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Abstract 20 

As engineered nanomaterials are increasingly introduced on the market into a broad range of 21 

commodities or nanoproducts, there is a need for operational, reliable tool, enabling to 22 

consistently assess the risks and impacts associated with the releases of nanoparticles. The lack 23 

of a developed metric that accurately represents their toxic effects while capturing the influence 24 

of the most relevant physicochemical properties is one of the major impediments. Here, we 25 

investigate the relationships between the toxic responses of nano-sized and micro-sized particles 26 

in in vivo toxicological studies and their physicochemical properties. Our results for TiO2 27 

particles indicate statistically-significant associations between the primary particle size and their 28 

toxicity responses for combined inhalation and ingestion exposure routes, although the numerical 29 

values should be considered with care due to the inability to encompass influences from other 30 

relevant physicochemical properties like surface coatings. These findings allow for expressing 31 

mass-based adverse effect levels as a continuous function of the primary size of particles. This 32 

meaningful, exploratory metric can thus be used for screening purposes and pave the way for 33 

reaching adaptive, robust risk assessments of nanomaterials, e.g. for setting up consistent 34 

threshold levels, as well as consistent life cycle assessments of nanoproducts. We provide 35 

examples of such applications. 36 

 37 
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Titanium dioxide, particle size, toxicity, nanotoxicology, risk assessment, life cycle assessment 39 

 40 

1. Introduction 41 

2 

http://dx.doi.org/10.1007/s11051-017-3816-8


Laurent A., Harkema J., Andersen E. W., Owsianiak M., Vea E. B., Jolliet O., 2017. Human health no-effect levels 
of TiO2 nanoparticles as a function of their primary size. Journal of Nanoparticle Research 19, 130. 

DOI:10.1007/s11051-017-3816-8. 

The commercialization of engineered nanomaterials has dramatically increased over the past 42 

years (Hendren et al., 2011; Keller et al. 2013; Mitrano et al., 2015). Simultaneously, the 43 

potential releases of nanoparticles and their consequent risks and impacts along the life cycle of 44 

nanoproducts (products embedding nanomaterials) have been raised in many studies (Grieger et 45 

al. 2012; Maynard et al. 2006; Nel et al. 2006; Oberdörster 2010; Oberdörster et al. 2005; 46 

SCENIHR 2009; Stone et al. 2010a; Wiesner et al. 2006). Several works have thus attempted to 47 

perform human and ecological risk assessments of several nanomaterials, e.g. nano-scale 48 

titanium dioxide (Christensen et al. 2011; US-EPA 2010; Warheit 2013). Likewise, a number of 49 

studies have performed life cycle assessments of nanoproducts, quantifying the environmental 50 

impacts from their manufacture, use and disposal stages (e.g. Walser et al. 2011). However, these 51 

attempts do not gather sufficient robustness and reliability to allow for conclusive assessments of 52 

the risks and impacts stemming from the released nanoparticles because of difficulties in 53 

estimating their actual emissions and in identifying, tracking and evaluating the many parameters 54 

influencing their fate, transport and toxicity (Aschberger et al. 2011; Jolliet et al. 2014; 55 

Savolainen et al. 2010; Warheit 2013).  56 

To support the evaluation of the health effects, a large number of toxicological studies have 57 

been conducted (see review by Krug, 2014). Several reviews have been published over the years 58 

to synthesize current knowledge and give overviews of the toxic effects of fine particles and/or 59 

nanoparticles (e.g. see non-exhaustive list in Supplementary Methods; Krug, 2014). Very few of 60 

these have performed comprehensive, quantitative analyses of the findings to identify possible 61 

common patterns. Most works provide thorough snapshots of existing studies at a given time, but 62 

limit their analyses to qualitative discussions. Among the most comprehensive ones, the study by 63 

Krug (2014) has thus analyzed general trends observed over more than 10000 publications and 64 
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showed that, despite the sheer number of studies, a number of challenges still remains in their 65 

interpretation, particularly due to a lack of comparability across studies and a widespread 66 

omission of consistent characterization of the nanoparticles (Krug, 2014). The generally poor 67 

reporting of physicochemical properties known to influence the toxicity of nanoparticles has 68 

often been raised (e.g. Clark et al. 2012; Krug, 2014).   Among the relevant physicochemical 69 

properties, the primary particle size, shape, specific surface area, surface chemistry and 70 

reactivity, composition, coating composition, crystallinity, charge, solubility and state of 71 

agglomeration and aggregation have been flagged as the most important (e.g. Maynard and 72 

Aitken 2007; MINChar 2008; Landsiedel et al. 2010; Oberdörster 2010; Stone et al. 2010a). The 73 

primary particle size, one of the most studied properties, has been demonstrated to significantly 74 

contribute to the toxic effects (Oberdörster et al. 2005). This relationship indicates that the mass 75 

of particles alone cannot be a sufficient metric to characterize their toxic effects since the intake 76 

(i.e. amount of nanoparticle entering the body) of a same mass of particles of different sizes may 77 

result in different toxic effects (Oberdörster et al. 2005). To date, there is still a need to better 78 

characterize the effects of nanoparticles on human health once they are inhaled or ingested as a 79 

function of their physicochemical properties (Jolliet et al. 2014). 80 

In this study, we propose a methodology to quantitatively investigate the relationships 81 

between the non-carcinogenic effects of nano-sized and micro-sized particles and selected 82 

physicochemical properties so that it can ultimately serve as support for risk assessment and life 83 

cycle assessment of nanomaterials and nanoproducts. We focus on nano-scale titanium dioxide 84 

(TiO2), which is among the mostly used nanomaterials on the market and one of the mostly 85 

investigated in toxicological studies (Hendren et al., 2011; Keller et al. 2013; Mitrano et al. 86 

2015). We specifically aim to (i) review the experimental settings and findings of all available in 87 
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vivo studies published on this material that met selection criteria with respect to exposure routes, 88 

exposure time and observed toxic endpoints; (ii) analyze ways to investigate relationships 89 

between non-carcinogenic effects of nanoparticles and selected physicochemical properties, (iii) 90 

explore the derivation and application of no-observed adverse effect levels (NOAELs) for nano-91 

sized and micro-sized particles to be used in risk assessment and life cycle assessment. 92 

