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1 Introduction 
Phase equilibria with systems containing electrolytes are of great importance. A few 
examples may illustrate this: Production of fertilizers and salts is often performed by 
precipitation of pure solids from multi component ionic solutions. Scaling in heat exchangers 
is caused by some salts for which the solubility decrease with increasing temperature. Scaling 
in oil production and in geothermal heat production is caused by some salts for which the 
solubility decrease with decreasing pressure and decreasing temperature. Solubility of gases 
in electrolyte solutions is of importance in many pollution abatement processes. The 
influence of salts on the vapor pressure of aqueous solutions of organic material may be 
important for the proper choice of a separation process. Salts may even introduce a liquid-
liquid phase splitting in aqueous solutions of organic substances. 

Electrolytes dissociate into ions when they are dissolved in polar solvents like water or 
alcohols. A strong electrolyte will dissociate completely while a weak electrolyte will only 
dissociate partly. The presence of the charged ions causes the electrolyte solution to deviate 
much more from ideal solution behavior than a non-electrolyte solution does. This is the case 
even at very low electrolyte concentrations. The reason is that the ions interact with 
electrostatic forces which are of much longer range than those involved in the interaction of 
neutral molecules. This effect is stronger the greater the charge on the ions. 

For a proper description of electrolyte solutions not only the short range energetic 
interactions but also the long range electrostatic interactions have to be considered. Another 
basic difference between electrolyte and non-electrolyte solutions is the constraint of electro-
neutrality on electrolyte solutions. Because of this constraint, a system consisting of water 
and two ions is a binary system: The concentrations of the two ions cannot be chosen 
independently so the system has two independent components. 

Consider salt S that dissociates into νC cations C and νA anions A with ionic charges ZC and 
ZA. 

S C ZC vC A ZA vA 
NaCl Na+ 1 1 Cl- -1 1 
Na2SO4 Na+ 1 2 SO4

2- -2 1 
CaCl2 Ca2+ 2 1 Cl- -1 2 

C AZ Z
C AS C Aν ν= +  (1.1) 

Table 1.1 Salt dissociation 

 
The electro-neutrality requirement gives for salt S: 

In general the electro-neutrality of a multi component solution containing ni moles of ion i 
with the charge Zi relative to a hydrogen ion can be expressed as: 

0 = Z + Z AACC νν  (1.2) 

Sodium chloride is often described as a 1-1 salt, sodium sulfate as a 1-2 salt, calcium chloride 
as a 2-1 salt, and calcium sulfate as a 2-2 salt, based on the values of the ionic charges. 

∑ =
i

iiZn 0  (1.3) 
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2 Concentration units 
In the following, it is assumed that the electrolytes are dissolved in water. Water is 
considered to be the only solvent, electrolytes and non-electrolytes are considered to be 
solutes. In a solution containing water, salts, and methanol, water is considered to be the 
solvent. The ions and methanol are considered to be solutes. As it will be shown, this 
approach has significant advantages when performing solid-liquid equilibrium calculations 
and liquid-liquid equilibrium calculations for solutions containing non-electrolytes in 
addition to electrolytes. In another approach often seen in the literature, mixtures of water and 
certain non-electrolytes such as organic solvents are considered to be separate species, 
“mixed solvents” or pseudo solvents, while other non-electrolytes and electrolytes are 
considered to be solutes. 

For the description of electrolyte solutions the most common concentration unit is the 
molality. The molality unit is very often used in the presentation of experimental data, while 
the mole fraction unit most often is used in thermodynamic models for electrolytes. The 
molarity unit is also often used, but is dependent on temperature and to a certain extent also 
on pressure. It is not a practical unit because the density needs to be known in order to 
convert molarity units to molality units or mole fraction units. 

The molality mi of an ion i is the number of moles ni, of the ion per kg water in the liquid 
phase: 

The amount of water in the solution is here calculated as the product of nw, the number of 
moles of water and Mw, the molar mass of water in kg/mol.  

 mol/kg wateri
i

w w

nm
n M

=  (2.1) 

The molarity ci of an ion i is the number of moles of the ion per liter solution: 

The volume of the solution, Vsolution, is related to its mass and its density: 

mol/liter solutioni
i

solution

nc
V

=  (2.2) 

If the density of the solution dsolution is given in kg/liter and the molar masses of water and 
ions are given in kg/mol, the volume of the solution will be calculated in liter. 

w w i i
ions

solution
solution

n M n M
d

V

+
=

∑
 (2.3) 

From equation (2.1) it can be seen that the molality concentration unit is only dependent on 
the amount of the relevant solute and the amount of solvent. The mole fraction unit and the 
molarity units on the other hand are also dependent on the amount of other solutes present. In 
addition, the molarity unit is also dependent on temperature and pressure because the density 
of the solution depends on temperature and pressure. 

Example 2.1: A solution containing 6 mol of sodium chloride and one kg of water is a 6 
molal solution of sodium chloride. The molality of the sodium ion in the solution is 6. The 
molar mass of water is 18.02 gram/mol, and the number of mol water in one kg water can 
therefore be calculated as 1000/18.02. The molality of the chloride ion in the solution is also 
6. The mole fraction of the sodium ion is 
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2

6 0.0889
6 6 1000 /18.02

Na
Na

H ONa Cl

n
x

n n n
+

+

+ −

= = =
+ + + +

 

The mole fraction of the chloride ion is also 0.0889. The mole fraction of water is 

1000 /18.02 0.8222
6 6 1000 /18.02wx = =

+ +
 

Sometimes the composition of an electrolyte solution is given in terms of the amounts of 
water and salts instead of water and ions. If this approach is used, the composition of the 
same solution can be described by the mole fraction of sodium chloride: 

2

6 0.0975
6 1000 /18.02

NaCl
NaCl

NaCl H O

nx
n n

= = =
+ +

 

The mole fraction of water is 1 – 0.0975 = 0.9025 when this approach is used. 

The density of this solution is 1.1942 kg/liter at 25 °C and 1 bar. The volume of the solution 
can be calculated from equation (2.3): 

1.000 6.0 0.02299 6.0 0.035453 1.1310 liter
1.1942 1.1942

w w Na Na Cl Cl
solution

n M n M n M
V + + − −+ + + ⋅ + ⋅

= = =  

The molarity of the sodium ion, the chloride ion and of sodium chloride in the solution is: 

6 5.305 mol/liter
1.1310NaClNa Cl

c c c+ −= = = =  

At 100 °C and 1 bar, the density of the same sodium chloride solution is 1.1490 kg/liter. The 
volume of the solution is 1.1755 liter and the molarity of sodium chloride is 5.104 mol/liter. 

 

For a salt S the molality is: 

S
S

w w

nm    
n  M

=  (2.4) 

If the salt dissociates into νC cations and νA anions the molality of the cation C is: 
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The molality of the anion A is: 

C S
C C

w w

nm   m
n M S
ν ν= =  (2.5) 

A S
A A

w w

nm m
n M S
ν ν= =  (2.6) 

The molality of the salt can therefore be expressed either in terms of the cation molality or 
in terms of the anion molality: 

Sm

Most thermodynamic models use the traditional mole fraction scale: 

orC
S S

C A

m mm m A

ν ν
= =  (2.7) 



The summation in the denominator is over all solute and solvent species. A relation between 
the molality unit and the mole fraction unit can be derived as follows: 

i
i

j

nx
n

=
∑

 (2.8) 

i i w w
i

j j w w

n n n M

Mw is the molar mass of water given in kg/mol. 

i w wx  m x M
n n n M

= = =
∑ ∑

 (2.9) 

The molarity unit is related to the mole fraction unit by: 
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A large number of different concentration units are used to present experimental data for 
electrolytes. These include: 

i i solution i solution
i

j j solution j

x
n n V n

= = =
∑ ∑ ∑

n n V cV
 (2.10) 

1. Mass percent 

2. molality 

3. Mole fraction (water, ions, and non electrolytes) 

4. Mole fraction (water, salts, and non electrolytes) 

5. Mass of salt per mass of H2O 

6. Mass of salt per volume solution 

7. Mole salt per volume of solution 

8. Mole salt per mass of solution 

9. Jänecke coordinates (Charge fraction + gram H2O per mole salts) 

10. Mass percent solvent (salt free) + molality of salt 

11. Mass percent solvent(salt free) + mass of salt per mass of mixed solvent 

12. Mole percent solvent(salt free) + molality salt 

One reason why molality is a popular unit for salt solutions is that the concentrations in 
molality units give practical numbers, often between 0 and 20 for most salts, while the 
concentrations in mole fraction units are very small as indicated in figure 2.1: The figures 
show the phase diagram of the ternary system NaCl-KCl-H2O using these two different 
concentration units. The lines in the phase diagrams mark concentrations saturated with either 
NaCl or KCl. At 25°C, the solubility of NaCl is 6.15 mol/kg water, 0.0997 salt mole fraction, 
or 26.4 mass percent. The corresponding numbers for KCl are 4.79 mol/kg water, 0.0795 salt 
mole fraction, or 20.7 mass percent. 
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Figure 2.1: Phase diagram for the NaCl-KCl-H2O system using molality as concentration unit (left) and 
salt mole fraction (right). The phase diagram consists of two curves. On the curve a - b solid potassium 
chloride is in equilibrium with saturated solutions. On b - c solid sodium chloride is in equilibrium with 
saturated solutions. In the point b both solid salts are in equilibrium with a saturated solution. 

3 Ideal solutions 

3.1 Definition 
An ideal solution can be defined as a solution in which the molar Gibbs energy of species i is 
calculated as: 
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0
iG

m
iG

0 lnid
i i iG G RT x= +

, lnid m m
i i iG G RT m= +

 (3.1) 

R is the gas constant, T is the absolute temperature in Kelvin, and xi is the mole fraction of 
component i. Based on the definition of the ideal solution, the properties of real solutions can 
be calculated by the sum of two terms: an ideal term and an excess term. Equation (3.1) 
defines the ideal term of the Gibbs energy and is therefore given the superscript id.  is the 
molar standard state Gibbs energy and is a function of temperature and pressure. 

If there is only one component, the mole fraction xi of component i is equal to one. The term 
RTlnxi then becomes zero, and the Gibbs energy of i is equal to the standard state Gibbs 
energy of i at the temperature and pressure. Therefore this standard state is often called the 
“pure component standard state”. 

An alternative definition of the ideal solution is based on the molality scale: 

 (3.2) 

The ideal solution Gibbs energy calculated from equation (3.1) is different from the one 
calculated from equation (3.2). The latter is therefore marked with superscript m.  is the 
value of the molar standard state Gibbs energy on the molality scale and is a function of 
temperature and pressure. 

The entropy of component i is related to the Gibbs energy through the fundamental 
thermodynamic relation: 



,

i
i

P x

GS
T

∂⎡ ⎤= − ⎢ ⎥∂⎣ ⎦
 (3.3) 

The entropy of component i in an ideal solution can be calculated from equation (3.1) using 
the relation in (3.2): 

0
0ln ln

id
id i i
i

G GS R x
T T

⎡ ⎤ ⎡ ⎤∂ ∂
= − = − − = −⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

0
iS  is the molar standard state entropy of component i and is a function of temperature and 

pressure. 

Through the fundamental thermodynamic relation Gi = Hi – TSi, the enthalpy of component i 
in an ideal solution can be calculated from equations (3.1) and (3.3): 

i i iS R x

0 0
i

 (3.4) 

0 0 0ln lnid
i i i i i i i i iH G TS G RT x TS RT x G TS H= + = + + − = + =  (3.5) 

0
iH  is the molar standard state enthalpy of component i and is a function of temperature and 

pressure. The Gibbs energy and the entropy of a component in an ideal solution both depend 
on the composition of the solution according to equation (3.1) and (3.3). According to 
equation (3.5), the enthalpy of a component in an ideal solution is not dependent on the 
composition.  

Example 3.1 
We will calculate the phase diagram from Figure 2.1 assuming ideal solution behavior. The 
phase diagram consists of two equilibrium curves. On one curve solid potassium chloride is 
in equilibrium with a saturated solution. On the other curve solid sodium chloride is in 
equilibrium with a saturated solution. The two equilibria can be expressed as: 

The brackets (s) indicate solid, crystalline phase, the brackets (aq) indicate solutes in aqueous 
solution. 

( ) ( ) ( )
( ) ( ) ( )

K aq Cl aq KCl s
Na aq Cl aq NaCl s

+ −

+ −

+

+
 (3.6) 

Equilibrium is attained when there is no Gibbs energy change for a pair of ions that choose to 
go from the crystalline phase to the aqueous phase or vice versa.  

The equilibria we consider in this example are heterogeneous, involving two solid phases and 
a liquid phase. The solid phases are pure, homogeneous phases, not mixtures. Even in point b 
in Figure 2.1 where two solid salts are in equilibrium with the same liquid, the two solid salts 
will form crystals of pure NaCl and of pure KCl. In other systems, for example mixtures of 
ammonium and potassium salts, there is a tendency to form mixed crystals, solid solutions, 
due to the similarity of the two cations. 

The Gibbs energy of the pure solid salts can be found in thermodynamic tables. Also the 
Gibbs energy of the aqueous ions can be found in such tables. Table 5.2 contains the values 
necessary to calculate the phase diagram in Figure 2.1. 

The Gibbs energy of each component in the molality based ideal solution can be expressed 
using equation (3.2): 
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m

m −

,
( ) ( )

,
( ) ( )

( ) ( )

( ) ( )

ln

ln

id m m
f KK aq K aq

id m m
fCl aq Cl aq Cl

KCl s f KCl s

NaCl s f NaCl s

G G RT

G G RT

G G

G G

+ +

− −

+= Δ +

= Δ +

= Δ

= Δ

 (3.7) 

All the Gibbs energies used are Gibbs energies of formation as indicated by the subscript f. 
The Gibbs energies of formation refer to the same standard state: The natural state of the 
elements at 25°C and 1 bar. The values therefore allow us to calculate the Gibbs energy 
change by reactions among these compounds. 

The condition for equilibrium of potassium and chloride ions with solid potassium chloride is 
that the Gibbs energy is identical in the two phases, which can be expressed as: 

, ,
( )( ) ( )

( )( ) ( )

or
ln ln

id m id m
KCl sK aq Cl aq

m m
f K f f KClK aq Cl aq Cl

G G G

G RT m G RT m G

+ −

+ − −+

+ =

Δ + + Δ + = Δ s

 (3.8) 

A corresponding expression for sodium chloride could also be written. By inserting numbers 
from Table 5.2, the following expression is obtained for potassium chloride: 

By a similar method the corresponding equation for the equilibrium of sodium chloride can 
be derived as: 

283270 ln 131228 ln 409140

The equation can be modified to
5358 5358exp exp 8.6843

8.314·298.15

K Cl

K Cl

RT m RT m

m m
RT

+ −

+ −

− + − + = −

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.9) 

The curve for KCl solubility can now be 
calculated at fixed concentrations of 
NaCl by using equation (3.9). Because 
the NaCl concentration is fixed, the 
molality of Cl- can be calculated as the 
molality of NaCl plus the molality of 
K+. The molality of K+ therefore is the 
only unknown. The curve for NaCl 
solubility can be calculated at fixed 
concentrations of KCl by using equation 
(3.10) in a similar manner. The point b 
from Figure 2.1 can be calculated by 
solving equation (3.9) and (3.10) 
simultaneously. 

8995exp 37.6655
Na Cl

m m
RT+ −

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 (3.10) 
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The result of the calculation is shown in 
Figure 3.1. The calculated solubility of 
sodium chloride is very close to the  Figure 3.1: Phase diagram for the KCl-NaCl-H2O 

system calculated assuming ideal solution behavior. 



Table 3.1: Calculation of phase diagram for the KCl-NaCl-H2O system assuming ideal solution behavior. 
Concentrations are in molality (mol/kg water). 

Cl
m
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actual solubility of sodium chloride. For potassium chloride on the other hand, the calculated 
solubility is much lower than the actual solubility of potassium chloride. This indicates that 
one of these apparently similar salts has ideal solution behavior while the other deviates 
strongly from ideal behavior. This is a coincidence caused by the fact that the mean molal 
activity coefficient of sodium chloride has values near 1 at concentrations near saturation of 
NaCl at room temperature. 

Obviously, the ideal solution assumption gives results that deviate significantly from the 
experimental value of the solubility in this system. In order to make this kind of calculations 
correct, it is very important to use a thermodynamic model that takes the deviation from 
ideality into account. 

Exercise 3.1 

In Example 3.1, the solid-liquid phase diagram of the ternary system KCl – NaCl – H2O 
system at 25°C was calculated, assuming ideal solution behavior and using molality as 
concentration scale. Derive the corresponding equations necessary for calculating the same 
phase diagram using mole fraction as the concentration scale, and calculate the phase 
diagram.  

The Gibbs energies of formation for the ions based on the mole fraction scale are given in 
table 3.2. 

 Na+ K+ Cl- 

ΔfG kJ/mol -251.949 -273.314 -121.272

 

 

(fixed)NaClm  −  
K

m +  Solid Phase 
0.0000 2.9469 2.9469 KCl 
1.0000 3.4890 2.4890 KCl 
2.0000 4.1120 2.1120 KCl 
3.0000 4.8067 1.8067 KCl 
4.0000 5.5615 1.5615 KCl 
5.0000 6.3645 1.3645 KCl 
6.0000 7.2053 1.2053 KCl 

(fixed)KClm Cl
m

Na
m −  +   

0.0000 6.1372 6.1372 NaCl 
0.2500 6.2635 6.0135 NaCl 
0.5000 6.3923 5.8923 NaCl 
1.0000 6.6576 5.6576 NaCl 
2.0000 7.2182 5.2182 NaCl 
3.0000 7.8179 4.8179 NaCl 

Na
m +  

K
m

Cl
m+  −   

5.5325 1.2756 6.8081 NaCl+KCl 

Table 3.2: Standard state Gibbs energy of formation of ions at 25°C. The values are based on the mole 
fraction concentration scale. 



Colligative properties 
Colligative properties are properties that according to physical chemistry textbooks are 
independent of the type of species in the solution but are dependent on the amount of species. 
As it will be shown here, these colligative properties are not independent of the type of 
species. On the contrary, they are strongly depending on the type of species. The colligative 
properties are freezing point depression and boiling point elevation. Vapor pressure lowering 
and osmotic pressure are usually mentioned separately as colligative properties but these two 
latter properties are so closely related to the boiling point elevation that they don’t need to be 
discussed separately. 

In a freezing point depression experiment, the temperature at which solid solvent (ice) is in 
equilibrium with a solution is determined. This temperature is lower than the freezing point 
of pure water. In a boiling point elevation experiment, the temperature at which solvent vapor 
(steam) is in equilibrium with the solution is determined. At atmospheric pressure, this 
boiling point is higher than the normal boiling point of pure water. 

These phenomena can be understood by considering equation (3.1), and (3.2). According to 
these equations, the Gibbs energy of an ideal solution depends on the composition of the 
solution in addition to temperature and pressure. Ice and steam are two pure phases. The 
Gibbs energies of pure phases depend only on temperature and pressure. At equilibrium 
between solution and ice or solution and steam, the Gibbs energy of water in solution is 
identical to the Gibbs energy of ice or that of steam respectively. By varying the composition, 
it will therefore be possible to find a range of temperatures and pressures at which there is 
equilibrium between an ideal solution and the pure phases, ice and steam respectively. 

The equilibria between solutions and pure phases can be expressed as: 

 
 13 

0 0( , ) ln ( , ) for freezing point depression

and
f w w f iceG T P RT x G T PΔ + = Δ

0 0( , ) ln ( , )   for boiling point elevationf w w f steamG T P RT x G T PΔ + = Δ

 (3.11) 

The left hand sides of the equations (3.11) express the Gibbs energies of ideal solutions as 
functions of composition, temperature and pressure. The right hand sides of the expressions 
give the Gibbs energies of the pure phases as functions of temperature and pressure. By 
varying the water mole fractions it is possible to determine a range of temperatures and 
pressures at which these equilibria can be established. 

The expression for the equilibrium between aqueous solution and ice, equation (3.11) is 
plotted in figure 3.2 together with experimentally measured freezing point depressions. The 
pressure was held constant at 1 bar. The freezing point temperatures were calculated at a 
number of water mole fractions, using equation (3.11). The water mole fractions were 
converted to mol solute per kg water. The experimental data marked in Figure 3.2 show a 
significant difference between real electrolyte solutions and ideal solution behavior. The data 
also show a significant difference between the freezing point depressions caused by different 
electrolytes. 

Apparently, sodium chloride solutions are closer to ideal solution behavior than magnesium 
chloride solutions are. A solution containing 5.08 moles NaCl per kg water freezes at -
21.7°C. Assuming full dissociation such a solution contains 10.16 mol solutes (Na+ and Cl- 
ions) per kg water. This solution is called a eutectic solution because it is the sodium chloride 
solution with the lowest possible freezing point. A eutectic solution of magnesium chloride 



contains 2.73 moles magnesium chloride and freezes at -33.6°C. If full dissociation is 
assumed, this solution contains 8.19 mol of solutes (Mg2+ and Cl- ions). This eutectic solution 
is therefore more dilute than the eutectic sodium chloride solution. It would be expected that 
the more concentrated solution would have a lower freezing point. 

 
Figure 3.2: The theoretical freezing point depression of an ideal solution compared to measured freezing 

point depressions of sodium chloride, magnesium chloride, and magnesium sulfate solutions. 
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Magnesium sulfate solutions have higher freezing points than ideal solutions have. The same 
is the case for sodium sulfate solutions but the positive deviation for sodium sulfate solutions 
is lower than for magnesium sulfate solutions. The experimental data for sodium sulfate 
solutions are not shown in Figure 3.2. The eutectic solution of sodium sulfate only contains 
0.84 mol solutes per kg water. 
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Exercise 3.2  
Calculate the boiling point elevation of an ideal solution of solutes in water at 1 atm pressure. 
Find the appropriate Gibbs energies as a function of temperature and pressure on the internet 
or in steam tables. Alternatively, you can use the relation G = H-TS to calculate Gibbs 
energies in the relevant temperature range, based on table values at 100°C and 1 atm. 
Compare the results with the experimental data from Hakuta et al. [1] given in Table 3.3. Plot 
the results in a graph similar to Figure 3.2. 

NaCl Na2SO4 MgCl2 
Boiling 
point 

mass 
percent 

Boiling 
point 

Mass 
percent 

Boiling 
point 

Mass 
percent 

100.151 0.956 100.082 1.004 100.125 0.976 
100.308 1.944 100.163 2.019 100.264 2.007 
100.471 2.916 100.239 2.999 100.411 3.032 
100.648 3.948 100.319 4.006 100.568 4.025 
100.821 4.898 100.396 5.038 100.734 5.032 
100.996 5.851 100.478 6.096 100.927 6.055 
101.198 6.938 100.555 7.103 101.065 6.749 
101.453 8.158 100.637 8.101 101.327 7.972 
101.675 9.158 100.714 9.056 101.535 8.868 

101.9 10.245 100.802 10.162 101.805 9.89 
102.17 11.246 100.886 11.188 102.119 10.994 
102.41 12.264 100.971 12.179 102.405 11.905 

102.694 13.346 101.053 13.134 102.74 12.872 
102.955 14.35 101.138 14.178 103.131 13.915 
103.249 15.362 101.228 15.174 103.594 15.116 

Table 3.3: Experimental measurements of the boiling point of electrolyte solutions at 1 atm. 
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1 Hakuta T., Goto T., Ishizaka S., “Boiling point elevation of Aqueous Solutions Containing Inorganic Salts”, 
Nippon Kaisui Gakkai-Shi, 28(1974)151-155 



4 Chemical potential and activity coefficients 

4.1 Chemical potential 
The chemical potential of a species i is the partial molar derivative of the total Gibbs 
energy G, enthalpy H, Helmholtz energy A, or internal energy U of substance i [2]: 

iμ

, , , , , , , ,j j j

i
i i i iT P n S P n T V n S

G H A U
n n n n

μ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂

≡ = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
In equation (4.1), ni is the amount of component i, T is the temperature, P is the pressure, S is 
the entropy, and V is the volume.  

Matter flows spontaneously from a region of high chemical potential to a region of low 
chemical potential just like electric current flows from a region of high electric potential to a 
region of low electric potential and mass flows from a position of high gravitational potential 
to a position of low gravitational potential. The chemical potential can therefore be used to 
determine whether or not a system is in equilibrium. When the system is in equilibrium, the 
chemical potential of each substance will be the same in all phases of the system.  

The chemical potential of a species in its standard state is identical to its molar standard state 
Gibbs energy. Equation (3.1) can therefore be rewritten: 

jV n

i

 (4.1) 

0 lnid
i i RT xμ μ= +  (4.2) 

4.2 Excess chemical potentials for real solutions 
It was shown in chapter 3 that aqueous salt solutions deviate significantly from ideal solution 
behavior. In order to describe phase equilibria of electrolyte solutions it is therefore necessary 
to introduce a correction for the deviation from ideal solution behavior. The difference 
between the chemical potential of a real solution and that of an ideal solution is called the 
excess chemical potential. The excess chemical potential for component i is lnex

i iRTμ γ= . 

iγ  is the activity coefficient of component i. The activity coefficient is a function of 
composition, temperature and pressure. By including this excess term, the chemical potential 
of component i in a real solution is expressed as: 
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The chemical potential of water in an aqueous solution can be calculated from the definition 
in equation (4.1) and expressed through an equation of the form given in equation (4.3): 

( )

0

0

ln ln

ln

id ex
i i i

i i

i i i

RT x RT

RT x

μ μ μ

iμ γ

μ γ

= +

= + +

= +

 (4.3) 

As shown in chapter 3, dilute solutions are exhibiting ideal solution behavior. In the limit of 
xw → 1 it follows that γw = 1 and the excess chemical potential vanishes. The excess term is 

(0 ln
i w

w ww w
w P, T, n

G    + RT x
n

)γμ μ
≠

⎛ ⎞∂
= =⎜ ⎟∂⎝ ⎠

 (4.4) 

                                                 
2 Prausnitz J.M., Lichtentaler R.N., Azevedo E.G, “Molecular Thermodynamics of Fluid-Phase Equilibria”, 
third edition, Prentice Hall PTR, Upper Saddle River NJ 07458, 1999 



only relevant for mixtures. The standard state chemical potential of water, 0
wμ  is identical to 

the molar Gibbs energy of pure liquid water at temperature T and pressure P. 

4.3 The rational, unsymmetrical activity coefficient 
The chemical potential of an ion i may be written as: 

j i

i
i P, T, n

G  
n

μ
≠

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

 (4.5) 

The operation implied in equation (4.5) is physically impossible. Because of the electro 
neutrality constraint it is not possible to add ions of one type keeping the number of all other 
ions constant at the same time. Therefore it is not possible to measure the properties of a 
single ion independent of other ions. What is measured is therefore always the sum of the 
properties of an anion and a cation. In order to get numerical values of the standard state 
properties of single ions, the properties of one ion are given fixed values. By convention, the 
standard state chemical potential of the hydrogen ion H+ is 0 J/mol. Similarly, by convention 
the enthalpy of formation, the standard state heat capacity and the standard state partial molar 
volume of the hydrogen ion are given the value 0. The properties measured for HCl in dilute 
solutions then become the properties of the chloride ion.  

It is of course possible mathematically to write an expression similar to equation (4.4) for ion 
i: 

In equation (4.6), the same standard state (pure ion i) is used as in equation (4.4). It is not 
possible to have “pure ion i”. This standard state is therefore not physically possible but is a 
hypothetical or mathematical state used because it is convenient to use the same definition for 
all components.  

0 ln( )i i i iRT xμ μ γ= +  (4.6) 

Traditionally, the activity coefficients of solutes are normalized so that the activity coefficient 
of a solute is 1 at infinite dilution. This is achieved by defining a new activity coefficient *

iγ  
by the ratio of the value of the activity coefficient at the relevant concentration and the value 
of the activity coefficient at infinite dilution, iγ ∞ : 

The infinite dilution activity coefficient of a component in water is depending on temperature 
and pressure. It is clear from equation (4.7) that * 1iγ =  at infinite dilution. *

iγ  is the rational, 
unsymmetrical, activity coefficient. The adjective “unsymmetrical” refers to the fact that this 
activity coefficient has a value of unity at infinite dilution rather than in the pure component 
state. The definition in equation (4.7) is often referred to as a “normalization” of the 
symmetrical activity coefficient. The rational, unsymmetrical activity coefficient can be used 
in an expression for the chemical potential of ion i similar to equation (4.6): 

* i
i

i

γγ
γ ∞=  (4.7) 

0

0

* *

ln( )

ln ln( )

ln( )

i i i i

i i

i i i

RT x

RT RT x

RT x

μ μ γ
*

i iμ γ

μ γ

∞

= +

= + +

= +

γ  (4.8) 
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The rational, unsymmetrical standard state chemical potential is defined by: 

This standard state chemical potential was introduced in equation (4.8) in order to get a 
formulation similar to the one in equation (4.6). 
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i

4.4 The molality activity coefficient 
The relation between the mole fraction and the molality of a solute species was derived in 
equation (2.9): 

By using this relation, the molality concentration unit can be introduced into equation (4.8): 

In order to make the terms dimensionless, m0 = 1 mol/kg water has been introduced. A 
molality activity coefficient is now defined: 

The molality based standard state chemical potential mμ  is defined: 

By introducing the terms for the molality activity coefficient and the term for the molality 
based standard state in equation (4.10) it can be written: 

m
iμ  is the chemical potential of solute i in a hypothetical, ideal solution ( ) at unit 

molality. By inserting mi = 1 mol/kg water and 
1m

iγ =

1m
iγ =  in equation (4.13) the chemical 

potential therefore becomes identical to m
iμ . The term m0 = 1 mol/kg water is usually omitted 

from equation (4.13). 

