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Abstract—It is expected that bad data and missing topology
information will become an issue of growing concern when power
system state estimators are to exploit the high measurement
reporting rates from phasor measurement units. This paper
suggests to design state estimators with enhanced resilience
against those issues. The work presented here include a review
of a pre-estimation filter for bad data. A method for detecting
branch status errors which may also be applied before the state
estimation is then proposed. Both methods are evaluated through
simulation on a novel test platform for wide-area measurement
applications. It is found that topology errors may be detected
even under influence of the large dynamics following the loss of
a heavily loaded branch.

Index Terms—Power system State Estimation, Topology Error,
Bad Data, PMU, WAMS

I. INTRODUCTION

It has been proposed that SCADA systems of the future

may incorporate the full potential of PMU technology with

direct measurement of all state variables [1]. With reporting

rates of PMU data much faster than traditional RTU based

measurements it is likely that latencies in data communication

and processing become a significant challenge.

Every measurement has some noise component. While

PMUs are capable of measuring state variables directly it has

been shown that the noise component can reduce the accuracy

of system monitoring to undesirable levels [2]. A state esti-

mator may filter the noise component from the measurements.

If bad data is fed to a state estimator it might bias the output

and produce erroneous estimates of the system state. Thus, a

procedure for validating the data must be applied.

Means of data validation can follow either a model free

or a model based approach. Approaches for detecting range

errors, large noise components, stale data and synchronization

errors in PMU data have been suggested without the use of

elaborate system models [3]. The model based data validation

has predominantly been conducted after a state estimation

algorithm has determined a most likely system state. The data

validation can then be based on identification of protruding

measurement residuals [4]. The hypothesis testing identifi-

cation method is a better choice in case of multiple bad

data [5]. The iterative process of estimating states, identifying

and eliminating bad data result in indeterministic execution

time. It should therefore be considered to filter at least the

simplest identifiable bad measurements before the estimation.

Pre-estimation identification of bad data can be done on basis

of measurement innovations [6]. Measurement innovations

are differences between a predicted measurement and the

actual measurement. To predict a measurement a dynamic state

estimator should be applied.

If model based data validation relies on incorrect informa-

tion about bus configurations or branch statues the results

will be unreliable. Commonly a topology processor gathers

information such as breaker statues and possibly transformer

tap-settings and passes the topology information on to the state

estimator [4]. Thus, topology processing must be conducted

at rates that match that of the state estimator. Significantly in-

creasing the frequency of the state estimator requires increased

frequency of topology processing. The chance of missing

topology information or loss of synchronism between topology

processing and state estimation is a real issue in PMU based

measurement systems [7].

Means of topology error detection have been proposed to

exploit normalized residuals in post-estimation identification

[8]. This paper proposes a method for pre-estimation detection

of branch status errors which can distinguish system dynamics

from erroneous branch statuses.

The remainder of the paper is organized as follows: II

explains on the pre-estimation filter for bad data and introduces

the proposed method for pre-estimation detection of branch

status errors. III provides explanations of tests and discusses

results hereof. IV concludes the paper.

II. DISCRIMINATING BAD MEASUREMENTS, TOPOLOGY

ERRORS AND DYNAMICS IN STATE ESTIMATION

Bad measurements, errors in topology information and

changes in system state which are not addressed by modelling

all cause anomalies in power system state estimation.

A. Pre-estimation filtering of bad data

A bad data filtering process was introduced by Pignati et al

in [9]. The algorithm performs a prediction of every set of

incoming measurements. The prediction is associated with

a confidence bound. Any incoming measurements that lay

outside these confidence bounds are flagged as anomalies

and processed. Those measurements which fall inside the

confidence bounds are fed to a Kalman filter state estimator.

The anomalous measurements are treated as either bad data

or indicators of an insufficient process model. In the case of

detection of bad data the bad measurements are substituted by

their predicted values in the state estimator. In cases where

anomalies are due to system dynamics the process noise is



updated. A brief description of the algorithm is provided

below. The reader is referred to [9] for an in-depth explanation.