 93 

2. Methodology 94 

2.1. Overview of the methodology 95 

The overall methodology consists of a 6-step approach, which includes (1) identification and 96 

selection of in vivo studies, (2) characterisation of particles with respect to their reported 97 

physicochemical properties, (3) expression of the doses into “intake doses” to allow comparisons 98 

across exposure routes, (4) review of the displayed toxicity responses for each experiment using 99 

information on the endpoints reflecting adverse effects resulting from exposure to the 100 

nanoparticle, (5) statistical analyses of the relationships between the reported physicochemical 101 

properties and the incidence or absence of adverse effects, and (6) extrapolations to human 102 

equivalent doses. Each of these steps is succinctly described in the following subsections. 103 

In the following, the term ‘experiment’ refers to a test on a given species exposed to a 104 

specific type of particles (in terms of sizes, surface treatment and crystal form –see below section 105 

on particle characterisation). An experiment may include several exposure levels (i.e. different 106 

doses). The term ‘study’ refers to a set of experiments performed by the same research group, 107 

and may include different particle types, exposure pathways and test animals. 108 

 109 
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2.2. Identification, selection and classification of studies 110 

The identification of in vivo studies was done through literature search engine, and (see 111 

Supplementary Methods) complemented by the cross-checking of citing and cited literature as 112 

well as studies cited in review papers in the field of nanotoxicology.  Complete documentation of 113 

those steps is available in Supplementary Methods. 114 

In vitro studies were disregarded because they relate to acute toxicity and methods to use 115 

them for predicting chronic (i.e. long-term) in vivo toxicity are yet undeveloped (Oberdörster 116 

2010). Ways of incorporating the large pool of data stemming from them should however be 117 

better investigated (Oberdörster 2010; Krug, 2014). Out of the retrieved in vivo studies, filtering 118 

criteria were applied to retain (i) studies with sufficiently long exposure durations, (ii) studies for 119 

which the monitored toxic endpoints are comparable with other studies, (iii) studies, for which 120 

reporting contains sufficient information for particle characterisation and analysis of the results, 121 

(iv) studies addressing oral and inhalation exposure pathways, which are both considered the 122 

most relevant for risk assessment and life cycle assessment applications. For the latter, because 123 

no consensus currently exist on the correspondence between inhalation and intratracheal 124 

instillation studies, the intratracheal instillation tests, in which the particles are directly 125 

administered into the lower part of the respiratory tract of the animal under anaesthesia, were 126 

disregarded in the current study (see, e.g. Aitken et al. 2009; Bakand et al. 2012; Driscoll et al. 127 

1991, 2000; Warheit et al. 2005). However, further work should continue exploring the 128 

comparability of the results in the large body of intratracheal instillation experiments (> 50 129 

studies) with the findings from inhalation studies to bring additional data for interpretation 130 

(Krug, 2014). 131 
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With respect to exposure durations, the retrieved studies were classified into four groups, i.e. 132 

acute, subacute, subchronic or semi-chronic, and chronic. The categorisation is strongly 133 

dependent on the species, e.g. maximum lifetime (Vermeire et al. 1999). Supplementary 134 

Methods (Table M3) show the categories and their associated definitions that are assumed for 135 

studies on rats, mice and hamsters. Acute studies, i.e. with a repeated exposure of less than 7 136 

consecutive days, were disregarded in the current study as the overall aim is to investigate 137 

chronic toxicity. 138 

Only studies with a comprehensive report of the toxicity responses were included. 139 

Biodistribution and dosimetry-based studies were not considered when they did not investigate 140 

possible incidence of adverse toxic effects. Studies, in which only morphological effects of 141 

exposure to micro-sized or nano-sized particles were observed (e.g. weight), were disregarded. In 142 

addition, genotoxicity tests were excluded because of the difficult comparability with other 143 

toxicological studies and their linkage to potential mutagenicity carcinogenic effects, which are 144 

considered outside the scope of the study (Koedrith et al. 2014). Only studies including 145 

investigations of non-cancer effects were considered (although studies investigating cancer 146 

effects are also reported in Tables S1 and S2). Furthermore, all tests performed on animal models 147 

of human susceptibility, e.g. pregnant mice (Gao et al. 2011; Warheit et al., 2015) were 148 

excluded. Finally, all tests with responses and/or doses and/or particle characterisation that could 149 

not be quantified properly were excluded. 150 

 151 

2.3. Particles properties available for statistical analysis 152 
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Over the past decade, the field of nanotoxicology has identified a relatively large number of 153 

physicochemical properties of the nanoparticles that are accountable for their toxic effects. From 154 

the literature, about 10 generic physicochemical properties are frequently reported as influential 155 

to the fate and health effects of the nanoparticles, i.e. the primary particle size (incl. size 156 

distribution), the shape (aspect ratio), the specific surface area, the surface chemistry/reactivity, 157 

the composition (incl. impurities), the coating composition (if any), the crystal structure, the 158 

charge, the solubility, the state of agglomeration (Zeta potential) and aggregation (Landsiedel et 159 

al. 2010; Maynard and Aitken 2007; MINChar 2008; Oberdörster 2010; Stone et al. 2010a, b). 160 

A case-by-case approach is advised when addressing the behaviour of nanoparticles in the 161 

environment and their impacts on human health (and ecosystems) –see e.g. Stone et al. (2010a) 162 

and SCENIHR (2009). Therefore, not all properties will play a same role whether carbon 163 

nanotubes or nano-TiO2 are studied, for example. One of the major problems to analyse the 164 

influence of these properties is the lack of comprehensive documentation in the experimental 165 

studies, which render difficult the find of patterns (Clark et al. 2012). Although it is not directly 166 

addressed in this study, another issue consists in the contrast between the properties of pristine 167 

nanoparticles, which are manufactured nanomaterials and are the focus of most toxicological 168 

studies, and those of the nanoparticles eventually embedded in consumer products and 169 

potentially released to the environment in their use or disposals (Nowack et al. 2012). Properties 170 

of the latter categories of particles (and their changeability after releases) are more relevant to 171 

human health impact and risk assessments.(Nowack et al. 2012) 172 

With respect to TiO2 nanoparticles, a number of studies have highlighted the influence on 173 

the toxicity responses of several physicochemical properties, including the primary particle size 174 

