus (group 5) and Lactobacillus (groups 5 and 6) as well as 

for actinobacteria from Bifidobacterium and Gardnerella that can be found in two different 

clusters representing both groups 5 and 6 separately. The only eukaryotic representative 

CBM41 from the red alga (Cyanidioschyzon merolae) is positioned in a small taxonomically 

variable cluster of the group 5 together with CBM41s from Listeriaceae, Helcococcus, 

Spirochaeta, Paenibacillus and Mobiluncus (Fig. S2). The four “irregular” CBM41s of group 

5, which originate from Firmicutes (Table SI) and have a conservative substitution (i.e. an 

aromatic residue for another aromatic residue) in the CBM41 binding motif, are found in the 

tree also in agreement with their taxonomy. Since the groups 5 and 6 cover a wider spectrum 

of organisms, it is reasonable to see more variability among their clusters in comparison with 

groups 1-4 that comprise a substantially narrower taxonomical sample (Table SI). 

 Overall, it can be concluded that as originally observed for SBDs from the family 

CBM20 from various amylolytic GH families23 and recently confirmed also for this SBD 

present in non-amylolytic starch-degrading lytic polysaccharide monooxygenases,50,97-100 

taxonomy seems to be more respected in the evolution of CBMs than the specificity of the 

enzyme to which a given CBM sequence is attached. 

 

 

Conclusions 

 

The present in silico study allows the separation of the family CBM41 into two basic 

subdivisions: (i) the so-called Streptococcus/Klebsiella-type; and (ii) the so-called 

Thermotoga-type. These two subdivisions can be distinguished from each other by a 

characteristic sequence motif of the three essential aromatics, i.e. “W-W-~10aa-W” for the 

former type and “W-W-~30aa-W” for the latter type. Of the three crucial aromatic residues 
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constituting one carbohydrate-binding site in the CBM41 β-sandwich fold, the tryptophans in 

the first and second positions of the motif can be substituted by other aromatic residues, such 

as phenylalanine or tyrosine, or even histidine. This has resulted in the observation of six 

different CBM41 carbohydrate-binding groups – four in the Streptococcus/Klebsiella-type 

and two in the Thermotoga-type. All the members of these six groups, reflecting mostly 

differences in taxonomy, should retain the ability to bind carbohydrate (α-glucans). Three 

additional groups have been proposed that obviously lack the entire aromatic motif, but for 

these the use of residues from remaining parts of their sequence for binding remains a 

possibility. The analysis of domain arrangement indicates that the SBD of the family CBM41, 

if present as a module in an enzyme, is found only in enzymes with the family GH13 α-

amylase-type catalytic TIM-barrel domain. Moreover, those enzymes are most typically 

pullulanases of the subfamilies GH13_12, 13 and 14, and the CBM41 is often present in these 

enzymes together with the SBD of family CBM48. In the overall evolutionary picture of the 

family CBM41, taxonomy, i.e. the evolution of species, seems to be most reflected in both 

subdivisions – among the individual groups and also within a group. 
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Figure Legends 

 

Figure 1 

Sequence alignment of selected CBM41 representatives from groups 1-9. Colour code for the 

aromatic residues: W – yellow, F – red; Y – green; H – blue. The positions occupied by 

aromatic residues, forming the characteristic CBM41 pattern/motif responsible for α-glucan 

binding, are signified by asterisks above the alignment. Hashtags indicate the nine additional 

positions with partially conserved aromatic residues, discussed in the main text, potentially 

playing a functional role, especially in CBM41s from the groups 7, 8 and 9. The label of the 

CBM41 consists of the name of the organism and the UniProt accession number succeeded by 

a digit (if any) in the case where there are multiple copies of CBM41 within a single protein. 

 

Figure 2 

Domain arrangement of selected CBM41 representatives from groups 1-6. The position and 

size of all domains in individual representatives were extracted with help of literature3,6,25,71 

and Pfam database75, and should correlate with those in real proteins (UniProt accession 

number is given in parenthesis). GH13 denotes the α-amylase family; its subfamily68, if 

known, is indicated. The other CBM families of SBDs, if present, are also shown. 

 

Figure 3 

Structural comparison of selected CBM41 representatives from groups 1-9. (a-f) Groups 1-6; 

(g-i) groups 7-9. Sources of the proteins: (a) Glycogen degrading enzyme SpuA from 

Streptococcus pneumoniae (PDB code: 2J44) – Q97SQ7_1; (b) pullulanase PulA from 

Streptococcus pyogenes (PDB code: 2J43) – Q8KLP1_2; (c) pullulanase from Klebsiella 

pneumoniae (PDB code: 2FHB) – P08711; (d) putative pullulanase from Ostreococcus tauri 

(model) – Q6PYZ0; (e) pullulanase from Thermotoga maritima (PDB code: 2J73) – O33840; 

(f) α-amylase-pullulanase from Bifidobacterium breve (model) – F9Y041_1; (g) putative 

family GH13 member from Streptomyces flavogriseus (model) – E8WFD0_1; (h) putative 

family GH13 member from Streptococcus oralis (model) – F2QDA0; (i) putative family 

GH13 member from Streptococcus pneumoniae (model) – B2IPZ0. For structural models, the 

CBM41 of the pullulanase from Thermotoga maritima (group 5; PDB: 2J73) was the best 

template for representatives of groups 6 (30% sequence identity and 98% sequence coverage), 

7 (33% and 97%), 8 (28% and 98%) and 9 (25% and 98%), whereas the CBM41 of the 

pullulanase from Klebsiella pneumoniae (group 3; PDB: 2FHF) was used for modelling the 
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representative of the group 4 (16% sequence identity and 94% sequence coverage). The 

confidence of all models was 100% in each case meaning that the sequence of the model and 

its template are true homologues and that the overall fold is modelled at high accuracy. For 

the groups 1-6 (a-f), the CBM41 characteristic pattern/motifs of the three aromatic residues 

responsible for α-glucan binding are shown, the first residue being in the middle, the second 

residue being at the bottom and the third one at the top. (j-l) CBM41 modelled structures from 

the groups 7, 8 and 9 coloured olive, green and walnut, respectively, superimposed with their 

template – CBM41 from Thermotoga maritima pullulanase (coloured blue) with bound 

maltotetraose (coloured by elements). (j) Alignment size: 81 Cα atoms, RMSD: 0.63 Å; (k) 

Alignment size: 85 Cα atoms, RMSD: 0.73 Å; (l) Alignment size: 84 Cα atoms, RMSD: 0.83 

Å. It is clear that in the CBM41s from the groups 7-9, the three aromatic residues from the 

CBM41 characteristic binding pattern/motif do not have their aromatic counterparts. 

 

Figure 4 

Evolutionary tree of the SBD family CBM41. The tree is based on the alignment of all 443 

CBM41 sequences derived from 284 proteins (Fig. S1). The nine groups proposed are 

highlighted by different colours, the groups being also indicated by relevant digits near their 

clusters. For the sake of simplicity, only the branches are shown. The same tree with all the 

leaves described is presented in Figure S2. Details concerning all CBM41 sequences 

compared in the tree as well as their colouring are given in Table SI. 
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Figure 1. Sequence alignment of selected CBM41 representatives from groups 1-9.  
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Figure 2. Domain arrangement of selected CBM41 representatives from groups 1-6.  
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Figure 3. Structural comparison of selected CBM41 representatives from groups 1-9.  
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Figure 4. Evolutionary tree of the SBD family CBM41.  
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