The molality based standard state chemical potential m
iμ  is often given in tables of standard 

state properties of electrolytes. One such table has been published by the US National 
Institute of Science and Technology [3]. 

The reason why the unsymmetrical activity coefficient is used for ions is that the standard 
state properties for this standard state can easily be measured. The corresponding values for 
the pure component standard state with symmetric activity coefficients on the other hand, 
cannot be measured for ions. 

                                                 

i
* 0 lni i RTμ μ γ ∞≡ +  (4.9) 

i i w w
i

j j w w

n n n M
i w wx  m x M

n n n M
= = =

∑ ∑
 (2.9) 

( )

* *

* *

* *
0 0

ln( )

ln( )

ln ln( / )

i i i i

i i w w i

i w i w i

RT x

RT m x M

RT M m RT m x m

μ μ γ

μ γ

μ γ

= +

= +

= + +

 (4.10) 

*m
ì w ixγ γ≡  (4.11) 

( )
( )

*
0

0
0

ln

ln

m
i i w

i i

RT M m

wRT M m

μ μ

μ γ ∞

≡ +

= +
 (4.12) 

0ln( / )m m
i i i iRT m mμ μ γ= +  (4.13) 

3 NIST Chemical Thermodynamics Database Version 1.1, U.S. Department of Commerce, National Institute of 
Standards and Technology, 1990, Gaithesburg Maryland 20899. 



4.5 The molarity activity coefficient 
The molarity concentration unit can also be used for expressing the chemical potential of a 
solute. In order to derive this expression, the molar volume ŝolutionV is introduced. It is the 
volume per mol of solution. The molar volume of the solution is derived from equation (2.3): 

ˆ
j j

jsolution
solution

j solution
j

x M
VV

n d
= =

∑
∑

 (4.14) 

The relation between the mole fraction and the molarity of a solute species was derived in 
equation (2.10). By using this expression, the molarity concentration unit can be introduced 
into equation (4.8): 
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ˆ
wV is the molar volume of water. In order to make the expression dimensionless, the factor c0 

= 1 mol/liter has been introduced. A molarity activity coefficient is defined by: 

* *

*

*

0

ln

ˆˆln ˆ

ˆ
ln ˆ

i solution
i i i

j

solution
i w i

w

c i solution
i i

w

cVRT
n

VRT V c
V

c VRT
c V

μ μ γ
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iμ γ

μ γ

⎛ ⎞
= + ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

= + ⎜
⎝ ⎠
⎛ ⎞

= + ⎜ ⎟
⎝ ⎠

∑

⎟  (4.15) 

It can be shown that the molarity activity coefficient can be calculated from the molality 
activity coefficient using the expression: 

*
ˆ

ˆ

ˆ 1
ˆ

c solution
i i

w

msolution
i

ww

V
V

V
xV

γ γ

γ

≡

=

 (4.16) 

It follows from equation (4.14) and equation (4.15) that the molarity based standard state 
chemical potential of component i, c

i

c mi w
i i

i

m d
c

γ γ=  (4.17) 

μ , is defined by: 

Calculations of the chemical potential can then be performed using the simple expression: 

( )* *
0 0
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 (4.18) 



 
 20 

)

w

( 0ln /c c
i i i iRT c cμ μ γ= +  (4.19) 

Due to the temperature and pressure dependence of the molarity concentration unit, the molar 
activity coefficient is seldom calculated directly from models. If molarity activity coefficients 
are needed, activity coefficients are usually calculated on the mole fraction scale or molality 
scale and then converted to the molarity scale using equation (4.16) or (4.17). Molarity 
activity coefficients will therefore not be treated further in this book. 

4.6 The activity of species 
The activity of water is defined as the mole fraction of water multiplied by the activity 
coefficient of water: 

For solutes, a different activity is defined for each type of activity coefficient: 
w wa x γ≡  (4.20) 

* *

               when the symmetrical activity coefficient is used

              when the rational, unsymmetrical activity coefficient is used

            when the molality activi

i i i

i i i

m m
i i i

a x

a x

a m

γ

γ

γ

≡

≡

≡ ty coefficient is used

 (4.21) 

4.7 Chemical potential of a salt 
The total Gibbs energy for a solution of salts may be written as a sum of the contributions 
from water and ions: 

The chemical potential of a salt S can be calculated according to equation (4.1): 

w w i i
ions

G  n nμ μ= + ∑  (4.22) 

, ,
S

S P T n

G
n

μ
⎛ ⎞∂

= ⎜ ⎟∂⎝ ⎠
 (4.23) 

The chemical potential of a salt, μS is a physical property of the solution and can be evaluated 
directly from experimental data. 

Salt S dissociates into νC cations C and νA anions A according to equation (1.1). For salt S in 
solution, the total Gibbs energy can be expressed by: 

A partial molar differentiation is performed according to equation (4.23) at constant 
temperature, pressure, and mole number of water: 

w w S C C S A AG n n +nμ ν μ ν μ= +  (4.24) 

The Gibbs-Duhem equation is at constant temperature and pressure expressed as: 

w C A
S w C C S C A A S A

S S S

G  n  n n
n n n Sn

μ μ μμ ν μ ν ν μ∂ ∂ ν ∂∂
= = + + + +

∂ ∂ ∂ ∂
 (4.25) 

For an aqueous solution of a single salt, S, the Gibbs-Duhem equation gives: 

0i i
i

n dμ =∑  (4.26) 

The corresponding terms in equation (4.25) therefore cancel. By rearranging the remaining 
terms, they can be written as: 

0w w S C C S A An d n d n dμ ν μ ν μ+ + =  (4.27) 



( ) ( ) ( )( )ln C
C A m mm m

C C A A C AS   + RT m m
ν νν νν μ ν μμ = +

A

C Aγ γ  (4.28) 

A mean molality and a mean molal activity coefficient are defined. Both are given the 
subscript ± to indicate that this is an average (geometrical mean) of the value for the cation 
and the anion. The mean molality is defined as: 

( )1/
C A

C Am   m m
νν ν

± ≡  (4.29) 

The mean molal activity coefficient is defined in a similar way: 

( ) ( )( )1/
C Am m m

C A+  
νν ν

γ γγ ≡  (4.30) 

The Greek letter ν is the sum of the stoichiometric coefficients: 

If the standard state chemical potential of the salt in solution is written as: 
A Cν ν ν= +  (4.31) 
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*

Equation (4.28) can now be written as: 

m m
C AS C    +  m

Aμ μ μν ν=  (4.32) 

(lnm
S S RT m )mμ μ ν γ± ±= +  (4.33) 

If instead mole fractions and rational activity coefficients were used, the expression for the 
chemical potential of the salt would be: 

( *lnS S RT x )μ μ ν γ∗
± ±= +  (4.34) 

In equation (4.34), **
C C A AS ν μ ν μμ = + . The mean mole fraction is given by: 

( )1/
C A

C Ax  x x
νν ν

± =  (4.35) 

The mean, rational, unsymmetrical activity coefficient is given by: 

( ) ( )( )1/
* * *C A

C A+  
νν ν

γ γγ =  (4.36) 

Equation (4.28) can be derived in a simpler way: The total Gibbs energy for a solution of 
salts may be written as a sum of the contributions from water and salts: 

By equating (4.22) and (4.37) the following equation is obtained: 

w w s s
salts

G n nμ μ= + ∑  (4.37) 

For salt S in solution, the chemical potential can therefore be expressed as: 

S S i i
salts ions

n    nμ μ=∑ ∑  (4.38) 

By combining with equation (4.13) for the ions C and A, equation (4.28) is obtained directly. 
S S C C S ASn n n Aμ ν μ ν μ= +  (4.39) 

Exercise 4.1 
Show how equation (4.17) can be derived from equation (4.16). 

Exercise 4.2 
Calculate the rational, unsymmetrical standard state chemical potential and the pure 
component standard state chemical potentials for the sodium ion and the chloride ion at 25°C. 



At this temperature, the infinite dilution activity coefficient of the sodium ion is  
and the corresponding value for the chloride ion is 

175.0
Na

γ +
∞ =

71.549 10
Cl

γ −
∞ −= ⋅ . The molality based 

standard state chemical potentials of these ions can be found in Table 5.2.  

Some values of the mean molal activity coefficients are given in Table 5.3. Calculate the 
mean rational activity coefficients and the mean symmetrical activity coefficients of sodium 
chloride from the mean molal activity coefficients given in that table. Plot the three types of 
activity coefficients in the same coordinate system. Notice that the values of the infinite 
dilution activity coefficients given above are not absolute values. These values were obtained 
by defining the infinite dilution activity coefficient of the hydrogen ion to be one at 25 °C and 
1 bar. 

Calculate the ideal and the excess part of the chemical potential of sodium chloride in 
aqueous solutions as a function of the composition. Plot the results in graphs. Make also a 
plot of the total chemical potential of NaCl in aqueous solutions. Use this graph to explain 
why an aqueous NaCl solution is saturated at a concentration slightly higher than 6 molal.  
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5 Measurement of chemical potentials in salt solutions 

5.1 Measurement of the chemical potentials of ions 
The numerical values of the Gibbs energies of formation of ions in their standard state are 
apparently required in order to perform phase equilibrium calculations for solutions 
containing electrolytes. The accurate measurement of these Gibbs energies is therefore 
important. 

In voltaic [4] or galvanic [5] cells chemical energy can be converted to electrical energy. The 
reaction between metallic zinc and copper ions in a solution of copper sulfate is one such 
example: 

2 2( ) ( ) ( ) ( )Zn s Cu aq Zn aq Cu s+ ++ → +  (5.1) 
The reaction can be divided into two half-reactions: 

2

2

( ) ( ) 2 ( )
and

( ) 2 ( ) ( )

Zn s Zn aq e anode

Cu aq e Cu s cathode

+ −

+ −

→ +

+ →

 (5.2) 

In a Daniell [6] cell, these two half cell reactions are taking place in two chambers separated 
by a porous membrane that allow sulfate ions to pass from the cathode to the anode and thus 
conducting electricity. The anode and the cathode are connected with a wire allowing 
electrons to be transported from the anode to the cathode. The membrane that separates the 
two chambers gives rise to a so-called liquid junction potential. In order to avoid the liquid 
junction potential, the two chambers can instead be connected with a salt bridge. A salt 
bridge is a tube filled with a concentrated solution of a salt. The salt bridge conducts 
electricity between the two chambers but prevents the two solutions from being mixed. The 
solution in the salt bridge can be prevented from mixing with the solutions of the two 
chambers by adding agar.  

The ability of a cell to create a difference in electrical potential is measured by its 
electromotive force, which is measured in volts (1V = 1 J/C). The electromotive force E of a 
voltaic cell is identical to the electrical potential at the cathode minus the electrical potential 
at the anode. The amount of electrical work performed by the reaction on an infinitesimal 
charge at constant temperature, pressure, and composition is therefore identical to the product 
of the charge and the electromotive force. It follows that the Gibbs energy change of the sum 
of the two cell reactions can be described by the following expression: 

The negative sign on the left hand side signifies that the charge transported consists of 
electrons and thus is negative. F=96485 C/mol is Faradays constant and νe is the 
stoichiometric coefficient of the electrons in the half-reactions. The electromotive force is 
depending on the temperature, pressure, and the composition of the electrolyte solutions. 
When the cell reaction has reached equilibrium, the electromotive force of the cell is zero. 

e rFE Gν− = Δ  (5.3) 
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4 Allesandro Volta (1745-1827), Italian physicist whose invention of the electric battery in the year 1800 
provided the first source of continuous current 
5 Luigi Galvani (1737-1798), Italian physiologist who discovered the effects of electricity on animal nerves and 
muscles. 
6 John Daniell (1790-1845), British chemist, developed the Daniell cell in 1836 



By using equation (4.13) omitting m0=1 mol/kg, equation (5.3) for the cell reaction in 
equation (5.1) can be converted to: 
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The sulfate ion does not participate in the electrode reactions, but as the reactions take place 
in two different chambers, the concentration of sulfate ion will be different in the two 
chambers. Therefore the activity of the sulfate ion is included in equation (5.4).  

( ) ( )2 2 2 2 2
4 4

2 2
4

2 2

2 2
4

2 ln ln

ln

m m m m m
Zn Zn SO Cu Cu SO

m m
Zn SOm m
m mZn Cu
Cu SO

FE RT a a RT a a

a a
RT

a a

μ μ

μ μ

+ + − + +

+ −

+ +

+ −

− = + − −

⎛ ⎞
⎜ ⎟= − +
⎜ ⎟
⎝ ⎠

2
m

−

 (5.4) 

In the limit of infinite dilution the molal activity coefficients approach 1. Provided that the 
exact concentrations of the two ions are known, the difference between their molal standard 
state chemical potentials can be calculated from electromotive force measurements performed 
in the vicinity of infinite dilution. For such measurements to be reliable, it is required that no 
electrical current is flowing. If there is an appreciable amount of electrical current, 
concentration and temperature will change during the experiment. By using a potentiometer, 
the exact electromotive force of the cell can be measured without the flow of electrons.  

5.2 The Nernst equation 
The general form of equation (5.4) is: 

Equation (5.5) was first formulated in 1889 by the German physical chemist Hermann 
Walther Nernst and is known as the Nernst equation. 
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−

Δ tandard state gibbs energy by the total reaction

 (5.5) 

From the derivation of the Nernst equation (5.5) it can be seen that the introduction of the 
unsymmetrical activity coefficient provides the necessary framework for measuring standard 
state chemical potentials. Obviously the rational, unsymmetrical reference system could as 
well be used in the Nernst equation (5.5). The use of the symmetrical reference system would 
not work in the Nernst equation, because it would require that measurements were carried out 
in a concentration range that cannot be realized physically. 

When a standard hydrogen electrode is used as either anode or cathode, it is possible to 
measure the difference between the standard state chemical potential of the metal ion in the 
other half reaction and the standard state chemical potential of the hydrogen ion. The latter is 
by convention equal to zero. Metal ions having a positive molal standard state chemical 
potential can act as cathodes with the standard hydrogen electrode as anode. Metal ions with 
a negative molal standard state chemical potential act as anodes with the standard hydrogen 
electrode as cathode. 



5.3 The Harned cell 
A Harned cell [7] is a cell consisting of a standard hydrogen electrode and a silver chloride 
electrode. For a standard hydrogen electrode the half cell reaction is 

The hydrogen electrode is a standard hydrogen electrode (SHE) when the partial pressure of 
hydrogen in the cell is 1 bar. 

2
1 ( ) ( )
2

H g H aq e+→

If a silver chloride electrode is used as cathode, the other half cell reaction is: 

−+

( ) ( )AgCl s e Ag s Cl− −+ → +

 (5.6) 

 (5.7) 
The sum of the two half reactions are: 
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The Nernst equation for this cell is: 

The partial pressure of hydrogen is adjusted to one bar and the equation reduces to: 

The standard potential of this cell is:  

By measuring the electromotive force of this cell at high dilution and extrapolating the value 
to infinite dilution, the numerical value of the standard potential of the cell can be 
determined. When the standard potential of the cell is known, the cell can be used for 
determining activity coefficients of aqueous HCl solutions. 

Experimentally measured electromotive force values from Harned and Ehlers [7], are given 
in Table 5.1. The data are plotted in Figure 5.1. The standard potential or standard 
electromotive force of the cell, E0 is calculated from Equation (5.10) as a function of the 
molality of HCl assuming the mean molal activity coefficient to be 1. This assumption is true 
at zero molality. 

By extrapolation of the experimental data to zero molality the value of E0 can be found as the 
intersection with the ordinate axis in Figure 5.1. Because of the curvature of the line along 
which the data are to be extrapolated, this extrapolation cannot be done without using an 
accurate activity coefficient model. The extrapolation method actually used for this type of 
data was introduced by Hitchcock in (1928) [8]. The value of the standard electromotive 
force obtained by a correct extrapolation of the data in Table 5.1 is 0.22241 Volt. This point 
is marked in Figure 5.1. 

 

 
 

7 Harned H.S. and Ehlers R.W., “The Dissociation Constant Of Acetic Acid From 0 To 35° Centigrade”, J. Am. 
Chem. Soc., 54(1932)1350-1357 
8 Hitchcock D.I, “The Extrapolation of Electromotive Force Measurements to Unit Ionic Activity”, J. Am. 
Chem. Soc. 50(1928)2076-2079 

2
1 ( ) ( ) ( ) ( ) ( )
2

H g AgCl s Ag s H aq Cl aq+ −+ → + +  (5.8) 

2

1/ 2ln H H Cl Cl

H

E E
F P

= − ⎜⎜
⎝ ⎠

0
m mm mRT γ γ+ + − −⎛ ⎞

⎟⎟  (5.9) 

( ) ( )0 0 2ln lnm m mRT RTE E m m E mHClH H Cl ClF F
γ γ γ= − = −+ + − − ±  (5.10) 

2

0
( ) ( )0

m m
H g AgCl sH Cl

μ μ μ μ+ −+ − −
E

F
=

−
 (5.11) 



 

Molality 
of HCl, 
mol/kg 

EMF 
measured, 
Volt 

 

Table 5.1: Electromotive force measurements performed in HCl solutions at 25°C [7]. 

0.222

0.224

0.226

0.228

0.23

0.232

0.234

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

molality of HCl

V
ol

t

E+2RT/F*ln(m)

E0

0.003215 0.52053 
0.003564 0.51527 
0.004488 0.50384 
0.004776 0.50084 
0.005619 0.49257 
0.006239 0.48747 
0.007311 0.47948 
0.008636 0.47135 
0.009138 0.4686 
0.009436 0.46711 
0.011195 0.45861 
0.0135 0.44938 
0.013407 0.44974 
0.01473 0.44512 
0.0171 Figure 5.1: Electromotive force measurements plotted as a function of 

molality. By assuming ideal behavior at infinite dilution the standard 
electromotive force can be found by extrapolation to zero molality. An 
accurate extrapolation requires the use of an activity coefficient model known 
to be exact at infinite dilution. The value of the standard electromotive force 
obtained by a correct extrapolation is E0=0.22241 Volt. 

0.43783 
0.02305 0.42329 
0.02563 0.41824 
0.04749 0.38834 
0.05391 0.38222 
0.06268 0.37499 
 

A variety of potentiometric cells for determination of activity coefficients and standard state 
chemical potentials were described by Butler and Roy [9]. These include the glass pH 
electrode, amalgam electrodes, cation-selective glass electrodes, liquid and polymer based 
ion-exchange electrodes, neutral, carrier-based electrodes, cells with transference, solid-state 
membrane electrodes, enzyme and other biologically based electrodes, and gas-sensitive 
membrane electrodes 

Standard state chemical potentials for a few salts and ions are given in Table 5.2. 

Exercise 5.1 

Use data from Table 5.2 to determine the standard electromotive force of the Harned cell. 
Calculate the mean molal activity coefficients of the HCl solutions for which electromotive 
force measurements are available in Table 5.1. 

  

                                                 

 
 26 

9 Butler J.N. and Roy R.N. ”Experimental Methods: Potentiometric”. Chapter in “Activity coefficients in 
Electrolyte Solutions”, 2nd Edition, Editor K.S. Pitzer, CRC Press, Boca Raton, Florida, 1991 



Table 5.2: Standard state properties of ions and salts at 25°C. The values for ions are based on the 
molality concentration scale. 
Compound ΔfG kJ/mol ΔfH kJ/mol Cp kJ/mol/K 

KCl(s) -409.140 -436.744 0.0513 

NaCl(s) -384.138 -411.153 0.05050 

K2SO4(s) -1321.37 -1437.79 0.13146 

AgCl(s) -109.789 -127.068 0.05079 

H+(aq) 0 0 0 

K+(aq) -283.270 -252.380 0.0218 

Na+(aq) -261.905 -240.120 0.0464 

Cl-(aq) -131.228 -167.159 -0.1364 

SO4
2-(aq) -744.530 -909.270 -0.293 

5.4 Measurement of solvent activity 
Instead of measuring the mean molal activity coefficients, chemical potentials in an 
electrolyte solution can be determined by measuring the activity of the solvent. By using the 
Gibbs-Duhem equation, experimental solvent activity coefficients can be converted to mean 
molal activities and vice-versa. The solvent activity in an electrolyte solution can be 
measured in several different ways: 

5.4.1 Freezing point depression and boiling point elevation measurements 
The principle for freezing point depression measurements were described in chapter 3. The 
activity coefficient of the solvent can be calculated from the difference between the measured 
freezing point depression and the freezing point depression expected from ideal solution 
behavior. The same applies to boiling point elevations. Equation (3.11) is valid for ideal 
solution behavior: 

0 0( , ) ln ( , ) for freezing point depression

and
f w w f iceG T P RT x G T PΔ + = Δ

By introducing the solvent activity coefficient, the equations become valid for real solutions: 

0 0( , ) ln ( , )   for boiling point elevationf w w f steamG T P RT x G T PΔ + = Δ

( )0 0( , ) ln ( , ) for freezing point depresf w w w f iceG T P RT x G T PγΔ + = Δ

 (3.11) 

( )0 0

sion

and
( , ) ln ( , )   for boiling point elevationf w w w f steamG T P RT x G T PγΔ + = Δ

 (5.12) 

Assuming that the Gibbs energy of formation of water, ice and steam is known as a function 
of temperature and pressure, the only unknown in equation (5.12) is the water activity. From 
measurements of freezing point depression or measurement of boiling point elevation it is 
therefore possible to determine the water activity in aqueous electrolyte solutions. Especially 
freezing point depressions give very accurate values of the water activity. The measurement 
of freezing point depression is not very sensitive to pressure variations. The measurement of 
boiling point elevations on the other hand requires very accurate measurements of both 
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temperature and pressure. 

5.4.2 Vapor pressure methods 
Vapor pressures are usually measured by a static method, a dynamic method, or by the 
isopiestic method.  

There are many variations of the static method for vapor pressure measurement. In some 
applications of this method, the difference between the vapor pressure of the solution and of 
the pure solvent is measured. In other applications, only the absolute vapor pressure of the 
solution is measured. Chilled mirror hygrometers measure the relative humidity of a sample 
by a static method. The relative humidity is identical to the water activity. In the bithermal 
equilibration method by Stokes [10], a steady state is established between a solution at one 
temperature and pure water at a lower temperature. When no evaporation/condensation takes 
place through the tube connecting the gas phase of the sample and that of pure water, the 
vapor pressure of the solution is identical to the vapor pressure of pure water at the measured 
temperature. This method requires a very accurate measurement of temperature but no 
measurement of pressure. 

The dynamic method can also be applied in different ways. Ha and Chan [11] used an 
electro-dynamic balance to trap a small sample of the solution studied. The sample was kept 
floating in the air in a chamber with a constant stream of humid air flowing through. The air 
humidity could be varied by mixing a dry air stream with an air stream of known humidity. If 
the air stream had a vapor pressure of water exactly matching the equilibrium vapor pressure 
of the sample, the mass of the sample remained constant. By measuring the relative humidity 
of the air leaving the chamber the water activity of the sample was determined. 

In equation (5.12) the condition for equilibrium between a solution and a gas phase is given. 
The equilibrium between pure liquid water and pure steam can be expressed by a similar 
equation: 

0 0( , ) ( , )f w f steamG T P G T PΔ = Δ sat  (5.13) 

The Gibbs energy of formation of the liquid phase is not very sensitive to the pressure and 
can be assumed independent of pressure within a large pressure range. Psat is the pressure of 
water vapor in equilibrium with pure water at the temperature T. The pressure dependence of 
the vapor phase is known from fundamental thermodynamic relations. At higher pressures, 
Psat should be replaced with the equilibrium water fugacity: 

By combining equation (5.13) and (5.14) it can be concluded that: 

0 0
0

0

( , ) ( , ) ln sat
f steam sat f steam

PG T P G T P RT
P

Δ = Δ +  (5.14) 

The presence of ions causes a vapor pressure lowering. For a solution, the vapor pressure of 
water is therefore Pw instead of Psat. Equation (5.12) at the same temperature can therefore be 
written: 

0 0
0

0

( , ) ( , ) ln sat
f w f steam

PG T P G T P RT
P

Δ − Δ =  (5.15) 
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The result from equation (5.15) is inserted into equation (5.16) to give: 

( )0 0
0

0

( , ) ln ( , ) ln w
f w w w f steam

PG T P RT x G T P RT
P

γΔ + = Δ +  (5.16) 

After measuring the vapor pressure of water it is very simple to calculate the water activity 
coefficient from equation (5.17). 

( )
0 0

ln ln lnsat w
w w

sat w w w

P PRT RT x RT
P P

P x P

γ

γ

+ =

⇓
=

 (5.17) 

5.4.3 Isopiestic measurements 
The isopiestic method for determining the solvent activity was introduced by Bousfield [12]. 
In this method the solvent activity of a sample is determined by bringing the sample in 
equilibrium with a reference solute of known water activity. The majority of vapor pressure 
measurements on electrolyte solutions are made by the isopiestic method. Isopiestic means 
“of equal pressure”. A known amount of the salt under study is placed in a dish. With 
mixtures of salts, several samples can be put in separate dishes simultaneously. In another 
dish a known amount of a reference solute with known water activity such as sodium chloride 
is placed. 

Sometimes more than one reference solute is 
used in separate dishes. Water is added to the 
dishes, which are placed in a container and 
brought into good thermal contact at a given 
temperature. This is achieved by containing the 
samples in metal dishes of high thermal 
conductivity such as silver or platinum. The 
dishes rest on a thick copper block. Water will 
distill off the samples with high water activity 
and condense in samples with low water activity. 
After several days or weeks, the salt solutions in 
the dishes will be in equilibrium with each other 
through the common vapor phase. The masses of 
the dishes are then measured in order to determine the amount of water in each dish. The 
water activity of the reference salt solution is a known function of salt concentration. At 
equilibrium in the container, the water activities in all the dishes will be equal and hence the 
water activity of the solution of the salt under study will be known. 

Figure 5.2: Isopiestic measurement 
performed in glass container 

One disadvantage of the isopiestic method is that by this method water activities are 
determined relative to other water activities. In order to interpret data obtained by this 
method, it is therefore necessary to use direct vapor pressure measurements or potentiometric 
measurements in order to determine the water activity in the reference solutions. 

The isopiestic method works best for solutions with a molality higher than 0.1 molal. Below 
this concentration the method gives unsatisfactory results. This can be explained by the fact 
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that the water activities of all dilute solutions are very close to unity. The driving force 
causing water to distill off one dish and condense in another dish is therefore very low and 
requires a very long equilibration time. 

5.5 Osmotic coefficient 
The activity of pure water is unity. In dilute solutions the activity and the activity coefficients 
are very little different from unity. This means that the water activities require a large number 
of significant digits to show variations with the salt concentration. This led N. Bjerrum to 
introduce the so-called osmotic coefficient in 1918 [13]. The osmotic coefficient introduced 
by Bjerrum was later termed the “rational” osmotic coefficient. Bjerrum gave this rational 
osmotic coefficient the symbol f0 and defined it: ( )0 w w wf ln / lnx xγ≡ . Later, the “practical” 
osmotic coefficient Φ was introduced. The computation of practical osmotic coefficient 
involved slightly less trouble than the computation of rational osmotic coefficients as 
discussed by Guggenheim [14]. This factor is not important today, but the practical osmotic 
coefficient is still the only one used. The practical osmotic coefficient or just “the osmotic 
coefficient” as it is known, is defined by: 

By isopiestic measurements, the osmotic coefficient of a sample is determined relative to the 
osmotic coefficient of a known electrolyte. It is common to use the “osmotic ratio” to present 
such data. The osmotic ratio R is defined as the ratio between the osmotic coefficient of the 
sample and that of the reference: 

ln lnw w
w

w S S

n-  a  a
M m nν ν

Φ ≡ = −  (5.18) 

( )
( )

sample ref

ref sample

m
R

m

ν

ν
Φ

≡ =
Φ

 (5.19) 

The osmotic coefficient of the sample solution is then related to the osmotic coefficient of the 
isopiestic reference solution with the equation: 

·sample referenceRΦ = Φ  (5.20) 

Solutions of two different salts with identical water activity have different osmotic 
coefficients if the stoichiometric coefficients are different. As mentioned before, absolute 
values for osmotic coefficients can be measured by direct measurement of the partial 
pressures of water over salt solutions. 

It is common to use a value of ν = 3 when reporting osmotic coefficients for a salt like 
Na2SO4. For electrolytes like H2SO4 and NaHSO4, ν = 2 is often used, sometimes ν = 3 is 
used. It is important to know which stoichiometric coefficients were used for a specific set of 
osmotic coefficient data, in order to convert them to the correct water activity. 