(Oberdörster et al. 2005), the surface treatment, e.g. presence and type of coatings (e.g. Warheit 175 
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et al. 2005), and the crystal form (e.g. Jiang et al. 2008). To comprehensively analyse their 176 

influences and dependencies, a sufficiently detailed documentation of these properties is required 177 

for the majority of the retained studies. Unfortunately, because of the paucity of data across the 178 

retained studies, the surface-related characteristics, e.g. coatings of pigmentary particles, could 179 

not be integrated. Therefore, only the primary particle size and the crystal form were analysed in 180 

relation to the toxic responses, an assumption that affects the numeric estimates. Further works 181 

should address those gaps. 182 

For primary particle size, the values reported by the authors of the studies were considered as 183 

such, although some discrepancies might occur in their characterisation across studies. It is 184 

noteworthy that in most studies, data about size distribution was missing or largely insufficient to 185 

allow for a comprehensive accounting of this aspect. When available, such information could 186 

however be useful to investigate the influence of the particle aggregation state on the potential 187 

toxicity of nanoparticles, and should thus be encompassed in future studies comparable to the 188 

current one. 189 

2.4. Expression of animal doses 190 

For all included experiments, each tested dose and its associated responses were individually 191 

treated. A similar method as the one developed by Gold et al. (1984) (CPDB website at 192 

http://potency.berkeley.edu/methods.html) was applied. All reported doses were translated into 193 

average daily chronic dose rates expressed in a mass unit of the particle intake per day (d) and kg 194 

body weight (kg-bw) for ingestion and inhalation exposure –see Equations 1 and 2, respectively: 195 

ia

ia
chronica CFBW

CFID
ID

×

×
= exp,

,  (Equation 1) 196 
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ia

aia
chronica CFBW

CFIRC
ID

×

××
= exp,

,  (Equation 2) 197 

where chronicaID ,  is the average daily chronic intake dose (e.g. mg/kg-bw/day) for a given animal 198 

a ; iaID ,  is the daily ingested dose (e.g. mg/day) used in the test with animal a  and exposure 199 

duration i ; expCF  is the correction factor for exposure time to translate the discontinuous regimen 200 

in animal test into an assumed continuous daily exposure used as target exposure (e.g. expCF  = 201 

D/7 x H/24, with D = days of weekly exposure and H = hours of daily exposure); aBW  is the 202 

body weight (kg-bw) of animal a  (reported in studies or default values taken from US-EPA 203 

(1988); iCF  is the dimensionless correction factor for duration of the exposure i  (subacute, 204 

subchronic, chronic; see below); iaC ,  is the concentrations (mg/m3) used in the test with animal 205 

a  and exposure duration i ; aIR  is the inhalation rate of test animal a  in m3/d (reported in US-206 

EPA 1988). 207 

The correcting factors iCF  from Vermeire et al. (1999, 2001) were used to adjust the 208 

duration of the exposure, with values for subacute-to-chronic factor of 5 and subchronic-to-209 

chronic ratio of 2. They are derived for oral NOAEL data but Vermeire et al. (2001) report their 210 

assumed applicability to systemic effects caused by inhalation or dermal exposures. These 211 

extrapolation factors were derived from investigating chemicals effects. In the absence of any 212 

data with regard to particles, it is assumed valid for the purpose of this study. Further work is 213 

needed to verify and/or refine that assumption. 214 

It is noteworthy that the approach to express doses as intake doses for both exposure routes 215 

differs from that used in some other studies (e.g. Brown et al. 2005; Kuempel et al. 2006; 216 
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Pauluhn 2011; Oller and Oberdörster 2010). In these, the dose expression also encompasses 217 

some elements of absorption by the receiving body. For example, in particle inhalation studies, 218 

Jarabek et al. (2005), Kuempel et al. (2006) and Oller and Oberdörster (2010) include the 219 

deposited fractions of particles in the lungs, which also depend on the agglomeration/aggregation 220 

state and can be calculated via e.g. a multiple-path particle dosimetry model (e.g. Asgharian et al. 221 

1995, 2001; Asgharian and Price 2007). In the current study, we intend to bring results from all 222 

exposure pathways on an equal basis. In practice, this can be done before or after absorption 223 

processes (e.g. after absorption from GI tract for ingestion route or from the depositions in the 224 

lungs). However, the absorption mechanisms are dependent on several parameters, including 225 

characteristics specific to both the particle type and the receiving animal/human body. Based on 226 

the often incomplete data available in the retrieved studies and the general lack of knowledge in 227 

the mechanisms governing particle absorptions, the determination of absorption fractions was 228 

disregarded for all considered exposure routes. All doses for inhalation and ingestion were 229 

therefore expressed as intake doses. The possibility to harmonise all doses as uptake doses, 230 

reflecting the amount of nanoparticles absorbed in the body via the lungs or the gastrointestinal 231 

tract, should however be explored in further studies, as it is deemed more consistent. 232 

 233 

2.5. Review of observed toxic responses 234 

As the toxic endpoints vary considerably across the selected studies, the observed toxic 235 

responses were reviewed for each single dose tested with focus on ensuring comparability and 236 

harmonisation across the studies. General selection criteria were thus defined, including: (i) 237 

evaluation of the incidence of adverse effects and not their severities, hence disregarding post-238 
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exposure monitoring/recovery periods, which could yield different toxicity characterisation in 239 

the data set but could difficultly be harmonised across studies (e.g. studies not addressing 240 

recovery vs. studies addressing it); (ii) evaluation of the toxic responses based on the stained 241 

sections and micrographs of exposed organs and tissues (e.g. incidence of necrosis) and/or the 242 

reported levels of serum biochemical values and haematological parameters (based on statistical 243 

significance when compared to controls), and the interpretation of histopathological findings 244 

reported by the authors of the studies; (iii) emphasis to identify actual adverse effects. With 245 

respect to the latter, the accumulation of macrophages was thus not deemed an adverse effect 246 

because it was regarded as a defence mechanism, which could be triggered by other causes than 247 

the exposure to the (nano)particles. Many experiment results were analysed based on the 248 

reported incidence of necrosis or apoptosis, both indicative of induced inflammation. Chronic 249 

alveolar inflammation was considered an adverse effect for lung toxicity. Statistically different 250 

