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A fully coupled air foil bearing model considering friction – Theory &
experiment

Sebastian von Osmanskia, Jon S. Larsena, Ilmar F. Santosa

aDepartment of Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

Abstract

The dynamics of air foil bearings (AFBs) are not yet fully captured by any model. The recent years have, however, seen
promising results from nonlinear time domain models, and simultaneously coupled formulations are now available,
avoiding the previous requirements for undesirably small time steps and temporal convergence studies.

In the present work, an alternative foil structure model is substituted for the simple elastic foundation model to
avoid its inherent limitations. The new foil model is based on a truss representation from the literature, but incorporates
the foil mass and a dynamic friction model. As a consequence of the friction model’s velocity dependency, the foil
mass is included to obtain a set of differential equations that can be coupled to the rotor and fluid domains while
allowing a simultaneous solution.

Considerations leading to a practically applicable implementation are discussed and numerical results are com-
pared with experimental data. The model predicts natural frequencies and mode shapes well, but it is not yet capturing
the unbalance response when friction is considered. Possible causes for this discrepancy are discussed and it is sug-
gested that sticking is a more prevalent state than previously assumed.
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Nomenclature

AFB Air Foil Bearing
CG Center of Gravity
DAE Differential/Algebraic Equation
EOM Equation of Motion
FD Finite Difference
FE Finite Element
FRF Frequency Response Function
LOM Light Optical Microscopy
ODE Ordinary Differential Equation
PDE Partial Differential Equation
RE Reynolds Equation
SEFM Simple Elastic Foundation Model
DOF Degree of Freedom
(¨) Time derivative, d2/dτ2

(˙) Time derivative, d/dτ
( )e Element specific
(˜) Nondimensional quantity

∇· Divergence
∇ Gradient, ∇ = {∂/∂θ, ∂/∂z̃}
A, B Bearings
a Scalar field quantity
C Radial clearance
Eb Young’s modulus of bump foil material
Et Young’s modulus of top foil material
e, ε Journal eccentricity components, ε = e/C
F, F̃ Bearing force components, F̃ = 1/(paR2)F
fµ Friction force
fN Normal force
h, h̃ Film height, h̃ = h/C
hb Bump foil height
hc, h̃c Film height (compliant), h̃c = hc/C
hr, h̃r Film height (rigid), h̃r = hr/C
hs, h̃s Slope height, h̃s = hs/C
I Mass moment of inertia
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It Top foil area moment of inertia
kb Structural bump stiffness per unit area
k j,d j Truss stiffness and damping,

j ∈ {1, 1b, 2, 3, 3b, 4}
kt Asperity stiffness
L, L̃ Bearing length, L̃ = L/R
l0 Bump half length
l1, l2 Distance from CG to bearings
l3, l4 Distance from CG to discs
lt Top foil length
m Mass
mb Bump foil mass per bump
Nb Number of bumps
Np Number of bearing pads
p, p̃ Film pressure, p̃ = p/pa

pe
1, pe

2 Pressure values at nodes
pa Ambient pressure
p̃m Nondimensional mean axial pressure
R Journal radius
Rb Bump radius of curvature
S Compressibility number, S = 6µω/pa (R/C)2

S b Bump foil pitch
t Physical time
tb Thickness of bump foil
tt Thickness of top foil
U Unbalance kg·m
vr Relative sliding velocity
W, W̃ Static load components, W̃ = 1/(paR2)W
x, y, z, z̃ Cartesian coordinates, z̃ = z/R
xr Relative displacement
α Bearing position
γ Friction function smoothing parameter
µ Dynamic viscosity
µ f Coefficient of friction
νb Poisson’s ratio of bump foil material
νt Poisson’s ratio of top foil material
ω Angular speed of journal
Φ Fluid domain
ψ Film state variable (nondimensional), ψ = p̃h̃
ρt Density of top foil material
ρb Density of bump foil material
τ Dimensionless time, τ = ωt
θ Circumferential angle
θ′ Curvelinear coordinate, θ′ = θR
θ̃ Dimensionless circumferential coordinate,

θ̃ = θ′/R = θ
θ0 Bump half angle
θi Inlet slope end angle for i-th pad
θ j Truss transmission angle, θd or θdb

θl First pad leading edge angle
θli Leading edge angle for i-th pad
θs Inlet slope extend
θt First pad trailing edge angle
θti Trailing edge angle for i-th pad
ξi, η j Gauss points
ζ Damping ratio
ae Vector of field quantities at element nodes
ε Eccentricity vector
f, f̃ Bearing force vector,

f = {fT
A , fT

B}
T , f̃ = 1/(paR2)f

fµ Vector of friction forces
f p Vector of pressure forces
fub, f̃ub Unbalance force, f̃ub = 1/(paR2)fub

g() Nonlinear vector function
h̃c Foil deformation vector
p̃ Pressure vector
ψ Film state vector
r Residual vector
s Advection vector, s = {S , 0}T

ũ Foil structure state space vector
w, w̃ Load vector, w̃ = 1/(paR2)w
x Foil displacement vector
y Global state vector
z1 Rotor displacement vector, z1 = ε
z2 Rotor velocity vector, z2 = ε̇
0 Zero matrix
A f ,Ã f Foil structure system matrix
B Shape function derivatives matrix
D f , D̃ f Foil structure damping matrix
Γ Fluidity matrix
Gr, G̃r Rotor gyroscopic matrix, G̃r = ω

2C/(paR2)Gr

I Identity matrix
Kb Bump foil structure stiffness matrix
K f , K̃ f Foil structure stiffness matrix
Kt Top foil structure stiffness matrix
M f , M̃ f Foil structure mass matrix
Mr, M̃r Rotor mass matrix, M̃r = ω

2C/(paR2)Mr

Mt Top foil mass matrix
N Shape function matrix

1. Introduction

Vibrations of rotor–bearing systems have been subject to investigation at least since Rankine [1] published his
findings on lateral vibrations in 1869. Later, the mathematical description of fluid film bearings was enabled by the
findings of Reynolds, [2] and the course of modern rotordynamics was charted by Jeffcott [3] in 1919.
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While the Reynolds equation (RE) was already extended to encompass compressible lubricants by Harrison [4]
in 1913, the practical interest in gas lubrication can be traced back to the mid-1950s. At this point, especially two
applications appeared to which gas lubrication became attractive. One was inertial navigation systems to be used dur-
ing prolonged submerged operation by nuclear submarines. The second was gas pumps located inside the radioactive
gas circuits of nuclear power reactors [5]. Along with advances within experimental equipment and the emergence of
computerised numerical solutions, these new applications strongly facilitated the development of practical gas lubri-
cation. During the 1960s, the first gas bearings with compliant surfaces appeared and the air foil bearing (AFB) type
was first put into production by Garrret AiResearch in the late 1960s [6]. Since then, AFB technology has evolved
significantly, and more recent efforts even strive towards creating a completely oil-free turbine engine using AFBs [7].

The compliant inner surface of AFBs counteracts some of the inherent issues of rigid gas bearings, such as the
small tolerance to shaft growth and misalignment. Unfortunately, AFBs can also introduce undesirable nonlinear
phenomena into the dynamics of a rotor–bearing system, and lateral vibrations stemming from such nonlinearities are
often the limiting factor of an AFB design. Reliable means for predicting the nonlinear unbalance response are hence
necessary for further spread of the technology.