Table 5.3 shows some values of aw, Φ and mγ ±  for aqueous solutions of NaCl at 25°C and 1 
bar for different molalities. The water activities and the osmotic coefficients from the table 
are illustrated in Figure 5.3. The data shows that the water activity is almost linearly 
dependent of molality. The osmotic coefficient on the other hand is much more sensitive to 
concentration changes and has a concentration dependence that is far from linear. It is seen 
                                                 
13 N. Bjerrum: Die Dissoziation der starken Elektrolyte, Zeitschrift für Elektrochemie, 24(1918)321-328 
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from Figure 5.3 that a large osmotic coefficient means a low water activity. 
Table 5.3: Water activities, osmotic coefficients, and mean molal activity coefficients of aqueous NaCl 
solutions at 25°C, aw: water activity, Φ: osmotic coefficient, mγ ±  : mean molal activity coefficient of NaCl 

mγ ±  mNaCl mol/kg aw Φ 

0 
0.0064 

0.1 
0.2 
0.3 
0.5 
1.0 
2.0 
3.0 
5.0 
6.0 

1. 
0.9997755 
0.996646 
0.993360 
0.99009 
0.98355 
0.96686 
0.9316 
0.8932 
0.8068 
0.7598 

1. 
0.9737 
0.9324 
0.9245 
0.9215 
0.9209 
0.9355 
0.9833 
1.0453 
1.1916 
1.2706 

1. 
0.9198 
0.778 
0.735 
0.710 
0.681 
0.657 
0.668 
0.714 
0.874 
0.986 

  

0.7

0.8

0.9

1

1.1

1.2

1.3

0 1 2 3 4 5 6

NaCl mol/(kg water)

water activity
Osmotic coefficient

NaCl solutions at 25°C

Figure 5.3: The non-ideality of water in sodium chloride solutions at 25°C, presented as water activity 
and as osmotic coefficients. The data are identical with the data in Table 5.3. 

5.5.1 The value of the osmotic coefficient at infinite dilution 
From the defining equation (5.18) the value of the osmotic coefficient at infinite dilution is 
not obvious.  

The mole fraction of water can be written as: 

By inserting the relation between mole fraction and molality, equation (2.9) the mole fraction 
of water can be written: 

1w i
ions

x x= − ∑  (5.21) 

1
w i w w w

ions w i w
ions

1x   1 - m x M x  
1 + M m 1 + M mν

= ⇒ = =∑ ∑ S

 (5.22) 
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wThe activity of water w wa x γ= . In the limit of infinite dilution the activity coefficient of 
water is 1. ln aw can therefore be approximated as 

( )ln ln lnw w w w S w S   = x     -  (1 + M m )    - M ma γ ν≈ ≈ ν  (5.23) 

By inserting this expression in the defining equation (5.18) the limiting value of Φ at infinite 
dilution can be determined: 

0
lim 1

S

w S

m
w S

M m
M m

ν
ν→

−
Φ = − =  (5.24) 

5.6 Mean activity coefficient from osmotic coefficient 
Based on the Gibbs-Duhem equation, it is possible to calculate water activities (osmotic 
coefficients) from electromotive force measurements (molal activity coefficients of ions). 
The relationship between osmotic coefficients and mean molal activity coefficients is based 
on the Gibbs-Duhem equation at constant temperature and pressure: 

For an aqueous solution of a single salt, S, this can be expressed as: 

0i i
i

n dμ =∑  (5.25) 

Insertion of equations (4.4) and (4.33) gives: 
0w w S Sn d n dμ μ+ =  (5.26) 

As the standard state chemical potentials are constant at constant temperature and pressure, 
this reduces to: 

( ) ( )0 ln ln 0m m
w w w w S Sn d RT x n d RT mμ γ μ ν γ± ±

⎡⎡ ⎤+ + +⎣ ⎦ ⎣ ⎤ =⎦

=

 (5.27) 

( )ln ln 0m
w w Sn d a n d mν γ± ±+  (5.28) 

Using the definition of the molality of a salt, equation (2.4), this is transformed into: 

( )ln ln 0m
w S wd a m M d mν γ± ±+ =  (5.29) 

Replacing lnaw with the corresponding term from the definition of the osmotic coefficient in 
equation (5.18) gives: 

[ ] ( )ln 0m
w S S wd M m m M d mν ν γ± ±− Φ + =  (5.30) 

From equations (2.5), (2.6), and (4.29) it is found that ( )1/
C A

S C Am m
νν νν ν± = . This can be used 

to reduce equation (5.30) further because the factor after mS is a constant: 

[ ] (ln m
S S Sd m m d m )γ ±Φ =  (5.31) 

The differentials on both sides are expanded: 

The terms are rearranged to: 
ln ln m

S S S S Sdm m d m d m m d γ ±Φ + Φ = +  (5.32) 

ln 1 lnm
Sd   = d  + ( ) d mγ ± Φ Φ −  (5.33) 

If this equation is integrated from mS = 0 where Φ = 1 and ln 0mγ ± = , the following equation 
is obtained: 



If the osmotic coefficient has been determined with small concentration intervals, equation 
(5.34) can be integrated graphically to give the corresponding mean molal activity 
coefficients. Alternatively, if the experimental data for the osmotic coefficients can be given 
an analytical form in the range from infinite dilution to finite molalities, the integral in 
equation (5.34) can be evaluated analytically. 

( )
0

ln 1 1
Sm

m S

S

dm =  +   
m

γ ± Φ − Φ −∫  (5.34) 

It is also possible to go the opposite way and calculate Φ from mγ ± . From equation (5.29) we 
get 

Integration from mS = 0 gives 
ln ln 0m

w w S S wd a  + M dm  +m M d  = ν ν γ ±  (5.35) 

0

ln ln 0
S S

S

m m
m

w w S w S
m

a M m M  m  d  =ν ν γ
=

±
=

+ + ∫  (5.36) 

Division with MwνmS and using the definition of the osmotic coefficient in equation (5.18) 
gives: 

If mean molal activity coefficients have been determined by a potentiometric method 
(measurement of electromotive force), the corresponding osmotic coefficients can be 
obtained by integration of equation (5.37). 

ln
Sm

m
S +

S 0

1 = 1 +   m d  
m

γΦ ∫  (5.37) 

The integrations proposed in equations (5.34) and (5.37) can be done graphically, but that 
will usually result in some inaccuracy. Osmotic coefficients measured with the isopiestic 
method usually do not extend to concentrations below 0.1 molal. By correlating the 
experimental data with a thermodynamic model that is accurate in the dilute region, the 
integration can be performed analytically instead of graphically. Normally the model of 
Debye and Hückel (see chapter 6) is used for this purpose. 

5.7 Osmotic Pressure 
If a container with pure water is separated from a container with a solution of salt by a semi 
permeable membrane that allows water but not ions to pass, water will pass from the 
container with pure water (with relatively high water activity) to the solution container (with 
relatively low water activity). Because water is attracted to the solution container, the amount 
of solution will increase and the pressure in the solution container will increase until 
equilibrium is reached. If the temperature and pressure in the pure water container is T and P0 
the chemical potential of pure water is: 

In the solution container, the temperature and pressure at equilibrium is T and PS, and the 
water activity is aw. The chemical potential of water in the solution container is therefore: 

0
0( , )w w T Pμ μ=  (5.38) 

At equilibrium between the two containers, the chemical potential of water is the same in the 
two containers: 

0 ( , ) lnw w ST P RT aμ μ= + w  (5.39) 

 
 33 



The pressure dependence of the chemical potential of species i is given by: 

 
 34 

                                                

Vi is the partial molar volume of component i. The chemical potential of a species at a certain 
pressure can therefore be calculated by integration of equation (5.41) assuming that the 
partial molar volume of the species is independent of pressure: 

In equation (5.42) the symbol Π is used for the pressure difference between the containers. Π 
is called the osmotic pressure. By introducing this result into equation (5.40) this equation 
can be modified to: 

The osmotic pressure is important for a biological cell to maintain its structure. Two solutions 
with the same osmotic pressures are said to be isotonic. A hypotonic solution is more dilute 
and has lower osmotic pressure. A hypertonic solution is more concentrated and has a higher 
osmotic pressure. If a biological cell is in a hypotonic environment water will flow into it and 
cause it to expand. If a biological cell is in a hypertonic environment, it will loose water and 
shrink, it becomes dehydrated. 
From the definition of the osmotic coefficient in equation (5.18) it can be seen that the 
osmotic pressure and the osmotic coefficient are proportional to each other: 

When pure water is produced from sea water, a pressure corresponding to the osmotic 
pressure has to be applied. This process is called reverse osmosis. 

Exercise 5.2 
Calculate the osmotic pressure of sodium chloride solutions at 25°C from the data given in 
Table 5.3. The density of sodium chloride solutions can be calculated from the equation 

3m . Assume that the partial molar volume of water is identical to the 
molar volume of the solution.  

44.5 997 /NaCld m kg= +

Textbooks on physical chemistry often give the equation for osmotic pressure of dilute 
solutions as , the van’t Hoff equation [cRTΠ = 15]. In this equation, the concentration of 
solutes is c mol/m3. Calculate the same osmotic pressures from the van’t Hoff equation and 
show how this equation is related to equation (5.44). 

 

w
0 0

0( , ) ( , ) lnw w ST P T P RT aμ μ= +  (5.40) 

i
i

T

V
P
μ∂⎡ ⎤ =⎢ ⎥∂⎣ ⎦

 (5.41) 

( )
0

0 0
0( , ) ( , ) sP

w S w w w S wP
T P T P V dP V P P Vμ μ− = = − =∫ 0 Π  (5.42) 

ln w
w

RT a
V

Π = −  (5.43) 

S

w w

nRT
V n

ν
Π = Φ  (5.44) 

15 J.H. van `t Hoff, The Role Of Osmotic Pressure In The Analogy Between Solutions And Gases, Zeitschrift 
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6 Thermodynamic models for electrolyte solutions 
Thermodynamic models for electrolyte solutions are developed in order to be able to 
mathematically describe the properties and the phase behavior of solutions. For the chemical 
industry it is very valuable to be able to optimize processes for the production of chemicals. 
Electrolyte solutions are involved in many processes and it is therefore important to have 
good models for the description of electrolyte properties. 

In order to properly model electrolyte systems, all different types of interactions: ion-ion, ion-
dipole, dipole-dipole, molecule-molecule should be taken into account. The potential energy 
caused by ion-ion interactions is proportional to the inverse separation distance, 1/r. 
Electrostatic ion-ion interactions therefore have an effect over a relatively long distance and 
are called long range interactions. The potential energy caused by molecule-molecule 
interactions is proportional to the sixth power of the inverse separation distance, 1/r6. These 
interactions are therefore called short-range interactions. The potential energy of ion-dipole 
interactions is proportional to 1/r2 and the potential energy of dipole-dipole interactions is 
proportional to 1/r3. These interactions could be called intermediate range interactions. 

Most models are structured with terms representing only long range and intermediate/short 
range interactions.  

6.1 Electrostatic interactions 

6.1.1 Debye-Hückel theory 
The first really successful model for the electrostatic interactions between ions in aqueous 
electrolyte systems was developed in 1923 by P. Debye and E. Hückel [16]. 

Debye and Hückel described the thermodynamics of ideal solutions of charged ions. As 
mentioned above, the electrostatic interactions between charged ions only represent the long 
range interactions in such solutions and not the short range interactions. The interactions 
between ions and water are not described by the Debye-Hückel model, which has led people 
to describe this model as a “dielectric continuum model”. In this model, the solvent only 
plays a role due to its relative permittivity (dielectric constant) and its density. The Debye-
Hückel model can therefore not stand alone as a model for electrolyte solutions. It only 
represents some of the electrostatic interactions and should be combined with a term for short 
and intermediate range interactions in order to fully describe the properties of concentrated 
electrolyte solutions.  

In the Debye-Hückel theory, the electrostatic force that a positive ion exerts on a negative 
through the solvent medium is expressed through Coulombs law: 

e is the electronic charge = 1.60206·10-19 C 

2

2
0

1
4 r

eF
rπε ε

= −  (6.1) 

ε0 is the permittivity in vacuum = 8.8542·10-12 C2 J-1 m-1 

εr is the dielectric constant (relative permittivity) of the solvent (unitless). The value of the 
relative permittivity of water is 78.4 at 298.15K 
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Erscheinungen”, Physikalische Zeitschrift 24(1923)185-206 



r is the distance between the ions (meter). 

Poisson’s equation gives a relationship between the charge density (ρi Cm-3) around ion i and 
the electrical potential (ψi J/C) for a sphere with radius r around ion i: 

 
 36 

i

Due to the charges, the ions are not distributed evenly or randomly in the solution. Near a 
cation, anions tend to be in excess, near an anion, cations tend to be in excess. An ion j has an 
electrical potential energy of jz eψ  if it is in the distance r from the ion i. Debye and Hückel 
assumed the distribution of the ions in the solution to be a Boltzmann distribution. This 
assumption gives another relation between the charge density and the electrical potential: 
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nj is the mol number of component j, zj is the charge of component j, NA is Avogadro’s 
number = 6.023·1023 mol-1, k is the Boltzmanns constant = 1.381·10-23 JK-1, and T is the 
temperature in Kelvin, V is the molar volume of the solution. 

Debye and Hückel combined the Poisson equation and the Boltzmann equation thereby 
eliminating the charge density. The resulting Poisson-Boltzmann equation was solved for the 
electrical potential ψi. 
In their paper, Debye and Hückel finally arrived at an excess Helmholtz function for an ideal 
solution of charged ions. It sounds like a contradiction to have an excess Helmholtz function 
for an ideal solution of charged ions. Ideal solutions do not have excess terms. But as 
mentioned before, this excess Helmholtz function only takes the non-ideality caused by the 
electrostatic interactions into account and does not deal with the traditional non-ideality, 
caused by short range forces. The molar excess Helmholtz function for the electrostatic 
interactions can be expressed by the equation: 

The term s is defined by: 

21 (
3

E
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RT

κχ κ= − ∑  (6.4) 

The distance of closest approach to the ion i was given the symbol ai, (a for 
“annäherungsabstand”). The distance of closest approach is a parameter for the radius of ion 
i, not its diameter. It is expected that ai is larger than the radius of the ion, because the ions 
are thought to be surrounded by water that gives the ions a larger radius than the bare ion. 
The product  is dimensionless and κ is therefore a reciprocal length. 1/κ is a characteristic 
length called the screening length. The screening length provides a good first estimate of the 
distance beyond which Coulomb interactions can be essentially ignored, as well as the size of 
the region near a point charge where opposite-charge counter-ions can be found. The 
expression for κ is: 
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The function χ is given by: 

Apparently, the Helmholtz function of Debye and Hückel (6.4) has not been used by those 
who have developed models for electrolyte solutions. Actually this equation is usually not 
even mentioned. Instead, a number of simplifications of the Debye-Hückel equation have 
been used for model development and are often mentioned in text books. 
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6.1.2 Debye-Hückel Extended law 
The so-called extended Debye-Hückel law represents a simplification of the original Debye-
Hückel equation. The relation between Gibbs energy and Helmholtz energy is G = A + PV. 
No PV term was added to the Helmholtz function. The PV term was considered insignificant 
and was therefore discarded. Chemical potentials were derived from the energy function by 
molar differentiation at constant temperature and pressure, rather than molar differentiation at 
constant temperature and volume. Equation (4.1) shows how the chemical potential is derived 
from the different energy functions. 
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A Gibbs energy function was created from the Helmholtz function in equation (6.4) by 
replacing the molarity concentration unit with molality and simplifying the expression for κ 
in equation (6.6). The density of an electrolyte solution with the molar volume V and the total 
volume nV can be written as: 

jV n  (4.1) 

This expression is converted to an expression for nV, which is inserted into equation (6.6): 
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Next, the approximation is made that the volume and the mass of the ions is zero. This 
approximation represents a small error for dilute solutions and a more serious error for 
concentrated solutions. By making this approximation, the density of the solution becomes 
equal to the density of pure water, d0 kg/m3. To make the expressions simpler, the ionic 
strength, a concept first introduced by Lewis and Randall in 1921 [17] is introduced: 
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The expression for κ can now be written: 

 
17 Gilbert N. Lewis and Merle Randall, “The activity coefficient of strong electrolytes”, J. Am. Chem. Soc. 
43(1921)1112-1154 
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With this approximation, the product sκ from equation (6.4) can be written as: 
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This approximated value of sκ is expressed as 2AI½ where A is the Debye-Hückel parameter: 
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The value of the Debye-Hückel parameter A is 1.1717 (kg/mol)½ at 25°C. 
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The term κai from equation (6.4) was replaced by BaI½ where a is a common ion size 
parameter replacing the individual distance of closest approach, ai. The ion size parameter a 
is often in the range 3.5-6.2·10-10 m. B is derived from the approximated value of κ in 
equation (6.11)  

The molar Gibbs excess function arrived at by the simplification is: 
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xw is the mole fraction of water, Mw kg mol-1 is the molar mass of water. The function χ(x) is 
given in equation (6.7). 
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The extended Debye-Hückel law usually gives good results for activity coefficients up to an 
ionic strength of about 0.1 molal. Above this concentration, short range interactions 
apparently give a significant contribution to the deviation from ideality. The activity 
coefficients are derived from the total Gibbs excess function by molar differentiation:  
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The activity coefficients calculated with the extended Debye-Hückel equation are the rational 
activity coefficients and not the molal activity coefficients as sometimes claimed in text 
books. 

According to the definition of the molal activity coefficient in equation (4.11), the molal 
activity coefficient according to the extended Debye-Hückel can be calculated from: 

The extended Debye-Hückel mean molal activity coefficient of a salt with cation C and anion 
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A calculated according to the definition of the mean molal activity coefficient in equation 
(4.30) is: 

The last expression in equation (6.18) is obtained from the first by using the fact that 
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The activity coefficient of water calculated with the extended Debye-Hückel equation is 
given by: 
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6.1.3 Debye-Hückel limiting law 
The so-called Debye-Hückel limiting law is a further simplification of the original Debye-
Hückel theory.  

The molar excess Gibbs energy function defining the Debye-Hückel limiting law is given by 
the expression: 
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Compared to the excess Gibbs energy of the 
Extended Debye-Hückel law in equation 
(6.15), this corresponds to considering the 
value of the function ( )½BaIχ  to be one. 

Typical values of Ba is 1 – 1.5 (kg/mol)½. 
Values of the function  are shown 
in 

( ½1.5Iχ )

)

Figure 6.1 versus ionic strength. This 
function is obviously very sensitive to 
changes in the ionic strength. The function 
has a limiting value of 1 at infinite dilution. 
In a 1 molal solution of a 1-1 salt, the value 
of ( ½1.5Iχ  is 0.48! The “Debye-Hückel 
limiting law” is therefore only correct in the limit of infinite dilution. 
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Figure 6.1: The function χ from equation (6.7) 
versus ionic strength 

The activity coefficients for the Debye-Hückel limiting law are derived by molar 
differentiation of the excess Gibbs energy function in equation (6.20): 
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Equation (6.21) is only applicable up to an ionic strength of maximum 0.001 molal, i.e. only 
for extremely dilute solutions. The corresponding mean molal activity coefficient is: 

ln lnm
w C A = x  - Z Z A Iγ ±  (6.22) 
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Exercise 6.1 

Show that the water activity coefficient according to the Debye-Hückel limiting law is:
3/ 22ln

3w wM AIγ = . Hint: Use the Gibbs-Duhem equation (see section 5.6) and use the 

molality of salt as integration variable. Alternatively the activity coefficient can be derived 
from the excess Gibbs energy function for the Debye-Hückel limiting law. 

Calculate the osmotic coefficient of water in sodium chloride solutions using water activities 
from the Debye-Hückel limiting law and compare the results with the experimental values of 
these osmotic coefficients given in Table 5.3. Use A = 1.17165 (kg/mol)½ and Ba =1.5 
(kg/mol)½. 

6.1.4 The Hückel equation 
In 1925 it was found by E. Hückel [18] that the addition of an extra parameter, C to the 
extended Debye-Hückel law made it possible to calculate activity coefficients up to higher 
concentrations with good accuracy. With the C parameter, a term proportional to the ionic 
strength was added to the logarithm of the rational, unsymmetrical activity coefficient: 

 

                                                 
18 Hückel E. “Zur Theorie konzentrierterer wässeriger Lösungen starker Elektrolyte”, Physikalische Zeitschrift 
26(1925)93-147 

 
Figure 6.2: The rational mean ionic activity 
coefficient of aqueous HCl at concentrations up to 
0.3 molal, experimental and calculated values. 

 
Figure 6.3: The rational mean ionic activity 
coefficient of aqueous HCl at concentrations up to 
6 molal, experimental and calculated values. 
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In his paper, E. Hückel justified the addition of the C parameter by showing that according to 
theory, a term proportional to the ionic strength would take the variation of the dielectric 
constant with the composition into account.  

*ln C A
A I = -  CIZ Z

1 + Ba I
γ ± +  (6.23) 

The performances of the Debye-Hückel limiting law, the Debye-Hückel extended law, and 
the Hückel equation are illustrated in Figure 6.2 and Figure 6.3. In these figures, the 
calculated activity coefficients of aqueous hydrochloric acid solutions are plotted together 
with experimental values from a number of sources. For the preparation of Figure 6.2 and 
Figure 6.3, a value of 1.5 (kg/mol)½ was used for Ba in equations (6.16) and (6.23). The best 
value of the C parameter in equation (6.23) was determined to be C = 0.321 kg/mol. 

Figure 6.3 shows that the C parameter in the Hückel equation expands the concentration 
range in which the Debye-Hückel theory can be applied considerably. The C parameter is a 
function of temperature and of the ions in the solution. 

In dilute solutions the activity coefficients of electrolytes decrease with increasing 
concentration, see Figure 6.2. For very dilute solutions the slope of the activity coefficient 
curve versus concentration will be minus infinity. For most electrolytes the activity 
coefficients will pass through a minimum and increase again at high concentrations reaching 
values which may be much higher than unity. Some systems however, show a behavior where 
the activity coefficient continues to drop for increasing concentration. 

Exercise 6.2 
Show by using the Gibbs-Duhem equation (4.26), that the effect of the C parameter in the 
Hückel equation (6.23) on the natural logarithm of the water activity coefficient is a 

contribution of 2w

C A

M C I
Z Z

− to lnγw. 

Determine the C parameter for NaCl at 25 °C based on the experimental values of the mean 
molal activity coefficients in Table 5.3. Use the Hückel equation with Ba=1.5 (kg/mol)½ and 
A=1.17165 (kg/mol)½ to perform the calculations. Use the C parameter to calculate osmotic 
coefficients for sodium chloride solutions. Compare these calculated osmotic coefficients 
with values calculated with the extended Debye-Hückel law and with experimental values 
given in Table 5.3. 

Exercise 6.3 
The generally accepted correct method for extrapolating electromotive force measurements 
[8] to infinite dilution requires the use of the Hückel equation. Use the Hückel equation with 
Ba=1.5 (kg/mol)½ and A=1.17165 (kg/mol)½ to calculate the standard electromotive force of 
the Harned cell based on the experimental measurements in Table 5.1. Note that a value of 
the Hückel C parameter needs to be determined at the same time. Hint: combine the Hückel 

equation with the Nernst equation to get an equation of the form: 0 2RTy E CI
F

= − . 

Determine E0 and C from the data for this equation. Plot the data. 
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6.1.5 The Born equation 
While the Debye-Hückel theory deals with the interaction between charged ions, Born [19] 
derived an equation for the interaction between an ion and the surrounding solvent. Around 
an electrical charge there is an electrostatic field. Polar molecules are affected by such fields 
and redirect themselves to have as low energy as possible in the field. The positive part of a 
polar molecule is attracted to a negative charge and vice versa for the negative part. A 
orientation polarization is taking place.  

A solvent consisting of polar molecules is polarizable and is also referred to as a dielectric 
medium. Highly polarizable solvents have high relative permittivities (dielectric constants). 
As expressed by Coulomb’s law in equation (6.1), electrostatic interactions are lowered by 
solvents with a high relative permittivity. Salts do not dissociate spontaneously in a vacuum 
because the electrostatic interactions between the ions are too strong. In water, the 
electrostatic interactions between ions are lowered by a factor εr = 78.4 at 25 °C. The water 
molecules are shielding the ions from each other and allowing them to be separate. 

The relative permittivity of a solvent is defined as the ratio between the permittivity of the 
solvent and the permittivity of vacuum: 

Previously, the relative permittivity was called the dielectric constant and it was referred to as 
D. The relative permittivity of a medium can be measured by exposing the medium to a 
perturbing external electromagnetic field of small field strength. The medium is placed 
between the plates (conductors) of a capacitor. The response of the medium to this field is 
measured, and from this response, the relative permittivity of the medium can be deduced. 
Further information on the measurement of reative permittivity can be found in the book by 
Hill et al. [20] and in the paper by Kaatze [21]. 

0
r

εε
ε

≡  (6.24) 

When ions are dissolved in a dielectric medium, the solvent molecules are polarized by the 
electrical charges. This ion-solvent interaction is called solvation. For the special case of 
water as solvent, the term hydration is used instead. Here, hydration is not the formation of 
ion-hydrates of a specific stoichiometric composition, but the redirection of the polar water 
molecules around the charged ions. The energy change associated with solvation is the 
solvation energy or in the special case of water, the hydration energy. 

Consider a spherical ion with charge Zi and radius ri in a medium with the permittivity ε0εr. 
Born calculated the solvation energy of this ion by integrating the energy of the electrical 
field from the surface of the spherical ion to infinity. Born found the electrostatic contribution 
to the Helmholtz energy of the ion to be: 

2 2

08
i

r i

Z eA
rπε ε

=  (6.25) 

The expression was derived for a single ion in a solvent with the relative permittivity εr. 
When more ions are present, the electrostatic fields generated by the ions influence each 
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19 Born M., ”Volumen und Hydratationswärme der Ionen”, Zeitschrift für Physik, 1(1920)45-49 
20 Hill N.E., W.E. Vaughan, A.H. Price, and M. Davies, “Dielectric Properties and Molecular Behaviour”, Van 
Nostrand Reinhold, London (1969)  
21 Kaatze, U., “The Dielectric Properties of Water in Its Different States of Interaction”, Journal of Solution 
Chemistry, 26(1997)1049-1112 



other, and these electrostatic interactions influence the ion-solvent interactions. 

Equation (6.25) shows that the Helmholtz energy is lower in a medium of high relative 
permittivity, εr. The solvation energy is therefore negative if the ion is transferred from 
vacuum to a solvent. 

By multiplying the energy in equation (6.25) with Avogadro’s number, the Helmholtz energy 
of one mol of ions with charge Zi is calculated. It is often of interest to know the change in 
Helmholtz energy when one mole of an ion is moved from a medium with one permittivity to 
a medium with another permittivity. This is the Helmholtz energy of transfer. If one mole of 
ions is moved from vacuum to a medium of relative permittivity εr, the energy change can be 
calculated as: 
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It has been found that equation (6.26) gives very accurate results compared to experimental 
values of the solvation energy. An effective radius corresponding to the radius of the 
spherical cavity in the solvent created by an ion should be used in equation (6.26) [22, 23] 
rather than the ionic radius of the ion. According to Rashin and Honig [23], the radius of the 
cavity produced by the same ion is different in different solvents. When the Helmholtz 
energy of transfer between two solvents is calculated it is therefore necessary to use two 
different radii for the same ion. Besides, Rashin and Honig [23] found that the cavity radius 
of anions in water can be calculated by adding 7% to their ionic radius, while the cavity 
radius of cations can be calculated by adding 7 % to their covalent radius.  
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The covalent radius is half the distance between two identical atoms bonded together by a 
single covalent bond. The covalent radius of a metal cation is usually larger than the ionic 
radius but smaller than the atomic radius of the corresponding metal. The atomic radius of 
sodium is 190 pm, while the covalent radius of sodium is 154 pm and the ionic radius of the 
sodium ion is 102 pm. The argument for using the covalent radius of the metal rather than the 
ionic radius of the cation is that the covalent radius corresponds to the radius of the empty 
orbital around the cation. This empty orbital is assumed to form a part of the cavity. 

For the transfer of one mole of ion i from a medium with relative permittivity ,1rε  to a 
medium with relative permittivity ,2rε , the Helmholtz energy of transfer is according to 
Rashin and Honig [23]: 

The radii of the solvent cavities are marked with subscript 1 and 2 for the two solvents. 
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 (6.27) 

The Born term in equation (6.26) is often used with equations of state for electrolyte 

                                                 
22 Latimer W.M, Pitzer K.S., and Slansky C.M., “The Free Energy of Hydration of Gaseous Ions, and the 
Absolute Potential of the Normal Calomel Electrode”, J. Am. Chem. Soc., 7(1939)108-111 
23 Rashin A.A. and Honig B., “Reevaluation of the Born model of ion hydration”, J. Physical Chemistry, 
89(1985)5588-5593 
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solutions. In this case, the Born term contributes to the activity coefficients because of the 
variation of the relative permittivity with pressure. The Born term is also used for calculating 
the Gibbs energy of transfer. This is the difference in standard state chemical potential for a 
solute in two solvents with different relative permittivities. It is usually assumed that the 
Helmholtz energy difference calculated with equation (6.26) is identical to the corresponding 
difference in Gibbs energy. 

The Helmholtz energy calculated from equation (6.25) is the difference in Helmholtz energy 
of a charged particle in a dielectric medium compared to the Helmholtz energy of an 
uncharged particle of the same size, in the same medium. The equation thus represents the 
contribution to the excess Helmholtz energy from the interaction between a single ion and a 
number of solvent molecules.  

Helgeson et al. [24] used the equation of Born (6.25) in combination with the extended 
Debye-Hückel law (6.16) to derive an activity coefficient model. This activity coefficient 
model is identical to the one derived by Hückel [18] in 1925, but was derived on different 
theoretical assumptions. The Helgeson-Kirkham-Flowers model [24] can thus be seen as a 
more modern validation of Hückel’s equation. 

