
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Mar 30, 2019

TropFishR: an R package for fisheries analysis with length-frequency data

Mildenberger, Tobias; Taylor, M. H.; Wolff, A.M.

Published in:
Methods in Ecology and Evolution

Link to article, DOI:
10.1111/2041-210X.12791

Publication date:
2017

Document Version
Version created as part of publication process; publisher's layout; not normally made publicly available

Link back to DTU Orbit

Citation (APA):
Mildenberger, T., Taylor, M. H., & Wolff, A. M. (2017). TropFishR: an R package for fisheries analysis with
length-frequency data. Methods in Ecology and Evolution, 8(11), 1520-1527. DOI: 10.1111/2041-210X.12791

https://doi.org/10.1111/2041-210X.12791
http://orbit.dtu.dk/en/publications/tropfishr-an-r-package-for-fisheries-analysis-with-lengthfrequency-data(5ac1773d-97a0-4946-82d5-0f15a22e8bc9).html


A
cc

ep
te

d
 A

rt
ic

le
A

cc
ep

te
d

 A
rt

ic
le

TropFishR: an R package for fisheries analysis

with length-frequency data

T. K. Mildenberger1,∗, M. H. Taylor2, M. Wolff3

1National Institute of Aquatic Resources, Technical University of Denmark, Charlottenlund

castle, 2920 Charlottenlund, Denmark

2Johann Heinrich von Thünen-Institut, Palmaille 9, 22767 Hamburg-Altona, Germany

3Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstr. 6, 28359 Bremen,

Germany

1 Summary

1. The R package TropFishR is a new analysis toolbox compiling single-species stock

assessment methods specifically designed for data-limited fisheries analysis using length-

frequency data.

2. It includes methods for (i) estimating biological stock characteristics such as growth and

mortality parameters, (ii) exploring technical aspects of the fisheries (e.g. exploitation

rate and selectivity characteristics), (iii) assessing size and composition of a fish stock

by means of virtual population analysis (VPA), and (iv) assessing stock status with

yield prediction and production models.

3. This paper introduces the package and demonstrates the functionality of a selection of

its core methods.

4. TropFishR modernises traditional stock assessment methods by easing application and
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development and by combining it with advanced statistical approaches.

Keywords: fish stock assessment, data-poor, small-scale fisheries, tropics, FiSAT II, ELEFAN

2 Introduction

The scientific analysis and evaluation of fisheries provides the basis for sustainable exploita-

tion of marine resources in ecological, economic and social terms. The knowledge of current

fishing pressure and stock biomass in respect to biological reference levels supports the de-

velopment of management strategies for sustainable harvest. For management purposes,

single-species models are mainly used to derive these reference levels (Hilborn & Walters

1992; Skern-Mauritzen et al. 2015). The variety of potential models is large, but their ap-

plication is strongly limited by the type of available data. Fish stocks for which only catch

or length-frequency (LFQ) data is available, are categorised as data-poor and require a par-

ticular set of models (ICES 2012). Fish stocks under data-poor conditions are prominent in

all regions and can even be influential in the management of data-rich fish stocks (e.g. choke

species in multi-species fisheries). In particular, small-scale fisheries are prone to be data-

poor (e.g. based on catch only) due to a difficulty in monitoring; these are typically fleets

consisting of a large number of small boats with many landing sites and targeting a variety of

species. These aspects make data-collection and monitoring for adequate stock management

extremely difficult. Although small-scale fisheries comprise more than half of the global

landings (Kolding et al. 2014), most are neither assessed quantitatively nor qualitatively

(Costello et al. 2012). For these fisheries, bulk catch data (no species identification) or LFQ

data, from a limited time period, may be the only data available. In this work, we intro-

duce the R package TropFishR, which compiles a wide range of stock assessment methods

specifically designed for data-limited fisheries assessment using LFQ data and demonstrate

the application of a selection of core methods.