Although nonlinear transient analysis of oil lubricated bearings was performed as early as 1967 [8], the majority
of the gas bearing literature concerns perturbation solution methods. These apply to the frequency-domain and rely on
linearisation of the reaction forces around the static equilibrium to effectively replace the bearing and fluid film with
a spring–dashpot system. Some of the first to apply such methods to compliant type gas bearings were Heshmat et al.
[9], who included the compliance by introducing a linear elastic function of the fluid film pressure directly into the
steady compressible RE. Even though the top foil was disregarded entirely and any interaction between neighbouring
points in the foil structure was neglected, it allowed the equilibrium state to be obtained while taking into account
the dynamic interaction between foil compliance and fluid film pressure. This approach to introduce compliance has
later been referred to as the simple elastic foundation model (SEFM), and in 1993, it was linked by Peng and Carpino
[10] to the perturbation method given by Lund [11, 12]. This combination has subsequently been applied directly and
along with various SEFM extensions by many authors, e.g. [13–17, 17–21].

The perturbation methods are, however, inherently restricted to an assumed small-amplitude periodic motion [22],
and recent work [23] additionally suggests an inadequacy in the usually applied Taylor series expansion of the pressure
field. One possible way of overcoming these limitations is nonlinear time-domain integration, which is becoming
increasingly practicable due to the growing computational resources available. Some of the first to present transient
simulations of compliant gas bearings were Grau et al. [24], and more advanced foil structure models have been used
for time-simulations by Lee et al. [25] and Le Lez et al. [26]. A primary challenge for these models is the pressure and
film thickness temporal derivatives, which are approximated using finite differences (FDs). This inevitably introduces
a time-lack between the variables, rendering the models non-simultaneous as stated in [27, 28]. The time-lack issue
can, to some extent, be made up for by using very small time steps, but the solution will remain dependent on the step
size and convergence studies are, strictly speaking, necessary [29].

Bonello and Pham [27, 28] solved this issue by substituting an alternative fluid state variable for the film height–
pressure product. The substitution allows the unsteady compressible RE to be treated as a system of ordinary differen-
tial equations (ODEs) and hence to retain the true simultaneously coupled nature of the state variables. This approach
has later been used to obtain the unbalance response of a rigid rotor supported by industrial three-pad AFBs with good
agreement to experimental data [29, 30].

While FD and finite element (FE) spatial discretisations are used in [27, 28] and [29, 30], respectively, both rely
on the SEFM incorporating a loss factor. This implies that: (a) the foil structure’s energy dissipation is modelled as
being viscous; (b) the stiffness is linear and independent of both deformation and frequency; and (c) neighbouring
points in the foil are assumed to deform independently. These are rather crude approximations which calls for the
adoption of more realistic foil structure models.

A possible bump foil model for this purpose, which is still sufficiently simple to be suitable for time-domain
simulation, is suggested by Le Lez et al. [31] based on a truss with member stiffness coefficients derived from the foil
geometry. In contrast to the radially acting spring–dashpot pairs of the SEFM and its relatives, the truss model takes
into account bump–bump coupling and it includes circumferential displacements facilitating the inclusion of friction.

In the present paper, the truss based bump foil model from [31] is coupled to a simple one-dimensional top
foil model similar to that used in [32], the FE discretised unsteady compressible RE previously used by the authors
[23, 29, 30] and a smoothed dynamic friction model as discussed in e.g. [33–35]. Even though the foil dynamics are
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widely accepted to be negligible as argued in e.g. [36], the foil mass is furthermore included in order to retain the
simultaneity of the equation system. This is important as it distinguishes the presented model from existing coupled
models with friction in the literature.

The purpose of the proposed model extensions is twofold: Firstly, to increase the generality of the AFB model, and
secondly, to mimic the physical mechanism for energy dissipation more closely. While the agreement to experimental
data presented in [29] was already notable, this was achieved through a careful choice of foil stiffness and viscous
dissipation coefficient based on a separate FE bump foil model and a number of ”engineering assumptions”. The truss
based foil model, on the contrary, is based on directly measurable geometrical quantities and relies on much fewer
assumptions.

It should be noted that while the parameters and results in the following are reported using SI-units, any consistent
system could have been applied as the mathematical model and its numerical implementation rely on dimensionless
quantities, marked with ”∼”, only.

2. Modelling of the Rigid Rotor

The modelled test rig has previously been presented by the authors [37] and comprises a hollow shaft supported
by two identical three-pad AFBs as illustrated in Fig. 1. The shaft is mounted with plane discs at its extremities to
which unbalance mass can be added. The operational range of the rig is 15 to 30 kRPM and the lowest free-free natural
frequency of the assembled shaft is found to be approximately 1050 Hz, hence a rigid shaft model is deemed adequate.
The resulting four degrees of freedom (DOFs) are expressed by the nodal position vector holding the instantaneous
position of the shaft at the bearing locations A, B as

ε = {εAx, εAy, εBx, εBy}
T . (1)

Using Eq. (1) and under the assumption of small amplitude vibrations in the x- and y-directions, the equation of
motion (EOM) can be written in dimensionless form as the system of second order ODEs

M̃r ε̈ − G̃r ε̇ = w̃ − f̃ + f̃ub, (2)

Bearing B Bearing A

Permanent 
magnets

z

x

Shaft

l2 l1

CG

l4 l3

Unbalance B Unbalance A

(a)

Wx

ex

ey

Wy

θl

θs

hs

θ

h

θt

x

y

ω

(b)

Figure 1: Schematics and nomenclature of a rigid rotor supported by foil journal bearings: (a) Shaft, bearings and rotor disks for unbalance masses;
and (b) detailed view of bearing geometry.
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where M̃r and G̃r denote the dimensionless mass and gyroscopic matrices of the rotor, respectively, and f̃ub is the
vector of unbalance forces given in Appendix A. The static load contribution is contained in w̃, and f̃ = {f̃T

A , f̃T
B}

T

is the reaction force vector from the bearings. The latter is given by integration of the fluid film pressure p̃ in each
bearing α = A, B as

f̃α =
F̃x

F̃y

 = ∫ L̃

0

∫ 2π

0
( p̃ − 1)

cos(θ)
sin(θ)

 dθ̃dz̃, (3)

where L̃ = L/R is the dimensionless bearing length and θ̃ = θ′/R = θ, z̃ = z/R are the dimensionless circumferential
and axial coordinates, respectively.

Furthermore, introducing the rotor state space vectors z1 = ε and z2 = ε̇, Eq. (2) can be recast into first order form
as {

ż1
ż2

}
=

[
0 I
0 M̃−1

r G̃r

] {
z1
z2

}
+

{
0

M̃−1
r (w̃ − f̃ + f̃ub)

}
. (4)

3. Modelling of the Fluid Film

The pressure in each bearing can be obtained by solving the unsteady isothermal Reynolds equation for compress-
ible fluids. This is a partial differential equation (PDE) nonlinear in the pressure which can be written in dimensionless
vector form [38] as

∇ ·
(
p̃h̃3∇ p̃

)
= ∇ ·

(
p̃h̃

)
s + 2S

d
dτ

(
p̃h̃

)
(5)

where S = 6µω/pa (R/C)2 is the compressibility number, s = {S , 0}T is the advection vector and the film height h̃ is
divided into a rigid and a compliant contribution as first suggested by Heshmat et al. [9]:

h̃ = h̃r(εx, εy, θ̃) + h̃c. (6)