Exercise 6.4 
According to Hefter et al. [25] the enthalpy of transfer of one mol of sodium chloride from 
pure water to pure methanol is -13000 J/mol and the corresponding entropy of transfer is -121 
J/(mol·K) both at 298.15 K. The ionic radius of the chloride ion is 181 picometer and the 
covalent radius of sodium is 154 picometer. The relative permittivity of water is 78.48 and 
the relative permittivity of methanol is 32.66 at 298.15 K, both according to Albright and 
Gosting [26]. Calculate the Gibbs energy of transfer for one mole of sodium chloride being 
transferred from pure water to pure methanol at 25 °C. Assume that the cavity radii in water 
are the above radii plus 7 % and calculate the corresponding percentage that should be added 
to these radii in order to get the cavity radii in methanol. Why are the cavity radii larger in 
methanol than in water? 

6.1.6 The mean spherical approximation 
The Mean Spherical Approximation [27] uses a more “modern” method of calculating the 
excess Helmholtz energy from the electrostatic interactions than Debye and Hückel used 
[16]. The resulting MSA term seems to be more complicated than the corresponding Debye-
Hückel term, but give similar numerical results. It was stated by Zuckerman et al.[28] that 
“At a purely theoretical level, however, one cannot be content since, a priori, there seem no 
clear grounds for preferring the DH-based theories—apart from their more direct and 

 
24 Helgeson H.C., D.H. Kirkham, G.C. Flowers “Theoretical Prediction of the Thermodynamic Behavior of 
Aqueous Electrolytes at High Pressures and Temperatures: IV. Calculation of Activity Coefficients, Osmotic 
Coefficients, and Apparent Molal and Standard and Relative Partial Molal Properties to 600°C and 5kb”, 
American Journal of Science, 281(1981)1249-1516 
25 Hefter G., Marcus Y., and Waghorne W.E., “Enthalpies and Entropies of Transfer of Electrolytes and Ions 
from Water to Mixed Aqueous Organic Solvents”, Chemical Reviews, 8(2002)2773-2836 
26 Albright P.S. and Gosting L.J, “Dielectric Constants of the Methanol-Water System from 5 to 55° C”, J. Am. 
Chem. Soc. 68(1946)1061-1063 
27 Lebowitz J.L. and Percus J.K., “Mean Spherical Model for Lattice Gases with Extended Hard Cores and 
Continuum Fluids”, Physical Review, 144(1966)251-258 
28 Zuckerman D.M., Fisher M.E., and Lee B.P., “Critique of primitive model electrolyte theories”, Physical 
Review E, 56(1997)6569-6580. 



intuitive physical interpretation—rather than the more modern (and fashionable) MSA-based 
theories which—since they entail the pair correlation functions and the Ornstein-Zernike 
(OZ) relation—give the impression of being more firmly rooted in statistical mechanics. On 
the other hand, it has recently been shown that the DH theories yield pair correlations 
satisfying the OZ relation in a very natural way. Furthermore, both theories have an 
essentially meanfield character despite which, in contrast to typical mean field theories for 
lattice systems, neither has any known Gibbs-Bogoliubov variational formulation or similar 
basis. How, then, might the two approaches be distinguished?” 

The derivation of the MSA term for electrostatic interactions is too complex for these notes. 
The interested reader is referred to papers like Lebowitz and Percus, “Mean Spherical Model 
for Lattice Gases with Extended Hard Cores and Continuum Fluids”[27].  

The MSA expression for the Helmholtz energy of an electrolyte solution is according to 
Harvey et al.[29]: 
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The terms in this equation are:  
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In this form of the MSA term the MSA screening parameter, Γ is given with an implicit 
expression. By using an average diameter σ of the ions in the solution, the expression can be 
reduced to a simpler, explicit form: 
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The expression for κ is identical to the expression used in Debye-Hückel theory, equation 
(6.6).The MSA term for electrostatic interactions is the preferred term for many researchers 

 
29 Harvey A.H., Copeman T.W., and Prausnitz J.M. “Explicit Approximations to the Mean Spherical 
Approximation for Electrolyte Systems with Unequal Ion Sizes” J. Phys. Chem. 92(1988)6432-6436 



attempting to develop equations of state for electrolytes. It was shown by Yi Lin [30] by 
Taylor expansion that there is virtually 
no difference between the MSA term 
and the Debye-Hückel term resulting 
from similar simplification of the two 
theories. 

 

6.2 Empirical models for 
intermediate/short range 
interactions 

The theory presented by Debye and 
Hückel was only meant to take the 
electrostatic interactions between 
spherical ions into account. The 
equations presented in the previous 
section for the mean spherical 
approximation are also limited to the 
electrostatic interactions between 
spherical ions. These equations 
therefore have to be combined with 
models or equations that describe other types of interactions such as ion-dipole and dipole-
dipole interactions and short range interactions in order to be used for real solutions. Models 
for dipole-dipole interactions will not be considered further in these notes. 

Figure 6.4: The logarithm of the reduced activity 
coefficient Γ versus ionic strength μ over the ionic 
strength range from 1 to 2 molal. 

6.2.1  The Meissner correlation 
In 1972 H.P. Meissner et al. started publication of a series of papers on activity coefficients 
of strong electrolytes in aqueous solutions [31,32]. The basis for their method was the 
observation that curves of the reduced activity coefficient, Γ, versus the ionic strength, I, for 
different salts form a family of curves that did not cross each other. This only applies to 
curves of the reduced activity coefficient, not to curves of mean ionic activity coefficients. 
One of the graphs presented in [31] is reproduced in Figure 6.4. It was pointed out one year 
later by Bromley [33] that Meissner had painted an idealized picture of electrolyte behavior 
and that some of the curves for common salts actually do cross each other. 

The reduced activity coefficient, Γ, for a salt S was defined via the following equation: 

( )
1

     or       C AC A
Z Zm mZ Zγ γ± ±Γ ≡ = Γ  (6.31) 

Initially, the method of Meissner and Tester [31] was a graphical method for determining 
activity coefficients in binary solutions using graphs like the one shown in Figure 6.4 valid 
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30 Lin Y. “Development of Equation of State for Electrolytes”, Ph.D. thesis, Technical University of Denmark, 
2008 
31 Meissner H.P and Tester J.W., ”Activity Coefficients of Strong Electrolytes in Aqueous Solution”, Ind. Eng. 
Chem. Process Design and Development, 11(1972)128-133 
32 Meissner H.P., Kusik C.L. “Activity Coefficients of Strong Electrolytes in Multicomponent Aqueous 
Solution”, AIChE Journal, 18(1972)294-298 
33 Bromley, L. A, “Thermodynamic properties of strong electrolytes in aqueous solutions”, AIChE Journal 
19(1973)313-320 



up to two molal or valid up to 20 molal. Meissner and Kusik [32] showed how activity 
coefficients for multi component solutions could be calculated from the activity coefficients 
from binary solutions. In a solution of the three ions, 1, 2 and 3, which could represent Na+, 
Cl-, and K+ the reduced activity coefficient of electrolyte 12 (one-two) in the solution is given 
as a function of the reduced activity coefficients of the binary solutions of electrolyte 12 and 
32 by: 

The reduced activity coefficients of binary solutions are indicated with superscript 0. The 
fraction X3 is given by: 

0
0 32

12 12 3 0
12

ln ln ½ lnX Γ
Γ = Γ +

Γ
 (6.32) 

Similar methods were given [32] for the calculation of reduced activity coefficients in 
solutions containing four or more ions.  

2
3 3

3 2 2
1 1 3 3

m ZX
m Z m Z

=
+

 (6.33) 

Kusik and Meissner presented in 1978 [34] a set of equations for computer application of the 
method for calculating the reduced activity coefficients for binary solutions. 

The value of the reduced activity coefficient Γ is calculated as: 

In this equation, 

*1 (1 0.1· )qB I B⎡Γ = + + − Γ⎣  ⎤⎦  (6.34) 

0.75- 0.065B    q=  (6.35) 

*
10

0.5107-log
1

 I   
  C I

=Γ
+

 (6.36) 

The parameter q, Meissner’s parameter, is dependent on the type of salt and of temperature. 
Each of the curves in Figure 6.4 corresponds to a different value of the q parameter.  

31 0.055 exp (- 0.023· )C    q   I= +  (6.37) 

If one experimental value of the activity coefficient is known, it is possible to identify which 
curve the electrolyte belongs to, and what q parameter is associated with the curve. Using the 
q parameter, the value of the activity coefficient at other concentrations and temperatures can 
then be predicted. Kusik and Meissner presented values of the q parameter for about 120 
salts. Some of these parameters are shown in Table 6.1. 

The q parameter is temperature dependent according to: 
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The temperature t is in °C. The parameter a has the value -0.0079, b has the value -0.0029 for 
sulfates (except sulfuric acid!). For most other electrolytes a is about -0.005 while b has the 
value 0.0085. 

( )·( 2tq q aq b t= + + − 5)  (6.38) 

The Meissner method includes a graphical method for calculating water activities and a 
method for calculating mean ionic activity coefficients in multi-ion solutions. The reader is 
referred to the paper by Kusik and Meissner (1978) [34]. In spite of the resemblance between 
one of the terms in the Meissner correlation and the extended Debye-Hückel law, the 

 
34 Kusik, C. L., Meissner, H. P. “Electrolyte activity coefficients in inorganic processing”, AIChE Symp. Ser. 
173, vol. 74(1978)14-20. 



Meissner correlation is an empirical model. The Meissner correlation is also a predictive 
model and can be recommended for electrolytes for which only a few experimental data is 
available. 

 

Electrolyte  Q 
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Electrolyte  Q 
HCl 
HNO3 
KBr 
KCl 
KNO3 
NaBr 
NaCl 
NaNO3 
NH4Cl 

 6.69 
 3.66 
 1.15 
 0.92 
 -2.33 
 2.98 
 2.23 
 -0.39 
 0.82 

K2SO4 
Na2SO4 
CaCl2 
Mg(NO3)2 
MgSO4 
Al2(SO4)3 

 -0.25 
 -0.19 
 2.40 
 2.32 

Table 6.1: Meissner´s q parameters valid at 25°C 

 0.15 
 0.36 

 
Exercise 6.5 

Calculate the solid-liquid equilibrium phase diagram for the ternary NaCl-KCl-H2O system at 
25 °C using Meissner’s method. Compare the results with experimental values. Experimental 
values for the molalities of saturated solutions: (mNaCl, mKCl) = (0.0, 4.793), (1.353, 3.959), 
(2.828, 3.176), (5.154, 2.19), (5.716, 0.8151), (6.13, 0.0). 

6.2.2 Bromley’s method 
In 1935 Guggenheim [35] suggested that the factor Ba in Hückel’s equation (6.23) was set 
equal to 1. In 1973 L.A. Bromley [33] suggested a model based on a modification of 
“Guggenheim’s equation”, which was actually Hückels equation with Ba=1. Bromley’s 
equation is given by: 

ln m
C A CA

A I  = - Z Z  + C I
1 + I

γ ±  (6.39) 

Compared to Hückel’s equation (6.23), Bromley thus replaces *γ ±  with mγ ±  without any 
explanation and without any attempt to perform a correct conversion between the two types 
of activity coefficients. Besides, he proposes for CCA: 

( )
2
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B Z ZC    B
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Z Z

+
=

⎛ ⎞
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⎝ ⎠

+  (6.40) 

The water activity according to the Bromley model is given as an expression for 1-Φ: 

( ) ( )
½

½1 ln(10) 0.06 0.6 ( )
3 2

C A CA
C A CA

Z Z

The parameter “a” is calculated from a = 1.5/|ZAZC|. The function ψ is given by: 
2

B IAIZ Z I B I aIσ
⎡ ⎤

− Φ = − ⋅ + +⎢ ⎥
⎣ ⎦

ψ  (6.41) 

                                                 
35 Guggenheim E.A., “The Specific Thermodynamic Properties of Aqueous Solutions of Strong Electrolytes” 
Philosphical Magazine, 19(1935)588-643 



The function σ(x) in equation (6.41) is identical to the function given in connection with the 
water activity coefficient according to the extended Debye-Hückel law in equation (6.19).  

( )2
2 1 2 ln(1 )( )

1
x xx

x xx
ψ

⎡ ⎤+ +
= −⎢

+⎢ ⎥⎣ ⎦

Table 6.2: Bromley interaction 
parameters 

0.70

0.90

1.10

1.30

1.50

1.70

1.90

0 2 4 6

K2CO3 molality

Electrolyte BCA in 
kg/mol 

HCl 
HNO3 
KBr 
KCl 
KNO3 
NaBr 
NaCl 
NaNO3 
NH4Cl 
H2SO4 
K2CO3 
K2SO4 
Na2CO3 
Na2SO4 
CaCl2 
Mg(NO3)2 
MgSO4 
Al2(SO4)3 

0.1433 
0.0776 
0.0296 
0.024 
-0.0862 
0.0749 
0.0574 
-0.0128 
0.0200 
0.0606 
0.0372 
-0.0320 
0.0089 
-0.0204 
0.0948 
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Figure 6.5: Osmotic coefficient for K2CO3 calculated with the 
Bromley equation and compared with experimental data. Bromley’s 
equation is considered valid up to 6 molal and only at 25 °C. 0.1014 

-0.0153 
-0.0044 

8

Osmotic coefficient, Bromley equation
Osmotic coefficient, experimental

 

Bromley gave about 180 BCA values valid at ionic strengths up to 6 mol/kg. Some of these 
values are shown in Table 6.2. The Bromley parameters are only valid at 25 °C. Bromley 
suggested an equation for the temperature dependence of the BCA parameters in which each 
BCA parameter is a function of four other parameters and the temperature. These four 
parameters need to be determined from experimental data at different temperatures. 

Osmotic coefficients for K2CO3 calculated with Bromley’s equation and compared with 
experimental data from Roy et al. [36] are shown in Figure 6.5. Bromley’s parameters are 
valid up to 6 molal, and the figure shows a relatively good agreement between calculated and 
experimental data. 

Bromley also suggested that the BCA values may be calculated from ion specific parameters: 

⎥

B B B

 (6.42) 

Some of the approximately 80 ion specific values given by Bromley are shown in Table 6.3. 
These values should only be used if the salt specific parameters are not available.  

CA C A C Aδ δ= + +  (6.43) 

Bromley’s model can be used for calculating activity coefficients in multi-component 
                                                 
36 Roy R.N., Gibbons J.J., Williams R., Godwin L., Baker G., Simonson J.M, Pitzer K.S., “The 
Thermodynamics of Aqueous Carbonate Solutions”, J. Chem. Thermodynamics, 16(1984)303-315 



solutions. The mean molal activity coefficient for a multi component solution is according to 
Bromley given by: 
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For the cation C, Fi is given by: 

21 1ln
1

m
i i i i

A IZ F
I

γ ν
ν ν± = − +

+
∑ ν∑  (6.44) 

For the anion A, the corresponding expression for Fi is: 

( )( 2
0.5

i iC CA C A
Anions

F C Z Z= ⋅ +∑ ) iAm  (6.45) 

( )(0.5
i i

Bromley’s model has been widely used and is still being used. In a recent work, the Bromley 
model was used as part of a model to predict the formation of gas hydrates [37].  

 

Cation BC δC 

)2

iA C A C A C
Cations

F C Z Z= ⋅ +∑

Anion BA δA 
H+ 
Na+ 
K+ 
NH4

+ 
Ca+2 
Al+3 

0.0875 
0.0000 
-0.0452 
-0.042 
0.0374 
0.052 

0.103 
0.028 
-0.079 
-0.02 
0.119 
0.12 

Cl- 
NO3

- 
SO4

-2 
CO3

-2 

0.0643 
-0.025 
0.000 
0.028 

-0.067 
0.27 
-0.40 
-0.67 

6.2.3 The Pitzer method 
In 1973 K.S. Pitzer et al. presented the first of a long series of papers concerning the 
description of aqueous electrolyte solutions [38]. Pitzer used a particular definition of the 
ideal solution. The total Gibbs energy of an ideal solution according to Pitzer is given by: 

The term for water in this definition of the ideal solution is different from the term obtained 
from the pure component standard state for water. If the pure component standard state was 
used for water and the standard state of the hypothetical ideal solution at unit molality was 
used for ions, the expression for the Gibbs energy of an ideal solution would be: 

According to equation (5.23), the value of lnxw is approximately –MwνmS at high dilution, 
which explains the use of that particular term in equation (6.47). 

The total Gibbs energy of a solution of salts expressed with molal activity coefficients of 
solutes is given by: 

By inserting the definition of the osmotic coefficient from equation (5.18) this expression can 

m

0( ) ( ln )id m
w w w S s i i iG n RTM m n RT mμ ν ν μ= − + ∑ +

0( ln ) ( ln )id m
w w w s i i iG n RT x n RT mμ ν μ= + + ∑ +

0( ln( )) ( ln( ))m m
w w w w s i i i iG n RT x n RT m

 (6.46) 

Table 6.3: Bromley ion specific parameters 

 (6.47) 

 (6.48) 

μ γ ν μ γ= + + ∑ +  (6.49) 

                                                 
37 Jager M.D., Ballard, A.L.; Sloan Jr., E.D., “The next generation of hydrate prediction : II. Dedicated aqueous 
phase fugacity model for hydrate prediction”, Fluid Phase Equilibria, 211(2003)85-107 
38 K.S. Pitzer, Activity Coefficients in Electrolyte Solutions, 2nd Ed., CRC Press, 1991. 



be changed to: 

 
 51 

The expression for the total excess Gibbs energy used in the Pitzer method is calculated as 
the difference between the total Gibbs energy of the real solution (6.50) and the ideal solution 
(6.47): 

Partial differentiation of this Gibbs excess function with respect to moles of water will not 
give the water activity coefficient but instead ( )1w SM mν − Φ . By partial differentiation of 

(6.51) with respect to moles of ion i, the molal activity coefficient m
iγ  is obtained directly. 

The activity coefficients are not equal to the partial molar derivatives of the Gibbs excess 
function because the particular definition of the ideal solution in equation (6.47) is used. If 
the definition of the ideal solution from equation (6.48) were used, the activity coefficients 
would also not be equal to the partial molar derivatives of the excess Gibbs function. 

The analytical expression for the total excess Gibbs energy function used in the Pitzer method 
is 

The term f(I) is Pitzer’s empirical modification of the Debye-Hückel Gibbs excess function39. 
Obviously, some modification of the Debye-Hückel Gibbs excess function was necessary in 
order to fit it into the particular definition of the ideal solution used by Pitzer. According to 
Pitzer, the term “includes the Debye-Hückel limiting law, but is an empirical form chosen for 
empirical effectiveness”38. This empirical modification is called the Pitzer-Debye-Hückel 
term and has the form: 

The parameter b = 1.2. A is the Debye-Hückel parameter defined in Eq (6.13). The remaining 
terms in the Pitzer excess Gibbs energy function are empirical, virial expansion terms in 
molality. The second virial coefficient λij is a function of ionic strength. The second virial 
coefficient is a parameter for the short range interactions between pairs of ions. Higher order 
virial coefficients are considered independent of ionic strength. The third virial coefficient is 
a parameter for the short range interaction between triplets of ions. This parameter is used for 
cation-anion-anion and cation-cation-anion interactions. Cation-cation-cation interactions and 
anion-anion-anion interactions are neglected. 

The equation for the mean molal activity coefficient can be written in the following way for a 
single electrolyte according to Pitzer: 

The term |ZCZA| f γ  is the contribution of the Pitzer Debye-Hückel term to the mean molal 
activity coefficient: 
                                                 

ln )m0( ) ( m
w w w S s i i i iG n RT M m n RT mμ ν ν μ= − Φ + ∑ + γ  (6.50) 

(1 ln
E id

m
s i i

G G G n
RT RT

)ν γ−
= = ∑ − Φ +  (6.51) 

( ) ( ) ...
ex

w w w w i j ij w w i j k ijk
i j i j k

G n M f I n M m m I n M m m m
RT

λ= + +∑∑ ∑∑∑ μ +  (6.52) 

( )4( ) ln 1
3

If I A b
b

= − + I  (6.53) 

1.5
22 2(ln m C A C A

+C A S S+  = Z Z   + m   + m   Cf Bγ ) γγν ν ν ν
γ

ν ν ±

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 (6.54) 

39 Pitzer K.S., Electrolytes. From dilute solutions to Fused Salts, J. Am. Chem. Soc. 102(1980)2902-6 



(2 ln 1
3 1
A I = -   +    + b If

b + b I
γ ⎡ ⎤

⎢
⎣ ⎦

)⎥  (6.55) 

The parameter b = 1.2. A is the Debye-Hückel parameter defined in Eq (6.13). 3
2

C Cγ Φ
± ±= . 

 is an adjustable parameter in the model. CΦ
±

The equation for Bγ
±  is: 

( ) (( 21
0 2

22 1- 1 -0.5 expB          I  I   I
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In this equation, α = 2.0. The two parameters β0 and β1 are adjustable parameters in the 
model. 

))I
γ ββ α α

α± = + + −α  (6.56) 

Bγ
±  is slightly different: For a 2-2 electrolyte the expression for 

( ) ( )( )
( ) ( )( )

21
0 1 12

1

22
2 2 22

2

22 1 1 0.5 exp

2 1 1 0.5 exp

1B  = I I I
I

 I I I
I

γ ββ α α
α

β α α α
α

± + − + − −

+ − + − −

α
 (6.57) 

In this equation, α1 = 1.4 and α2 = 12.0, β2 is another adjustable parameter in the model. 

The equation for the water activity coefficient is given by Pitzer as an equation for Φ-1: 

In this equation, fΦ is the Pitzer-Debye-Hückel expression for the osmotic coefficient: 

( )3/ 2
2 221 C AC A

C A S SZ Z f m B m C
ν νν ν

ν ν
Φ Φ

±Φ − = + + Φ
±  (6.58) 

3 1
A If

b I
Φ = −

+
 (6.59) 

The expression for BΦ
±  is: 

(0 1 exp )B Iβ β αΦ
± = + −  (6.60) 

BΦ
± : In solutions with 2-2 salts, one more parameter is used in the expression for 

( ) (0 1 2 2 2exp exp )B Iβ β α β αΦ
± = + − + − I  (6.61) 

The values of β0, β1, β2 and  can be determined from experimental data. Pitzer et al. have 
published many such parameters. Some of these are shown in 

CΦ
±

Table 6.4. Pitzers method can 
generally be used up to an ionic strength of 6.0 molal. 

To use these equations one needs not only the previously mentioned β0, β1, β2 and CΦ
±  

parameters for the cation-anion (c-a) interaction but also parameters for c-c, a-a, a-a-c, and c-
c-a interactions. The equations and parameters can for example be found in the book by 
Pitzer (1991) [38].  

For calculations at temperatures different from 25 °C it is necessary to know the temperature 
dependence of each of the parameters. If sufficient experimental data are available, this 



temperature dependence can be determined from experimental data. Ananthaswamy and 
Atkinson [40] used 6 virial coefficients to describe the binary CaCl2 – H2O system up to 9.0 
molal in the temperature range from 0 to 100 °C. The temperature dependences of each of the 
6 virial coefficients were fitted to empirical functions of temperature. The number of 
parameters necessary to represent this binary system in a limited concentration range and a 
limited temperature range was 40. 

The Pitzer method is primarily of academic interest. The number of parameters in the model 
is unlimited. The equations for multi component systems were not presented here because of 
the size of the expressions. The usual way to apply the Pitzer method to a specific binary or 
multi component system is to first use equations similar to those presented here. If the 
differences between experimental and calculated values are not satisfactory, additional 
parameters are added. The Pitzer method is often used to correlate experimental data when 
these are published. Modifications of the method are often used in review articles where it is 
attempted to correlate large amounts of published experimental data for a specific system. 
One such example is a work by Donald D. Archer [41] to describe the properties of sodium 
nitrate solutions by correlating previously published experimental data using an extension of 
the Pitzer equation. Another example is the previously mentioned work of Ananthaswamy 
and Atkinson [40]. 

Electrolyte β0 β1 CΦ
±  

HCl 
HNO3 
KBr 
KCl 
KNO3 
NaBr 
NaCl 
NaNO3 
NH4Cl 

0.1775 
0.1168 
0.0569 
0.04835 
-0.0816 
0.0973 
0.0765 
0.0068 
0.0522 

0.2945 
0.3546 
0.2212 
0.2122 
0.0494 
0.2791 
0.2664 
0.1783 
0.1918 

0.00080 
-0.00539 
-0.00180 
-0.00084 
0.00660 
0.00116 

Table 6.4: Pitzer parameters valid at 25 °C for binary solutions of one salt in water 

0.00127 
-0.00072 
-0.00301 

  4/3 β0  4/3 β1  2/3 25/2 C  Φ
±

K2SO4  
Na2CO3  
Na2SO4  

0.0666 
0.0483 
0.0249  

1.039 
2.013 
1.466  

- 
0.0098 
0.010463 

  β0  β1 β2 CΦ
±  

CaSO4  
MgSO4  

0.20  
0.2210  

3.197  
3.343 

-54.24 - 
-37.23 0.0250 

 

Exercise 6.6 

If the definition of the ideal solution in equation (6.48) is used, what are then the partial 
                                                 
40 Ananthaswamy J. and G. Atkinson, “Thermodynamics of Concentrated Electrolyte Mixtures 5. A Review of 
the Properties of Aqueous Calcium Chloride in the Temperature Range 273.15-373.15K”, J. Chem. Eng. Data, 
30(1985)120-128 
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41 Archer D.G., “Thermodynamic properties of the NaNO3 + H2O System”, J. Phys. Chem. Ref. Data, 
29(2000)1141-1116 



molar derivatives of the excess Gibbs function with respect to mol water? Hint: Derive the 
corresponding excess Gibbs function and differentiate it with respect to moles of water. Use 
the Gibbs-Duhem equation to determine the derivatives of the activity coefficients with 
respect to mol water. 

Exercise 6.7 
Calculate the mean molal activity coefficients of NaCl solutions using the Pitzer-Debye-
Hückel equation. Use the value of the Debye-Hückel parameter A= 1.17165 (kg/mol)½. 
Compare the results with the corresponding values calculated with the extended Debye-
Hückel law by plotting the graphs. Use a value of Ba = 1.5 (kg/mol)½ in the extended Debye-
Hückel law. 

Calculate mean molal activity coefficients with the Pitzer equation at the concentrations for 
which experimental data are given in Table 5.3. Plot the experimental and calculated values 
in the same diagram to compare. 

6.3 Intermediate/Short range interactions from local composition models 
Local composition models are models based on the local composition concept introduced by 
Grant M. Wilson in 1964 [42]. It is assumed that the composition on a molecular level is 
different from the bulk composition. Depending on sizes, shapes, and interaction energies, 
molecules are preferentially surrounded by other molecules that give them a lower energy 
level. The Debye-Hückel theory can be considered to be a local composition theory for 
electrostatic interactions. 

6.3.1 The Extended UNIQUAC model 
Sander et al. [43] presented in 1986 an extension of the UNIQUAC model by adding a 
Debye-Hückel term allowing this Extended UNIQUAC model to be used for electrolyte 
solutions. The model has since been modified and it has proven itself applicable for 
calculations of vapor-liquid-liquid-solid equilibria and of thermal properties in aqueous 
solutions containing electrolytes and non-electrolytes. The model is shown in its current form 
here as it is presented by Thomsen (1997) [44]. 

The extended UNIQUAC model consists of three terms: a combinatorial or entropic term, a 
residual or enthalpic term and an electrostatic term 

The combinatorial and the residual terms are identical to the terms used in the traditional 
UNIQUAC equation [45, 46]. The electrostatic term corresponds to the extended Debye-
Hückel law, given in equation (6.15). 

ex ex ex ex
Combinatorial Residual Extended Debye-Hückel =  +  + G G G G  (6.62) 

The combinatorial, entropic term is independent of temperature and only depends on the 
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42 Wilson GM, “Vapor-Liquid Equilibrium XI. A New Expression for the Excess Free Energy of Mixing”, J. 
Am. Chem. Soc., 86(1964)127-130 
43 B. Sander; P. Rasmussen and Aa. Fredenslund, “Calculation of Solid-Liquid Equilibria in Aqueous Solutions 
of Nitrate Salts Using an Extended UNIQUAC Equation”. Chemical Engineering Science, 41(1986)1197-1202 
44 Thomsen, K., Aqueous electrolytes: model parameters and process simulation, Ph.D. Thesis, Department of 
Chemical Engineering, Technical University of Denmark, 1997. 
45 Abrams D.S. and Prausnitz J.M., “Statistical thermodynamics of liquid mixtures: A new expression for the 
excess Gibbs energy of partly or completely miscible systems”, AIChE journal 21(1975)116-128 
46 Maurer G., Prausnitz J.M., ”On the derivation and extension of the UNIQUAC equation”, Fluid Phase 
Equilibria, 2(1978)91-99 



relative sizes of the species: 

ln - ln
2

ex
Combinatorial i

i ii
i i ii

zG  x     x  q
RT x

iφ φ
θ

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑  (6.63) 

z = 10 is the co-ordination number. xi is the mole fraction, iφ  is the volume fraction, and θi is 
the surface area fraction of component i: 
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The two model parameters ri and qi are the volume and surface area parameters for 
component i. In the classical application of the UNIQUAC model, these parameters are 
calculated from the properties of non electrolyte molecules [45]. In the Extended UNIQUAC 
application to multi component electrolyte solutions, this approach gave unsatisfactory 
results. The volume and surface area parameters were instead considered to be adjustable 
parameters. The values of these two parameters are determined by fitting to experimental 
data. Especially thermal property data such as heat of dilution and heat capacity data are 
efficient for determining the value of the surface area parameter q, because the UNIQUAC 
contribution to the excess enthalpy and excess heat capacity is proportional to the parameter 
q. 