(from controls) levels of neutrophils (PMN) or some enzymes, e.g. aspartate transaminase (AST) 251 

or alanine transaminase (ALT), indicative of liver toxicity and injury, were also considered as 252 

markers of adverse effects. All toxic endpoints were considered equally in this review and were 253 

not differentiated in the further analysis to allow retaining a sufficiently large pool of data. 254 

However, ways to account for their large diversities, and thus render the different doses (e.g. 255 

NOAELs), should be explored in future studies (ECHA, 2017). 256 

Each dose-specific experiment was thus flagged as either a NOAEL or a lowest-observed 257 

adverse effect level (LOAEL), or was not flagged if the experiment dose was lower (higher) than 258 

an already-flagged NOAEL (LOAEL) for the same experiment. Although tests within each 259 

single experiment were flagged as NOAEL or LOAEL (or not flagged), the data are in fact 260 

interval-censored and all flagged tests should be distinguished according to three groups, i.e. (1) 261 
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those with only an identified NOAEL (i.e. left-censored), (2) those with only an identified 262 

LOAEL (i.e. right-censored) and (3) those with both identified NOAEL and LOAEL in the same 263 

experiment (i.e. termed “interval-censored NOAEL/LOAEL” in the following). Therefore, the 264 

level at which an adverse effect occurs lies between NOAELs and LOAELs of tests belonging to 265 

group 3 (hence “interval censoring”), or lies above NOAELs of group 1 (how far above is 266 

unknown, hence “right-censoring”) or below LOAELs of group 2 (how far below is unknown, 267 

hence “left-censoring”). In the reporting and analysis of the results, the distinction between the 268 

NOAELs of groups 1 and 3 as well as that between the LOAELs of groups 2 and 3 were made by 269 

considering either the whole set of NOAEL/LOAEL data or the data set limited to interval-270 

censored NOAEL/LOAELs. 271 

 272 

2.6. Regression analyses 273 

Several parametric regression analyses were performed to investigate the relationships 274 

between the incidence of adverse effects and the primary size and the crystallinity of the TiO2 275 

particles: (i) a preliminary analysis of variance (ANOVA), (ii) multiple linear regression 276 

analyses, and (iii) a regression analysis accounting for the censored nature of the data (i.e. 277 

differentiating left-censored, right-censored and interval-censored data). Statistical software from 278 

the R system, version 3.2.3 (R Core Team, Vienna, AT), and statistical software Stata, v. 13 279 

(StataCorp LP, College Station, TX, USA), were used to perform these analyses.  280 

Based on the review of the toxic responses (see Section 2.5), ANOVA tests were carried out 281 

using the whole set of NOAEL/LOAEL data, testing the influence of the primary size of the 282 

particles, the exposure route, and the type of toxicity response to explain TiO2 toxicity. For these 283 
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ANOVA tests, the particles in our data set were grouped into two size groups (nano-range, i.e. 284 

below 100 nm, and micro- range, above 100 nm). 285 

Multiple linear regression (MLR) analyses were computed on the NOAEL and LOAEL 286 

identified through the review (see Section 2.5), and encompassed the following numerical and 287 

categorical variables: (i) the primary size of the particles, (ii) the crystal form (relevant to TiO2), 288 

(iii) the exposure route, (iv) the tested animal, and (v) the type of toxicity response (NOAEL or 289 

LOAEL). The analyses were separately conducted on the entire set of data as well as on the data 290 

set limited to interval-censored NOAEL/LOAEL values (see Section 2.5). In these regressions, 291 

the primary size of the particles was included as continuous variable. The generic model of the 292 

regression analysis describes NOAEL and can be expressed for an observation i with Equation 3: 293 

iancrystancrystroutespeciesroutespeciesisizei XIdNOAEL eβββa +++= −−−−+ )(log)(log 1010  (Equation 3) 294 

with d the primary particle size, β size  the parameter expressing the slope for the dependence on 295 

primary particle size, β routespecies,  the parameter for given species and exposure route, conditioned 296 

with the Boolean variable routespeciesI , (0, 1), and β ancryst−  the parameter for anatase crystal form, 297 

conditioned with the content of anatase ancrystX −  (%) and iε  expressing a normal distribution with 298 

mean 0. When only exposure route was considered as a variable (i.e. no species differentiation; 299 

see Section 3.2), the parameter β routespecies,
in Equation 1 is substituted by β route .  300 

To integrate the censored nature of the data into the regression analysis, an additional 301 

parametric regression analysis of the censored data was conducted (Klein 2003). Such type of 302 

models is commonly used for accelerated failure time modelling, and its explorative use here 303 

aims to test the relationships between the size variable and the absence or incidence of adverse 304 
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effects defined as interval-censored, left-censored or right-censored data. The model expression 305 

for that censoring-based regression (CR) is the same as described in Equation 1. In addition to 306 

testing the statistical significance of the variables, the tested model can also describe the point 307 

where adverse effects start occurring, i.e. virtually the upper achievable NOAEL. 308 

The results of all regression tests were examined and interpreted based on the statistical 309 

significance of the parameters and the model as a whole (p-values < 0.05). In addition, multiple 310 

linear regression models were also validated using leave-one-out cross-validation procedure and 311 

characterised with the predictive squared correlation coefficient Q2. 312 

 313 

2.7. Extrapolations to human-equivalent doses 314 

Equivalent human intake doses, i.e. NOAELs for humans, were extrapolated from average 315 

daily chronic intake doses for the selected animal for ingestion and inhalation exposure routes –316 

see Equation 4.  317 

hum
a

ex
aex

hum BW
AF

NOAEL
NOAEL ×=  (Equation 4) 318 

With ex
humNOAEL  being the NOAEL expressed as average daily intake dose for humans (in 319 

mg/day/person) for chronic exposure route ex; ex
aNOAEL  the NOAEL expressed as average daily 320 

intake dose for animal a and chronic exposure route ex; aAF  the interspecies allometric factor 321 

for animal a ; and humBW Body weight (kg) of humans (70 kg; US-EPA 1988). 322 

 323 
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Interspecies extrapolation from animals to humans was performed by applying allometric 324 

factors (Gold et al. 1984, Jarabek et al. 2005, Rosenbaum et al. 2011, Vermeire et al. 1999, 2001, 325 