The film height in the undeformed bearing h̃r depends on the rotor eccentricity components εx, εy and the circumfer-
ential coordinate θ̃. For a segmented bearing with inlet slopes and the nomenclature as illustrated in Fig. 1b, the film
height contribution h̃r can be written as

h̃r(εx, εy, θ̃) =

1 + εx cos(θ) + εy sin(θ) − h̃s

(
θ−θi
θs

)3
, θli ≤ θ ≤ θi

1 + εx cos(θ) + εy sin(θ), θi < θ ≤ θti
, (7)

where the leading, inlet region and trailing edge angles of the i-th pad in a bearing with Np pads are

θli = θl +
2π
Np

(i − 1), θi = θs + θl +
2π
Np

(i − 1) and θti = θt +
2π
Np

(i − 1). (8)

Notice from Eq. (7) that a cubic inlet slope function is used in order to mimic beam bending and hence to make
∂2h̃r/∂θ̃

2 continuous at θ = θi. This property is desirable as Eq. (5) contains second order spatial derivatives of h̃.
The compliant height term of Eq. (6) could be supplied by a variety of foil structure models with varying de-

pendencies. As it will be shown in section 4, the foil model introduced in the present work results in a h̃c function
depending on the applied pressures and the state variables from the entire pad. This is a fundamental difference from
the strictly pointwise dependency assumed in the SEFM and aims to reflect the continuous nature of the physical foil
structure.

3.1. Discretisation of Reynolds Equation

The spatial discretisation of the fluid film PDE Eq. (5), and hence the conversion into a system of ODEs, is
achieved using FE, but FD or finite volume methods could likewise have been applied. Furthermore, the alternative
state variable ψ = p̃h̃ is introduced to maintain the simultaneity of the equation system as it was introduced in [27, 28]
and subsequently used by the authors in [23, 29, 30].
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Performing the partial substitution with ψ in Eq. (5), the fluid film PDE can be expressed as

∇ ·
(
p̃h̃3∇p̃

)
− ∇ ·

(
p̃h̃

)
s − 2S ψ̇ = 0 (9)

which is then spatially discretised following a standard Bubnov-Galerkin FE procedure with implementation of an
isoparametric element formulation [39]. Upon discretisation [30], this yields a system of nonlinear equations for the
film state derivative vector ψ̇ on the element level

Γeψ̇e = re (10)

with the fluidity matrix Γ and residual vector r given on the element level as

Γe = 2S
∫
Φe

NT N dΦ , re = −

∫
Φe

BT p̃h̃3B dΦ · p̃e +

∫
Φe

BT sh̃N dΦ · p̃e (11)

and where N and B denote the element shape function matrix and its derivatives. The element vectors and matrices
are expanded to structure size by the usual element mapping symbolised by summations [39]:

r =
∑

e

re; p̃ =
∑

e

p̃e; ψ̇ =
∑

e

ψ̇e; Γ =
∑

e

Γe (12)

where the integrals are numerically integrated using a quadrature rule [39]. The scalar field quantities p̃, h̃ are calcu-
lated in the respective Gauss points (ξi, η j) using the interpolation functions as:

a(ξi, η j) = N(ξi, η j)ae (13)

where a and ae are the scalar field quantities and nodal vectors, respectively. Note that the right hand side of Eq. (10)
is denoted re, which is in fact the residual that needs to be minimised in order to find the static equilibrium of the
journal. An efficient method for this minimisation is given in [16].

3.2. Fluid Film Boundary Conditions
Ambient pressure is enforced at the outer edges of the bearing and at the leading and trailing pad edges. This can

be written in dimensionless form as

p̃(θ̃, L̃/2) = p̃(θ̃,−L̃/2) = 1 (14)
p̃(θ̃li, z̃) = p̃(θ̃ti, z̃) = 1 for i = 1, 2, . . . ,Np. (15)

The pressure p̃ is, however, not included explicitly in the fluid film ODEs, meaning that Eqs. (14) and (15) cannot
be enforced directly. Differentiating ψ = p̃h̃ with respect to time, one obtains ψ̇ = ˙̃ph̃ + p̃ ˙̃h, from which it can be seen
that p̃ = 1 corresponds to ψ̇ = ˙̃h, which is continuously enforced in the simulation.

As the two AFBs of the rotor–bearing test rig are assumed perfectly aligned and as the model is limited to small
rotations of the shaft, the pressure profile is consequently symmetric about the bearing midplane. This is exploited
to reduce the computational burden by including only one half of each bearing in the simulation. In practice, this
implies that one of the edges in Eq. (14) is dropped to effectively enforce ∂p̃/∂z̃ = 0 [30] and that the integrated fluid
film reaction forces should be multiplied by two. In the process of integrating the fluid film pressures across the mesh
to obtain f̃α, the Gümbel condition is furthermore enforced. This means that sub-ambient pressures, i.e p̃ < 1, are
discarded effectively rendering these regions inactive.

4. Modelling of the Foil Structure

The presented foil structure model is based on the fundamental assumption that the film height can be treated as
being constant in the axial direction. This is in line with experimental results [40] and allows the foil structure to be
modelled in two dimensions affected by the mean axial pressure over the bearing length L [16, 41, 42]. The three
key-components of the model, namely friction, bump foil and top foil, are covered in the following sections.
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4.1. Friction
Energy dissipation due to sliding friction in the foil structure is widely assumed to be of major importance to

the properties of AFBs, e.g. [6, 26, 32, 43], and the effective radial bump foil stiffness is strongly dependent on
the stick/slip conditions at the housing contacts. Therefore, it is obvious to seek a model relying on friction to
supply stiffness and damping, instead of the widely applied constant stiffness coefficients and viscous dissipation
approximations.

Numerical simulation of friction is difficult due to the nonlinear behaviour of the friction force near zero velocity,
and various approaches to this have been suggested. The friction models found in the literature can be roughly divided
into three categories: stick-slip bookkeeping with alternating boundary conditions [25, 31, 44]; nonlinear springs with
moving reference points [45]; and continuous dynamic friction force approximations [34–36, 46].

As in Coulomb’s law of friction, the stick-slip bookkeeping models differentiate between static and dynamic
friction regimes to apply either boundary conditions or dynamic friction forces. One such model is suggested for AFB
simulation by Lee et al. [25] and relies on an algorithm for continuously evaluating the stick/slip state at each friction
point. This concept is a challenge to numerical stability as non-smooth, or even discontinuous, (in time) reaction and
friction forces are hardly avoidable. Also, the determination of the state transition times becomes a difficult challenge
for a system with many friction interfaces, as a change of state for one friction point influences the remaining ones.

To cope with the classical issue of determining the friction force at zero velocity, Larsen et al. [45] presented an
alternative model based on nonlinear springs with continuously updated reference points. The model was employed
in a quasi-static framework where the times of slide direction changes were known a priori. However, it has proven
difficult to apply in a dynamic framework due to the requirement of instantaneous detection of direction shifts and
discontinuities in the resulting friction forces.

The third category of friction models are characterised by approximating the sign function in the Coulomb friction
law using a smooth function of the relative sliding velocity dxr/dt = vr. Several approximating functions for this
purpose are found in the literature, including the hyperbolic tangent, the inverse tangent and fractions similar to
vr/|vr |, but with some smoothing parameter added to the denominator.