;i i i i
i i

l l l l
l l

x r x       q
x r x

φ θ= =
∑ ∑ q

 (6.64) 

The residual, enthalpic term is dependent on temperature through the parameter ψkl: 

the parameter ψkl is given by: 

ln
ex
Residual

ki i kl
i k

G  = x q   
RT

ψθ
⎛ ⎞

− ⎜
⎝ ⎠

∑ ∑ ⎟  (6.65) 

ukl and ull are interaction energy parameters. The interaction energy parameters are 
considered symmetrical and temperature dependent in this model 

exp kl ll
kl

u u =  - 
T

ψ
−⎛ ⎞

⎜
⎝ ⎠

⎟  (6.66) 

( )0 298.15T
kl kl klu u u T= + −  (6.67) 

The interaction parameters  and  are model parameters that are fitted to experimental 
data. 

0
klu T

klu

By partial molar differentiation of the combinatorial and the residual UNIQUAC terms, the 
combinatorial and the residual parts of the rational, symmetrical activity coefficients are 
obtained: 

The infinite dilution terms are obtained by setting xw = 1 in equation (6.68). 
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The combinatorial and the residual terms of the UNIQUAC excess Gibbs energy function are 
based on the rational, symmetrical activity coefficient convention. The Debye-Hückel 
electrostatic term however is expressed in terms of the rational, symmetrical convention for 
water, and the rational, unsymmetrical convention for ions.  

ln ln 1 ln 1
2

ln [1 ln ]

C i i i w i w
i i

w w w i w i

R
i wi iwi

r r rq rqz           q
r r r q r q

       q

γ

γ ψ ψ

∞

∞

⎡ ⎤
= + − − + −⎢ ⎥

⎣
= − −

⎦  (6.69) 

The electrostatic contributions to the water activity coefficients and the ionic activity 
coefficients are obtained by partial molar differentiation of the extended Debye-Hückel law 
excess Gibbs energy term (6.15). The term used for water is slightly modified compared to 
equation (6.19) so that the parameter b = 1.5 (kg/mol)½ is used instead of the Ba term: 

Also the term used for ions is slightly modified compared to equation (6.16) so that the 
parameter b replaces Ba.: 

( )3/ 2 ½

3

2ln
3

3 1( ) 1 2ln(1 )
1

DH
w wM AI bI

x x x
x x

γ σ

σ

=

⎧ ⎫= + − − +⎨ ⎬+⎩ ⎭

 (6.70) 

Based on table values of the density do of pure water, and the relative permittivity of water, 
εr, the Debye-Hückel parameter A in equation (6.13) used in equation (6.70) and (6.71) can 
be approximated in the temperature range 273.15 K < T < 383.15 K by 

* 2

1
DH

i i
A IZ

b I
γ = −

+
 (6.71) 

3 5 2[1.131 1.335·10 ( 273.15) 1.164·10 ·( 273.15) ] ( / )A  T   T  kg mol− −= + − + − ½  (6.72) 
The activity coefficient for water is calculated in the Extended UNIQUAC model by 
summation of the three terms: 

The activity coefficient for ion i is obtained as the rational, unsymmetrical activity coefficient 
according to the definition of rational unsymmetrical activity coefficient in equation (4.7) by 
adding the three contributions: 

γγγγ DH
w

R
w

C
ww   +   +   =  lnlnlnln  (6.73) 

The rational, unsymmetrical activity coefficient for ions calculated with the Extended 
UNIQUAC model can be converted to a molal activity coefficient by use of the definition in 
equation (4.11). This is relevant for comparison with experimental data. 
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 (6.74) 

Parameters for water and for the following ions can be found in Thomsen (1997) [44]: H+, 
Na+, K+, NH4

+, C1-, SO4
2-, HSO4

-, NO3
-, OH-, CO3

2-, HCO3
-, S2O8

2-.  

Parameters and model modifications for gas solubility at pressures up to 100 bar in aqueous 
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electrolyte systems have later been published [47, 48]. Also phase equilibria for systems 
containing non-electrolytes are described by the model, including liquid-liquid equilibria [49, 
50]. Besides, parameters have been determined for systems containing heavy metal ions [51].  

The model has been applied by A.V. Garcia to include the pressure dependence of the 
solubility of salts. Two parameters for the pressure dependence of the solubility product of 
each salt were introduced in order to achieve this [52, 53]. 

A significant advantage of the Extended UNIQUAC model compared to models like the 
Bromley model or the Pitzer model is that temperature dependence is built into the model. 
This enables the model to also describe thermodynamic properties that are temperature 
derivatives of the excess Gibbs function, such as heat of mixing and heat capacity.  

Exercise 6.8:  

Show how the infinite dilution coefficients in (6.69) are derived from (6.68). 

Exercise 6.9: 

Read the paper in which the UNIQUAC equation was introduced by Abrams and Prausnitz 
[45]. Write a short resume of the paper. 

6.3.2 The electrolyte NRTL model 
The electrolyte NRTL model [54, 55, 56] combines the Pitzer-Debye-Hückel term with the 
NRTL local composition model [57]. The local composition concept is modified for ions and 
the model parameters are salt specific. The Extended UNIQUAC model is also a combination 
of a Debye-Hückel term and a local composition model. At first glance, the two models 
therefore seem to be similar. Some of the differences between the two models are listed in 
Table 6.5. 

 
47 K. Thomsen and P. Rasmussen, “Modeling of Vapor-liquid-solid equilibrium in gas-aqueous electrolyte 
systems” Chemical Engineering Science 54(1999)1787-1802 
48 S. Pereda, K. Thomsen, P. Rasmussen “Vapor-Liquid-Solid Equilibria of Sulfur Dioxide in Aqueous 
Electrolyte Solutions” Chemical Engineering Science 55(2000)2663-2671 
49 M.Iliuta, K.Thomsen, P.Rasmussen “Extended UNIQUAC model for correlation and prediction of vapor-
liquid-solid equilibrium in aqueous salt systems containing non-electrolytes. Part A. Methanol – Water – Salt 
systems”  Chemical Engineering Science 55(2000)2673-2686 
50 K. Thomsen, M. Iliuta, P. Rasmussen “Extended UNIQUAC model for correlation and prediction of vapor-
liquid-liquid-solid equilibria in aqueous salt systems containing non-electrolytes. Part B. Alcohol (Ethanol, 
Propanols, Butanols) - water - salt systems“ Chemical Engineering Science 59(2004)3631-3647 
51 Maria C. Iliuta, Kaj Thomsen, Peter Rasmussen “Modeling of heavy metal salt solubility using the extended 
UNIQUAC model” AIChE Journal, 48(2002)2664-2689 
52 Ada Villafáfila Garcia, Kaj Thomsen, Erling H. Stenby, “Prediction of mineral scale formation in geothermal 
and oilfield operations using the extended UNIQUAC model Part I. Sulfate scaling minerals” Geothermics 
34(2005)61-97 
53 Ada Villafáfila Garcia, Kaj Thomsen, Erling H. Stenby, ”Prediction of mineral scale formation in geothermal 
and oilfield operations using the extended UNIQUAC model Part II. Carbonate scaling minerals”, Geothermics, 
35(2006)239-284 
54 C.C. Chen, H.I. Britt, J.F. Boston, L.B. Evans, “Local Composition Model for Excess Gibbs Energy of 
Electrolyte Systems” AIChE Journal, 28(1982)588-596 
55 C.C. Chen and L.B. Evans, “A Local Composition Model for the Excess Gibbs Energy of Aqueous 
Electrolyte Systems”, AIChE Journal 32(1986)444-454. 
56 C.C. Chen and Y. Song, “Generalized Electrolyte-NRTL Model for Mixed-Solvent Electrolyte Systems” 
AIChE Journal 50(2004)1928-1941. 
57 Renon H., Prausnitz J.M., “Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures”, 
AIChE Journal, 14(1968)135-144 



Property Model 
Table 6.5: Differences between the electrolyte NRTL model and the Extended UNIQUAC model. 

 Electrolyte NRTL model Extended UNIQUAC model 
Local composition term: Modified NRTL Standard UNIQUAC 
Electrostatic term: Pitzer-Debye-Hückel Extended Debye-Hückel 
Parameters: Salt specific Ion specific 

GE = HE GE = HE - TSE Gibbs excess function 
 
The electrolyte NRTL model uses a local composition concept adapted to electrolyte 
solutions. The expressions for the activity coefficients are considerably more complicated and 
require more time for programming than those from the Extended UNIQUAC model [56]. 
The use of a Pitzer-Debye-Hückel term instead of the Extended Debye-Hückel term does not 
make much difference. 

The NRTL local composition model only has an enthalpic term, it uses no volume and 
surface area fractions and has no entropic term. 

The use of salt specific parameters rather than ion specific parameters requires that a suitable 
mixing rule is applied. Otherwise calculations of solution properties would depend on how 
the composition of the solution is defined. A solution of equal amounts of CaCl2 and MgNO3 
could as well be defined as a solution of Ca(NO3)2 and MgCl2. The electrolyte NRTL model 
is widely used as it is the model implemented in the commercial simulator ASPEN [58].  

The reader is referred to the original papers [54, 55, 56] for the relevant equations used in this 
model. 

Exercise 6.10 

Read the paper by Chen et al. [54] in which they introduced the electrolyte NRTL model. 
Write a short resume of the paper. 

6.4 Intermediate/Short range interactions from equations of state 
An equation of state provides an analytical relation between pressure, volume, and 
temperature (PVT). Polynomial equations that are cubic in molar volume are known as cubic 
equations of state. Cubic equations of state are the simplest equations capable of representing 
both liquid and vapor behavior. It is therefore possible to describe the intermediate/short 
range interactions in electrolyte solutions using a cubic or more advanced equation of state.  

Local composition models such as the NRTL model and the UNIQUAC model are based on 
the assumption that the effect of pressure on these liquid mixtures is negligible. Equations of 
state include the effect of pressure and can possibly be used for calculating activity 
coefficients as function of pressure. This pressure dependence is important in a number of 
applications: The precipitation of salts during oil production and the production of 
geothermal energy is taking place due to changes in both temperature and pressure. This 
phenomenon is called scaling. A better description of this phenomenon might be achieved by 
models that include the effect of pressure, such as equations of state. 

6.4.1 Fugacity coefficients and activity coefficients 
Fugacity coefficients of components in a mixture, îφ  are derived from equations of state in 
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order to perform vapor-liquid equilibrium calculations in systems that can be described with 
such equations. Fugacity coefficients describe the deviation of the properties of a real mixture 
from the properties of an ideal gas mixture. 

Just like an ideal solution is defined by the chemical potentials of its components, an ideal 
gas mixture is defined by the chemical potentials of its components. The chemical potential 
of a component in an ideal gas mixture is: 

The mole fraction of component i in the ideal gas mixture is xi. A superscript 0 is used to 
indicate the chemical potential of the pure ideal gas, which is obviously used as the standard 
state. The superscript ig indicates ideal gas. The chemical potentials of gases are sensitive to 
the pressure. The ideal gas standard state chemical potentials are usually given at 1 bar. A 
pressure of 1 bar will be denoted as P0. The chemical potential of pure gas i at the pressure P 
is: 

0,( , ) ( , ) lnig ig
i iT P T P RT xμ μ= + i  (6.75) 

The chemical potential of component i in an ideal gas mixture at a pressure P is then 
according to equation (6.75): 

0, 0,
0

0

( , ) ( , ) lnig ig
i i

PT P T P RT
P

μ μ= +  (6.76) 

The deviation from ideal gas behavior by a real solution at T, P is described by the term 
ˆln iRT φ . This term is called the residual term and corresponds to the excess term ln iRT γ  

that describes the deviation from ideal solution behavior by a real solution. The chemical 
potential of component i in the real mixture is: 

0,
0

0

( , ) ( , ) lnig ig i
i i

PxT P T P RT
P

μ μ= +  (6.77) 
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The corresponding equation in the ideal solution reference system is: 

0,
0

0

ˆ( , ) ( , ) ln lnig i
i i

PxT P T P RT RT
P iμ μ= + + φ  (6.78) 

( )0
0 0( , ) ( , ) ( ) lni i iT P T P V P P RT xi iμ μ γ= + − +  (6.79) 

The standard state chemical potential at T, P has here been calculated in the same way as it 
was done in equation (5.42).  

The chemical potential has the same numerical value, no matter what reference system is 
used. Equations (6.78)and (6.79) are combined to give: 

0, 0
0 0 0

0

ˆ
( , ) ln ( , ) ( ) lnig i

i i i
PT P RT T P V P P RT
P
φ

iμ μ+ = + − + γ  (6.80) 

In an ideal solution γi = 1 when the symmetrical convention is used and the corresponding 
equation is: 

0, 0
0 0

0

ˆ
( , ) ln ( , ) ( )ig i

i i
PT P RT T P V P P
P
φμ μ+ = + 0i −  (6.81) 

If the solution only consists of the pure species i, the fugacity coefficient at T, P is φi, and the 
equation is: 
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Equation (6.82) is subtracted from equation (6.80) to give: 

0, 0
0 0

0

( , ) ln ( , ) ( )ig i
i i

PT P RT T P V P P
P 0i
φμ μ+ = + −  (6.82) 

The result is that the ratio between the fugacity coefficient of component i in a mixture and 
the fugacity of pure component i at the same temperature and pressure is equal to the activity 
coefficient of the component. This expression can be used for calculating activity coefficients 
from fugacity coefficients.  

0 0

ˆ ˆ
ln ln lni i i

i
i

P P
P P
φ φ φ

iγ γ
φ

− = ⇒ =  (6.83) 

For the calculation of the rational, unsymmetrical activity coefficient, it is necessary to 
calculate the fugacity coefficient at infinite dilution in order to obtain the infinite dilution 
activity coefficient. The fugacity coefficient of solute i at infinite dilution, iφ ∞ , is calculated 
at T, P from the equation of state from a composition vector consisting of water and no ions: 

The unsymmetrical activity coefficient can therefore be calculated from 

î
i

i

φ γ
φ

∞
∞=  (6.84) 

Equations of state for electrolytes are still only considered of academic interest. Most 
equations of state for electrolytes can only be applied to binary systems at 25 °C. An 
engineering equation requires a high accuracy in phase equilibrium calculations for multi 
component solutions over a wide temperature range. 

*
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ˆ /

i i i
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i i i î

iγ φ φ φγ
γ φ φ φ∞ ∞

= = =
∞

 (6.85) 

6.4.2 The Fürst and Renon equation of state 
Fürst and Renon [59] based their equation of state for electrolytes on a non-electrolyte part 
from the equation of state of Schwartzentruber et al. [60], and an electrostatic part composed 
of an MSA long-range term, they also used an additional short range interaction term specific 
to ions. They applied their model to calculate osmotic coefficients of dilute binary and 
ternary solutions at 25°C. The model uses ion specific parameters. 

6.4.3 The Wu and Prausnitz equation of state 
Wu and Prausnitz [61] based their equation of state on the Peng-Robinson equation of state 
combined with an association term to account for hydrogen bonding, a Born term for the 
Helmholtz energy change of transferring an ion between phases, and an MSA term for the 
long range interactions between charges. The model was used for calculating vapor-liquid 
equilibrium in water-hydrocarbon mixtures with and without salt, mean ionic activity 
coefficients, and water activities (not osmotic coefficients) for binary aqueous salt solutions. 

                                                 
59 Fürst W., Renon H. “Representation of Excess Properties of Electrolyte Solutions Using a New Equation of 
State” AIChE Journal 39(1993)335-343. 
60 Schwartzentruber J., Renon H., Watanasiri S., “Development of a New Cubic Equation of State for Phase 
Equilibrium Calculations”, Fluid Phase Equilibria, 52(1989)127-134 
61 Wu J. and Prausnitz J.M. “Phase Equilibria for Systems Containing Hydrocarbons, Water and Salt: An 
Extended Peng-Robinson Equation of State” Ind. Eng. Chem. Res. 37(1998)1634-1643 
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The model uses ion specific parameters and was applied in a wide temperature and pressure 
range. 

6.4.4 The Myers-Sandler-Wood equation of state 
The Myers-Sandler-Wood equation of state [62] combines the Peng-Robinson cubic equation 
of state with a Born term and the explicit MSA term (6.30). Salt specific parameters valid at 
25°C for a number of salts in aqueous solutions were determined and it was shown that mean 
activity coefficients of ions and the osmotic coefficient could be calculated with reasonable 
accuracy at 25°C. For a few binary systems, temperature dependent parameters were 
determined and it was shown that experimental mean activity coefficients, osmotic 
coefficients and densities could be reproduced for those binary systems in a wide temperature 
range. 

6.4.5 Comparative study of equations of state 
In a comparative study, Yi Lin [30], examined the performance of four different equations of 
state for electrolytes. A test system consisting of the multi-component system H2O – (Na+, 
H+, Ca2+) – (Cl-, OH-, SO4

2-) at 25 °C was used. The four equations of state were: 

• The Myers-Sandler-Wood electrolyte equation of state with ion-specific parameters 
but otherwise identical to the model by Myers et al. [62] This model requires three 
ion-specific parameters in addition to interaction parameters for the interactions 
between each species pair. The three ion specific parameters are the attraction 
parameter a, the co-volume parameter b, and an ion size parameter σ for the MSA 
term. 

• The Myers-Sandler-Wood electrolyte equation of state with ion-specific parameters 
and the explicit MSA term replaced with the implicit MSA term from (6.28). This 
equation of state uses the same number and the same types of parameters as the 
equation of state above. 

• The Cubic Plus Association equation of state [63] for intermediate/short range 
interactions and the implicit MSA term for electrostatic interactions. This equation of 
state uses the same number and the same types of parameters as the equation of state 
above. This equation of state gives the option of adding association terms for the 
components. This option was only used for the self association of water. 

• The Soave-Redlich-Kwong equation of state [64] for intermediate/short range 
interactions and the extended Debye-Hückel equation(6.16), (6.19) with Ba = 1.5 
(kg/mol)½.for the electrostatic interactions. This equation has only two ion specific 
parameters. The two ion specific parameters are the attraction parameter a, and the 
co-volume parameter b. 

Usually the parameters in equations of state such as the Peng-Robinson EOS are determined 
on the basis of the critical properties of the species. Critical properties do not exist for ions. 
These parameters were therefore considered adjustable parameters that could be determined 

 
62 Myers J.A., S.I. Sandler, R.H. Wood “An Equation of State for Electrolyte Solutions Covering Wide Ranges 
of Temperature, Pressure and Composition” Ind. Eng. Chem. Res. 41(2002)3282-3297 
63 Kontogeorgis G.M., Yakoumis I.V., Meijer H., Hendriks E., Moorwood T. “Multicomponent phase 
equilibrium calculations for water-methanol-alkane mixtures”, Fluid Phase Equilib. 158-160(1999)201-209 
64 Soave G. “Equilibrium constants from a modified Redlich-Kwong equation of state”, Chemical Engineering 
Science, 27(1972)1197-1203 
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as the best fit to the experimental data. 

The parameters in the models were determined on the basis of a databank consisting of 1300 
experimental data points for the test system at 25 °C. The data consisted of  

• Activity coefficients 

• Osmotic coefficients 

• Density data 

• Solid-liquid equilibrium data 

The difference between the performances of these four equations of state was remarkably 
low. The three first of the equations of state performed equally well with all four types of 
data. There was no significant difference between using the implicit MSA term and the 
simpler explicit MSA term. Also there was no difference between using the Cubic Plus 
Association equation of state for intermediate/short range interactions instead of the Peng-
Robinson equation of state. Most surprisingly, the last of the four equations of state tested, 
performed equally well as the three first concerning activity coefficients, osmotic 
coefficients, and solid-liquid equilibrium data. This equation was however not able to 
reproduce density data with good accuracy. This can be explained by the fact that the 
extended Debye-Hückel term used for this equation of state does not contain a volume term. 

From the point of view of computation time, the Soave-Redlich-Kwong equation of state 
combined with the extended Debye-Hückel term was the clear winner. The two models that 
used the implicit form of the MSA electrostatic term used 2.5 times the calculation time of 
the Myers-Sandler-Wood model with the explicit MSA term. 

 



7 Equilibrium calculations 
With a thermodynamic model for electrolyte solutions, it is possible to perform calculations 
of various properties of such solutions. The first type of calculation to perform is usually an 
equilibrium calculation to determine if the solution forms one homogeneous phase. First a 
speciation equilibrium calculation is performed in order to determine the degree of 
dissociation of the various electrolytes. Subsequently solid-liquid, vapor-liquid, or liquid-
liquid equilibrium calculations are performed. 

7.1 Speciation equilibrium 
The term speciation is used to describe what happens when electrolytes are dissolved in 
water. Electrolytes dissociate partly or completely, hydrolyze and form complexes. The true 
composition of the solution is calculated by solving the equations for speciation equilibria. A 
speciation equilibrium calculation can be performed alone or simultaneous with a solid-
liquid, vapor-liquid, or liquid-liquid equilibrium calculation. 

If H2O, NaOH, and CO2 are mixed, various reactions will occur. A speciation equilibrium 
calculation will give the amounts of each species in the mixture at equilibrium. In this 
mixture, the amounts of H2O, CO2, 3HCO− , 2

3CO − ,H+, Na+, and OH- can be calculated in a 
speciation equilibrium calculation. Here it is first assumed that no solid precipitates and no 
gas phase forms. The following equilibria then have to be considered: 
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The condition for equilibrium is that the sum of the chemical potential of the reactants is 
equal to the sum of the chemical potentials of the products. This can be used to express these 
three chemical equilibria mathematically: 

2

2 2 3
2

3 3

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

H O l H aq OH aq

CO aq H O l HCO aq H aq

HCO aq CO aq H aq
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− +

− − +

+

+

+
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μ μ μ

μ μ μ μ

μ μ μ

+ −

− +
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 (7.2) 

By use of equation (4.6) and (4.8) these chemical potentials can be expressed as functions of 
the standard state chemical potentials, the composition, and the activity coefficients. This is 
shown here for the first of the three equilibria in (7.2): 

2 2

0 * * *
( ) ( ) ( ) ( ) ( )

ln ln lnH O l H O H aq H aq OH aq OH aq
RT a RT a RT aμ μ μ+ + −+ = + + + *

−  (7.3) 

The standard state chemical potentials are collected on the left hand side of the equation and 
the activities on the right hand side: 

2

2

* * 0 * *
( )( ) ( ) ( ) ( )

( )

lnH O lH aq OH aq H aq OH aq

H O l

a a

RT a

μ μ μ+ − + −+ −
− =  (7.4) 

The standard state chemical potentials can be found in tables such as the NBS tables of 



chemical thermodynamic properties [3,65]. The numerical value of the left hand side of the 
equation can thus be calculated. A model for the activity coefficients as functions of 
composition, temperature and pressure is required in order to solve equation (7.4). If such a 
model is available, the equation can be solved together with the two similar equations that 
can be written based on the two other equilibria in (7.2). 

Equation (7.4) can be written in the following, maybe more familiar way: 

In this equation K is the equilibrium constant. ΔG0 is the increment in standard state Gibbs 
energy by the equilibrium corresponding to the numerator on the left hand side of equation 
(7.4), ai is the activity, and νi is the stoichiometric coefficient of component i, positive for 
products and negative for reactants. In equation (7.5) 0 is being used as superscript for the 
increment in standard state Gibbs energy. No superscript is being used for the activities. The 
equation can be used with symmetrical properties for water. For solutes, one of the three 
activity coefficient systems can be used together with the corresponding standard state 
properties. 

0

ln ln i
i

GK a
RT

νΔ
= − = ∑  (7.5) 

After a speciation calculation is carried out it should be checked if one or more of the 
possible solid phases have a lower chemical potential than its components in solution. If this 
is the case, the solution is not stable and one or more solids will precipitate. Likewise a 
bubble point calculation can be carried out in order to determine if gases will evaporate from 
the solution and a liquid-liquid equilibrium calculation can be performed to see if the solution 
will split into more liquid phases. 

7.2 Solid-liquid equilibrium 
A number of different solids can form in an aqueous solution of CO2 and NaOH. This 
includes ice, NaOH with various numbers of hydrate water, Na2CO3 with various numbers of 
hydrate water, NaHCO3, and the salts Trona (Na2CO3·NaHCO3·2H2O) and Wegscheiderite 
(3Na2CO3·NaHCO3). The equilibrium between an aqueous phase and Na2CO3·10H2O(s) is 
described by the equation: 

The equilibrium in equation (7.6) can be expressed mathematically using the fact that at 
equilibrium, the chemical potential of the salt is equal to the chemical potentials of the salts 
constituent parts. The chemical potentials are written as in equation (4.6) and (4.8) and this 
equilibrium condition can be written as:  

2
2 3 2 3 2·10 ( ) 2 ( ) ( ) 10 ( )Na CO H O s Na aq CO aq H O l+ −+ +  (7.6) 
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In order for thermodynamic models to be able to accurately predict the solubility of salts like 
Na2CO3·10H2O(s), it is required that the model calculates the water activity very accurately. 
As it appears from equation (7.7), the water activity raised to the tenth power is part of this 
equation. A small inaccuracy in the water activity will therefore give a large error in the 
calculated solubility of the salt. 

( )2 2 2 3 23
2 23

* * 0 0
2( ) ·10 ( )( ) ( ) * * 10

( )( ) ( )

2 + 10
ln

H O l Na CO H O sNa aq CO aq
H O lNa aq CO aq

a a a
RT

μ μ μ μ+ −

+ −

+ − ⎛− = ⎜
⎝ ⎠

⎞
⎟  (7.7) 
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For the solid salt, the state of pure, crystalline salt is used as standard state. Salts precipitating 
from aqueous solutions are usually pure, crystalline salts. In some cases solid solutions 
precipitate from a solution. This is for example the case for many solutions of potassium and 
ammonium salts. The potassium and the ammonium ions are of similar size and can therefore 
replace each other in the crystal lattices of their salts.  

As mentioned above, in an aqueous solution of CO2 and NaOH, many solid phases can form. 
After a speciation equilibrium calculation is performed the degree of saturation of these 
various solid phases can be calculated. The degree of saturation can be determined by using 
the saturation index. 

7.2.1 Saturation index 
The degree of saturation or the saturation index, SI, of a salt is defined as the activity product 
of a salt divided by its solubility product. For the salt in equation (7.7): 

The solubility product K is defined by equation (7.5). The saturation index of a salt is unity at 
saturation. In a supersaturated solution it is greater than one and in unsaturated solutions it is 
less than one. The saturation index of a salt indicates if the salt possibly will precipitate. 
Often a number of salts are simultaneously supersaturated in a solution.  

( ) 2 23

2 3 2

2
* * 10

( )( ) ( )

·10 ( )
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Na CO H O s

a a a
SI

K
+ −

=  (7.8) 

The first precipitation of salt will be determined by crystallization kinetics. When the solution 
eventually has reached equilibrium, some of the salts first formed might have dissolved 
again. 

7.3 Vapor-liquid equilibrium 
At equilibrium between CO2 in the aqueous phase and CO2 in the gas phase at the 
temperature T and the pressure P, the chemical potential of CO2 must be identical in the two 
phases: 

The chemical potential of CO2 in the gas phase at T and P can be expressed by the fugacity 
coefficient  of CO2 in the gas phase according to equation 

2 ( )ĈO gφ (6.78): 
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2 2
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The mole fraction of CO2 in the gas phase is represented by y. The chemical potential of CO2 
in the aqueous phase can be expressed by equation (6.79): 
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The condition for vapor-liquid equilibrium can be formulated by combining equations (7.10) 
and (7.11): 
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At low pressures and high temperatures, the fugacity coefficient is very close to 1 and can be 
ignored. Also the pressure correction to the aqueous phase chemical potential is often ignored 
at low pressures. For calculation at high pressure, the activity coefficient model can be 
combined with an equation of state for calculating the fugacity coefficients [47]. The partial 
molar volume of the volatile component in the aqueous phase is often replaced with the 
standard state molar volume. This method of performing vapor-liquid equilibrium 
calculations is often called the “gamma/phi formulation of VLE”. 

7.3.1 Henry’s constant 
Henry’s constant is often used in vapor-liquid equilibrium calculations with electrolyte 
solutions. Henry’s constant H(T,P) is defined as [2]: 

Henry’s constant has therefore same unit as pressure. Alternatively, Henry’s constant can be 
defined based on molality. Then the molality mi replaces the mole fraction xi in equation 
(7.13) and the unit of this Henry’s constant is (pressure unit·kg H2O)/mol. 
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Henry’s constant is often used for vapor-liquid equilibrium calculations for sparingly soluble 
gases according to the definition in equation (7.13).  

The pressure dependence of Henry’s constant is [2]: 

By writing equation (7.12) for the general case of gas i and letting xi go towards zero, the 
definition of Henry’s constant, equation (7.13) can be inserted and the following is obtained 
as *

iγ  goes towards unity for xi going towards zero: 

( )*
( ) 0

0( , ) ( , ) i aq
i i

V P P
H T P H T P

RT
−

= +   (7.14)

( )* 0, *
( ) 0 ( ) 0

0

( , ) ( , )ln
ig

i aq i i aq iT P V P P H T P
RT RT P

μ μ− − ⎛ ⎞
+ = ⎜

⎝ ⎠
⎟ (7.15)

*
( )i aqV  is the standard state partial molar volume of species i in the aqueous phase defined in 

equation (5.41). P0 is the pressure at which the chemical potential of component i as ideal gas 
is known.  

By combining equations (7.14) and (7.15) the following relation is obtained: 
* 0,
( ) 0 0

0

( , ) ( , )ln
ig

i aq i iT P H T P
RT P

μ μ− ⎛ ⎞
= ⎜ ⎟

⎝
Henry’s constant can thus be used for calculating standard state properties of a volatile 
component. If the chemical potential 0,ig

iμ  of the volatile component in the gas phase is 
known, the chemical potential of the component in the aqueous phase *

,i aqμ  can be calculated 
from (7.16) and vice versa. 