This article is protected by copyright. All rights reserved. 
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3 The TropFishR package

Different R packages are currently available for fisheries analysis, such as fishmethods (Nel-

son 2016), FSA (Ogle 2016), or FLR (Kell et al. 2007). These packages offer a broad catalogue

of general methods of fisheries science (e.g. natural mortality estimators) and age-based stock

assessment tools. Furthermore, other R packages with length-structured methods and suit-

able for the assessment of data-poor fisheries are available, such as DLMtool (Carruthers &

Hordyk 2016), offering a management strategy evaluation framework, s6model (Kokkalis et

al. 2015), offering a length-based assessment model, or LBSPR (Hordyk et al. 2016), offering

a length-based version of the spawning potential ratio method. The TropFishR package

uniquely adds further data-limited method capacity (Table 1) by including traditional and

updated versions of the Electronical LEngth Frequency ANalysis (ELEFAN) method, used

in growth parameter estimation, with new optimisation techniques (Taylor & Mildenberger

2016), Millar’s non-linear selectivity models (Millar & Holst 1997), and a complete set of

methods for fisheries analysis with LFQ data. This compilation allows a stock assessment

routine to derive reference levels (e.g. FMSY , F0.1) by means of yield per recruit modelling,

which may be based on a single year of LFQ data. Until now the preferred software for single

species stock assessment with length-frequency data has been the windows-based programme

FiSAT II (Gayanilo Jr et al. 1996) due to its user-friendly, click-based interface. The soft-

ware is, however, limited in its ability to import data and perform automated analyses. The

TropFishR package aims to remedy these shortcomings by allowing further expansion and

flexibility. Although wider in scope, the main methods follow those outlined in the FAO

manual “Introduction to tropical fish stock assessment” (Sparre & Venema 1998). Many of

the same examples and datasets featured therein are included in the package (Table 1) and

documented in accompanying help files, which facilitates use in training and teaching. Fi-

nally, output from various functions can be passed to plotting functions, allowing for export

as publication-quality figures.

This article is protected by copyright. All rights reserved. 
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4 Data-poor stock assessment using TropFishR

For historical reasons, and the link to the above-mentioned book by Sparre & Venema (1998),

the package’s name reflects the fact that the methods have often been applied to tropical

fisheries, although they are equally applicable to other regions with data-poor stocks for

which LFQ data is available. Typically, the workflow of a data-poor stock assessment with

LFQ data would include: (i) estimation of biological stock characteristics (growth and natural

mortality), (ii) fisheries performance aspects (exploitation rate and selectivity), and (iii) stock

size and status. The order of the methods is important as they build upon each other in

a sequential way. If some or all of the vital parameters for stock assessment are already

known, the user may skip the data-poor approaches for their assessment and can directly

proceed with yield modelling applications. For a full tutorial of fisheries analysis with LFQ

data, see the tutorial vignette: vignette("tutorial", package = "TropFishR"). Here,

we demonstrate the application of a selection of the functions of Table 1 with the use of a

generated LFQ data set with known parameters. The data simulation procedure is based

on an individual-based model that creates length-at-age variability through differences in

individual growth parameters (for further information see supplementary online material

and Taylor 2015). The generated LFQ data (Fig. 1a) is based on life history traits of the

Thumbprint Emperor Lethrinus harak (Forsskål, 1775); parameters represent the average of

estimates provided in FishBase (Froese & Pauly. 2016) (Table 2), while the length-at-first-

maturity is the average of results estimated by Kulmiye et al. (2002). The resulting LFQ

data set is provided in TropFishR under the name ‘synLF6’. It is structured into 32 length

classes with a bin size of 1 cm and 10 sampling dates within one year.

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
A

cc
ep

te
d

 A
rt

ic
le

4.1 Available methods

4.1.1 ELEFAN

ELEFAN is a method to derive growth parameters of the von Bertalanffy growth function

(VBGF) from LFQ data (Pauly 1980). It requires a vector with the mid lengths of defined

length classes, a matrix with catches in numbers per length class (rows) and per sampling

time (columns), and a vector with the dates of the sampling times (see synLFQ6).