Vermeire et al. 1999). As defined by Vermeire et al. (2001), the interspecies factors include (i) a 326 

default distribution to account for variability in specific toxicokinetics and toxicodynamics, and 327 

(ii) a default factor to account for systemic differences between species caused by differences in 328 

body size and related basal metabolic rate. Vermeire et al. (2001) report a geometric mean of the 329 

latter equal to 1, thus reflecting the biological assumption that all species are equally sensitive. 330 

The interspecies allometric factors aAF  thus express the systemic differences between species 331 

after exposure. Three methods are commonly used to determine these factors, whether the 332 

extrapolations are based on body weight, surface area or caloric demand (Vermeire et al. 1999). 333 

In the current study, the recommendations of Vermeire et al. (1999, 2001), who indicate the 334 

preference of extrapolations based on calorific demands, were followed, with default values of 335 

aAF  equal to 4.1 (rats), 7.3 (mice) and 4.7 (hamster; own calculation). It is noteworthy that this 336 

is in contrast to some previous studies on nano-sized and micro-sized particles (e.g. Jarabek et al. 337 

2005; Kuempel et al. 2006), where the allometric factor is defined by the ratios of body weights 338 

between humans and animals for systemic effects, or by the ratios of lung masses or lung surface 339 

areas between humans and animals for effects in the respiratory tract.  340 

 341 

3. Results and discussion 342 

3.1. Review results 343 

The application of selection criteria to identify relevant in vivo studies for the review (see 344 

Methodology) led to shortlisting a total of 181 collected studies in 209 scientific publications to a 345 
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number of 21 retained in vivo studies addressing subacute, subchronic and chronic exposure to 346 

TiO2 particles via ingestion and inhalation routes (32 scientific publications; see Tables S1 and 347 

S2 and Supplementary Methods). The retained data correspond to 60 different tests, in which 17 348 

NOAELs and 26 LOAELs were identified (see Table 1). The range of particle sizes over the 349 

entire data set is 4 nm – 450 nm. The review details of these tests are documented in Tables S1 350 

and S2 for ingestion and inhalation exposure routes, respectively. 351 

 352 

Table 1 Summary of reviewed in vivo studies with ranges of NOAEL and LOAEL for TiO2 353 
particles. a 354 

Exposure 
routes 

Number of 
studies 
(papers) b 

Number 
of tests b 

Number of 
left-censored 
NOAEL data 

Number of 
right-censored 
LOAEL data 

Number of 
interval-censored 
NOAEL / LOAEL 
data 

NOAEL 
(LOAEL) ranges 
(mg/kg-bw/d) 

Ingestion 6 (6) 15 3 5 1 / 1 40 – 24000 
(8 - 1000) 

Inhalation 15 (26) 45 7 14 6 / 6 0.0836 - 4.05 
(0.0171 - 10.5) 

Total 
retrieved 21 (32) 60 10 19 7 / 7 - 

a For differentiation across species, see details in Tables S1 and S2. 355 
b Studies refer to a set of experiments performed by the same research group. The results of a study are 356 
sometimes disseminated in several papers, hence the higher number of papers than that of studies. Tests 357 
refer to experiments conducted on a given species exposed to a specific type of particles with a specific 358 
exposure level. 359 
 360 

3.2. Relationships between toxic effects and primary particle size of TiO2  361 

Unlike anticipated (see, e.g. Jiang et al., 2008), none of the statistical analyses of the 362 

correlation between the toxicity of TiO2 particles and their physicochemical properties showed 363 

that the crystallinity of TiO2 particles expressed a statistically-significant influence on their 364 
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toxicity when the primary particle size was also considered. A strong correlation was observed 365 

between the crystallinity and the primary size of the particles in the retained experiments (see 366 

Table S3), since small-sized particles were associated with higher proportions of anatase whereas 367 

larger-sized particles were dominantly in a rutile form. The crystallinity was therefore 368 

disregarded from further analysis in this study although its relationship with toxicity of the 369 

particles should still be explored in future research (Jiang et al. 2008). In the following 370 

subsections, the analysis was therefore centered on studying the relationships between the 371 

primary size and the toxicity of the particles. 372 

The overall trend illustrated in Figure 1A suggests an influence of particle size when 373 

classifying the data set into 2 size groups (nano-range, i.e. below 100 nm, and micro- range, 374 

above 100 nm). The two-way ANOVA analysis indeed revealed statistically significant 375 

differences between the size groups, classified into absence/occurrence of adverse effects, i.e. 376 

NOAEL or LOAEL (see Figure 1A; all data considered, regardless of their interval-censored 377 

nature) when all routes were combined (F2,40=2.96; p values of 0.039 and 0.27 for the effects of 378 

size and absence/occurrence of adverse effects, respectively). When only inhalation data are 379 

considered, both the size and the absence/occurrence of adverse effects become statistically 380 

significant (F2,30=14.4; p<0.005 in both cases; see Figure 1B). This suggests that in addition to 381 

the influence of the size, there might be some influence of the exposure route on nanoparticle 382 

toxicity. This influence was not found to be statistically significant in this ANOVA analysis 383 

probably due to low number of data points.  384 

 385 
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 386 
Fig. 1 Influence of the primary size on the occurrence of adverse toxic effect of TiO2 particles in 387 
nano- and micro-sized ranges for (a) the entire data set, and (b) the data set restricted to the 388 
inhalation exposure route. EFs indicated on the y-axis are either NOAEL or LOAEL data points 389 
(adjusted to average daily chronic intake doses in mg/kg-bw/d; see Table 1). Boxes indicate 25th 390 
and 75th percentiles, square and horizontal lines within the boxes indicate mean and median, 391 
respectively. Whiskers indicate inner out outer fence values assuming a default coefficient of 1.5, 392 
so that data points outside the fence values (in our study one data point) are considered outliers. 393 
Crosses indicate 2.5th and 95th percentiles. 394 