⎠ (7.16)

Henry’s constant can also be used for vapor-liquid equilibrium at super-critical conditions 
where pure component standard state properties are not available. By inserting equation 
(7.16) in equation (7.12) the following is obtained: 
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At pressures above the boiling point pressure of the solvent, an empirical form of the 
equation is often used: 
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This equation is known as the Krichevski-Ilinskaya equation [66]. In this equation, P0 is 1 
bar, Pw,sat is the vapor pressure of the solvent at the relevant temperature and P is the total 
pressure. In this empirical form of the equation, the standard state volume of the solute is 
used rather than the partial molar volume of the solute. 
 
Exercise 7.1 
Natural gas is transported in an off-shore pipeline. Natural gas contains CO2 and H2O besides 
light alkanes. During the transport, the pipe is cooled by the surrounding ocean water. Part of 
the water from the gas phase is condensing to form a liquid phase. CO2 is dissolving in the 
liquid phase, creating an acidic, corrosive mixture. A sodium hydroxide solution is added to 
the gas stream in order to prevent corrosion. After the transport, a sample was taken out. It 
contained approximately 1 mol of Na+(aq) per kg water and 1.5 mol of dissolved CO2 per kg 
water. 

Perform a speciation equilibrium calculation at 25 °C to determine the amount of each of the 
components. Assume that the molal activity coefficients for solutes and the mole fraction 
activity coefficient of water are equal to 1. Use data from Table 7.1 to determine the 
equilibrium constants. Calculate the pH of the solution, still assuming molal activity 
coefficients of solutes equal to 1. pH is defined as: 
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m
10log

H
pH a += −

3 ( )HCO aq− 2
3 ( )CO aq−

 

Calculate the partial pressure of CO2 in equilibrium with the solution, assuming that fugacity 
coefficients are equal to 1. 

Component CO2(g) CO2(aq) H2O(l) H+(aq) OH-(aq) 

ΔfG, kJ/mol -394.359 -385.980 -586.77 -527.81 

Table 7.1: Standard state Gibbs energies of some ions, CO2 and H2O. The molal standard state (aq) is 
used for solutes, the pure component standard state is used for CO2(g) and H2O(l). 

-237.129 0.0 -157.248

 

7.4 Liquid-Liquid equilibrium 
When equilibrium is established between two liquid phases, the activity of each independent 
component is the same in both phases. For a system of NaCl, water and isopropanol (IP) three 
equations can be written for the equilibrium of the three independent components between 
liquid phase I and liquid phase II: 

                                                 
66 Kritchevsky I and Iliinskaya A, Partial molal volumes of gases dissolved in liquids (a contribution to the 
thermodynamics of dilute solutions of non-electrolytes), Acta Physico-chim URSS , 20(1945)327-348 
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The standard state chemical potentials cancel each other and the three equations can be 
reduced to: 
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In equation (7.19) the chemical potential of the salt defined as NaCl Na Na Cl Cl
 ν μ ν μμ + + −= + −  is 

used rather than the chemical potentials of the individual ions. Each of the two phases need to 
be electrically neutral. The passage of one cation from phase I to phase II must be followed 
by another cation passing the opposite way or an anion passing the same way. Therefore it is 
the chemical potential of the salts that should be considered and not those of the individual 
ions. 

For solutions containing more salts, an additional equation for the mean activity of each 
independent salt has to be used. 

If a liquid-liquid equilibrium system instead was modeled as a pseudo binary system with a 
mixed solvent and one or more salts, the standard state chemical potentials of the salts would 
have been different in the two phases. The system of equations to be solved in the 
equilibrium calculation would then be far more complicated than equation (7.20). 

7.5 Composition dependence of equilibrium constants 
The standard state of the ions was 
chosen as the pure component 
standard state of solutes in water 
normalized so that the activity 
coefficient of an ion has the value one 
at infinite dilution in water. Therefore 
equation (7.7) can be applied to solid-
liquid equilibria occurring in mixed 
solvent solutions too. The standard 
state chemical potentials on the left 
hand side of equation (7.7) are 
unchanged by the fact that an organic 
solvent is present. The equilibrium 
constants are therefore independent of 
the composition. 
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The relative permittivity εr is much 
lower in organic solvents than in water. Variations of the relative permittivity of aqueous 
solutions with the concentration of ethanol and of sodium chloride are shown in Figure 7.1. 

Figure 7.1: The relative permittivity of aqueous solutions 
of ethanol and of NaCl 

Because of the different dielectric properties, the electromotive force measured for a reaction 
in water is much higher than for the same measurements performed in a mixture of water and 
organic solvents. The standard potentials (E0) determined in such mixtures are also different 
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from those measured in water. Hence the standard state chemical potentials of ions in this 
mixed solvent solution are different from those in water. 

The difference between the standard state chemical potential of an ion in two solvents with 
different relative permittivities can be evaluated analytically using the Born equation (6.26) 
under the assumption that the difference in Helmholtz energy is identical to the difference in 
Gibbs energy. 

The standard state chemical potentials of solutes are different in a “mixed solvent” from the 
corresponding values in water. If the ideal solution is defined as in equation (3.1), the values 
of the standard state chemical potentials are defined as the standard state chemical potentials 
of solutes in pure water. Any deviation from ideal solution behavior is handled by the activity 
coefficients. There is no reason to switch to other standard state chemical potentials. 

By choosing the standard state for solutes as that of pure solutes, normalized so that the 
activity coefficients are one at infinite dilution in water and the standard state for water as the 
pure component standard state, the definition of the ideal solution is established. The ionic 
and molecular interactions are determined on the basis of this definition of the ideal solution 
and the corresponding excess Gibbs energy function. This method of describing the 
thermodynamic properties of mixed solvent electrolyte solutions was first presented by 
Thomsen and Rasmussen [47] for water-ammonia-salt systems. It was later expanded by 
Iliuta et al. [49] to salt systems with methanol and by Thomsen et al. [50] to salt systems with 
ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, sec-butanol and tert-butanol.  

In Figure 7.2 an example of a liquid-liquid equilibrium calculation in the NaCl – n-butanol – 
H2O system at 40 °C is shown. There is a very good agreement between the experimental and 
calculated equilibrium compositions. In Figure 7.3 an example of vapor-liquid equilibrium in 
the NaCl – ethanol – H2O system is shown. The effect of adding sodium chloride to an 
ethanol-water mixture is that the partial pressure of ethanol is increased. Sodium chloride 
thus has a salting out effect on ethanol. The effect is highest in the solutions containing most 
water. The solubility of NaCl in solutions with high ethanol content is quite low. Therefore 
sodium chloride does not have a significant effect on such solutions. The ethanol – water 
system forms an azeotrope at 96% ethanol by mass. The solubility of NaCl in the azeotropic 
solution is too low to have a significant effect on the azeotrope. In Figure 7.4 the solubility of 
KNO3 in water-ethanol mixtures is shown together with experimental data at various 
temperatures from 15 to 75 °C. The solubility of KNO3 in pure ethanol is seen to be much 
lower than the solubility in water, especially at low temperatures. 

The calculation results in Figure 7.2 and Figure 7.4 were only possible because the standard 
states were chosen so that the equilibrium constants were independent of composition. The 
vapor-liquid equilibrium calculation in Figure 7.3 is different because it only requires that the 
standard state chemical potentials of the pure solvent components are known. It has only been 
possible to perform the three types of calculations presented in Figure 7.2, Figure 7.3, and 
Figure 7.4 using the same parameter set for all the calculations with the Extended UNIQUAC 
model using standard state properties independent of solvent composition [49, 50]. Similar 
results have not been published using other models. 



 
Figure 7.2: Experimental liquid-liquid equilibrium 
data in the NaCl - n-butanol - H2O system at 40 °C 
and corresponding values calculated with the 
Extended UNIQUAC model 

da

Figure 7.3: Vapor-liquid equilibrium in the 
ethanol-water-NaCl systems at 1 bar. Experimental 

ta and data calculated with Extended UNIQUAC 
model 
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*
i

The standard state for solutes could have been chosen as for example the pure solutes, 
normalized so that the activity coefficients were one at infinite dilution in a solution 
consisting of 50 % ethanol in water. The standard state for the solvents could be the pure 
solvent components. If that was the case, a new ideal solution would in fact have been 
defined. A really serious problem with that method is that it seems like a new definition of 
the ideal solution and consequently a new excess Gibbs function is required for each solvent 
composition.  

Based on the definition of the ideal solution in section 3.1 and the definition of the excess 
term in section 4.2, the chemical potential of component i is written: 

The activity coefficient is dependent of composition but the standard state chemical potential 
is not. All deviation from ideality is handled by the excess term of the chemical potential.  

Figure 7.4: The solubility of KNO3 in the ethanol-
water system at temperatures from 15 to 75 °C. 
Experimental data and data calculated with 
Extended UNIQUAC model 
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* ln lni i iRT x RTμ μ= + + γ  (7.21) 



In the “Mixed solvent approach”, the standard state chemical potentials are functions of 
composition. The chemical potential of component i according to this approach is written: 

MS indicates the mixed solvent approach. In this approach, the standard state chemical 
potential is a function of composition, which is indicated by the (x). The excess term is also a 
function of composition.  

( ) ln lnMS
i i i ix RT x RT MSμ μ= + + γ  (7.22) 

Considering a water – organic solvent mixture to be a pseudo solvent that should be modeled 
separately with its own standard state chemical potentials for solutes adds unnecessary 
complexity to the problem and has only been successful for limited systems [67, 68]. 

7.6 Temperature dependence of equilibrium constants  
There are various ways of calculating the equilibrium constants necessary for performing 
equilibrium calculations. In some applications, the equilibrium constants are given as 
empirical functions of temperature. The approach suggested in these notes is to calculate the 
equilibrium constants from standard state chemical potentials. This is the method used in 
connection with the Extended UNIQUAC model.  
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0G
Values for the standard state chemical potentials for solutes, solids, and gases can be found 
tabulated for 298.15 K and 1 bar [3, 65]. The value of Δ at the temperature of interest has 
to be calculated from its value at 298.15 K. This can be done by using the Gibbs-Helmholtz 
equation: 

By integrating this equation from the standard state temperature T0 = 298.15 K to the 
temperature T, one obtains 

( )( )0 0

2

/ln  at constant pressure
d G RTd K H

dT dT RT
Δ Δ

− = = −  (7.23) 

0

0

0

2ln ln
T

T T
T

HK K d
RT
Δ
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The variation of , the change in standard state enthalpy by the process, with temperature, 
can be calculated from the heat capacity of the species involved in the process. 

0HΔ

ΔC0
p is the increment in standard state heat capacity by the reaction considered. The standard 

state heat capacities of pure crystalline salts are often nearly constant in the temperature range 
from 0 to 110°C. For ions however, the standard state heat capacity rises steeply between 0 
and 25°C, less steeply up to about 50°C and then decreases slightly. This is illustrated in 
Figure 7.5, which is based on data for NaCl correlated by Clarke and Glew [69]. The stan-
dard state heat capacity for aqueous NaCl is the sum of the standard state heat capacities for 
Na+(aq) and Cl-(aq). Obviously ΔC0

p can not be considered temperature independent. A 

0
0
p

d H C
dT
Δ

= Δ  (7.25) 
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correlation for C*
p,i, the standard state heat capacity for ion i, of the form: 

*
,

,

i
p  i i i

i

c = a bTC
T - TΘ

+ +  (7.26) 

was suggested by Helgeson et al. [70]. The term T-TΘ,i provides for the steep change in C*p,i 
below 25°C. This correlation is used with the Extended UNIQUAC model. TΘ,i is given the 
constant value 200 K for all components., and the ai, bi, and ci parameters are fitted to 
experimental heat capacity data rather than calculated as suggested by Helgeson et al.. The 
performance of this correlation is illustrated for aqueous NaCl in Figure 7.5. 

The expression (7.26) for the standard state heat capacity can be used for water, ions and 
crystalline salts. For crystalline salts the b and the c parameters are set to zero, assuming that 
the heat capacities of all crystalline salts behave similar to that of NaCl (Figure 7.5). ΔC0

p can 
then be expressed in terms of Δa, Δb, and Δc, the increments in the a, b, and c parameters by 
the process. Integration of equation (7.25) gives: 

In this equation, ΔH0
T is the increment in standard state enthalpy at the temperature T. By in-

serting this expression in equation (7.24) and integrating, one obtains: 
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With this value of the equilibrium constant, the composition of the solution can be calculated 
at the temperature T if the activity coefficients are known at this temperature. 
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7.7 Pressure dependence of equilibrium constants 
Solid liquid equilibria are influenced by pressure due to the difference in the partial molar 
volume of the salt and of its constituent parts. This is especially important in connection with 
oil production and the production of geothermal energy. Brines are being pumped from 
reservoirs with high temperature and pressure to areas with lower temperature and pressure. 
Sulfates and carbonates of calcium, strontium, and barium are examples of salts whose 
solubility decrease with decreasing pressure. 

The pressure dependence of the standard state chemical potential was given in equation 
(5.41): 

It follows that: 

i
i

T

V
P
μ∂⎡ ⎤ =⎢ ⎥∂⎣ ⎦

 (7.29) 
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70 Helgeson H.C., Kirkham D.H., and Flowers G.C.,”Theoretical Prediction of the Thermodynamic Behaviour 
of Aqueous Electrolytes at High Pressures and Temperatures IV”, American Journal of Science, 281(1981) 
1249-1516. 
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Δ∂⎛ ⎞ = −⎜ ⎟∂⎝ ⎠
ΔdisV is the increment in standard state volume by the dissolution process. For the dissolution 
of BaSO4 in water, the process is: 

The increment in standard state volume by this process is: 

T

4

 (7.30) 

2 2
4 ( ) ( ) ( )BaSO s Ba aq SO aq+ −+  (7.31) 

The standard state volumes changes a little by pressure and so does the increment in standard 
state volume. In order to integrate equation (7.30) the pressure dependence of the increment 
in standard state volume therefore has to be considered. This pressure dependence is 
expressed by: 

2 2 44
( )( ) ( )dis BaSO sBa aq SO aq

V V V V+ −Δ = + −  (7.32) 

dis
dis

T

V
P

κ∂Δ⎛ ⎞ = −Δ⎜ ⎟∂⎝ ⎠
 (7.33) 

Here, Δdisκ is the increment in standard partial molar compressibility for the same dissolution 
process. This compressibility increment is considered pressure independent here. According 
to Lown et al. [71], the molar compressibility for different acid-base equilibria could be 
assumed pressure independent in the range 1-2000 bar. Equation (7.33) can therefore be 
integrated from the pressure P0 at which the standard state chemical potentials are known to 
the desired pressure P to give at constant temperature: 
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( )
0 0dis P dis P disV V PκΔ − Δ = −Δ −  

This result is inserted into equation (7.30) which is then integrated to give: 

0

0

2
0 0( )

Usually the increment in standard molar volume and in standard molar compressibility is not 
known with enough accuracy to determine the pressure dependence of equilibrium constants. 
These two values can instead be considered as adjustable parameters for each salt and be 
fitted to equation (7.34). 

ln ln ( )
2

dis P dis
P P

V
K P P

RT RT
κΔ Δ

= − − + P P−  (7.34) K

Activity coefficient models do not give the pressure dependence of the activity coefficients. It 
was shown by García et al. [52] that the total influence of pressure on solid-liquid equilibrium 
can be accounted for by introducing another equation similar to equation (7.34) for the 
activity coefficients. 

7.7.1 The pressure dependence of activity coefficients 
From the definition of RTlnγi as the excess contribution to the chemical potential, it follows 
that the pressure dependence of RTlnγi corresponds to the pressure dependence of the 
chemical potential: 
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ln ex
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 (7.35) 

 
71 Lown, D.A., Thirsk, H.R., Lord W.J., “Effect of pressure on ionization equilibria in water at 25oC”, Trans. 
Faraday Soc. 64(1968)2073-2080. 



It follows that the activity coefficients at the pressure P can be calculated from the activity 
coefficients at the pressure P0 by an equation similar to (7.34) 

0
 is the partial molar excess volume of component i at the pressure P0, and  is the 

excess molar compressibility of component i. The equation for solid-liquid equilibrium at the 
pressure P can now be written according to the general equation 

,
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(ln ln ( , )P i i i

No superscript is being used for the activity coefficient as the term covers both water and 
solutes. 

)K x T Pν γ= ∑  (7.37) 

By use of equation (7.34) and (7.36), equation (7.37) can be expanded to: 
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Pressure terms are collected on the left hand side of the equation together with ln
0PK : 
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The coefficients to P-P0 and (P-P0)2 have physical meaning, but are not known with enough 
accuracy to be used for equilibrium calculations. They are given the symbols α and β and are 
treated as adjustable parameters, independent of temperature. The equilibrium equation is 
then reduced to: 
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( )0 0

2
0 0 ,ln ( ) ( ) lnP i i i PK P P P P xα β ν γ+ − + − = ∑

This simple equation works very well for solid-liquid equilibrium under high pressure, as 
shown by Garcia et al.[52,53]. The pressure parameters determined by A.V. Garcia are given 
in Table 7.2. 

Salt α, bar-1 β, bar-2 Salt α, bar-1 β, bar-2 

BaSO4 1.636629×10−3 3.333826×10−7 

i
 (7.40) 

Table 7.2: Pressure parameters determined by A.V. Garcia for common scaling minerals. 

CaSO4·2H2O 1.078224×10−3 3.078141×10−7 
SrSO4 1.035686×10−3 7.153236×10−7 NaCl 9.927134×10−5 −1.358719×10−8
CaSO4 2.328718×10−3 −8.421355×10−7 CaCO3 −3.916945×10−3 −2.092925×10−5



8 Thermal and volumetric properties 

8.1 Partial and apparent molar properties 
A partial molar property is defined as the partial molar derivative of the property. For the 
property M, the partial molar property of component i is defined as: 
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nM⎡ ⎤∂
 (8.1) 

It can be shown that  

For electrolytes, it has been found practical to use apparent molar properties in addition to 
partial molar properties. An apparent molar property of the molar property M is often 
indicated with the greek letter phi (Mϕ or ΦM). Apparent molar properties are only used to 
describe the properties of binary solutions, usually it is therefore not indicated which 
component the property applies to. 

i i
i

nM n M= ∑  (8.2) 

The apparent molar property of the salt S in an aqueous solution is defined by an equation 
similar to (8.2): 

In this equation, Mw
0 is the molar property of pure water. When calculating the apparent 

molar property of a salt, the solvent is considered ideal, and all deviation from ideality is 
assigned to the salt. The apparent molar property of the solvent is calculated by considering 
the salt ideal and assigning all deviation from ideality to the solvent. 
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 (8.3) 

The property M can be written as a sum of the contribution from standard state properties and 
the contribution from excess properties: 

By inserting this expression into the definition of the apparent molar property, it can be 
written as: 

* 0ex ex
S S S S w w w wnM n M n M n M n M= + + +  (8.4) 

From this expression it is clear that the apparent property is equal to the standard state 
property plus the total excess contribution per mole salt. Equation (8.5) also shows that in the 
ideal solution, the apparent molar property is identical to the standard state property, because 
the excess contribution is zero in the ideal solution. 

* 0 0
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ex ex ex ex
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8.2 Thermal properties 
The chemical potential of a solvent component is: 

By differentiation of equation (8.6), applied to water, with respect to temperature at constant 
)ln(0

iiii xRT γ+μ=μ  (8.6) 



pressure and composition one obtains 
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Hw is the partial molar enthalpy, Hw
0 is the molar enthalpy of formation in the standard state, 

and  is the partial molar excess enthalpy of water. The composition of electrolyte 
solutions, which are not fully dissociated, is dependent on temperature because the 
equilibrium constants are dependent on temperature as discussed in section 

ex
wH

7.6. The reactions 
involved in speciation usually have a significant enthalpy effect. Equation (8.7) is therefore 
only valid in the special case, where speciation can be ignored. 
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The chemical potential of an ion is: 

Differentiation with respect to temperature of equation (8.8) at constant pressure and 
composition yields: 

)ln( **
iiii xRT γμμ +=  (8.8) 

Hi is the partial molar enthalpy, is the standard state enthalpy of formation, and is the 
partial molar excess enthalpy of ion i. 
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The standard state enthalpy of a solute is the same in the unsymmetrical mole fraction system 
and the molal system. This is because the difference between the two standard state chemical 
potentials divided by RT is independent of temperature according to equation (4.12): 

(
*

0ln
m

i i
w

Using the results from equations (8.7) and (8.9), the total enthalpy of formation of an 
electrolyte solution is calculated at constant pressure and composition as: 

)M m
RT

μ μ−
= −  (8.10) 

The composition at which the enthalpy in equation (8.11) is calculated is the equilibrium 
composition achieved after speciation equilibrium is established. The amount of ions and 
water used in equation (8.11) is therefore not necessarily equal to the amount of ions and 
water mixed to form the solution. Therefore these amounts are marked with tilde (~). From 
equation (8.11), the partial molar enthalpies of water Hw and of salt Hs can be evaluated by 
numerical differentiation at constant temperature: 

( ) ( )0 ex ex
x w w w i i i

i
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The subscript n = Eq signifies that mol of salt is constant but the enthalpy is calculated at the 
equilibrium composition (after speciation). Lw is the partial relative molar enthalpy of water 
defined as the partial molar enthalpy of water minus the standard state enthalpy of formation 
of water, Hw

0. The partial relative enthalpy of water consists of the molar excess enthalpy of 
water plus the enthalpy changes occurring from speciation in the solution by adding one mol 
of water. 
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The partial molar enthalpy Hs of salt and the partial relative molar enthalpy of salt LS are 
similarly given by: 
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The stoichiometric coefficient νi indicates that the summation only includes the ions of the 
salt for which the partial molar enthalpy is calculated, not for the ions formed by speciation. 
The enthalpy changes caused by speciation in the solution are now included in Lw and Ls. The 
relative enthalpy of a solution is: 

It follows from equation (8.12), (8.13), and (8.14) that the relative enthalpy of a solution of 
water and salt is identical to the enthalpy of formation of the solution minus the aqueous 
standard state enthalpy of formation of the quantity of water and salts used for forming the 
solution. 

w w S SnL n L n L= +  (8.14) 

The apparent relative molar enthalpy Lϕ of the salt can be written according to the definition 
of an apparent molar property: 

0
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The term  for pure water is considered to be zero because there is no speciation except the 
autoprotolysis of water and there is no excess enthalpy for pure water. The amount of water, 
nw and the amount of salt, ns used in equation 

0
wL

(8.15) are the original amounts of water and 
salt mixed to form a solution. 

The temperature derivative of Lφ is the relative molar heat capacity J. L is determined from 
equation (8.15) and differentiated with respect to temperature at constant pressure: 
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By inserting the expressions for nwLw and nSLφ, from equations (8.12) and (8.13) the heat 
capacity can be determined as: 
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C*
p,i is the standard state molar heat capacity of ion i. Cp,ϕ is the apparent molar heat capacity 

of the salt: 
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0
, , ,

From equations (8.15) and (8.17) it can be seen that the relative molar enthalpy and the 
relative molar heat capacity are equal to zero in the ideal solution only if no speciation occur. 
This is because the enthalpy contributions from speciation and from excess properties have 
been lumped together in the terms for relative enthalpy. The excess terms are zero in the ideal 
solution, but speciation still occurs. 
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In systems where speciation occurs to a significant degree, the excess contribution to the heat 
of mixing and the heat capacity of electrolyte solutions is usually relatively small compared 
to the enthalpy effect of speciation. This is illustrated in exercise 8.1. 

8.2.1 Heat of dilution 
The enthalpy change per mole of salt associated with the dilution of a salt solution from 
molality m1 to molality m2 at constant temperature is the integral heat of dilution, 
ΔH(m1→m2). This is a measurable quantity and it is related to the apparent relative molal 
enthalpy Lϕ of the salt: 

( )1 2 2 1( ) - ( )H m m  m   mL Lϕ ϕΔ → =

where Lϕ(m) is the apparent relative molar enthalpy at the molality m. The integral heat of 
dilution from molality m to infinite dilution becomes: 

 

)

 (8.19) 

Sometimes experimental heat of dilution data are extrapolated to infinite dilution by means of 
the extended Debye-Hückel law or the Hückel equation and presented in the literature as 
apparent relative molar enthalpy (Lϕ) data. 

( 0) (0) - (H m    L Lϕ ϕΔ → = m  (8.20) 

The differential heat of dilution is the partial molar relative enthalpy of solvent Lw as defined 
by equation (8.12). In a differential heat of dilution experiment, a small amount of water is 
added to a solution of a certain molality. The amount of water added has to be so small that 
the molality does not change during the experiment. The enthalpy of formation of the original 
solution is H1, the enthalpy of formation of the final solution is H2, and the enthalpy of 
formation of the differential amount of water is . The enthalpy change per mol of 
water added in the experiment is then: 
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8.2.2 Heat of solution 
The integral heat of solution at infinite dilution, ΔHs,∞ is the molar enthalpy change for the 
dissolution of crystalline salt in an infinite excess of pure water at constant temperature. 



ΔHs,∞ is defined by 

where H0
c is the standard state enthalpy of the pure crystalline salt.  

0*, )0( c
i

ii
s HHLH −+=Δ ∑∞ νϕ  (8.22) 

The integral heat of solution, ΔHs is the molar enthalpy change for dissolving crystalline salt 
to form a solution of molality m: 
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The differential heat of solution ΔHds is the enthalpy change per mole salt dissolved in a 
solution already containing dissolved salt 
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Exercise 8.1 
Carbon dioxide is absorbed in an aqueous solution initially containing 1 kg water, 4 mol NH3 
and 0.4 mol CO2. The composition of this initial solution after speciation at 25 °C is given in 
the column marked (1) of Table 8.1. One of the ions formed by speciation in this system is 
the carbamate ion, NH2COO-. 

1.6 mol CO2(g) is dissolved in the solution at 25 °C. The enthalpy change by this dissolution 
process was measured to -125.2 kJ. The composition of this solution after speciation at 25 °C 
is given in the column marked (2) of Table 8.1. 

An additional 2 mol CO2(g) is added to this solution at 25 °C, resulting in the precipitation of 
1.067 mol NH4HCO3(s). The enthalpy change measured during this process was -125.8 kJ. 
The composition of this solution after speciation and precipitation is given in the column 
marked (3) of Table 8.1. 

Calculate what part of the enthalpy change that comes from speciation and what part comes 
from the change in excess enthalpy in the two processes. Do you think the excess enthalpy 
change is related to the change in ionic strength between the solutions? 

Species ΔfH kJ/mol Mol (1) Mol (2) Mol (3)
H2O -285.83 

Table 8.1: Standard state enthalpy of formation at 25 °C and the composition of the liquid phase for use 
in exercise 8.1 

55.3916 54.42996 51.68698
NH3(aq) -80.29 3.22688 0.662624 6.72E-03
CO2(aq) -413.8 1.45E-06 1.71E-04 0.106045
NH4

+(aq) -132.51 0.489841 2.416015 2.853546
H+(aq) 0 6.16E-11 8.12E-10 8.4E-08
OH-(aq) -230.243 1.15E-04 4.12E-06 1.34E-08
CO3

--(aq) -677.14 0.089728 0.416182 0.026832
HCO3

-(aq) -691.99 0.026992 0.662286 2.727387
NH2COO-(aq) -497 0.283279 0.921361 0.072496
  
NH4HCO3(s) -849.4 
CO2(g) -393.509 
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Exercise 8.2: 
Show by an energy balance that the enthalpy change per mole of salt associated with the 
dilution of a salt solution from molality m1 to molality m2 at constant temperature is identical 
to the apparent relative molal enthalpy Lϕ of the salt solution at molality m2 minus the 
apparent relative molal enthalpy of the salt solution at molality m1, as stated in equation 
(8.19). Show also by an energy balance that the integral heat of solution, ΔHs, the enthalpy 
change for dissolving one mol of crystalline salt to form a solution of molality m is given by 
equation (8.23). 

8.2.3 Measurement of heats of dilution and solution 
Heat of dilution (solution) measurements can be performed by mixing known masses of 
solution and solvent (solute) initially kept in separate compartments in a calorimeter. When 
mixing the two samples a temperature change is observed. The typical amount of initial 
solution is 1 kg, the amount of solvent added in one experiment can be up to 1 kg, the 
temperature change during the mixing process is typically 0.5 to 5 degree. By measuring the 
heat capacity of the solution, the enthalpy of mixing can be calculated. A newer method 
involves the use of a heat-flow micro-calorimeter. In this type of calorimeter, continuous 
streams of electrolyte solution and solvent are mixed in one chamber. A stream of solvent 
with a flow rate equal to the sum of the above two streams is passing through another 
chamber. Thermopiles surrounding the two chambers are connected in opposition. The 
resulting signal from the thermopiles is proportional to the enthalpy of dilution, Busey et al. 
[72] have described such equipment and experiment in detail. 

If heat of dilution experiments are carried out by adding very small amounts of solvent, the 
molality of the salt can be considered constant. The partial molar enthalpy of solvent can be 
derived from the measured heat effect. 

In heat of solution experiments, the integral and the differential heats of solution can be 
measured. These properties are defined in equations (8.23) and (8.24). By extrapolating the 
measured data to infinite dilution, the integral heat of solution at infinite dilution can be 
found. 

Heat of dilution experiments yield differences in the apparent relative molar enthalpy Lϕ of 
the salt. Heat of solution experiments yield values of the partial molar enthalpy of the salt 
plus the integral heat of solution at infinite dilution. 