Petrov and Ewins [34] present a very interesting model based on an inverse tangent approximation taking into
account also the asperity stiffness kt. This is given as the ODE with time t as the independent variable

d fµ
dt
= kt

(
vr −

1
γ

tan
(
π fµ

2µ f fN

))
, (16)

where fµ is the friction force, fN is the normal force, γ is a smoothing parameter to the sign approximation and µ f

is the coefficient of friction. The treatment of friction forces as state variables is well-suited for the present purpose,
but numerical difficulties have been encountered as the normal force is often close to zero in certain regions of the
bearings. These issues could possibly be solved by introducing a preload as suggested in [34], but for the present, a
simpler approach is taken where the friction force is given explicitly as the hyperbolic tangent approximation with the
smoothing parameter γ

fµ = fNµ f tanh (γvr) . (17)

This gives a friction force with no distinction between dynamic and static regimes, but it could be extended using
a more sophisticated expression for mimicking other friction phenomena as suggested by Makkar et al. [35]. The
approximation of Eq. (17) to the sign function for increasing values of γ is illustrated in Fig. 2.

A common characteristic shared by all of the assessed friction models is velocity dependency. The stick-slip
bookkeeping models require either a direct evaluation of the sliding velocity or an indirect one through comparison of
positions between time steps. The mentioned nonlinear spring based model requires the velocity to be monitored in
order to correctly move a reference position, and the velocity dependency of the continuous dynamic models is self-
evident. To the best knowledge of the authors, no friction model exists that does not share this dependency, meaning
that a simultaneously formulated AFB model including friction is not realisable without a dynamic foil structure
model.

4.2. Bump Foil Structural Model
The bump foil is modelled as a warren-like truss with member properties derived from the foil geometry sketched

in Fig. 3a. The model is illustrated for an Nb = 3 bump foil strip in Fig. 4, and requires 4(Nb + 1) DOFs, of which
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Figure 2: The fµ/ fN ratios resulting from Eq. (17) using different values of the smoothing parameter γ compared with the sign function. For
reference, ±2000 µm s−1 corresponds to the maximum velocity reached by a 0.5X frequency sliding motion with an amplitude of 2 µm at 20 kRPM.
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Figure 3: The applied bump foil schematics compared with a LOM photo of the actually used bump foil: (a) Schematics of the foil structure; and
(b) light optical microscopy (LOM) photo of one bump using 20 times magnification superimposed with measurements.

Nb + 3 are used for reaction force calculations only. The model uses six stiffness coefficients k1, k2, k3, k4, k1b, k3b

and two force transmission angles θd, θdb, where the ”b” postfix coefficients are particular to the last bump, i.e. that
at the trailing edge. These eight coefficients are calculated using 33 analytical expressions resulting from a tedious
derivation based on Castigliano’s second theorem as presented by Le Lez et al. [31].

The test rig bump foil strips are unchanged from the previous work by the authors, but the foil geometry has
been further investigated to minimise uncertainties. The dimensions included in the commonly used schematics in
Fig. 3a are updated using a series of light optical microscopy (LOM) photos of the actual bump foil as the one shown
in Fig. 3b. Knowing the LOM photo resolution from calibrations, the bump foil height hb, the bump foil pitch S b

and the foil thickness tb are found to be 7.0 mm, 1.15 mm and 0.13 mm, respectively. The superimposed dashed arc
results from a circle fit and indicates a radius of curvature Rb of 5.7 mm. No well-defined flat sections are present
meaning that the half bump length l0 given in the schematics is not directly measurable. This ambiguity is interesting
considering e.g. the analytical bump foil stiffness by Walowit and Anno [47]

kb =
Eb

2S b

(
tb
l0

)3 (
1 − ν2

b

)−1
, (18)

which indicates an inverse proportionality to l0 cubed. Furthermore, the lack of flat intermediate sections reduces the
foil–housing contact regions to lines, contrary to areas or line-pairs often assumed in foil friction analyses [45, 48].
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For consistency, l0 is therefore calculated as the half length of a chord with sagitta hb in a circle with radius Rb resulting
in 3.43 mm and implying a bump half angle θ0 of 37◦. Using these updated dimensions, the stiffness coefficients and
transmission angles for representing the present bump foil geometry are given in Table 1.

Table 1: Stiffness coefficients and transmission angles of the truss structure obtained from the analytical expressions in [31] and foil geometry in
Table 3.

Stiffness coefficients
[
MN m−1

]
Angles [ ◦ ]

k1 k2 k3 k4 k1b k3b θd θdb

31.55 0.4285 2.289 4.992 12.53 1.755 19.97 23.77

A thorough validation of the truss model was presented in [31], but to substantiate its applicability to the present
bump foil geometry and to validate its current implementation, a comparison is made to results from a plane FE model
(see Appendix C). The FE model geometry is extracted directly from Fig. 3b and two load cases are included in which
the bump foil strip is uniformly loaded in its initial straight and fitted curved state, respectively. This results in the
normal, i.e. radial, bump stiffness listed in Table 2. The effect of fitting the foil strip into the bearing housing is found
negligible (less than 2.5 %), and the agreement to the truss model is generally good. The observed discrepancy (42 %)
for the first bump is ascribed to a 4 mm flat section of the foil strip at the leading edge, which is not taken into account
by the truss coefficients. To capture this, a set of alternative coefficients similar to those for the last bump could be
developed for the first one, but this has not been attempted. For comparison, the widely used analytical expression
Eq. (18) predicts a uniform stiffness of 0.88 GN m−3.

Table 2: Comparison of effective stiffness resulting from the truss model and from the plane FE model presented Appendix C.

Effective normal stiffness kb for each bump
[
GN m−3

]
Model 1 2 3 4 5 6 7 8 9

Truss, coefficients from Table 1 3.4 3.2 3.3 3.2 3.2 3.3 3.1 3.7 1.7
Plane FE model, straight state 2.4 3.6 3.2 3.3 3.3 3.3 3.1 4.5 1.6
Plane FE model, fitted state 2.4 3.7 3.2 3.3 3.3 3.4 3.1 4.4 1.6

4.2.1. Inclusion of Bump Foil Mass
Inclusion of the foil mass is generally avoided for at least two good reasons: Firstly, the foil dynamics are insignif-

icant to the desired rotordynamic response, and secondly, the low foil mass results in very high natural frequencies,
posing a challenge to the numerical integration. Neglecting the foil mass, a set of purely algebraic equations is pro-
vided by the presented truss model, meaning that it has no inherent notion of time and hence that only (quasi-)static
results can be obtained from its solution. If this foil model was coupled directly to the shaft and fluid film ODEs, the
coupled equation system would obtain a singular Jacobian matrix, meaning that instead of being a system of ODEs,
it would belong to the wider class of differential/algebraic equation (DAE) systems [49]. Even though the properties
of DAEs are not as well understood as those of ODEs and no general guarantees regarding solution existence and
uniqueness can be given [50], numerical solvers do exist for initial value problems for DAE systems [51–54].

For the present purpose, however, such a DAE formulation would lack the sliding velocities necessary for the
coupling to a friction model. Theses could be reconstructed from the displacements through a number of previous
time steps using FD, but this would break the simultaneity of the solution and reintroduce the need for temporal
convergence studies. Instead, the foil mass is included to transform the foil structure algebraic equations into ODEs
providing the velocities directly. Considering the schematics in Fig. 3a, this is achieved by estimating the foil mass
per bump as the arc and flat section lengths multiplied by the foil’s axial extension, thickness and density as

mb = (2θ0Rb + S b − 2l0) Ltbρb, (19)

and lumping 1
2 mb to each DOF of the truss. This is a rough approximation compared with the distribution of mass in

the physical bump foil, but since an accurate prediction of the bump foil dynamics is not of primary interest, this is
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deemed adequate. For comparison, a nine-bump truss model with lumped masses and the present bump foil dimen-
sions, as given in Table 3, has its first three natural frequencies at 2.12, 4.97 and 5.52 kHz, while the aforementioned
plane FE model equipped with consistent mass matrices gives 2.09, 5.62 and 6.16 kHz.