ELEFAN can be separated into three steps: (i) “restructuring” of LFQ data according

to a procedure that scores length bins based on deviations from a moving average across

neighbouring bins, (ii) calculation of the cumulative score for a given set of VBGF parameters

based on the bin scores that are intersected by resulting growth curves, and (iii) search for

VBGF parameters that result in the maximum score value. The following code shows how

to restructure the data and visualise the positive and negative bins (compare Fig. 1b). The

arguments ‘MA’ (moving average) and ‘addl.sqrt’ (additional square root transformation)

allow for further adjustments to the default restructuring process.

lfqbin <- lfqRestructure(param = synLFQ6, MA = 5, addl.sqrt = TRUE)

plot(lfqbin)

For the third step, traditional search procedures include: (i) Response Surface Analysis

(RSA) varies both the growth coefficient (K) and asymptotic length (Linf ) of the VBGF,

and (ii) K-Scan, which holds Linf constant while varying K (Pauly 1986). In addition to

these traditional methods, two new optimisation procedures are offered that search over all

parameters simultaneously: ELEFAN_SA and ELEFAN_GA, which are based on simulated

annealing and genetic algorithms, respectively (Taylor & Mildenberger 2016). Here, we

compare the performance of the RSA and the simulated annealing approach by the use of

the generated data set. Both methods require the same LFQ data list and some confinement

in the search space for the growth parameters. There are many recommendations on how to

This article is protected by copyright. All rights reserved. 
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define initial estimates of Linf , such as using the maximum length class (or the average of

the few largest classes) as a reference (Taylor 1958; Beverton 1963), but it is notable that

large length classes can be underrepresented due to high exploitation, high natural mortality

(i.e. high M/K ratio), or selectivity patterns of the gear, e.g. dome-shaped selection ogive of

gillnets. Another approach is to use the Powell-Wetherall method (Wetherall et al. 1987),

which fits a linear regression to L̄ - L′ against L′, where L̄ is the mean length of all individuals

larger than L′ and L′ is any length equal and above the length under full exploitation. Here,

we used this approach to estimate Linf (ca. 36 cm, see supplementary online material)

and, subsequently, restricted the search space range to plus/minus 5 cm. Without prior

information, the search for K may be done on a relatively wider range of values (e.g. 0.1 -

1.0).

ELEFAN(x = synLFQ6, MA = 5, addl.sqrt = TRUE,

Linf_range = seq(30,40,0.5), K_range = seq(0.1,1,0.1))

When using RSA, we recommend analysing several local maxima of the score function with

a finer resolution for both parameters and also comparing the calculated score values and fit

graphically (comparable to Fig. 1b, see tutorial vignette for automated algorithm).

The simulated annealing approach requires the user to define the maximum time of the

optimisation procedure (argument ‘SA_time’; here 2 min). The graph produced by this

method can help to find an adequate computing time (graph not shown here). The extent of

stochasticity in the search process can be varied with the argument ‘SA_temp’, representing

the initial ‘temperature’ of the annealing process.

ELEFAN_SA(x = synLFQ6, SA_time = 60*2, SA_temp = 6e5,

MA = 5, addl.sqrt = TRUE,

low_par = list(Linf = 30, K = 0.1, t_anchor = 0),

init_par = list(Linf = 35, K = 0.5, t_anchor = 0.5),

up_par = list(Linf = 40, K = 1, t_anchor = 1))

This article is protected by copyright. All rights reserved. 
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If prior information about the maximum age is available the argument ‘agemax’ can be

used to fix the number of fitted cohorts, otherwise the maximum age is set to the age

when expected length is 0.95 Linf . The ELEFAN methods cannot estimate t0 (theoretical

age at length zero) from LFQ data alone (Pauly 1980). However, this parameter does

not influence results of the length-based assessment methods included in TropFishR (catch

curve, virtual population analysis, and yield per recruit model) and can thus be set to

zero (Mildenberger, unpublished). Furthermore, the ELEFAN methods in this package do

not return starting points as FiSAT II users might be used to; instead, they return the

parameter called ‘t_anchor’, which describes the fraction of the year where yearly repeating

growth curves cross length equal to zero; for example a value of 0.25 refers to April 1st of

any year (Taylor & Mildenberger 2016).