 395 

Multiple linear regressions were performed to further refine the ANOVA test (see Section 396 

2.6). Table 2 provides the results for four analyses made on either the entire data set (n= 43) or 397 
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the data set limited to interval-censored NOAEL/LOAEL (n=14), with and without species 398 

differentiation. The considered variables are able to explain between 88% and 92% (adjusted R2) 399 

of the data variability when restricting the dataset to the most reliable data with that interval-400 

censored NOAEL/LOAEL. When considering the entire dataset, data variability increases and 401 

the fraction explained is reduced to approximately 65%.  402 

Effect of particle size: Statistically significant associations are observed between NOAEL 403 

and size-variable for the restricted interval-censored data set, with significant (i.e. below 0.05) p-404 

values of 0.004 (test with exposure route differentiation) and 0.001 (test with both species and 405 

exposure route differentiation). When considering the entire dataset, the association with the 406 

size-variable is significant (p=0.009) when only exposure route is differentiated and marginally 407 

significant (p=0.049) when both route and species are differentiated. These results suggest a firm 408 

correlation between the primary size of the particle and its toxicity. Likewise, a marked 409 

differentiation between the absence or occurrence of adverse effects (i.e. NOAEL or LOAEL) is 410 

overall observed (see Table 2). 411 

 412 

Table 2 Results of MLR analysis for inhalation and ingestion exposure to TiO2 particles. a 413 

Parameter 

Only interval-
censored 

NOAEL/LOAEL 
(n=14) 

Exposure route 
differentiation 

Only interval-
censored 

NOAEL/LOAEL 
(n=14) 

Species and exposure 
route differentiation 

All NOAEL/LOAEL 
data (n=43) 

Exposure route 
differentiation 

All NOAEL/LOAEL 
data (n=43) 

Species and exposure 
route differentiation 

Intercept -1.80 (-2.69; -0.90) ** -2.31 (-3.32; 1.29) ** -1.20 (-2.00; -0.40) ** -1.234 (-2.02; -0.43) 
**  

Log Size 0.74 (0.30; 1.17) ** 0.87 (0.47 1.28) ** 0.57 (0.15; 0.99) ** 0.46 (0.002; 0.91) ** 

Inhalation  0 (reference, see 
intercept) NA 0 (reference, see 

intercept) NA 

Ingestion 1.76 (1.23; 2.30) ** NA 1.90 (1.42; 2,39) ** NA 
Ingestion, 
mouse NA 1.97 (1.37; 2.57) ** NA 2.08 (1.36; 2.80) ** 
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Ingestion, rat NA NA NA 2.53 (1.64; 3.43) ** 
Inhalation, 
mouse NA 0.51 (0.04; 1.05) * NA 0 (reference, see 

intercept) 
Inhalation, 
rat NA 0.141 (0.36; 0.64) NA 0.47 (-0.13; 1.08)  

Inhalation, 
hamster NA 0 (reference, see 

intercept) NA 0.21 (-0.64; 1.05)  

LOAEL 0.73 (0.36; 1.09) ** 0.72 (0.40; 1.04) ** 0.31 (-0.12; 0.73)  0.21 (-0.25; 0.67)  
Adj. R2 0.884 0.918 0.648 0.656 
Q2 (LOO) 0.841 0.894 0.589 0.524 
p-value for 
model 1.47E-05 ** 5.55E-05 ** 1.41E-09 ** 2.79E-08 ** 

a Statistically-significant results, assumed with  p < 0.05, are indicated by asterisks “**”, results with  414 
0.05 < p < 0.1 are indicated by “*”. 95% confidence intervals (95% CI) are provided in brackets. NA: not 415 
applicable. 416 

 417 

The best estimate of the size parameter slope βsize that expresses the increase in the 418 

log10(NOAEL) as a function of the log10(particle size) varies between 0.46 and 0.87 (see Table 419 

2). This supports the observations that toxic effects continuously decrease as the primary particle 420 

size increases. These results imply that an exposure to TiO2 nanoparticles of 10-nm primary size 421 

would lead to toxic effects approximately 2.9-7.5 times higher than a same exposure to TiO2 422 

particles of 100-nm primary size (range of 1-19 when considering the positive 95% CIs reported 423 

in Table 2). This finding, especially the numerical estimates, should be considered with care 424 

because physicochemical properties other than the particle size and that are not investigated in 425 

the present study might significantly alter the reported trends. For example, the surface coatings 426 

is known to significantly influence the toxicity of the nanoparticles, and even though our review 427 

disregarded coated nanomaterials, the tested particles may still happen to be doped and/or 428 

affected by the test media, as these aspects are not always monitored and reported transparently 429 

in toxicological studies (Clark et al., 2012; Warheit et al., 2005; Yang et al. 2014). 430 
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This trend of a positive slope βsize can also be observed when performing regression analyses 431 

taking into account the censored nature of the data (i.e. Censoring-based Regression – CR 432 

analysis; see Section 2.6), where positive values of the slope βsize are obtained (0.80 and 0.41 for 433 

species-route differentiation and only route differentiation, respectively; see Tables S4 and S5). 434 

However, it should be noted that these CR tests, although deemed the most consistent when 435 

taking the entire set of available data, did not reveal any statistical significance with p-values 436 

above 0.05 (Tables S4 and S5). A strong dependence on the inclusion and exclusion of data in 437 

this statistical test (data not shown) suggests that further attempts at the CR application should be 438 

made when larger and more consistent data sets become available. 439 

Exposure route: Figure 2 plots the size-differentiated NOAEL functions obtained from the 440 

results of the different regression analyses. As reflected by the highly significant coefficient for 441 

ingestion (versus inhalation) of close to 1.8-1.9 in both experiment only differentiating the 442 

exposure route, the NOAEL values are approximately 60-80 times lower for inhalation exposure 443 

than for ingestion. As also illustrated in Figure 2, the variations between the estimates of the 444 

slope βsize are strongly dependent on the data set considered and whether or not only interval-445 

censored NOAEL/LOAEL data are considered (thus disregarding left- and right-censored 446 