A system model given by;

xk = Axk−1 +wk−1 , (1)

where xk is the state at the kth time-step, A is the state

transition matrix and wk−1 is the process noise at time-step

k − 1. The process model applied is a random walk. This is

reflected by assuming the state transition to be a stationary

identity matrix and letting the process noise account for the

mobility of the state. The process noise is formally given by

p(wk) ∼ N(0,Qk) and the process noise covariance matrix Q

reflects the precision of the process model. The measurement

equation is given by:

zk = Hxk + vk (2)

Here z is the set of measurements, H is the measurement

Jacobian and v is the measurement noise. The state vector x

is here composed of bus voltages on rectangular form while

the measurement vector z is composed of bus voltage- and

branch current measurements on rectangular form. This yield

a linear relation between measurements and state.

The measurement noise is modelled with a zero mean

normal distribution; p(vk) ∼ N(0,Rk), where R is the

measurement noise covariance matrix. The measurement noise

covariance is in [9] assumed uncorrelated.

The Kalman filter state estimator consists of a set of

prediction and estimations equations:

Prediction equations:

x−

k = x̂k−1 (3)

P−

k = Pk−1 +Qk (4)

Estimation equations:

Kk = P−

k H
T (HP−

k H
T +Rk)

−1 (5)

x̂k = x−

k +Kk(zk −Hx−

k ) (6)

Pk = (I−KkH)P−

k (7)

Here x− and P− denote the a-priori state and estimation

covariance while x̂ and P are the a-posteriori state and

estimation error covariance.

The measurement innovation ν expresses the difference

between the predicted set of measurements and the actual

incoming measurements:

ν = z−Hx− (8)

The measurement innovation covariance S is given by:

S = HP−HT +R (9)

The diagonal elements of S represent the variance of mea-

surement innovations. A threshold for acceptable measurement

innovations is defined on basis of a confidence bound, chosen

as a factor γ of the standard deviation of a predicted measure-

ment.

|ν(i)| ≤ γσi ⇔ |ν(i)| ≤ γ
√

S(i, i) (10)

The state trajectory is not sufficiently represented by a

random walk during a dynamic system response. To distin-

guish bad data from system dynamics Pignati et al. applies a

heuristic identification criteria [9]:

If adjacent measurements are anomalous, then

anomalies are due to dynamics rather than bad data.

By verifying that an anomaly occurs on two neighbouring

measurements it is inferred that the anomaly is due to a system

dynamic and the measurements should not be filtered as bad

measurements. On the other hand, if bad data is detected,

the suspicious measurement is substituted by the predicted

value and the filtered set is fed to the state estimator. This

new pseudo-measurement has a measurement noise covariance

equal to the corresponding measurement innovation covari-

ance. Tuning of the process noise covariance matrix allow

the uncertainty of the state trajectory during dynamics to

be accounted for in the process noise. Upon detection of a

dynamic state change the process noise of the relevant state

variables is penalized by adding to it a large value. The process

noise covariance is then permitted to readjust according to

the development in the estimation error covariance. Several

methods for readjusting the process noise covariance were

investigated in [10]. This study uses the computationally

lightest of them:

Qk = diag(Pk−1) + diag(Pk−2) (11)

B. Topology error detection

The methods of detecting branch status errors is based on

the normalized residual test presented in [4]. Though, rather

than residuals the inference will be based on innovations.

For any time step the measurement innovation correspond-

ing to a measurement i can be normalized by:

νi =
νi
σi

, (12)

where νi admits a standard normal distribution p(νi) ∼
N(0, I).