Both ELEFAN methods were able to reproduce true parameters used for data generation

quite accurately (Table 3). Both scores are higher than the score of the original parameters,

which can be attributed to the noise introduced in the data simulation process. The fit

of estimated growth parameters can also be explored visually (Fig. 1b) and shows high

similarity to the true growth curves (grey) and a good fit through the positive scored peaks

of the restructured LFQ data.

plot(lfqbin, Fname = "catch", date.axis = "modern")

plot(lfqbin, Fname = "rcounts",date.axis = "modern")

lt1 <- lfqFitCurves(lfq = lfqbin, par = list(Linf=33.7, K=0.47, t_anchor=0.25),

draw = TRUE, col = "grey", lty = 1, lwd=1.5)

lt2 <- lfqFitCurves(lfq = lfqbin, par = list(Linf=32.5, K=0.5, t_anchor=0.24),

draw = TRUE, col = "darkblue", lty = 2, lwd=1.5)

lt3 <- lfqFitCurves(lfq = lfqbin, par = list(Linf=33.9, K=0.45, t_anchor=0.23),

draw = TRUE, col = "dodgerblue2", lty = 3, lwd=1.5)

An advantage of the ELEFAN_SA and ELEFAN_GA approaches is the possibility to es-

This article is protected by copyright. All rights reserved. 
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timate all parameters of the seasonalised VBGF (soVBGF) simultaneously (with the ad-

ditional argument: seasonalised = TRUE). Until now, this was only possible to a limited

extent within the ‘Automatic Search’ approach of FiSAT II, and required “understanding

of how to conduct searches in multidimensional space, in the presence of multiple local

optima” (Gayanilo & Pauly 1997). With appropriate settings, the alternate optimisation ap-

proaches show promise in estimating the parameters of the soVBGF (Taylor & Mildenberger

2016). As an illustration of the expandability that an R-based implementation affords, the

confidence intervals for the growth parameters can be easily calculated with the jack knife

technique - a resampling method with replacement (Quenouille 1956; Tukey 1958, 1986), -

by incorporating ELEFAN_SA in a for-loop (supplementary online material).

4.1.2 Cohort analysis (CA)

Jones’ length-converted cohort analysis (CA; Jones 1984) - a modification of Pope’s virtual

population analysis (VPA) for LFQ data - estimates the trend of the fishing mortality across

length classes of the stock as well as a reconstruction of overall stock size. Beside the growth

and mortality parameters, CA also requires the parameters ‘a’ and ‘b’ of the allometric

length-weight relationship, which can be calculated from weight-at-length data. The function

‘lfqModify’ allows for the addition of a “plus group” to the data (i.e. the largest group includes

all sizes above a given value), changing the bin size, and/or transforming the catch matrix

to a single catch vector (per year) as required by CA (with the argument ‘vectorise_catch’).

synLFQ6 <- lfqModify(lfq = synLFQ6, vectorise_catch = TRUE)

# growth parameters estimated by 'ELEFAN_SA' (see above)

synLFQ6$Linf <- 33.9

synLFQ6$K <- 0.45

synLFQ6$t_anchor <- 0.23

This article is protected by copyright. All rights reserved. 
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# natural mortality estimated by 'M_empirical' (not shown here)

synLFQ6$M <- 0.72

# total and fishing mortality estimated by 'catchCurve' (not shown here)

synLFQ6$Z <- 1.78

synLFQ6$FM <- 1.06

# length-weight parameters from FishBase

synLFQ6$a <- 0.000017

synLFQ6$b <- 3.042

CA further requires an estimate of the terminal fishing mortality (argument ‘terminal_F’),

representing the fishing mortality for the largest length class (see Hilborn & Walters (1992)

for a discussion of this parameter). Since the catches by length class should represent an

entire year, the argument ‘catch_corFac’ can be used to add a correction factor in cases

where under-sampling occurred. Assuming that the catch vector is representative for all

sampled months and that catch levels were similar for the 2 missing months in the example

data, we set ‘catch_corFac’ to 1 + 2/12 in order to correct for the under-reporting.