It should be noted that despite the present foil being relatively soft compared with other foil geometries usually
found in the literature, its natural frequencies are still well separated from the frequency band of interest, in this case
ranging up to approximately 500 Hz. To alleviate the numerical burden of resolving the high-frequency modes of the
bump foil, a stiffness proportional viscous damping is therefore added to the structure. As a main objective has been
to discard viscous damping in favour of frictional dissipation, the added structural damping should be limited not to
become significant within the frequency range of interest, but even a slight damping has proven very beneficial to the
integration. At present, a stiffness proportional damping is added to provide a damping ratio of ζ = 0.001 at 500 Hz,
resulting in modal damping ratios for the first three natural frequencies of 0.004, 0.010 and 0.011. Simulations have
been performed using both ζ(500 Hz) = 0.0001 and ζ(500 Hz) = 0.005 without notable changes in the results.

4.3. Top Foil Structural Model

A top foil model is included to provide the distribution of fluid film pressure onto the underlying bump foil. The
top foil is modelled using plane two-node Euler–Bernoulli beam elements without longitudinal stiffness, very similar
to the one-dimensional model given in [32]. The stiffness matrix of such an element is given by Eq. (D.1).

As the radial top foil deflection corresponds to the compliant height hc in the fluid film equations, the top foil
velocities are necessary for enforcing boundary conditions as discussed in Section 3.2. For this reason, the top foil
mass is also included. This could be achieved using a consistent mass matrix, but since the number of elements in
this matrix is decisive for the number of arithmetic operations required in each time step, it has proven advantageous
to use a diagonal mass matrix instead. An approximate lumped matrix is given in Eq. (D.1). Furthermore, a stiffness
proportional damping is added to the top foil as described for the bump foil structure in the previous section.

The beam representation of the top foil implies that curvature effects and membrane forces are neglected and that
the bump foil–top foil contacts reduce to singular points. This implies an overestimation of the sagging effect and,
according to San Andrés and Kim [32], the top foil Young’s modulus should be multiplied by a factor of four to obtain
a level of sagging comparable to the experimental results from [40]. Sagging has been shown to neither influence the
linear stiffness coefficients [32] nor the obtained steady state equilibrium position [16] significantly, but it implies very
large pressure gradients challenging the numerical integration. In the present work, artificial stiffening of the top foil,
i.e. the mentioned multiplication by four, is avoided as far as possible, but for the cases to be presented with pinned
bump foil, very high levels of sagging have prohibited numerical convergence without it.

4.4. Assembled Foil Structural Model

The bump and top foil elements are assembled into a single system representing the foil structure of an entire
bearing as illustrated for a single pad with three bumps in Fig. 4. The bump and top foils are rigidly connected,
meaning that foil separation is not permitted, and the top foil element length is chosen to match that of the fluid
film. The upper leading edge node of the foil, which is pinned in the original model by Le Lez et al. [31], is flexibly
supported by the linear and torsional springs of stiffness k5 and k6. Currently, the stiffness of these supports are chosen
equivalent to those of a top foil beam element, i.e. k5 = 12EtIt/let

3 and k6 = 4EtIt/let .
A proper nondimensionalisation of the foil structure has proven critical to the time integration, especially with

regard to the chosen length scale. It would have been convenient to use the same length scale as for the fluid film
quantities, i.e. the clearance C, but this has proven unsuitable. Instead, the top foil element length let , which is in the
order of 1

8 to 1
2 of the bump pitch, is used while the time and force scales are shared with the fluid film. Using these

scales, the nondimensional foil structure displacements are collected in the vector x̃α for each bearing α = A, B and
the foil structure is represented by the nondimensional mass, damping and stiffness matrices M̃ f , D̃ f and K̃ f . The
vector of compliant heights h̃c needed in the fluid model, and the main purpose of the foil model, is hence a subset of
the foil structure displacement vector, h̃c ⊂ x̃. The piecewise linear fluid film pressure is acting on the top foil beam
elements through the vector of nondimensional work equivalent nodal loads f̃ p

(
p̃α

)
, calculated using Eq. (D.2).

To include the frictional forces, a vectorised version of the scalar friction force function Eq. (17) is obtained
following four steps: (a) calculating the relevant normal forces from the bump foil’s dynamic equilibrium, taking into
account the reversed direction of the normal forces at the top foil interfaces; (b) equating negative normal forces to
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Figure 4: Illustration of foil structure model for three bumps

zero; (c) associating the obtained normal forces to their relevant sliding DOFs; and (d) calculating the friction force
for each sliding DOF using Eq. (17). This procedure is represented by the friction force vector f̃µ

(
x̃α, ˙̃xα, ¨̃xα, p̃α

)
.

With the external forces represented by f̃ p and f̃µ, the foil structure’s EOMs can be written as a system of nonlinear
ODEs as

M̃ f ¨̃xα + D̃ f ˙̃xα + K̃ f x̃α = f̃µ
(
x̃α, ˙̃xα, ¨̃xα, p̃α

)
+ f̃ p

(
p̃α

)
. (20)

By introducing the dimensionless foil state space vector

ũα =
{

x̃T
α

˙̃xT
α

}T
, (21)

the EOM Eq. (20) can be reformulated into a system of first order ODEs as

˙̃uα =

Ã f︷                       ︸︸                       ︷[
0 I

−M̃−1
f K̃ f −M̃−1

f D̃ f

]
ũα +

{
0

M̃−1
f

(
fµ

(
ũα, ˙̃uα, p̃α

)
+ f̃ p

(
p̃α

))} , (22)

which constitutes the governing equation of the foil structure including friction. The linear contribution is represented
by the nondimensional and constant foil structure matrix Ã f while the nonlinear contribution is given by the vector
functions f̃ p and fµ.

5. Coupled System of ODEs

Three sets of first order ODEs representing the rotor, fluid and foil structure domains have been established as
given by Eqs. (4), (10) and (22). Introducing the global state vector

y =
{
ψT

A ψT
B ũT

A ũT
B zT

1 zT
2

}T
, (23)
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these domains can be coupled to obtain a single system of nonlinear first order ODEs as



ψ̇A
ψ̇B
˙̃uA
˙̃uB

ż1
ż2


=



0 · · · · · · · · · · · · 0
... · · · · · · · · · · · ·

...
...

... Ã f 0 · · ·
...

...
... 0 Ã f

... 0
...

... · · · · · · 0 I
0 · · · · · · 0 M̃−1

r G̃r 0





ψA
ψB
ũA

ũB

z1
z2


+



gψ̇A(ψA, z1, z2, ũA)
gψ̇B(ψB, z1, z2, ũB)
g ˙̃uA(ψA, z1, ũA, ˙̃uA)
g ˙̃uB(ψB, z1, ũB, ˙̃uB)

0
M̃−1

r (w̃ − f̃ + f̃ub)


. (24)

The nonlinear functions on the right hand side are defined from Eq. (10) as

gψ̇α(ψα, z1, z2, ũα) = Γ−1
α rα (25)

and from Eq. (22) as

g ˙̃uα(ψα, z1, ũα, ˙̃uα) =
{

0
M̃−1

f

(
fµ

(
ũα, ˙̃uα,ψα, z1

)
+ f̃ p

(
ψα, ũα, z1

))} , (26)

respectively.