In both cases, the Debye-Hückel law is usually being applied for extrapolating the data to 
infinite dilution in order to calculate the apparent molar relative enthalpy of the salt and the 
integral heat of solution at infinite dilution. 

The partial molar enthalpy of a salt that does not undergo dissociation or hydrolysis is at 
sufficient dilution given by the extended Debye-Hückel law (6.16). The derivation follows 
from equation (8.9): 

 
72 Busey R.H., Holmes H.F., and Mesmer R.E., “The enthalpy of dilution of aqueous sodium chloride to 673 K 
using a new heat-flow and liquid-flow microcalorimeter. Excess Thermodynamic properties and their pressure 
coefficients”, J. Chem. Thermodynamics, volume 16(1984), pp. 343-372. 



The temperature derivative of the Debye-Hückel parameter, A, is available from correlations 
of A as a function of temperature. One such correlation was given in equation (6.72). 
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The partial molar relative enthalpy of salt can be calculated from equation (8.25) as a 
function of the ionic strength at concentrations, where the extended Debye-Hückel law is 
valid. 

The Debye-Hückel contribution to the activity coefficient of water was given in equation 
(6.19). From that expression, the partial molar enthalpy of water in very dilute solutions can 
be obtained as: 
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According to equation (8.15) the relative enthalpy of the solution is the sum of the partial 
molar enthalpies: 
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The expression for the apparent relative molar enthalpy can be rearranged to: 

RT2dA/dT2/3∑νiZi
2 is the Debye-Hückel limiting slope for relative enthalpy. It is one of the 

first three expressions in equation (8.28) that is often used for extrapolating the apparent rela-
tive molar enthalpy. The rearrangement in the second and the third line is included in order to 
show how a linear dependence between apparent relative molar enthalpy data and the square 
root of the ionic strength can be established. The function χ(x) was defined in equation (6.7). 
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The simple relation between enthalpy 
and mean mole fraction activity 
coefficients is illustrated in the fourth 
line, Φ is the osmotic coefficient of the 
solution. If the mean ionic activity 
coefficient and the osmotic coefficient 
are known at the same concentrations, 
the apparent relative molar enthalpy can 
be calculated from this equation. 

Usually, the b parameter is calculated for 
the specific electrolyte in order to 
improve the extrapolation. In order to 
extend the validity of expression (8.28) 
to the ionic strengths at which heat of 
dilution and heat of solution experiments 
take place, an empirical term like 
CI+DI2 is added to equation (8.28). C 
and D are parameters to be determined 
from the experimentally measured enthalpies. An example is shown in Figure 8.1. 
Experimental values of the apparent relative molar enthalpy of sodium bicarbonate (at 30°C) 
measured by Leung and Millero [73] fall outside the validity range of the Debye-Hückel law. 
An equation like (8.28) extended with the term CI+DI2 was used for correlating the data. 
This equation was assumed to represent the value of the apparent relative molar enthalpy of 
sodium bicarbonate, also in the concentration range from infinite dilution to the 
concentrations at which measurements were made. 
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Figure 8.1 illustrates the concept of Debye-Hückel limiting slope: The data are plotted as a 
function of the square root of the ionic strength and follow an almost straight line at high 
dilution. The slope of this straight line is the Debye-Hückel limiting slope. 

8.2.4 Measurement of heat capacity 
The determination of the apparent molar heat capacity of salts usually includes the de-
termination of the apparent molar volume of the salt. Perron et al. [74], describe their method 
in detail. With a flow microcalorimeter the relative difference in volumetric specific heat σ (J 
K-1 cm-3) with respect to that of pure solvent, σ0 is measured. The total heat capacity, Cp for a 
solution of volume nV is nVσ. The partial molar heat capacity of pure water is Cp,w

0=Vw
0σ0, 

where Vw
0 is the standard state molar volume of water. By inserting these expressions in the 

definition of the apparent molar heat capacity equation one obtains 

The apparent molar volume is given by: 

 

 term. 

Figure 8.1: The Debye-Hückel apparent relative molar 
enthalpy of NaHCO3 at 30°C, compared with 
experimental data and values calculated with a 
correlation formed by extending the Debye-Hückel 
expression for apparent relative enthalpy with a 
CI+DI2

s

ww
p n

VnnVC
00

,
σσ

ϕ
−

=  (8.29) 

73 Leung W.H., Millero F.J. “The enthalpy of dilution of some 1-1 and 2-1 electrolytes in aqueous solution”. J. 
Chem. Thermodyn. 7(1975)1067-1078. 
74 Perron G., Desnoyers J.E., and Millero F.J., “Apparent molal volumes and heat capacities of alkaline earth 
chlorides in water at 25°C”, Can. J. Chem., volume 52(1974), pp. 3738-3741. 



By rearranging, the term for pure water can be expressed by: 

0
w w

S

nV n VV
nϕ
−

=  (8.30) 

In this equation, c is the molar concentration in mol cm-3. By inserting this expression into 
equation (8.29), one obtains 
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 (8.31) 

Knowing the molar concentration, σ, σ0, and Vφ, the apparent molar heat capacity of a salt 
can be calculated from equation (8.32). The apparent molar volume can be determined to 
great accuracy with a flow densimeter.  

c
VCp

0
0

,
σσσϕϕ

−
+=  (8.32) 

Apparent molar heat capacity data can be extrapolated to infinite dilution by means of the 
Debye-Hückel law. The expression follows by differentiation of equation (8.28) with respect 
to temperature: 
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(2RT(dA/dT)+RT2(d2A/dT2))2/3∑νiZi
2 is the Debye-Hückel limiting slope for heat capacity. 

The function χ(x) was defined in equation (6.7). Equation (8.33) is usually supplemented 
with the empirical term CI+DI2 in order to extend its applicability to the concentration range 
of the experiments. The values of C and D are not equal to those used in the expression for 
apparent relative molar enthalpy or those used for the activity coefficients. 
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Exercise 8.3 

Jahn and Wolf [75] performed heat of dilution experiments for magnesium chloride 
solutions, some of their experimental results are given in Table 8.2. The experiments were 
performed at 25 °C. 

Use the data in Table 8.2 to determine a function for the apparent molar enthalpy of 
magnesium chloride by an expression of the form in (8.28) with an added term CI + DI2. The 
temperature derivative of the Debye-Hückel parameter A can be determined from equation 
(6.72). Plot correlated heat of dilution values versus experimental values to show the quality 
of the fit. What is the enthalpy change per mol salt if a 3 molal solution of magnesium 
chloride is diluted to 1 molal at 25 °C? 

 
75 H. Jahn, G. Wolf, “The Enthalpy of Solution of MgCl2 and MgCl2·6H2O in water at 25°C. I. The integral 
Molar Enthalpy of Solution”, J. Solution Chemistry, 22(1993)983-994 



 

Initial 
molality 

Final 
molality 

Enthalpy 
change 
J/mol 

Initial 
molality 

Final 
molality 

Enthalpy 
change 
J/mol 

5.700 0.05215 -18500

Table 8.2: Experimental heat of dilution data at 25 °C for magnesium chloride solutions [75] 

1.999 0.01752 -6790 
5.700 0.04487 -18520 1.999 0.01795 -6760 
4.999 0.04448 -16120 1.500 0.009646 -5520 
4.954 0.04599 -15860 1.500 0.01501 -5510 
4.000 0.03904 -12420 1.500 0.01496 -5550 
4.000 0.03424 -12750 1.000 0.01058 -4300 
4.000 0.03091 -12710 1.000 0.007961 -4310 
3.000 0.02565 -9780 0.800 0.006618 -3940 
3.000 0.03011 -9640 0.502 0.005179 -3270 
2.499 0.02125 -8080 0.502 0.005069 -3290 
2.499 0.02036 -8140  

 

8.3 Volumetric properties 
A considerable volume change takes place when salts are dissolved in water. This effect was 
called “electrostriction” by Drude and Nernst [76]. 

The partial molar volume of water can be derived by differentiation of equation (8.6), applied 
to water, with respect to pressure at constant temperature and composition: 
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Vw is the partial molar volume of water at the specified composition.  is the standard state 
molar volume of pure water and  is the excess volume of water. A similar result is 
obtained for the ions by differentiation with respect to pressure of equation 

0
wV
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(8.8) at constant 
temperature and composition: 
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Vi is the partial molar volume of solute i in the solution.  is the standard state partial molar 
volume of ion i and  is the excess volume of ion i. The standard state partial molar 
volume of a solute is the same in the unsymmetrical mole fraction system and in the molality 
based system because the difference between the corresponding standard state chemical 
potentials is independent of pressure. 

*
iV

ex
iV
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Similar to the thermal properties derived from the chemical potentials at constant pressure 
and composition, equation (8.34) and (8.35) are only correct for systems in which there is no 
speciation. Speciation equilibria are dependent of pressure as described in section 7.7. The 
composition of a system in which speciation is taking place can therefore not be held constant 
while making the pressure derivative. The composition change with pressure does not have as 
significant an effect on the volume as the composition change with temperature has on 
enthalpy. The effect of the composition change due to the pressure change will therefore be 
ignored here. 

The apparent molar volume Vϕ,S of a salt is: 

w w S i inV n V n Vν= + ∑  is the total volume of the solution and Vw
0 is the standard state molar 

volume of water. 

0

,
w w

S
S

nV n VV
nϕ
−

=  (8.36) 

Masson [77] discovered in 1929 that the apparent molar volumes of salts often are linear 
functions of the square root of the molar concentration in the concentration range from 
infinite dilution to saturation of the salt: 

*
,S SV V kϕ = + c  (8.37) 

In this equation, the molar concentration is usually given as mol/liter solution and the units of 
k are further adjusted so that the apparent molar volume is expressed in cubic centimeter per 
mol salt.  

Two years later, Redlich [78] showed that this relation can be derived theoretically. The 
theoretical relation was derived by differentiating the limiting law of Debye-Hückel with 
respect to pressure. This leads to: 

( )3/ 2* 2
, ½S S i iV V q Zϕ ν= + ∑ c  (8.38) 

The factor q is determined from the Debye-Hückel limiting law. 

The excess Gibbs energy function according to the Debye-Hückel limiting law is given in 
equation (6.20). In order to calculate the excess volume as the pressure derivative of this 
excess Gibbs energy function, molarity was re-introduced into the equation for the excess 
Gibbs energy. In the limit of infinite dilution, where this equation is valid, molarity and 
molality are almost equal numerically. A significant advantage of the molality concentration 
scale compared to the molarity scale is that it is independent of temperature and pressure. For 
the purpose of deriving the excess volume from the excess Gibbs energy function, molarity 
was re-introduced in order to recover this pressure dependence. The equation used for the 
excess Gibbs energy of the Debye-Hückel limiting law written in terms of the molarity 
concentration scale is: 

21
3

ex
Debye-Hückel limiting law i iG RT κ= − ∑ x z s  (8.39) 

                                                 
77 Masson D.O., “Solute molecular volumes in relation to solvation and ionization”, Philosophical Magazine 
and journal of Science, 8(1929)218-235 

 
 85 

78 Redlich O., and P. Rosenfeld, “Das partielle molare Volumen von gelösten Elektrolyten. I.”, Z. physikal. 
Chem. Abt. A., 155(1931)65-74 



According to equations (6.5) and (6.6), the product sκ is given by: 

The pressure derivative of the excess Gibbs function for the Debye-Hückel limiting law is 
caused by the pressure dependence of the relative permittivity of water and the pressure 
dependence of the volume of the solution. Equation (8.40) is modified to give: 
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( )3/ 2 1/ 2 3/ 2 1/ 2
r rs s V Vκ κε ε − −=  (8.41) 

The term in the bracket is independent of pressure. This expression for sκ is inserted into 
equation (8.39) and is differentiated with respect to pressure: 

 
 86 

Here, the isothermal compressibility for pure water, α has been introduced. The excess 
volume calculated in equation (8.42) can be used for expressing the apparent molar volume 
of the salt according to equation (8.5): 
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In equation (8.43), the molar concentration of salt, c mol/liter has been introduced. The final 
result corresponds to equation (8.38) with 
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At 25 °C, the parameter q has the value 1.885 for use with c in mol/liter and yielding volumes 
in cm3/mol. 

For the practical purpose of correlating 
the density of an electrolyte solution 
however, “Masson's rule” equation (8.37) 
usually gives far better results than the 
theoretical equation (8.38). This is 
especially true for concentrated solutions 
as evidenced by Figure 8.2. The Debye 
Hückel limiting law however is 
considered most suitable for estimating 
the partial molar volume of electrolytes at 
infinite dilution. This is consistent with 
the fact that the Debye-Hückel limiting 
law gives correct results for the activity 
coefficients in very dilute electrolyte 
solutions. This is an equation for the 
electrostatic interactions between ions in 
extremely dilute solutions that are 
otherwise ideal [79]. 
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Apparent molar volumes of ions are often 
considered additive. A good approximation for the density of multi component electrolyte 
solutions can thus be obtained by adding the individual ionic contributions to the apparent 
molar volume: 

Figure 8.2: Apparent molar volume of potassium 
nitrate solutions calculated with the Debye-Hückel 
equation, and with Masson's rule, compared with 
experimental data. 

It was shown by Christensen [80] that densities of multi component electrolyte solutions can 
be calculated accurately from equation (8.45) when the apparent molar volume of ion i, ,iVϕ  
is calculated at the ionic strength of the solution: 

∑+=
i

iiww VnVnnV ,
0

ϕ  (8.45) 

*
, ,i i iV V kϕ ϕ= +
*
,iVϕ  is the temperature dependent standard state molar volume of the ion i. I is the ionic 

strength in mol/(kg water). The temperature dependence of the standard state molar volume 
of an ion is calculated by: 
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The proportionality factor ki from equation (8.46) is also determined as a function of 
temperature. 

I

2

)

 (8.46) 

* *
, , , 298.15 2 3( 25) ( 25)i i T i iV V v t v tϕ ϕ == + − + −  (8.47) 

( ) ( 2
1 2 325 25i i i ik k k t k t= + − + −  (8.48) 

For each ion, there are thus 5 adjustable parameters that can be determined from experimental 
density data. Parameters for a number of ions were determined by Christensen. Some of these 
parameters are given in Table 8.3. The parameters are based on binary data for only the 

                                                 
79 Redlich O., Meyer D.M., “The molal volume of electrolytes”, Chemical Reviews, 64(1964)221-227 
80 Christensen S.G., “Thermodynamics of Aqueous Electrolyte Solutions – Application to Ion Exchange 
Systems”, Ph.D. Thesis, Department of Chemical Engineering, Technical University of Denmark (2004) 



following salts in water: NaCl, NaNO3, Na2SO4, KCl, HCl, NH4Cl, CaCl2, MgCl2. The 
results for salts like Mg(NO3)2, MgSO4, Ca(NO3)2, (NH4)2SO4 and more are therefore 
predictions based on the assumption of the additivity of apparent molar volumes. Some 
results concerning 1-2 and 2-2 salts at 25 °C are shown in Figure 8.3. 

These parameters are valid in the temperature range from 0 to 100 °C. The accuracy 
decreases with increasing concentration. The standard state molar volumes of ions given in 
Table 8.3 were taken from Marcus [81] after proper adjustment so that the standard state 
molar volume of the hydrogen ion is equal to zero cm3/mol. 

 *
, , 298.15i T KVϕ =

2
2 10iv ⋅ 4

3 10iv ⋅ 1ik 2
2 10ik    ⋅ 4

3 10ik ⋅

H+ 0 0 0 0 0 0
Na+ -1.2 7.748 -13.80 0.9758 -2.628 6.309
K+ 9 6.331 -7.502 1.094 -2.689 3.919
Mg2+ -21.2 1.096 -9.093 1.493 -2.144 4.751
Ca2+ -17.9 -1.938 2.789 1.581 3.450 -5.821
NH4

+ 18.2 1.604 -1.957 0.4435 -0.7984 0.5941
Cl- 17.8 3.692 -7.407 0.9454 -0.0979 0.9162
SO4

2- 14 13.36 -27.39 4.837 -2.927 6.793
NO3

- 29 10.78 -4.537 1.307 -2.751 0.0439
 

 

 

Table 8.3: Standard state molar volumes and parameters used for determining the volume of aqueous 
electrolyte solutions using equations (8.45) to (8.48) [80]. The standard state molar volumes are given in 
cm3/mol and the parameters are given for calculation of apparent molar volumes in cm3/mol. 

Figure 8.3: Apparent molar volumes of CaCl2 (◊), Ca(NO3)2 (∆), MgCl2 (×), Mg(NO3)2 (+), and MgSO4 (□) 
at 25 °C. The lines are based on the correlation in equation (8.46). Of these data, only those for CaCl2 and 
MgCl2 were used for parameter estimation [80]. 
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Other models for the density of electrolyte solutions include the semi-empirical model of 
Söhnel and Novotny [82] valid for a large number of electrolytes in a temperature range that 
spans from 0 to 100 °C for most electrolytes. Another density model was developed by 
Krumgalz et al. [83] by adding pressure and temperature dependent parameters to the Pitzer 
model. This model is valid in the temperature range from 15 to 95 °C. 

Exercise 8.4 
Calculate the densities of H2O-Na2SO4-MgSO4 mixtures at 50 °C. At this temperature the 
density of water is 988 kg/m3. Compare the results with the densities measured by Benrath et 
al.[84] in saturated solutions. These data are given in Table 8.4. Try to explain the shape of 
the graph when you plot the density as a function of the fraction (gram Na2SO4)/(gram 
Na2SO4 + gram MgSO4). 

 
Mass % 
Na2SO4 

Mass % 
MgSO4 

Density, 
g/cm3 

Table 8.4: Densities of saturated solutions of Na2SO4 and MgSO4 at 50 °C. 
Mass % 
Na2SO4 

Mass % 
MgSO4 

Density, 
g/cm3 

31.70 0.00 1.31 16.75 17.10 1.373 
30.20 1.84 1.326 14.81 19.05 1.379 
29.42 3.52 1.329 13.86 20.16 1.38 
25.64 8.68 1.363 9.91 24.45 1.4 
24.77 9.80 1.364 7.55 27.49 1.414 
23.25 11.98 1.381 4.74 31.32 1.428 
22.64 12.56 1.38 3.95 31.60 1.426 
18.62 15.75 1.374 1.96 32.50 1.41 

   0.00 33.50 1.401 
 

 

                                                 
82 Söhnel, O.; Novotny, P. Densities of Aqueous Solutions of Inorganic Substances, Phys. Sci. Data 22; 
Elsevier: Tokyo, 1985. 
83 Krumgalz, B.S; Pogorelskii, R.; Sokolov, A.; Pitzer, K.S. “Volumetric Ion Interaction Parameters for Single-
Solute Aqueous Electrolyte Solutions at Various Temperatures”, J. Phys. Chem. Ref. Data. 29(2000)1123-1140. 
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9 Phase diagrams 
An important function of phase diagrams is to be a visual tool for verifying the calculations 
and predictions of a thermodynamic model by comparing calculated phase diagrams with 
experimental ones. 

Phase diagrams are also important tools when designing fractional crystallization processes. 
Information on which salt(s) can be encountered in a given electrolyte system as a function of 
temperature is important for the design of such processes. Also the process paths for 
fractional crystallization processes can be displayed in phase diagrams. Phase diagrams may 
thus be used to verify and analyze process simulation and optimization results. For systems 
with more than four ions however, the use of phase diagrams becomes impractical. 

9.1 Phase rule and invariant points 
According to Gibbs phase rule, a system with C chemically independent components and P 
phases in equilibrium has F=C-P+2 degrees of freedom. For a system consisting of one pure 
species the phase rule is F=3-P. If two phases are in equilibrium with each other in a one-
component system, the system has one degree of freedom. The system is univariant.  

Pure water represents a one component system. Pure water boils at 100°C if the pressure is 
one atmosphere. If the pressure is lower than one atmosphere, pure water will boil at a 
temperature below 100°C. If the pressure is higher than one atmosphere, pure water will boil 
at a temperature higher than 100°C. A one component system consisting of water vapor in 
equilibrium with liquid water has only one degree of freedom. The pressure or the 
temperature can be fixed. Fixing one will automatically determine the other. 

At the triple point of water, ice, water, and steam are in equilibrium. According to the phase 
rule, a one component system has no degree of freedom when three phases are in equilibrium 
(F=0).The system is invariant. The triple point of water is at 273.16 K and 612 Pa. 

An aqueous solution of a pure salt contains three species: water, cations and anions. Still 
there are only two chemically independent components as the charge of the cations has to be 
balanced with an equivalent charge of the anions. The solution is therefore considered a 
binary solution, a solution of two chemically independent components. The phase rule is 
F=4-P for this system. An invariant point in a binary system thus is a point where 4 phases 
are in equilibrium (two salts, liquid, and vapor). In a ternary system 5 phases are in 
equilibrium in an invariant point. 

9.2 Binary phase diagram 
The Calcium Chloride - water system is here used as an example of a binary phase diagram. 
The diagram is shown in Figure 9.1. 

Pure water freezes to ice at 0°C. If CaCl2 is added to water, the freezing point of the solution 
will be lower than 0°C due to the freezing point depression. As the graph shows, ice will 
form at -20°C in a 20 mass % solution of CaCl2. 

A solution containing 31 mass % CaCl2 has the lowest freezing point of any CaCl2 solution 
(about -50°C). This solution is called a eutectic solution. The point (A) in the diagram marks 
the freezing point of this solution. This is a eutectic point, also called a cryohydric or 
cryohydratic point. 

At the freezing point of an eutectic CaCl2 solution, the solution is in equilibrium with two 
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solid phases: ice and CaCl2·6H2O. Counting also the vapor phase, a total of four phases are in 
equilibrium in this binary system. The eutectic point therefore constitutes an invariant point. 

Figure 9.1: Solubility diagram for the CaCl2 – H2O system. 

On the curve between the points A and B the solid phase precipitating from saturated 
solutions will be the hexahydrate, CaCl2·6H2O.  

Between B and C the solid phase will be the tetrahydrate, CaCl2·4H2O. At higher 
concentrations the dihydrate, CaCl2·2H2O and the anhydrate CaCl2 will precipitate (not 
shown in the diagram). 

The points B and C are peritectic points. In a peritectic point, a solid phase changes upon 
heating into a liquid in equilibrium with another solid phase. CaCl2·4H2O consists of 60.6 
mass percent CaCl2. This composition is marked with a vertical dashed line in Figure 9.1. If 
CaCl2·4H2O is heated to 45.3°C it will decompose into a liquid in equilibrium with 
CaCl2·2H2O at the point C. The temperature at which this happens is marked with a 
horizontal dashed line. 

The two points B and C represent solutions in equilibrium with two solid phases and a gas 
phase and therefore constitute invariant points. 
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Figure 9.2: Phase diagram for the Na2SO4-MgSO4-H2O system in the temperature range from the eutectic 
temperature (-7°C) to 110°C. 

9.3 Ternary phase diagram 
In the ternary system consisting of water, sodium sulfate, and magnesium sulfate, the 
following solid phases appear in the temperature range from -10 to 110°C: 

 Ice  
 Na2SO4·10H2O, glauber’s salt  
 Na2SO4, thenardite 
 MgSO4·12H2O, magnesium sulfate dodecahydrate 
 MgSO4·7H2O, epsom salt 
 MgSO4·6H2O, hexahydrite 
 MgSO4·H2O, kieserite  
 Na2SO4·MgSO4·4H2O, bloedite  
 Na2SO4·MgSO4·2.5H2O, löweite  
 3Na2SO4·MgSO4, vanthoffite  

 
The ternary diagram shown in Figure 9.2 has the temperature as abscissa and gives a quick 
overview of the temperature ranges and concentration ranges (dry basis) at which each of the 
salts are found. This is essential information if for example you are asked to produce 
vanthoffite from a ternary solution of sodium sulfate, magnesium sulfate and water. 

All fields in Figure 9.2 represent solutions saturated with one solid. The equilibrium lines and 
the experimental data in the diagram represent compositions and temperatures at which two 
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solid phases are in equilibrium with the same liquid. At the points, where the phase diagram 
lines meet, three solids are in equilibrium with the same liquid and with a gas phase. In a 
ternary system, the phase rule F=5-P. The number of degrees of freedom in these points is  

Figure 9.3: The 85°C Isotherm for the H2O-Na2SO4-MgSO4 system. Tie lines are marking the four solid 
phases formed in the system at this temperature. The concentrations are in mass %. 

 therefore 0. They are invariant points. 

At -7°C a vertical dashed line is marked. This is the eutectic temperature for this ternary 
system. At this temperature 5 phases are in equilibrium: Ice, MgSO4·12H2O, Na2SO4·10H2O, 
liquid and gas. At temperatures lower than -7°C, the solution will split into solid phases of 
Ice, MgSO4·12H2O, and Na2SO4·10H2O. 

The ordinate in the diagram Figure 9.2 is “salt fraction” which here is defined as mol Na2SO4 
divided by (mol Na2SO4 + mol MgSO4). In this diagram it is not possible to see the water 
content of the equilibrium solutions. In order to see the water content, an isotherm for the 
system can be calculated. The 85°C isotherm is marked in Figure 9.2. It passes through 4 
different solubility fields from A to E.  

Figure 9.3 shows the 85°C isotherm for the same system. The points A to E equivalent with 
the corresponding points in Figure 9.2 are marked on the equilibrium curve. On the 
equilibrium curve from A to B, solutions are in equilibrium with Na2SO4. All solutions with a 
gross composition in the nearly triangular area from A to B to Na2SO4 are supersaturated 
with Na2SO4. After Na2SO4 has precipitated from these solutions and phase equilibrium is 
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achieved, the composition of the liquid will be on the line from A to B. From B to C solutions 
are in equilibrium with vanthoffite. In the triangular area marked by B, Na2SO4, and 
vanthoffite, all solutions are supersaturated with both Na2SO4 and vanthoffite. At equilibrium 
all these solutions will have the same liquid composition, B, as this is the only composition,  

Figure 9.4: Phase diagram for the quaternary NaNO3 – K2SO4 – H2O system at 30°C 

 which can be in equilibrium with both salts at this temperature. 

9.4  Quaternary systems 

 
 94 

                                                

Figure 9.4 shows the three dimensional quaternary phase diagram for the (Na+, K+, NO3
-, 

SO4
2-, H2O) system at 30°C. This type of diagram is not very practical to work with due to its 

three dimensions. Figure 9.5 shows the same diagram as a Jänecke projection [85]. At all grid 
intersections, the number of moles water per mole of ions is indicated. In this way, Figure 9.5 
provides the same information as Figure 9.4, and is much easier to work with. 

For quaternary systems with either three anions and one common cation or three cations and 
one common anion the quaternary phase diagram becomes triangular. The calculation of 
curve intersections and curves in this sort of diagrams follows the same pattern as described 
above for the quadratic phase diagram. 

 
85 Jänecke E., "Über eine neue Darstellungsform der wässerigen Lösungen zweier und dreier gleichioniger 
Salze, reziproker Salzpaare und der van't Hoffschen Untersuchungen über ozeanische Salzablagerungen", Z. 
anorg. Chemie, 51(1906)132-157. 
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The abscissa in Figure 9.4 and Figure 9.5 is the charge or equivalent fraction of the 3NO−  ion, 

calculated as 3

2
3 4

2
NO

NO SO

n
X

n n
−

− −

=
+

, where n is the number of moles of the ion indicated. The 

factor 2 on the number of moles of sulfate ion is included because each sulfate ion carries a 
charge of -2. 

Figure 9.5: Jänecke projection of the phase diagram for the quaternary NaNO3 - K2SO4 - H2O system at 
30°C 

The ordinate in the diagrams is the charge or equivalent fraction of the K+ ion, calculated as 
K

K Na

n
Y

n n
+

+ +

=
+

. The corner in the foreground of Figure 9.4 has the coordinates (0,1) and 

therefore corresponds to the upper left corner of Figure 9.5. 

 
Exercise 9.1: 
Based on the experimental data in Table 9.1, valid at 100 °C, construct a triangular diagram 
like the one in Figure 9.3. Include the tie-lines and the names of the solid phases at the 
appropriate places in the diagram.  

Mark in the diagram the composition of a super-saturated solution with the total mass of 1000 
gram from which 200 gram of wegscheiderite, Na2CO3·3NaHCO3 will precipitate. 
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Mark also the composition of a super-saturated solution with a total mass of 1000 gram from 
which 200 gram of trona, Na2CO3·NaHCO3·2H2O and 200 gram of sodium carbonate 
monohydrate, Na2CO3·H2O will precipitate. 

Mass percent  

Table 9.1: Solid-liquid equilibrium data for the ternary Na2CO3-NaHCO3-H2O system at 100 °C. The 
data were measured by Waldeck et al. [86] 

Na2CO3 NaHCO3 Solid Phase(s) 
30.7 0 Na2CO3·H2O 
29.9 2.3 Na2CO3·H2O 
29.2 3.4 Na2CO3·H2O 
29.1 4.2 Na2CO3·H2O and Na2CO3·NaHCO3·2H2O 
27.9 5.2 Na2CO3·NaHCO3·2H2O 
27.7 5.3 Na2CO3·NaHCO3·2H2O 
26.7 5.9 Na2CO3·NaHCO3·2H2O 
25.3 7.1 Na2CO3·NaHCO3·2H2O 
25.1 7.2 Na2CO3·NaHCO3·2H2O 
23.6 8.2 Na2CO3·NaHCO3·2H2O 
22.7 8.8 Na2CO3·NaHCO3·2H2O 
21.1 9.7 Na2CO3·NaHCO3·2H2O and Na2CO3·3NaHCO3 

21 9.8 Na2CO3·3NaHCO3 
19.3 10.7 Na2CO3·3NaHCO3 
16.5 11.9 Na2CO3·3NaHCO3 
13.4 14.4 Na2CO3·3NaHCO3 
12.7 14.4 Na2CO3·3NaHCO3 and NaHCO3 

8.7 16 NaHCO3 
1.2 18.5 NaHCO3 

 

Exercise 9.2 
Data for phase equilibrium in the quaternary H2O - (Na+-Mg2+) – (Cl- - SO4

2-) system are 
given in Table 9.2. The data come from two different sources. The solid phases are indicated 
with letters A to G. The meaning of these letters is given in the bottom left part of the table. 