A branch status error would introduce an error in the

measurement Jacobian such that the measurement innovation

is given by:

ν = z−Hex
− = Ex− + v , (13)

where He is the erroneous measurement Jacobian and E =
H −He is the Jacobian error matrix. The statistical features

of the measurement innovation show that measurement inno-

vations will be biased by an erroneous measurement Jacobian:

E(ν) = Ex− (14)

cov(ν) = S (15)

A branch-to-measurement incidence matrix M translates mea-

surement innovations to bias in branch flow:

ϕ = MEx− (16)



The bias in branch flow admits the following statistical fea-

tures:

E(ϕ) = Mν (17)

cov(ϕ) = MSMT (18)

Because the measurement innovations are assumed uncor-

related (i.e. S is diagonal) the normalized bias in branch

flow may be obtained from the normalized measurement

innovations:

ϕ = diag(MMT )−1/2Mν , (19)

In the case where correlation between measurement innova-

tions must be considered (18) would have to be evaluated

whenever S changes.

An insufficient process model is likely to impose additional

bias on the branch flows during system dynamics. Detection of

branch status errors will be based on the assumption that bias

in branch flow which is due to dynamics will be more evenly

distributed than bias which is due to single branch status errors.

On basis of this assumption a criteria has been chosen such

that topology errors are detected if the bias in branch flow of

any branch significantly exceeds that of other branches:

|ϕi,k| < λ · σ(ϕk) ∀ i ∈ m (20)

where m is the set of branches and σ(ϕk) is obtained as the

standard deviation of the vector of normalized branch flow

innovations for each time step. For the cases studied here a

factor of λ = 5 times the standard deviation of branch flow

innovations seems to fit the notion of a significant difference.

A flow chart of the pre-estimation filter of bad data and

branch status errors is found in figure 1. The ’update topology’

block has not been implemented for this study. Instead it will

be investigated whether the detection of topology errors is

possible under dynamic state transitions.

III. EVALUATION OF BAD DATA AND TOPOLOGY ERROR

DETECTION AND CORRECTION

The Kalman filter state estimator, the pre-estimation filter for

bad data and the proposed method for detecting branch status

errors are implemented in Matlab and subjected to three tests;

missing data identification during steady state, detection of

dynamics following a branch trip and detection of branch

status errors following a branch trip. The Cigré Nordic test

system shown in figure 2 is used for simulations [11].

Voltage phasors are measured at all buses and branch current

phasors are measured at both ends of each branch. The

simulations are conducted on a novel software platform for

developing PMU applications in a real-time environment [12].

The platform broadcasts snapshots comparable to the output

of a phasor data concentrator. The snapshots may be generated

by real-time or offline simulations. In this study simulations

were produced offline with PSS/E and broadcast at a rate of

10 snapshots per second.

The ’clean’ simulation results are scrambled by adding

a random noise component according to the measurement
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Fig. 1: Proposed flowchart of the pre-estimation filter for

bad data and topology errors. ∗ marks quantities which are

modified by the filter.

noise model. Measurement errors are assumed uncorrelated

and normally distributed with zero mean and variance σ2 =
(1.0%/3)2. The estimation error and process noise covariance

matrices are both initialized to: P0 = Q0 = 10−4 · I The

threshold at which anomalies are detected in the measurement

innovations are chosen to γ = 4 times the standard deviation

of the respective measurement innovation. A penalty of 10−3

is imposed on the process noise covariance which corresponds

to state variables that are undergoing dynamics.

A. Bad Data identification in steady-state

The evaluation for bad-data detection and correction which

was conducted in [9] is reproduced below. The bad data

detection is simulated on a test system in steady state.

The voltage at bus 4032 is replaced by NaN in the interval

between 5th and 18th second. This could imitate a local

model free data validation procedure which has identified the

measurement as bad and replaced the value by NaN [3].

Simulation results are shown in figure 3 where real and

imaginary parts of the true (Vref ), scrambled (Vscram) and

estimated (Vest) voltage phasors for bus 4032 are plotted

against time along with the ±γσ envelope of acceptable

measurements.

The pre-estimation filter detects the bad measurement and

replaces it with the predicted value. The state estimator uses

this pseudo-measurement while the bad data persists. As

the pseudo-measurement is based on earlier measurements

the confidence in the pseudo-measurement declines as time
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Fig. 3: Detection and correction of NaN injection on voltage

measurement at bus 4032

progresses. The estimated voltage during the NaN injection

follows the true value with good precision.