5.1. Numerical Implementation – An Overview

The numerical integration of Eq. (24) is more time-consuming than for its SEFM based counterpart previously
presented by the authors in [23, 29, 30], and an efficient implementation is necessary to obtain reasonable solution
times. The implementation used for the present work is written mainly in C and the system of ODEs are solved using
the ”CVODE” linear multistep solver from the Sundials package [53]. A substantial reduction of integration time
has been obtained by applying an iterative solution scheme to solve the linear system of equations required for each
Newton–Raphson iteration within each time step. The Jacobian matrix is approximated numerically, but it is expected
that an analytical expression for this, as used by Bonello and Pham [27], would provide a further significant speed-up.

Each evaluation of Eq. (25) requires the solution of a linear system of equations. This is achieved using LAPACK’s
band form routines to initially factorise the fluidity matrix Γα and subsequently to obtain the solution from back-
substitution. For the assembly of rα, it has proven beneficial to use a regular mesh as this allows the constant parts of
the matrix–vector products from Eq. (11) to be shared between elements.

For evaluating Eq. (26), the reaction forces need to be obtained from the bump foil structure’s dynamic equilibrium,
requiring three matrix–vector products, and the inverse mass matrix should furthermore be multiplied by the sum of
friction and pressure forces. To efficiently obtain these products, a compressed-sparse-row matrix format is used.

A limitation in the current implementation is the transfer of forces between the fluid film and top foil elements, as
this requires the nodes of the two models to line up circumferentially. This means that separate convergence studies
cannot be performed and hence that one of the domains must be meshed denser than necessary.

The numerical results presented in the following are calculated on a workstation equipped with a 3.5 GHz Intel R©

XeonTM processor. For each bearing, the fluid film has been discretised using 819 nodes, while 576 degrees of freedom
have been used for the foil structure. Including the rigid shaft, this gives 2798 equations. The time required to solve
this system is strongly dependent on the model parameters, especially those related to damping and friction, but one
second of simulation starting from a rotor-drop currently requires a few hours of computation.

6. Results & Discussion

The following three sections present a number of results regarding the friction model, the frequency response of
the rotor–bearing system and the unbalance response. All of these are based on the test rig data as given in Table 3.
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Table 3: Geometry, material properties and operating conditions of the Siemens foil bearing test rig.

Shaft assembly
Bearing A to CG, l1 201.1 mm Mass, m = mx = my 21.1166 kg
Bearing B to CG, l2 197.9 mm Polar moment of inertia, Izz 30.079 × 10−3 kg m2

Unbalance A to CG, l3 287.2 mm Transverse moment of inertia, Ixx = Iyy 525.166 × 10−3 kg m2

Unbalance B to CG, l4 304.0 mm

Bearing configuration
Bearing radius, R 33.50 mm First pad leading edge, θl 30◦

Bearing length, L 53.00 mm First pad trailing edge, θt 145◦

Radial clearance, C 40 µm Slope extend, θs 30◦

Number of pads, Np 3 Slope height, hs 50 µm

Fluid properties
Viscosity, µ 1.95 × 10−5 Pa s Ambient pressure, pa 1 × 105 Pa

Bump foil properties
Bump foil thickness, tb 0.13 mm Bump foil pitch, S b 7.00 mm
Bump foil half length, l0 3.43 mm Bump foil height, hb 1.15 mm
Young’s modulus Eb 207 GPa Poisson’s ratio, νb 0.3
Radius of curvature, Rb 5.7 mm Coefficient of friction, µ f 0.05
Density, ρb 8280 kg m−3 Bump half angle, θ0 37◦

Top foil properties
Top foil thickness, tt 0.254 mm Poisson’s ratio, νt 0.3
Young’s modulus Et 2.07 × 1011 Pa Density, ρt 8280 kg m−3

6.1. The Foil Model

The first results treat the friction function smoothing parameter γ. Too low a value effectively renders the function
linear and provides viscous dissipation, while too high a value results in a very stiff problem difficult to solve. A series
of rotor drops from the bearing centres is performed for varying values of γ at 20 kRPM, resulting in a maximum foil
deformation at the first drop as depicted in Fig. 5. The simulations are continued for 0.5 s while the transient part of the
rotor trajectory decays and a steady state orbit forced by the unbalance is formed. In Fig. 6, the mean axial pressure
p̃m is plotted as a function of the foil deformation hc at θ = 180◦ for three different values of γ. This point corresponds
to the summit of bump three in the second pad, which is in the heaviest loaded region as seen in Fig. 5. Setting γ to
zero, effectively deactivating the friction model, the foil behaves linearly and no friction-induced hysteresis is present
as shown in Fig. 6a. Fitting a line to the last 0.125 s reveals a local stiffness of 3.2 GN m−3, which is very close to
the statically obtained values from Table 2. Setting γ = 102, the friction model is activated and a hysteresis loop
opens up, although with rather smooth corners. A fit to the last 0.125 s gives a line that passes diagonally through the
hysteresis loop indicating an increase in effective stiffness to 4.9 GN m−3 as illustrated in Fig. 6b. Further increasing
γ, the corners of the hysteresis loop sharpen and the effective diagonal stiffness increases to 6.8 GN m−3, as shown for
γ = 105 in Fig. 6c. The same stiffness value and loop shape is obtained using γ = 104 and γ = 106, hence γ = 104 is
deemed adequate. Notice, however, that this value should be scaled consistently to the nondimensionalisation.

The right and left edges of the hysteresis loop are often associated to sticking, but it should be emphasised that
the current model is not capable of producing a true stick-phase as a friction force is only present for non-zero sliding
velocities. The stiffness experienced on the right edge of the shown hysteresis loops is around 10 GN m−3, which is
dependent on the coefficient of friction µ f , but true sticking would provide an even higher stiffness. If the foil–housing
contact nodes are pinned, a situation corresponding to permanent sticking is created providing no frictional dissipation
at these nodes. Repeating the same rotor drop simulation with this configuration, the deformation–pressure plot shown
in Fig. 6d is obtained. As the bump foil structure is stiffened significantly, the tendency towards sagging is increased.
The very high pressures reported in Fig. 6d are hence caused by a local pressure peak near the bump summit following
a sagging-induced converging zone. The fitted line indicates an effective stiffness in the order of 26 GN m−3.
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Figure 5: Excessive foil structure deformation at εx, εy = 1.98, 0.121 occurring 5.6 ms after the rotor is dropped from the centre: (a) The full foil
structure; and (b) zoom to the midmost pad.

6.2. Natural Frequencies

The frequency response of the physical test rig has been thoroughly investigated. This provides a reference for
validation of the numerical model. The experimental frequency response functions (FRFs) have been obtained using
shaker excitation at the shaft extremities while maintaining a constant angular velocity. The excitation force amplitude
was chosen to give a maximum displacement amplitude of 8 µm in both the vertical and horizontal directions, as
this provided an operable signal-to-noise ratio, while the behaviour remained reasonably linear. The experimental
procedure is further described in [37], while the current results are given from [55].

The numerical receptance FRF matrix is obtained by applying 0–300 Hz linear chirps at the extremities with force
amplitudes chosen to provide maximum displacement amplitudes of 8 µm. The magnitude and phase of the diagonal
elements of this FRF matrix are shown in Fig. 7. The first two identifiable modes are located at ≈ 79 Hz and ≈ 105 Hz,
respectively, with the first being a cylindrical and the second a conical mode. The third mode at ≈ 146 Hz is much
more heavily damped and completely absent when exciting in the horizontal y-direction. It has not been possible to
identify the expected fourth mode theoretically, but this has not been observed experimentally either. A comparison
to the experimentally observed natural frequencies for the three identifiable modes is given in Table 5.