CA <- VPA(param = synLFQ6, terminalF = 1.06,

analysis_type = "CA",

plot=TRUE, catch_corFac = (1+2/12))

The graphical results in Figure 2 generally reflect the logistic-shaped fishing pattern used

in the data generation (red line in Fig. 2a and b), although larger classes seem to be

underrepresented in the catches, which results in lower fishing mortality values. The overall

stock size in numbers and biomass can be calculated via:

sum(CA$annualMeanNr, na.rm = TRUE)

sum(CA$meanBiomassTon, na.rm = TRUE) * 1e3

According to this method, the size of the stock is around 78,435 individuals or 2,217 kg.

This article is protected by copyright. All rights reserved. 
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These values deviate from the true values of 78,863 individuals and 1,858 kg by -0.5 % and

16 %, respectively. The deviations might here be related to the value of the terminal fishing

mortality, which besides natural mortality and the length-weight conversion, has been shown

to be an influential input parameter for VPA (Pelletier 1990; Hilborn & Walters 1992).

4.1.3 Yield per recruit modelling (YPR)

Yield per recruit models (YPR), also called prediction models (e.g. Thompson and Bell

model), allow for the evaluation of the stock’s status in relation to reference levels as well as

the impact of a given management control measure, such as regulations to fishing effort or

gear selectivity (e.g. net mesh size). These models require growth and mortality parameters

(comparable to CA) as well as selectivity information about the gear. In the first application

of the YPR model, selectivity is represented by the vector of fishing mortality by length class

estimated by the previous cohort analysis:

synLFQ6$FM <- CA$FM_calc

Holding this selectivity pattern constant, a vector of fishing mortality (‘FM_change’) is

used to simulate changes in fishing intensity scaled to the fishing mortality of the fully-

exploited length class(es). In the second application of the YPR model, the selectivity

characteristics are described by a more generalised trawl-like selection ogive1 (argument

‘s_list’), which allows for change in selectivity characteristics (‘Lc_change’) simultaneously

with fishing mortality (‘FM_change’) or exploitation rate (‘E_change’), respectively. The

resulting estimates are presented as an isopleth graph showing yield per recruit isoclines

(Fig. 3b). By setting the argument ‘stock_size_1’ to 1, all results are per recruit. If the

number of recruits (recruitment to the fishery) is known, the exact yield and biomass can be

estimated. The arguments ‘curr.E’ (fishing mortality divided by total mortality) and ‘curr.Lc’

1The selectivity parameters in this example were estimated by the length-converted catch curve analysis
with simultaneous estimation of the selection ogive (help(catchCurve)).

This article is protected by copyright. All rights reserved. 
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(estimated with the length-converted catch curve) allow for the estimation and visualisation

of yield and biomass (per recruit) values for current fishing patterns (Fig. 3).

TB1 <- predict_mod(param = synLFQ6, type = "ThompBell",

FM_change = seq(0,5,0.1), stock_size_1 = 1,

curr.E = 0.6)

TB2 <- predict_mod(param = synLFQ6, type = "ThompBell",

s_list = list(selecType = "trawl_ogive",

L50 = 9.65, L75 = 10.83),

FM_change = seq(0,5,0.1), Lc_change = seq(3,30,0.1),

stock_size_1 = 1, curr.E = 0.6, curr.Lc = 9.65)

The plotting functions allow control over details of the graphs:

plot(TB1, mark = TRUE)

plot(TB2, type = "Isopleth", xaxis1 = "E", mark = TRUE, contour = 6)

For this example, Figure 3a shows that the yield could be increased when fishing mortality

is reduced. The gear related analysis reveals that the current gear characteristics and ex-

ploitation rate produce a yield of above 25 g per recruit, which could be increased to above

30 g by increasing the mesh size (following vertical dashed line in Fig. 3b upwards).

# biological reference levels

TB1$df_Es

# current yield and biomass levels

TB1$currents

The results estimate that the current fishing mortality (F = 1.08) is higher than the fishing

mortality for “maximum sustainable yield” (FMSY = 0.9), indicating overfishing.