These results support those obtained in [9]. It has further

been confirmed that the pre-estimation filter successfully iden-

tifies a drifting bus voltage angle and a small magnitude offset

during a steady-state simulation.

B. Evaluation of Filter Performance Under Dynamics

Two scenarios are simulated in order to investigate filter

performance under both violent and subtle dynamic events.
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Fig. 4: Voltage at bus 1042 following trip of line 1042-1045

The first scenario is initiated by tripping line 1042-1045. The

line caries a steady state current of nearly 90A per phase. The

line trips at t = 2s. The second scenario begins also at t = 2s
with tripping of line 4032-4044 which prior to tripping carries

about 550A per phase. Results are presented and discussed

below:

1) Filter performance following trip of line 1042-1045:

Right after this line trips dynamics are detected at 6 nodes.

Initially no measurements are identified as bad. During the first

2 seconds after the disturbance the number of measurement

locations where dynamics are detected reduces to 2. From

the 4th second follows an interval where both the number of

detected dynamics and detected bad data fluctuates between

0 and 13. The number of detected dynamics and bad data

declines from the 10th second and from the 16th second

neither dynamics nor bad data are detected. It should be noted

that no bad data were imposed on this simulation. Thus all

bad data detected were falsely detected.

The time series in figure 4 show that the estimated voltage

at bus 1042 follows the true value somewhat more precisely

during the first two seconds after the disturbance than from

4th second till 16th second. The estimated voltage seem to lag

behind the true and scrambled values in the interval from 4th

to 16th second.

This indicates that the filter performs better under violent

dynamics than under subtle dynamics. The slow dynamics

later in the simulation poses a greater challenge due to false

identification of bad data. Estimation errors for this simulation

are provided in figure 5a in form of percent total vector

error on selected state variables over time. It is seen that the

estimation error reduces towards the end of the simulation

where the system approaches a new steady state.

2) Filter performance following trip of line 4032-4044:

Tripping the highly loaded line immediately leads to detection

of dynamics in measurements at 41 buses. The number grows

to 46 after a few snapshots. From the 8th second the number



(a) Branch trip: 1042-1045

(b) Branch trip: 4032-4044

Fig. 5: Total vector errors of selected bus voltage estimates

during dynamic response in two branch trip scenarios

of recorded dynamics start to decrease while a few (1-3) bad

data are detected as well. At 10.3s no dynamics are identified.

From 10.9s the number of detected dynamics increase and

reaches a 46 after 12th second where it remains till end of

simulation.

On figure 6 the trajectory of the voltage phasor on bus 4032

travels from the 4th quadrant through the 1st quadrant to the

2nd quadrant from where it swings back through the 1st to the

4th quadrant. The intervals where dynamics were detected on

large number of buses coincide with those where the plotted

state variable under goes rapid change. The interval where

the voltage phasor enters the 2nd quadrant, slows down to a

halt, and accelerates back through the 1st quadrant coincides

with the interval where a reduced number of state variables

were identified as undergoing dynamic change. The plot of

total vector errors on figure 5b reveals that the accuracy of

the estimator is reduced during the same interval.

C. Evaluation of Topology Error Detection

The branch trip scenarios are run again. Though, this time no

external function for validating and updating branch statuses is

applied. The method of detecting branch status errors should

therefore detect the branch status error after tripping of line

1042-1045.

Tripping of line 1042-1045 leads to immediate detection

of the branch status error. Normalized bias in branch flows

for selected branches are provided in table I. The bias in

several branch flows increase for the snapshot immediately

following tripping of branch 1042-1045 at t = 2.00s. The bias

associated with branch 1042-1045 is distinguishably larger in
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Fig. 6: Voltage at bus 4032 follwoing trip of line 4032-4044

the first snapshot following the disturbance, while the bias in

the two adjacent lines 1042-1044:1 and 2 are dominant in later

snapshots. A branch status error is on that basis successfully

detected. It is further seen that the bias in branch flow is not

applicable as a criteria for identifying the erroneous branch.