NOAEL and LOAEL data points). Accounting for the entire data set (i.e. 43 data points) 447 

substantially extends the number of data, whereas the data set limited to interval-censored data 448 

(i.e. 14 data points) is deemed more accurate. 449 
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 450 
Fig. 2 NOAEL resulting from regression analyses for inhalation and ingestion exposure to TiO2 451 
particles (size range: 4-450 nm). Inclusion of different data sets (all data or interval-censored 452 
NOAEL/LOAEL only) and regression tests (multiple linear regression, MLR, or censoring-based 453 
regression, CR) differentiate the results from the regression tests, i.e. parameter values in 454 
Equation 4, and hence the different curves. Interval-censored regression data accounting for the 455 
censored nature of the data are only presented for indicative purposes as no statistically-456 
significant slope for the size were observed (see Tables S4 and S5). 457 

 458 

Species differentiation: Differentiating the number of species in addition to the exposure 459 

route only slightly increases the adjusted R2 for the restricted set limited to interval-censored 460 

NOAELs/LOAELs, whereas it does not bring any increase in adjusted R2 when considering the 461 

entire data set. With consideration to the restricted data set, for which there are little data for a 462 

relatively large number of variables, a regression analysis made with only a differentiation 463 

between exposure routes seems more appropriate.  464 
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Albeit their limitation to the case of TiO2 nanoparticles, our findings thus provide two major 465 

advances in the assessment of the toxic effects of nanoparticles: (i) a quantitative measure of the 466 

association between toxic effects and primary sizes of nanoparticles; and (ii) an expression of 467 

toxic effects in a meaningful metric. Many studies have reported the different magnitudes of 468 

effects on animals following exposure to different sizes of nanoparticles or to either nano-scale 469 

or micro-scale particles, but none managed to quantify this difference for entire size ranges, thus 470 

providing continuity and allowing for useful predictions. Furthermore, the utilization of mass-471 

based metrics alone have been demonstrated not to be valid for capturing the effects of 472 

nanoparticles, and other complementary metrics based on surface area or particle numbers have 473 

been proposed to account for the particle sizes (Oberdörster et al. 2005). The above findings 474 

advance towards the determination of a meaningful, operational metric to express exposure 475 

levels, even though it only relies on the study of the primary size and ignores potential influences 476 

of other physicochemical properties of nanoparticles. The mass-based exposure levels (translated 477 

into intake doses) are expressed as a function of the primary particle size, thus implicitly 478 

accounting for the differences in the surface areas and particle numbers. Even for the inhalation 479 

pathway, in which the absorption is strongly dependent on the state of agglomeration and 480 

aggregation, aggregates of same sizes but with different primary sizes can lead to different toxic 481 

responses (Ferin et al. 1992), thus indicating possible disaggregation mechanisms after intake 482 

and attesting the strong influence of the primary particle size in the toxic effects. This therefore 483 

supports our assertion that, given the current state of knowledge, the expression of NOAEL as a 484 

function of the primary size as illustrated in Figure 2 can adequately capture the nano-scale-485 

specific toxicity of TiO2 particles while also allowing characterization of micro-sized particles, 486 

and thus address the metrics issue raised in earlier studies. Further research is however needed to 487 
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explore how the inclusion of more physicochemical properties can refine this expression of the 488 

NOAEL and to what extent this finding applies to other nanoparticles. 489 

 490 

3.3. Implications for assessing human health risks and impacts 491 

3.3.1. Derivation of human NOAEL 492 

A direct consequence of the aforementioned findings is the opportunity to determine 493 

NOAEL values for humans as function of the primary particle sizes. Based on the regression 494 

analyses in Section 3.2.2, the statistical results from the data set limited to the interval-censored 495 

NOAEL/LOAEL data that only distinguish between exposure routes without species 496 

differentiation were retained as basis for deriving the human NOAEL. These results presented 497 

high statistical significance for the different variable estimates. As reflected in Figure S1, they 498 

also show conservative estimates once the animal data were converted into human-equivalent-499 

exposure levels, compared to the use of the entire data set. Within the data-defined size range (4-500 

450 nm), Equations 5 and 6 express these relationships for TiO2 for both inhalation and ingestion 501 

routes, respectively (with d the primary size of the particles in nm; and NOAELhum in 502 

mg/person/day). 503 

( ) 796.0110680.1)(log796.0620.21070 dNOAEL dinh
hum ××=



= −×+−  (Equation 5) 504 

( ) 796.0567.6)(log796.0028.11070 dNOAEL ding
hum ×=



= ×+−   (Equation 6) 505 

 506 

It should be noted that the conversion to human exposure levels was performed on the 507 

original data. Therefore the run of new regression analyses was required to obtain the parameter 508 
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estimates although the results are very similar to those reported in Table 2 (i.e. statistical 509 

significance observed for all parameters and slope changed from 0.74 to 0.80; see Table S6). 510 

Because of the large uncertainties inherent to the determination of Equation 5 and 6 (see Section 511 

2 and regression result analysis in Section 3.2.2), the above equations are not intended to model 512 

and predict human NOAELs as a default method. However, they are believed to present a useful 513 

and complementary approach to existing approaches encompassing reviews and selections of 514 

specific toxicological test results (e.g. Christensen et al. 2011), and are deemed relevant for 515 

screening purposes in the evaluation of risks and impacts of TiO2 nanoparticles (see following 516 

Section 3.3.2). 517 

 518 

3.3.2. Possible use in RA 519 

A major concern about health effects of nanoparticles stems from potential occupational and 520 

consumer exposure (via inhalation and ingestion). As illustrated in Figure 3, the findings of this 521 

study show a relatively good agreement with the exposure limits recommended by the National 522 

Institute of Occupational Safety and Health (NIOSH) once these are translated into intake doses 523 

(Supplementary Methods and NIOSH 2011). For inhalation of TiO2 (blue curves), the 524 

discontinuous exposure NIOSH thresholds and ranges, which differentiate the nano-scale and the 525 

micro-scale domains based on particle archetypes (NIOSH 2011), closely follow the proposed 526 

continuous size-dependent NOAELs. When considering the data ranges of the present study (i.e. 527 