This article is protected by copyright. All rights reserved. 
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5 Final remarks

The R package TropFishR offers a new toolbox compiling fish stock assessment methods for

data-poor fisheries, which are often, but not exclusively, encountered in the tropics. The

package allows for the estimation of life history parameters and the development of man-

agement measures based on the analysis of catch-at-age data, bulk catch and effort data,

or length-frequency data (Table 1). TropFishR and other length-based assessment meth-

ods (e.g. s6model, LBSPR) have the advantage of being applicable to data collected from

relatively short time periods (e.g. 1 year), making them attractive for rapid assessments in

data-poor situations. To the contrary, surplus production models typically require longer

time series of 10 years or more. LFQ data may also originate from survey or catch data,

making collection fairly easy and economical even for small-scale fisheries. When derived

from catch data, only a representative subsample of the landings is required and data collec-

tion requires little more than a measuring tape. At present, the ubiquity of smart phones

may both ease the collection of LFQ data and allow for supplementary information to be

collected in parallel (i.e. “metadata”); e.g. equipping the monitoring team with a smart

phone application that automatically photo-measures fish, geo-references the sampling lo-

cation, and uploads the data directly into a shared database. The examples of this paper

illustrate the accuracy of parameter estimation using a simulated data set with known values.

Nevertheless, further testing of the sensitivity of length-based methods is warranted, as has

been done for related age-based approaches for VPA or YPR (Pelletier 1990). This further

testing is needed to help identify influential input parameters and allow further quantifica-

tion of uncertainty. The transparent and flexible toolbox offered by the TropFishR package

should facilitate this work and allow for further development of LFQ methods.

This article is protected by copyright. All rights reserved. 
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8 Availability

The examples presented in this paper are based on TropFishR (v1.1.3), which requires R

>= 3.0.0 and can be downloaded from GitHub as follows:

install.packages("devtools")

devtools::install_github("tokami/TropFishR", ref = "v1.1.3")

9 Data acessibility

The example data ‘synLFQ6’ is included in the package and can be loaded with

load(synLFQ6). The code for the generation of this data set is given in the sup-

This article is protected by copyright. All rights reserved. 
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plementary online material. The data can also be downloaded from GitHub at

https://github.com/tokami/TropFishR/releases/tag/v1.1.2 (DOI: 10.5281/zenodo.495176).
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Contents of supplementary online material

• LFQ data generation

R code for the generation of the LFQ data set ‘synLFQ6’

• Powell-Wetherall Plot

Method for the estimation of Z/K and Linf from LFQ data

• Jack knife technique

R code for the estimation of confidence intervals for growth parameters

• R examples

Complete R code of the examples demonstrated in the publication
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Table 1: Overview of main functions of the TropFishR

package and required data types.

Function name Description

Data Category

*

Bhattacharya() Resolves observed LFQ distribution into

Gaussian components

LFQ

powell_wetherall() Estimates total mortality (Z) and asymptotic

length (Linf)

LFQ

ELEFAN() Estimates growth parameters LFQ

ELEFAN_SA() Estimates growth parameters with simulated

annealing

LFQ

ELEFAN_GA() Estimates growth parameters with genetic

algorithm

LFQ

VBGF() Translates length to age or the other way

round

-

growth_length_age() Estimates growth parameters from

length-at-age data

-

growth_tagging() Estimates growth parameters from tagging

data (“Munro plot”)

-

M_empirical() Applies 12 different empirical formulas to

estimate natural mortality (M)

-

Z_BevertonHolt() Applies Beverton & Holt method to estimate

total mortality (Z)

CAA, LFQ

Z_CPUE() Estimates total mortality (Z) from

catch-per-unit-effort (CPUE) data

CPUE
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Data Category

*

catchCurve() Applies the (length-converted) linearised catch

curve

CAL, CAA,

LFQ

recruitment() Estimates recruitment patterns LFQ

select_ogive() Estimates the fraction per length group

retained in the net

SEL

select() Estimates the selectivity of gillnets and trawl

nets

SEL

select_Millar() Estimates the selectivity of different gears SEL

VPA() Applies Virtual Population Analysis (VPA) or

Cohort Analysis (CA)