Table 4: Comparison of experimentally observed and numerically predicted natural frequencies at 20 kRPM

Mode 1 2 3

Shape Cylindrical Conical Cylindrical
Experimental observations [Hz] 64–77 104–119 153–158
Numerical [Hz] 78–80 103–108 146–147
Mid-interval deviation [%] +12 −5 −6

6.3. Unbalance Response

The unbalance response has been obtained experimentally by attaching various unbalances to the A-disc, accel-
erating the rotor to 27 kRPM, disabling the electrical motor and measuring the response during the following coast
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Figure 6: Hysteresis curves at the summit of bump three in the second pad segment (θ = 180◦) for 0.5 s of simulation from a rotor drop from the
centre using different smoothing parameter values: (a) γ = 0; (b) γ = 102; (c) γ = 105; and (d) pinned foil–housing contact nodes. The dashed
lines are fits to the last 0.125 s and indicate the local effective foil stiffness. Notice the different vertical scale in (d). This is made with pinned
foil–housing contact nodes to simulate sticking which implies high sagging-induced pressure peaks.

down. The coast down approach is chosen to eliminate any contribution from the motor. The waterfall diagram
obtained using the maximum applied unbalance of 45.5 g mm is shown in Fig. 8 for the vertical vibration in bear-
ing A. The synchronous and a number of super-synchronous components are present at all velocities, while various
sub-synchronous components, mostly arranged symmetrically about one half the synchronous speed (0.5X), appears
and disappears sporadically. A single 0.5X vibration emerges at 9.5 kRPM before it briefly disappears and bifurcates
into two branches around 11.5 kRPM. At 14.6 kRPM, the two branches reunite only to bifurcate yet again around
16.2 kRPM and eventually reunite at 22.5 kRPM. These rotational speeds are marked with thick black lines.

The waterfall diagram is obtained numerically by simulation of 1.3 s from a rotor drop from the centre for every
250 RPM. Discarding the first 0.3 s of each simulation, steady state is assumed to have been reached and FFTs are
calculated for the remaining 1 s. The residual unbalance is estimated to be less than ±2.5 g mm at each end, and
even if the unbalance mass is assumed to be added in the angle giving the highest possible effective unbalance of
UA = 48 g mm and UB = −2.5 g mm, the model is unable to predict the sub-synchronous unbalance response correctly.
The predicted waterfall diagram is shown in Fig. 9, and even though some sub-synchronous vibration is present in
the 7–10 kRPM range, this is dissimilar to the experimentally observed pattern of bifurcations and reunifications.
Increasing the coefficient of friction µ f , it is possible to shift this RPM range with sub-synchronous vibrations slightly
upwards, but no qualitative changes to the waterfall appearance are obtainable.

One possible explanation for the absence of sub-synchronous activity could be an overestimation of the frictional
damping. To test this, the waterfall is reproduced with γ = 0 resulting in the waterfall diagram shown in Fig. 10. The
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Figure 7: The diagonal elements of the numerically obtained receptance FRF matrix, i.e. the response of each DOF when it is excited directly.

damping is clearly lowered, as a 75 Hz natural frequency becomes visible and the solver has difficulties completing
the integration for velocities less than 10 kRPM. The sub-synchronous vibrations visible from 13.5 to 14.8 kRPM
resemble the experimental results reasonably well, but much is still left to be desired.

A second possible explanation could be related to the aforementioned lack of true sticking. If sticking is in fact
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Figure 8: Experimentally obtained waterfall diagram for the vertical vibration in bearing A showing the unbalance response during a coast down
with 45.5 g mm added to the A disc. The velocities marked with thick black lines are 9.5, 11.5, 14.6, 16.2 and 22.4 kRPM, respectively.

16



Frequency [Hz]0 100 200 300 400 500

R
otational speed

[kR
PM

]

5

10

15

20

25

A
m

pl
itu

de
[µ

m
]

0.02.55.07.510.012.515.017.520.0

0.5X 1X 2X

Figure 9: Waterfall diagram obtained numerically with properties as given in Table 3 and unbalance masses of UA = 48 g mm and UB = −2.5 g mm.
The 0.5X vibration appears at 7.3 kRPM and bifurcates at 8.3 kRPM, as marked with thick black lines. No sub-synchronous vibration is visible
after 10 kRPM.

a prevalent state, the current model will both underestimate the stiffness and overestimate the frictional dissipation.
This is tested by performing the simulation yet again with the foil–housing contact nodes pinned, corresponding
to permanent sticking. This is obviously unrealistic and it eliminates the frictional dissipation at the foil–housing
interface entirely, but it serves to indicate what prevalent sticking would imply. The waterfall diagram from this
simulation is shown in Fig. 11, and the similarity to the experimental results is notable even though the solver has
difficulties integrating past 22 kRPM due to the low damping. The 0.5X vibration emerges at 9 kRPM, bifurcates at
12 kRPM, reunites at 14.25 kRPM and re-bifurcates at 15.5 kRPM. Zoomed views on the region with sub-synchronous
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Figure 10: Waterfall diagram from the same configuration as in Fig. 9, but friction disabled, i.e. γ = 0.
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Figure 11: Waterfall diagram from the same configuration as in Fig. 9, but with pinned foil–housing contact nodes, as it is also the case in Fig. 6d.
The velocities marked with thick black lines are 9, 12, 14.25 and 15.5 kRPM, respectively.

vibrations is also shown in Fig. 12. The qualitative behaviour of the simulated results are the same as observed
experimentally, and a comparison of the angular velocities at the bifurcation events are given in Table 4. These angular
velocities are predicted within approximately 5 %, but the final reunion of the two branches around 22.5 kRPM is not
captured and the branches are too widely spaced. It should also be noted that the increased bump foil stiffness implied
by the pinning causes excessive sacking which produces very large pressure peaks. Hence, the numerical solution
has necessitated an artificial stiffening of the top foil to smooth the pressure profile, but this has been found not to
influence the remaining results.

Table 5: Comparison of the angular velocities of four clearly defined events between the experimental data and the numerical simulation with
pinned bump foil.

Event Experimental – Fig. 8 Numerical (pinned) – Fig. 11

First appearance of 0.5X [kRPM] 9.5 9
First bifurcation [kRPM] 11.5 12
Reunification [kRPM] 14.6 14.25
Second bifurcation [kRPM] 16.2 15.5

Lastly, it is worth showing the difference in obtained steady state orbits between the three assessed cases, i.e
friction, no friction and pinning. These are shown for 11 and 20 kRPM, respectively, in Fig. 13. The two non-pinned
cases give almost identical one-periodic orbits with mean eccentricity ratios (εx, εy) = (1.25, 0.11) and (εx, εy) =
(1.22, 0.14) at 11 kRPM, and (εx, εy) = (1.16, 0.21) and (εx, εy) = (1.13, 0.22) at 20 kRPM. The pinned case gives
much larger orbits with multiple clearly defined periods and with mean eccentricity ratios of (εx, εy) = (0.60, 0.15) at
11 kRPM, and (εx, εy) = (0.29, 0.12) at 20 kRPM.