It takes one additional snapshot before the trip of line 4032-

4044 is detected. This is because the large variance in branch

flow biases during the first snapshot after tripping the highly

loaded line.

When bias in branch flows are obtained from measurement

innovations all branches which undergo a change in power

flow will be biased by the disturbance. The power in line

1042-1045 is redistributed on adjacent branches which will

also be associated with a biased branch flow. Differences

in measurement innovation covariances skew the normalized

bias in branch flow. The indicator can therefore not be used

for identification of the tripped branch. However, it is here

shown to work well for detecting that a branch status error is

present. Thus, in addition to this a method for identifying the

location of the topology error is necessary. For identification of

topology errors in static state estimators it has been suggested

to augment the state vector by a variable representing the

status of suspicious branches and let the estimator perform the

identification [4]. It is worthwhile to investigate the suitability

of this method in relation to the work presented above.

The methods were tested on an Intel Core i7-3630QM

CPU running at 2.40GHz. The time spend on filtering and

estimation was found to be on average 16ms during steady

state and 23ms during dynamic intervals.

IV. CONCLUSION

When power system state estimators are to exploit the high

measurement reporting rates of PMUs it is likely that updates

of network topology information falls behind the state esti-

mator. Detection of topology errors is thus a vital function

of robust PMU-only state estimators. This paper has shown



TABLE I: Normalized branch flow innovations of for selected

branches. Branch 1042-1045 trips at 2.00s

Time 1.858 1.959 2.060 2.161 2.262 2.363
1041-1045:1 0.179 -0.056 0.210 -0.123 -0.040 -0.073
1041-1045:2 0.113 -0.063 0.018 -0.037 -0.016 -0.173
1042-1044:1 0.085 0.062 0.809 2.792 2.522 3.353

1042-1044:2 0.292 -0.056 0.920 2.730 2.812 3.356

1042-1045 0.220 -0.023 -3.182 -1.796 -1.409 -1.227
4044-4045:1 -0.095 0.046 0.225 0.073 0.213 0.186
4044-4045:2 -0.113 0.021 0.223 0.042 0.188 0.158

mean(ϕ) 0.003 0.007 -0.012 0.064 0.057 0.049
st.dev(ϕ) 0.138 0.116 0.439 0.520 0.492 0.591

TABLE II: Normalized branch flow innovations of for selected

branches. Branch 4032-4044 trips at 2.00s

Time 1.888 1.989 2.090 2.191 2.292 2.393
4021-4042 0.011 0.089 1.464 -0.738 -0.809 -1.932
4031-4032 0.179 0.000 1.755 -0.530 -0.511 -0.381
4032-4042 -0.105 0.095 -3.700 -3.201 -3.254 -3.685
4032-4044 -0.044 -0.081 4.900 4.729 5.559 6.763

4042-4043 -0.088 -0.040 0.241 -0.172 -0.282 -0.316
4042-4044 0.062 -0.072 2.765 0.486 0.270 0.160
4045-4062 0.166 0.228 -6.539 -2.023 -1.819 -1.380
mean(ϕ) 0.003 -0.003 -0.002 -0.070 -0.163 -0.213
st.dev(ϕ) 0.128 0.127 1.929 0.926 1.047 1.247

how detection of branch status errors can be integrated with

identification of bad measurements for a PMU-only state

estimator.

A pre-estimation filter for bad data in PMU based state

estimators has been evaluated. Simulations showed that the

filter successfully identifies and removes single bad data from

a measurement set before passing the set to a state estimator.

However, it was found that the filter was prone to falsely

identifying bad data during dynamic state changes of the

system.

The method for detecting branch status errors prior to state

estimation has been proposed to use measurement innovations.

The method was tested on a simulated system and it was

proven capable of detecting a branch trip under both subtle

and violent dynamic system conditions.

These findings are valuable for further development of

means of identifying and correcting the topology errors.
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