CAL, CAA

predict_mod() Applies yield-per-recruit (YPR) models CAL, CAA

prod_mod() Applies the equilibrium approach of Schaefer

and Fox production models

CPUE

prod_mod_ts() Applies Schaefer and Fox production models

with time series fitting

CPUE

* Data types and available example datasets in parentheses: LFQ = Length frequency data

(alba, synLFQ1 - syLFQ7 datasets), CAL = catch at length data (goatfish, hake), CAA =

catch at age data (shrimps, synCAA1, synCAA2, whiting), SEL = selectivity data (bream,

gillnet, haddock, tilapia, trammelnet), CPUE = catch and effort data (emperor, synCPUE,

trawl_fishery_Java).

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
A

cc
ep

te
d

 A
rt

ic
le

Table 2: Parameters used for data generation of length-

frequency data. For more information about specific pa-

rameters refer to the help file of the lfqGen function of

the fishdynr package (help(lfqGen), Taylor, 2015).

Abbreviation Parameter Value

Linf infinite length 33.7 cm

K growth coefficient 0.47 year−1

repro_wt indicating time of year of reproduction 0.25

C intensity of seasonality 0

ts summer point 0

a, b coefficients of allometric length-weight 0.017 [cm, g]

relationship 3.042

Lm length at maturity 25.3 cm

L50 length at first capture 10 cm

wqs width of selectivity ogive 3 cm

M natural mortality 0.8 year−1

F fishing mortality 1.3 year−1

rmax maximum recruitment level of Beverton

and Holt’s recruitment model

10000

beta steepness of Beverton and Holt’s

recruitment model

1
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Table 3: Growth parameters used for data genera-

tion (True), compared to values and scores of the

Response surface analysis (RSA) and ELEFAN with

simulated annealing (ELEFAN_SA). Values in brack-

ets show the deviation from true values in percentage

terms. The score value of the true parameters can

be calculated with lfqFitCurves (more information in

help(lfqFitCurves)). Score value can only be com-

pared relatively (score of simulated annealing is larger

indicating better fit than RSA), changing MA or the bin

size, can influence the score values (for more information

see Taylor & Mildenberger, 2016).

Parameter True RSA ELEFAN_SA

Linf in cm 33.7 cm 32.5 cm (-3.7 %) 33.9 cm (0.6 %)

K in year−1 0.47 0.5 (6 %) 0.45 (-4.4 %)

phi′ 2.73 2.72 (-0.4 %) 2.71 (-0.7 %)

tanchor 0.25 0.24 (-4.2 %) 0.23 (-8.7 %)

score 0.703 0.781 0.773
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Figure 1. Length frequency data and growth curves. LFQ data visualised in terms of (a)

catches and (b) restructured data with a moving average setting of MA = 5. Lines show

estimated (blue) and true (grey) growth curves plotted through the length frequency data.

The dashed dark blue and dotted light blue curves represent the curves of the traditional

ELEFAN method and ELEFAN_SA, respectively.

Figure 2. Results of Jones’ length-based cohort analysis (CA) with reconstructed population

structure (survivors, natural losses and catch) in numbers (a) and biomass (b) per length

class and the fishing mortality rate by length class (red line in both plots).

Figure 3. Results of the Thompson and Bell model with the Thumbprint Emperor data:

(a) Curves of yield and biomass per recruit with a Lc of 9.65 cm. The black dot represents

yield and biomass per recruit under current fishing pressure. The yellow and red dashed

lines represent fishing mortality for maximum sustainable yield (Fmsy) and fishing mortality

associated with a 50 % reduction relative to the virgin biomass (F0.5). The x-axis corresponds

to the fishing mortality of the fully-exploited length class(es). (b) Exploration of impact of

different exploitation rates and Lc values on the yield per recruit. The black dots represent

the current (over-)fishing regime. The x-axis displays the exploitation rate (F/Z) of the

fully-exploited length class(es).
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