Moreover, for 20 kRPM, the equilibrium points reached, if removing the unbalance, are furthermore indicated for
each case. It is noticeable that the same static equilibrium (εx, εy) = (1.17, 0.22) is reached for both γ = 0 and γ = 104,
even though a much higher effective stiffness is present in the latter, as previously shown in Fig. 6. This is ascribed
to the dynamic nature of the applied friction model, which cannot provide a friction force without a non-zero sliding
velocity.
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Figure 12: Zoomed views on the region with sub-synchronous activity from the experimental and the numerical (with pinned bump foil) waterfalls:
(a) From Fig. 8, i.e. the experimental data; and (b) from Fig. 11, i.e. the pinned numerical case.
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Figure 13: Comparison of steady state orbits with friction (Fig. 9), without friction (Fig. 10), and with pinned foil–housing contact nodes (Fig. 11):
(a) 11 kRPM; and (b) 20 kRPM, where the equilibrium points reached if removing the unbalance are furthermore shown.

7. Conclusions

The paper has presented a nonlinear time domain model of a rigid shaft supported by AFBs. The compliant foil
structure is included using an extended model based on the original idea of Le Lez et al. [31], coupled to a simple
top foil beam model. The frictional energy dissipation at the top foil–bump foil and bump-foil–housing interfaces is
included using a dynamic friction model and, in order to achieve a fully simultaneous solution of the state variables,
the foil structure mass has also been included. The latter is argued to be a necessary addition since all friction models
known to the authors encompass velocity dependencies, and hence a timescale is necessary. Separately, simultaneous
models and models including friction already exist in the literature, but the presented model succeeds in reconciling
these properties. The model has been demonstrated to be numerically realisable, though dependent on an efficient
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Figure 14: Illustration of top foil sagging. The top foil–bump foil contact zones have non-zero width, meaning that the effective free span between
bump summits becomes smaller than the bump pitch S b. The dashed (red) triangles illustrate the bump foil truss model which supports the top foil
beam model only at singular points spaced S b apart.

implementation.
Based on directly measurable quantities and without the ”engineering assumptions” related to the SEFM, the

dynamics of the rotor–bearing system is captured well in terms of natural frequencies and mode shapes. The unbalance
response, however, has not yet been captured satisfactorily using the current friction model. It is postulated that this is
due to the characteristics of the applied dynamic friction model, as it tends to provide low-lying orbits corresponding to
the frictionless situation. It is inconvenient that the absolute placement of the journal is hard to obtain experimentally
within the required accuracy, and hence that it is difficult to assess whether the orbits obtained with friction are
realistic. If the bump foil is pinned to the housing, effectively disabling friction at these contacts while providing a
constant stiffness similar to that at sticking, promising results have been achieved. This is not a workable approach for
general AFB simulation, but it suggests that sticking, which cannot be captured accurately using the dynamic friction
model, is in fact a prevalent state. This is interesting as widespread sticking would be incompatible with the generally
accepted perception of frictional dissipation as a main source of damping in AFBs.

Regarding friction, further work should be focused on incorporating a friction model similar to e.g. Eq. (16), in
order to further assess the sticking behaviour. Also, experimental recordings of the bump foil sliding in operation
would be of great value. Regarding the top foil, its stiffness has been found negligible in comparison to that of the
bump foil, but numerical difficulties have been experienced due to excessive sagging causing high local pressure
gradients. The overestimated sagging is partly caused by the omission of curvature effects and membrane forces, but
comparing the model’s pointwise top foil supports to the non-zero width contact zones of the actual foil as sketched
in Fig. 14, it is possible that a contribution is also stemming from an overestimation of the free span. This would be
important, as the deflection of a uniformly loaded clamped–clamped beam is proportional to its free span to the power
of four. The excessive sagging has previously been investigated in [32], where a correction factor on the top foil’s
Young’s modulus was introduced by fitting to experimental data, but a more generic approach is desirable. A point of
attention for further work should hence be the implementation of an improved top foil formulation, possibly based on
shell elements as presented in [56], if not only to provide numerical stability and speed up the simulation.
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Appendix A. Rotor Model Matrices

The mass and gyroscopic matrices for a rigid rotor can be written as

Mr =
1

l212


l22mx + Iyy 0 l1l2mx − Iyy 0

0 l22my + Ixx 0 l1l2my − Ixx

l1l2mx − Iyy 0 l21mx + Iyy 0
0 l1l2my − Ixx 0 l21my + Ixx

 , Gr =
1

l212


0 −Izz 0 Izz

Izz 0 −Izz 0
0 Izz 0 −Izz

−Izz 0 Izz 0

 , (A.1)

where l12 = l1 + l2. The nondimensional form of the mass and gyroscopic matrices and the mass unbalance vector are:

G̃r =
ω2C
paR2 Gr, M̃r =

ω2C
paR2 Mr, f̃ub =


UAω

2

paR2

{
cos τ
sin τ

}
UBω

2

paR2

{
cos τ
sin τ

}
 (A.2)

Appendix B. Bump Foil Matrix

The truss structure members are modelled as two-node bar elements with four DOFs. The stiffness matrix of a bar
element with axial stiffness k j (representing k1, k2, k3, k4, k1b or k3b) and angular orientation θ j (representing θd or θdb)
is given from [39] as

Ke
b = k j


cos2 θ j cos θ j sin θ j − cos2 θ j − cos θ j sin θ j

sin2 θ j − cos θ j sin θ j − sin2 θ j

cos2 θ j cos θ j sin θ j

sin2 θ j

 , (B.1)

where the elements below the diagonal are given from symmetry.

Appendix C. Validation of Bump Model

The FE model used for validation is created using a commercial software package and utilises plane quadratic
quadrilateral elements, includes large displacement theory and assumes a state of plane strain. Its geometry is extracted
directly from the LOM photo in Fig. 3b, but a 4 mm flat section is added to the leading end as present on the actual
foil strips. Discarding friction, a nine-bump foil strip is clamped at its leading edge and subjected to uniform normal
loads at the bump summits up to the equivalent of 200 kPa in two different cases. In the first case, the undeformed and
stress-free foil strip is supported by a straight rigid surface as shown in Fig. C.15a. In the second case, the foil strip is
preloaded to fit a curved rigid surface, representing the bearing hosing as illustrated in Fig. C.15b. For both cases, a
converged mesh is used.

In the applied load range, giving normal deformations up to 125 µm, no significant geometrical nonlinearity is
observed and the stress level stays well below the yield strength.
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(a) (b)

Figure C.15: The plane element FE model in its two load cases: (a) Foil strip loaded in its undeformed, straight state; and (b) foil strip loaded after
being fitted into the bearing housing.

Appendix D. Top Foil Matrices and Work Equivalent Load

The top foil is modelled as two-node Euler–Bernoulli beam elements with rotational and lateral translation DOFs
only. For an element of length let , Young’s modulus Et, depth L, thickness tt, density ρt and cross-sectional moment of
inertia It =

1
12 t3

t L, the stiffness and lumped mass matrices are given from [39] as

Ke
t =

EtIt

let
3


12 6let −12 6let

4let
2 −6let 2let

2

12 −6let
4let

2

 , Me
t =

ρtLttlet
24


12 0 0 0

let
2 0 0

12 0
let

2

 , (D.1)

where the elements below the diagonals are given from symmetry.
Based on the linear element shape functions, a laterally working tapered pressure can be shown to give the work

equivalent nodal loads

fe
p =

let L
60


21pe

1 + 9pe
2

let
(
2pe

1 + 3pe
2

)
21pe

1 + 9pe
2

−let
(
2pe

1 + 3pe
2

)
 , (D.2)

where pe
1 and pe

2 are the pressure values at the element nodes, let is the beam element length and L is the beam element
width (normal to the load direction).
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