Construct a Jänecke diagram similar to the one in Figure 9.5 from these data. Do not include 
the water content, only the projection. Sketch how you think the phase diagram lines will 
pass through the experimental points and write on the diagram what solid phases precipitate 
in the various fields. Determine if the data from the two sources are in agreement with each 
other. 

Data from Visyagin [87], mass % Data from Pel’sh [88], mass % 
NaCl Na2SO4 MgCl2 MgSO4 Solid phases NaCl Na2SO4 

Table 9.2: Experimental data for phase equilibrium in the H2O - (Na+-Mg2+) – (Cl- - SO4
2-) system at 25 

°C.  

MgCl2 MgSO4 Solid phases 
14.41 15.01 0 0 A B  22.85 6.91 0 0 C A  

                                                 
86 Waldeck W.F., Lynn G., Hill A.E., “Aqueous solubility of salts at high temperatures II. The ternary system 
Na2CO3-NaHCO3-H2O from 100 – 200 °C”, J. Am. Chem. Soc., 56(1934)43-47 
87 Visyagin, N.I., “Chemical Concentration and Refraction of Mixtures, The reciprocal salt pairs MgSO4, 
Na2Cl2, MgCl2, Na2SO4 at 25 °C”, Bull. Inst. Galurgie, (1939)18-28  (10-11) 
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88 Pel'sh, A.D., “Solubility Diagram for the Reciprocal System Na2SO4, MgCl2, NaCl, MgSO4 at 25 °C”, Tr. 
Vses Nauch.-Issled. Inst. Galurgii, 27(1953)3-16 



 
 97 

13.68 15.13 0 1.58 A B  20.73 7.63 1.45 0 C A  
12.31 13.5 0 2.77 A B  15.35 9.98 5.05 0 C A  
11.81 15.91 0 3.61 A B  15.19 10.1 5.21 0 C A  
10.18 15.79 0 5.84 A B  13.92 10.55 5.99 0 C A G 
9.41 15.85 0 6.92 A B  13.92 10.55 5.99 0 C A G 

9 16.56 0 7.27 A B  9.12 15.26 5.99 0 A G  
7.96 15.84 0 9.42 A B G 5.95 18.75 6.15 0 A G  
7.27 15.95 0 9.55 A B G 3.96 21.08 6.38 0 A G  

22.74 1.8 0 7.82 C A G 0 25.05 6.22 1.34 A G B 
23.31 3.49 0 8.76 A G  14.05 14.94 0 0 A B  
18.74 4.94 0 7.62 A G  7.6 19.88 3.17 0 A B  
15.83 6.46 0 8.51 A G  5.87 21.28 4.03 0 A B  
12.09 11.58 0 8.36 A G  4.02 22.79 4.9 0 A B  

3.5 19.21 0 12.67 B G  1.1 24.71 6.11 0 A B  
1.96 19.73 0 13.81 B G  1.19 24.97 6.27 0 A B  

0 18.89 0 15.34 B G  1.15 24.98 6.3 0 A B  
1.81 18.62 0 8.22 B   0 25.05 6.22 1.34 A B G 
6.61 16.29 0 7.02 B   0 24.64 5.72 2.87 A B  
7.94 15.51 0 8.41 B   0 19.12 0 15.64 B G  
9.07 14.56 0 9.5 B   0 20.97 1.96 11.04 B G  
0.99 15.56 0 0.54 B   0 21.77 2.63 9.26 B G  
3.38 19.21 0 1.98 B   0 23.06 3.89 6.39 B G  

7.7 15.78 0 3.5 B   0 24.14 5.25 3.42 B G  
4.73 18.43 0 1.38 B   0 25.05 6.22 1.34 G B A 

7.9 15.69 0 2.47 B   0 12.36 0 21.79 E G  
9.61 15.54 0 3.02 B   0 10.92 5.41 14.9 E G  
10.8 15.39 0 3.41 B   0 9.72 13.58 5.69 E G  

11.41 15.28 0 3.55 B A  0 8.77 17.16 3.12 E G  
12.12 15.18 0 3.6 B A  0 6.76 20.89 1.98 C E G 
12.05 15.37 0 4.05 A   0 7.28 20.55 1.93 C E  
13.53 12.96 0 4.3 A   0 3.87 24.01 2.72 C E  

       0 2.6 25.35 3.17 C E  
       0 2.29 25.93 3.27 C E D 
       13.92 10.55 5.99 0 C A G 
       12.8 9.76 7.44 0 C G  
       10.26 9.21 9.71 0 C G  
       7.7 8.83 12.33 0 C G  

A Na2SO4    4.57 8.73 15.27 0 C G  
B Na2SO4·10H2O    2.5 8.71 17.62 0 C G  
C NaCl     0 6.76 20.87 1.98 C E G 
D MgSO4·6H2O    0 2.29 25.93 3.27 C E D 
E MgSO4·7H2O     0 0.4 26.05 4.5 E D  
F MgCl2·6H2O     0 0 25.99 4.75 E D  
G Na2SO4·MgSO4·4H2O     0.45 0 33.27 3.96 C D F 

       0.34 0 35.45 0 C F  
       0 0 33.29 3.9 F D  

 



10 Crystallization 
The formation of crystals in a solution takes place if the degree of saturation, the saturation 
index, is sufficiently high. Crystals can be in equilibrium with a saturated solution. If crystals 
are present in a supersaturated solution, the crystals will grow. If no crystals are present 
initially, crystals will not form spontaneously in a slightly supersaturated solution. A certain 
degree of supersaturation is required in order to overcome the Gibbs energy change 
associated with forming a particle in a solution.  

10.1 Supersaturation 
Supersaturation is the driving force of crystallization. The degree of saturation necessary to 
initiate a crystallization process can be produced by cooling, by heating, by evaporating 
solvent, or by the addition of a salting out agent. A salting out agent reduces the solubility of 
another solute. Alcohols will usually have a salting out effect on most electrolytes. A salting 
out agent can also be another salt. The addition of CaCl2 or MgCl2 to a saturated NaCl 
solution will for example cause most of the NaCl to precipitate. 

Modern industrial crystallizers often 
use adiabatic evaporation to produce 
supersaturation. In adiabatic 
evaporation, solvent is evaporated 
adiabatically by vacuum. The heat 
required for the evaporation causes 
the temperature of the solvent to drop, 
and by evaporation the concentration 
of the solute increases.  

The formation of crystals is often, but 
not always an exothermal process. 
Adiabatic evaporation consumes the 
heat released by the crystallization. If 
the heat of crystallization was not 
removed from an exothermal 
crystallization process, the tempera-
ture would increase and influence the 
degree of saturation. 

 
Figure 10.1: Phase diagram showing the metastable zone 
in which the crystallization process takes place 
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It is very important to control the degree of saturation in order to achieve the desired result in 
the crystallization. The crystal growth rate is exponentially dependent on the degree of 
supersaturation for many systems. The crystal size is often an important attribute of the 
product. If the crystals grow too fast, liquid inclusions in the crystals are sometimes seen. 
Large, singular crystals are often desired products. The degree of saturation is often adjusted 
so that maximum crystal growth is achieved without exceeding the metastable region. 

The degree of saturation is measured by the saturation index. It was shown in section 7.2 that 
equilibrium between a solid salt and a saturated solution can be described by an equation of 
the type: 
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ΔG0 is the increment in Gibbs free energy by the dissolution of a salt in a saturated solution. 

0

lni i
G a

RT
ν−Δ

= ∑  (10.1) 



The saturation index SI was introduced as the ratio between the activity product and the 
solubility product: 

As it can be seen from equation (10.1), SI is equal to 1 at equilibrium. SI is larger than 1 at 
supersaturation and less than one in unsaturated solutions. 

0

exp

i
ia

SI
G

RT

ν

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟⎛ ⎞−Δ
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∏  (10.2) 

Equation (10.2) can be written on logarithmic form as: 
0

ln lni i
GSI a

RT
ν Δ

= +∑  (10.3) 

10.2 The Kelvin 
equation for 
nucleation 

In order for crystal growth to 
take place, there need to be 
some nuclei in the solution. 
Nuclei can be formed by 
primary nucleation or 
secondary nucleation. 
Primary nucleation or 
homogeneous nucleation is 
the form of nucleation that 
takes place in a solution with 
no crystals present initially. 
Primary nucleation begins 
spontaneously when the 
degree of saturation exceeds 
the metastable region. The 
metastable region for a salt is 
shown in Figure 10.1. 
Secondary nucleation is the 
formation of nuclei by 
attrition or nucleation around impurities. Secondary nucleation is therefore a function of the 
properties of the solution  and of the amount of energy put into the crystallizer as shaft work. 
It is usually desirable to minimize the amount of secondary nucleation. 
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Figure 10.2: The Gibbs energy change by dissolution of a nucleus. 
Above a certain size, the Gibbs energy change by dissolution is 
positive, and the crystal will therefore not dissolve. 

The crystallization of a salt in a supersaturated solution starts by the formation of nuclei. 
Some nuclei have a size less than the critical size and their chance of growing is small. Nuclei 
larger than the critical size can continue to grow. Here we consider the equilibrium between a 
nucleus with a certain size and its constituent ions, a metastable equilibrium. The process 
written for potassium sulfate is: 
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By forming a spherical nucleus of radius r, additional energy is required due to interfacial 
2 4 4( , ) 2 ( ) ( )K SO s nucleus K aq SO aq+ −−+  (10.4) 
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2tension. The surface area of the nucleus is 4 rπ and the interfacial tension between nucleus 
and saturated solvent is σ J/m2. The increase in Helmholtz energy by forming the surface is 
therefore 24 rπ σ  J. Assuming an insignificant difference between Helmholtz energy and 
Gibbs energy, the Helmholtz energy change will be considered equal to the Gibbs energy 
change. 

The volume of the nucleus is 34 /3 rπ  cubic meter. The molar volume of solid potassium 
sulfate in the nucleus is 

2 4K SOV  cubic meter. The number of mol of potassium sulfate in the 
nucleus is: 

It is assumed that the cluster of ions forming the nucleus has the same standard state Gibbs 
energy as the crystalline salt. The total change in Gibbs energy by the dissolution reaction 
(10.4) is then given by: 

2 4

34 /
3S Kn r Vπ= SO

24

 (10.5) 

This equation is expanded by introducing the terms for the chemical potentials and the 
following expression is obtained: 

2 44

0
( )2dis S S S K SO sK SO

G n n n rμ μ μ π+ −−Δ = + − − σ  (10.6) 

( )22 4 4

0 2ln 4dis S K SO S K SO
G n G n RT a a r 2π σ+ −Δ = Δ + −  (10.7) 

According to equation (10.3) this can be written as: 

A graphical representation of this curve is given in Figure 10.2. In a supersaturated solution, 
the first term is positive. When the nucleus grows above a certain size, the Gibbs energy 
change for the dissolution reaction becomes positive. The crystalline form is therefore the 
most stable under these conditions. At the metastable equilibrium, the derivative of disGΔ  
with respect to nS has the value zero as the Gibbs energy change for the dissolution goes 
through its minimum. From the expression for nS in equation (10.5) the following is obtained: 
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2 4 2 4

3 24 4
3

S

K SO K SO

dn dr r
dr V dr V

π π
= =  (10.9) 

This is used for calculating the nucleus size derivative of the dissolution Gibbs energy: 

The metastable equilibrium occurs when the derivative in equation (10.10) is equal to zero. 
At this nucleus size, the radius of the nucleus is the critical radius, rcrit. The resulting equation 
is the Kelvin equation for the formation of crystal nuclei in a solution: 
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The Kelvin equation was originally derived for the calculation of the vapor pressure of a 
liquid when it is dispersed as droplets of a certain radius [89]. Compared to the original 
Kelvin equation, in equation (10.11) lnSI replaces ln(p/p*), where p* is the vapor pressure of 
the liquid when it is not dispersed as droplets and p is the vapor pressure of the liquid when it 
is dispersed. As an analogy with the original Kelvin equation, the Kelvin equation for the 
formation of crystal nuclei in a solution enables us to calculate the activity product of a salt in 
the liquid outside a spherical, solid nucleus of a certain radius. The main use of this equation 
however is for the calculation of a theoretical expression for the activation energy for the 
formation of a nucleus of the critical size. 

10.3 Activation energy for crystal formation 
By using the value of the critical radius of a spherical crystal in equation (10.8) and replacing 
ns by the expression in equation (10.5), the critical Gibbs energy change for forming a 
nucleus of the critical size can be evaluated: 

This is the critical Gibbs energy change for the dissolution of one nucleus consisting of nS 
mol potassium sulfate. The critical Gibbs energy change for the formation of one nucleus 

 has the corresponding positive value. This positive Gibbs energy change can be 
considered as the activation energy for forming a spherical nucleus of the critical size. 
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10.4 Primary nucleation rate 
Based on the calculated activation energy, the primary nucleation rate can be described by a 
Boltzmann (or Arrhenius) type equation: 
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C is the so-called pre-exponential factor. The activation energy in Joule per nucleus is 
divided by the Boltzmann factor k = R/NA J/K and the Kelvin temperature. The exponential 
factor has a value between zero and one. This factor is an expression for the probability of 
reaching the activation energy. Obviously, primary nucleation is an exponential function of 
the degree of saturation and of temperature. A high saturation index and a high temperature 
increase the probability of reaching the activation energy. 
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89 Thomson, Sir William (later Lord Kelvin), Phil. Mag. 42(1871)448 



11 Fractional crystallization 
Fractional crystallization is the most common method for separating a pure salt from a 
solution of salts. By this method, the salts are crystallizing as pure salts, but it is usually not 
possible to separate the pure salts completely from the mother liquid. Mother liquor is the 
name used for a saturated solution from which crystallization has taken place. The pure 
phases of crystalline salts will therefore be mixed with some mass percents of saturated 
solution. After the crystals are taken out from the crystallizer, they are therefore usually 
centrifuged or filtered to separate them from mother liquor. Afterwards, the crystals can be 
washed with water in order to remove any mother liquor adsorbed on the surfaces of the 
crystals. 

Fractional crystallization will first be illustrated by an example of separation in a ternary 
system. The temperature/composition dependence of the precipitation from a ternary system 
can be seen from a temperature/two salt saturation point diagram like the one shown in 
Figure 11.1. In the NaCl-Na2SO4-H2O system shown in Figure 11.1 three different phases can 
appear in the temperature range shown in the diagram. At lower temperatures hydrohalite, 
NaCl·2H2O and ice will appear. 

The process path for separating a mixture of sodium sulfate and sodium chloride into one 
solid phase of glauber’s salt (Na2SO4·10H2O) and one solid phase of sodium chloride (NaCl) 
is illustrated in Figure 11.1. The feed mixture consists of water and equal molar amounts of 
NaCl and Na2SO4. The line a-b represents the precipitation of glauber’s salt caused by 
isothermal evaporation, b-c represents the heating of the solution from 3 to 43°C. By heating 
the solution, the precipitation field changes from glauber’s salt to sodium chloride. The 
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Figure 11.1: Process path for the fractional crystallization of sodium chloride (NaCl) and glauber’s salt 
(Na2SO4•10H2O) 
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Figure 11.2: Outline of equipment for performing a fractional crystallization. 

precipitation of sodium chloride takes place along the line c-d, caused by isothermal 
evaporation. The line d-a represents the mixing of the NaCl-saturated solution from d with 
fresh feed and a cooling to 3°C.  

Fractional crystallizations like the one described above and illustrated in Figure 11.1 can be 
performed in a system consisting of two crystallizers in series as outlined in Figure 11.2. The 
cooling and the isothermal evaporation stage are often combined to an evaporative cooling 
stage. 

 
Figure 11.3: Solubility isotherms with operating lines for the fractional crystallization process for 
separating glauber’s salt from sodium chloride. 

100

90

80

70

60

5050

40

30

20

10

0

c

d

Evap

b

a
Feed

25 35 45 55 65 75

3 °C isotherm
43 °C isotherm

NaCl      

H2O       

Na2SO4·10H2O

Na2SO4 



The operating lines of this fractional crystallization process are plotted in the two relevant 
isotherms, 3 °C and 43 °C in Figure 11.3. Note that only the upper part of the triangular 
diagram is shown in Figure 11.3. The composition of NaCl and Na2SO4 are outside the 
diagram. The points in the isotherms are marked with the same letters that were used in 
Figure 11.1.  

The point marked “Feed” represents the composition of the feed stream. The feed stream is 
mixed with the mother liquor from the NaCl crystallization, marked “d”. The composition of 
the mixed stream is on the straight line between “Feed” and “d”, marked “a”. By evaporation 
of water from the stream marked “a” the composition of the stream moves down along a 
straight line going through the point representiong pure water and the point marked “a”. The 
composition of the stream after the evaporation is marked “Evap”. This point is clearly inside 
the field supersaturated with glauber’s salt at 3 °C, but in the un-saturated field according to 
the 43 °C isotherm. Next, glauber’s salt (Na2SO4·10H2O) precipitates from the solution 
marked “Evap”. The precipitation takes place along a straight line going through the point 
marked “Evap” and the point representing the composition of solid glauber’s salt. The mother 
liquor from the glauber’s salt precipitation has the composition marked “b” in the diagram. 
The point “b” is on the glauber’s salt branch of the 3 °C isotherm.  

After the glauber’s salt precipitation, the stream is heated to 43 °C and water is evaporated 
from the solution. The evaporation follows a straight line going through the point 
representing pure water, down to the point marked “c”. The composition of the stream at 
point “c” is supersaturated with NaCl at 43 °C. NaCl precipitates from this solution along a 
line going through the point in the diagram representing NaCl(s) and the point “c”. This line 
has to end in “d” on the NaCl branch of the 43 °C isotherm. Point “d” represents the mother 
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Figure 11.4: Production of KNO3 from NaNO3 and KCl, design one 



liquor from the NaCl crystallization. This mother liquor is mixed with feed stream again to 
continue the process in steady state. 

11.1 Production of KNO3 
Potassium nitrate can be produced by fractional crystallization of mixtures of potassium 
chloride and sodium nitrate. As a by-product sodium chloride is also produced in the process. 
Two alternative flowsheet designs of this fractional crystallization process will be discussed 
here. The process takes place in the quaternary system consisting of (K+, Na+) – (Cl- , SO4

2-) 
– H2O. In both flowsheet designs, potassium nitrate is precipitating at 0 °C and sodium 
chloride at 35 °C. 

In the first flowsheet design, shown in Figure 11.4, fresh feed is mixed with water and with 
mother liquor from the sodium chloride crystallization. The mixture is cooled to 0 °C and 
potassium nitrate precipitates. The mother liquor from the potassium nitrate precipitation is 
transferred to the sodium chloride crystallizer where it is heated to 35 °C and water is 
evaporated. Sodium chloride precipitates and the mother liquor from this crystallizer is again 
mixed with fresh feed and water. 

In the second flowsheet design, shown in Figure 11.6, fresh feed is mixed with mother liquor 
from the potassium nitrate crystallizer. The mixture is heated to 35 °C and water is 
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Figure 11.5: Operating lines for potassium nitrate production, design 1 



evaporated in the sodium chloride crystallizer. The mother liquor from the sodium chloride 
crystallizer is mixed with water and led to the potassium nitrate crystallizer. In the potassium 
nitrate crystallizer, the mixture is cooled and potassium nitrate precipitates. The mother liquor 
from the potassium nitrate crystallizer is again mixed with fresh feed in the steady state 
process. 

The operating lines for the flowsheet design in Figure 11.4 are shown in Figure 11.5. The 
feed stream with a composition located at (0.5, 0.5) is mixed with “Mother liquor 2” from the 
sodium chloride crystallization to form the “Mixed feed”. The mixed feed is cooled to 0 °C. 
From Figure 11.5 it can be seen that the mixed feed is in the KCl saturation field in the 35 °C 
isotherm. In the 0 °C isotherm, the mixed feed is in the KNO3 saturation field. KNO3 
crystallizes from the solution along the operating line going from “Mother liquor 1” to KNO3. 
The composition of the point “Mother liquor 1” is inside the KNO3 saturation field in the 0 
°C isotherm. Only KNO3 will therefore crystallize in this stage.  

Mother liquor 1 is heated to 35 °C and water is evaporated in the NaCl crystallizer. The 
composition of “Mother liquor 1” is inside the NaCl saturation field in the 35 °C isotherm. 
By the evaporation, water evaporates and NaCl crystallizes along the operating line going 
from “Mother liquor 2” to NaCl in Figure 11.5. “Mother liquor 2” is inside the NaCl 
saturation field in the 35 °C isotherm ensuring that only NaCl crystallizes in this stage. 

The operating lines are all on the same straight line in this example. If the feed for this 
process contained a surplus of NaNO3 compared to the equivalent amount of KCl, the 
operating lines for the mixing of the feed with “Mother liquor 2” would have a different slope 
than the diagonal. But this surplus of NaNO3 would have to leave the process in the purge 
stream because there would not be enough potassium ions to precipitate the nitrate ions as 
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Figure 11.6: Production of KNO3 from NaNO3 and KCl, design two 



KNO3. 

If the water content of the solutions in this process could be seen in Figure 11.5, it would be 
seen that only the projections of the operating lines form a straight line. The operating lines 
themselves are connecting points with varying water content and are therefore separate lines 
in the diagram. The projections of the operating lines for the production of KNO3 according 
to design two follow a pattern similar to the operating lines of design one. If the water content 
of the solutions were visible in the diagram, there would be a clear difference between the 
two sets of operating lines. 

11.2 Optimization of fractional crystallization processes 
Both flowsheet designs were simulated and optimized with software that uses the Extended 
UNIQUAC thermodynamic model for calculating the excess properties and phase behavior of 
electrolyte solutions. The objective of the optimization was to maximize the yield of KNO3. 
The design variables were the amount of water added to the system, the percentage of water 
evaporated in the NaCl crystallizer, and the percentage of recirculation stream purged. 

Two constraints were added to ensure a yield of pure KNO3 and pure NaCl. These constraints 
were formulated as a maximum value (0.9) of the secondary saturation indices in the mother 
liquor from the two crystallizers. In the mother liquor, the saturation index of the salt that 
precipitated is equal to one. The secondary saturation index of the mother liquor is the highest 
saturation index of the remaining salts in the mother liquor.  

The results of the optimizations are displayed in Figure 11.4 and Figure 11.6. The yield of 
potassium nitrate is approximately the same in the two designs. The energy consumption for 
heating and cooling, however, is significantly different. Compared to design two, design one 
requires more than twice as much heating (11867 kJ h-1 as opposed to 5201 kJ h-1) but only a 
little more than half the cooling (1392 kJ h-1 as opposed to 3066 kJ h-1). Also the size of the 
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recirculation stream in design one is less than half of the recirculation stream in design two. If 
the evaporation is performed in solar evaporation ponds as indicated, the heat consumption 
may be of minor importance and design one can be regarded as the most efficient. 

In both optimized designs, the adiabatic flash performed in order to calculate the temperature 
of the mixed stream from the mixing tank indicates that precipitation begins in the mixing 
tank. It is therefore necessary to either heat the mixing tank or to perform the mixing in the 
crystallizer. 

The lower boundary for the percentage of recirculation stream purged was set to 1.00%. As it 
appears from Figure 11.4 and Figure 11.6, this lower boundary was reached in the optimal 
solutions to both designs. If the feed did not contain equivalent amounts of sodium nitrate 
and potassium chloride, the purge stream would have been larger. 

The raw material for the KNO3 production may contain some sodium sulphate. Figure 11.7 
shows what effect a small content of sodium sulphate will have on design one. Also here the 
maximum allowable secondary saturation index in the mother liquor from the KNO3 
crystallizer was set to 0.90 while no constraints were put on the mother liquor from the 
chloride/sulphate precipitation. The flowsheet was optimized for the maximum yield of 
KNO3. 

As it appears from Figure 11.7, the same yield of KNO3 can be obtained as in the system 
without Na2SO4 even with a lower cooling capacity. KNO3 however is the only pure product 
obtained from the process. A complete separation of the feed into three pure products would 
require an additional crystallization process.  

If a feed containing Na2SO4 was used in connection with design two, the amount of water 
added between the two crystallizers would be about ten times as large as the amount used in 
Figure 11.7, the recirculation stream would become larger and the amount of heat required 
for evaporating water would grow considerably. Thus, design one is clearly the most 
advantageous if the feed contains Na2SO4. 

11.3 Simulation of K2SO4 production process 
When double salts are involved, fractional crystallization processes become more complex 
and require more crystallization stages. The process for the production of K2SO4 and NaCl 
from Na2SO4 and KCl is one such example. The phase diagram for the system is shown in 
Figure 11.8. The formation of the double salt glaserite NaK3(SO4)2 makes a simple separation 
process impossible. The general method to achieve the separation is to divide the phase 
diagram into sub-systems. In the first sub-system, the double salt is produced. Next, the 
desired salt can be produced by mixing the double salt with another salt. 

In the phase diagram (30°C), Figure 11.8, the fields have been marked with the 
corresponding salts. Circles are marking the points in the diagram corresponding to the 
composition of the solid phases. 

The two sub-systems, that are used in order to bring about the fractional crystallization, have 
been separated by the dashed line. 

The first sub-system is the upper part of the diagram. The mixing of KCl and Na2SO4 leads to 
a composition located on a straight line between the points representing the compositions of 
the solid salts. This line - which is not marked in Figure 11.8 - passes through the KCl field, 
the very large NaK3(SO4)2 field, and the Na2SO4•10H2O field. 



The second subsystem, is 
the triangle below the 
dashed line. In this 
second system, the 
mixing of KCl and 
NaK3(SO4)2 will result in 
a composition located on 
the dashed line in Figure 
11.8. By supersaturation 
of this mixture, K2SO4 
will precipitate. 

A flow sheet for the 
production of K2SO4 and 
NaCl from Na2SO4 and 
KCl is shown in Figure 
11.9. In the crystallizer 
marked 'Glaserite 
reaction', Na2SO4 and 
KCl are mixed with a 
recirculation stream. 
Cooling of the 
crystallizer causes 
glaserite, NaK3(SO4)2 to precipitate. The mother liquor from this crystallizer is further cooled 
in the 'Glauber salt' crystallizer, causing glauber’s salt to precipitate. Next the mother liquor 
from this crystallizer is heated in the 'Sodium chloride' crystallizer, and water is evaporated. 
This causes sodium chloride to precipitate, and the remaining mother liquor is returned to the 
first crystallizer. This constitutes the Na2SO4 - NaCl - KCl - NaK3(SO4)2  sub-system.  

 
Figure 11.8: Jänecke projection of the phase diagram for the system 
considered in example 3. The dashed line divides the phase diagram into 
two sub-systems. 
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Figure 11.9: Flow sheet for a fractional crystallization process, producing potassium sulfate and sodium 
chloride from potassium chloride and sodium sulphate. 
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In the second sub-system potassium chloride and glaserite are mixed, potassium sulfate 
precipitates and the mother liquor is returned and mixed with fresh feed in the first sub-
system. 

The operating lines for the “Glaserite reaction” from Figure 11.9 are shown in Figure 11.10. 
The recirculation stream is mixed from the mother liquor of the glauber’s salt crystallizer, the 
sodium chloride crystallizer and the potassium sulfate crystallizer. This recirculation stream 
is mixed with fresh feed to give a stream of the composition “Glaserite feed” in Figure 11.10. 
At 17.7 °C, the composition of this stream corresponds to the precipitation of glaserite. The 
operating line of the glaserite crystallization go from the point marked NaK3(SO4)2 in Figure 
11.10 to the mother liquor composition marked “Glaserite ML”. The point marked 
NaK3(SO4)2 is located outside of the glaserite precipitation field indicating that solid glaserite 
can not be in equilibrium with a solution of the same ionic composition as the salt at this 
temperature. 

The composition of the mother liquor from the glaserite precipitation is outside the glaserite 
field, which means that a small amount of sodium sulphate is also precipitating in this 
crystallizer. It is not important to produce glaserite as a pure salt because glaserite is only an 
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isotherm. 
Figure 11.10: Operating lines for the “Glaserite reaction” in Figure 11.9 plotted with the 17.7 °C 
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intermediate product.  

The mother liquor from the glaserite reaction contains a large amount of chloride from the 
potassium chloride added to the process. The goal of the process is to produce potassium 
sulfate and sodium chloride from sodium sulfate and potassium chloride. Sodium chloride 
can not be produced directly from the mother liquor from the glaserite reaction. Instead this 
mother liquor is cooled, whereby the solution becomes supersaturated with glauber’s salt. 
Glauber’s salt is produced in a separate crystallizer. The mother liquor from the glauber’s salt 
crystallizer has a composition that makes it possible to produce sodium chloride from it at 
high temperature, by evaporation of water. 

The produced, impure glaserite is used in the second subsystem. In this subsystem, glaserite 
is mixed with potassium chloride to produce the final product, potassium sulfate. The 
remaining mother liquor is sent back to the glaserite reaction. 
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