4-450 nm), the current study tends to yield more conservative estimates in the lower nano-sized 528 

and micro-sized ranges for inhalation. Overall, these comparisons therefore suggest that the 529 

findings are consistent with existing recommendations (e.g. NIOSH 2011) and epidemiological 530 

observations (e.g. Boffetta et al. 2004), although adjustments in recommended exposure 531 
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thresholds should be envisaged to integrate a continuous size dependency and more conservative 532 

estimations. 533 

With regard to ingestion exposure, some concerns have emerged with the ingestion of TiO2 as 534 

food additive (i.e. E171; primarily micro-sized). Although it could not establish an acceptable 535 

daily intake, the European Food Safety Authority (EFSA) Scientific Panel on Food Additives 536 

and Nutrient Sources recently highlighted a NOAEL of 2250 mg TiO2/kg-bw/d obtained for rats 537 

exposed in a chronic study (103 weeks) to ingestion of E171 (EFSA, 2016; NCI, 1979). When 538 

translated into human-equivalent intake doses (see Section 2.7), this resulted in a human NOAEL 539 

1-2 orders of magnitude higher than our results for the same size range –see Figure 3. While 540 

indicating the conservative nature of this NOAEL, this difference may be explained by the 541 

different properties of the food additive E171 and the TiO2 nanoparticles tested in the other 542 

ingestion exposure studies supporting our results (e.g. rutile form, etc.; see Table S1; see also 543 

Yang et al., 2014). It is also noteworthy that in actual exposure situations, an important 544 

proportion of the particles would remain sorbed to the food matrix during the digestion process 545 

and may thus not be available for absorption through the gastrointestinal tract. In contrast, 546 

nanoparticles used in toxicological studies are typically not bound to any matrix, which may 547 

result in a higher absorption rate. Further investigation is therefore required to evaluate the actual 548 

toxic effects of nanoparticles present in consumer products (Nowack et al. 2012; EFSA, 2016; 549 

Yang et al., 2014). 550 

 551 
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 552 
Fig. 3 Comparisons of NOAEL for humans for chronic inhalation and ingestion exposure to 553 
nano-sized and micro-sized TiO2 particles (NOAEL expressed as average daily intake doses in 554 
mg/person/day), and assuming that coatings on pigmentary particles do not lead to artefacts (see 555 
Section 2.3). The slope value for TiO2 particles is 0.796 (95% CI: 0.43-1.16). External data were 556 
used to compare with the results from the current study (ingestion: NOAEL value for E171 557 
highlighted by EFSA ANS Panel (2016); inhalation: epidemiological study by Bofetta et al. 558 
(2004); inhalation: recommended thresholds by NIOSH (2011)). The hatched area illustrates the 559 
range of inhalation exposure levels corresponding to NOAELs for noncarcinogenic effects as 560 
identified by NIOSH (2011); the blue-dotted line indicates the recommended NIOSH thresholds 561 
relating to cancer effects and regarded as default (NIOSH 2011). Background details pertaining 562 
to these graphs are documented in Table S6 and in Supplementary Methods.  563 
 564 

The dependence of the NOAEL on the primary size of the particles, including 95% 565 

confidence intervals, allows making refined, case-specific human health risk assessments, 566 

bringing more consistency to earlier attempts (Christensen et al. 2011; Kuempel et al. 2012; Som 567 

et al. 2013). Exposure situations, which are typically defined for a specific type of nanoparticles, 568 

can thus be compared to the human NOAEL obtained across a range of primary sizes. Table 3 569 

illustrates the application of the approach to occupational exposures to TiO2 nanoparticles. 570 
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Derived margins of exposure are observed to be well below potential uncertainty factors of 100 571 

or 1000 for occupational studies. It suggests that present TiO2 exposure may be high for workers, 572 

although occupational risks may be mitigated by the use of respiratory protection (see Table 3).  573 

 574 

Table 3 Illustrative application of the developed NOAEL approach for human health risk 575 
assessment of TiO2 occupational exposure situations. a 576 

Exposure situations 
Average daily intake 
(mg/person/day) 

NOAELup – intake b 
(mg/person/day) Margin of Exposure 

Collection of TiO2 (manufacturing) 
– without respiratory protection  

6.3E-2 1.2 
(0.5 – 3.0) 

19.3 
(7.8 – 47.5) 

Collection of TiO2 (manufacturing) 
– with respiratory protection  

3.4E-6 
1.2 
(0.5 – 3.0) 

3.6E+5 
(1.4E+5 – 8.8E+5) 

Bagging of TiO2 (manufacturing) 3.2E-1 
2.5 
(0.7 – 8.7) 

7.9 
(2.3 – 27.0) 

a Background details pertaining to these results are documented in Supplementary Methods; 95% 577 
confidence intervals are given in brackets for NOAEL and resulting margins of exposure. Data for 578 
occupational exposure data extracted from Koivisto et al. (2012a, b). Primary sizes of 12 and 30 nm were 579 
considered for collection and bagging of TiO2, respectively (see details in Supplementary Methods and 580 
Equations 5 and 6).  581 
 582 

3.3.3. Possible use in LCIA 583 

In line with common practice in life cycle impact assessment (e.g. Rosenbaum et al. 2011), 584 

Equations 5 and 6 can also be used to calculate effective doses ED50, i.e. chronic doses causing 585 

an adverse effect probability of 50%, to allow the calculation of characterization factors for TiO2 586 

particles, see for example Ettrup et al. (2016). 587 

 588 

4. Conclusions and outlook 589 
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By demonstrating that it is feasible to integrate physicochemical properties into the 590 

definition of NOAEL, our proposed approach and its application to TiO2 nanoparticles, albeit 591 

limited due to the difficulties surrounding coatings, can provide support for risk assessment of 592 

nanomaterials and life cycle assessment of nanoproducts. Until more comprehensive 593 

occupational human exposure and response data become available, our work can aid check 594 

and/or develop risk and life cycle assessment guidelines to ensure low risk exposures for 595 

consumers and workers. We therefore regard this study as a first step towards making use of the 596 

already large and increasing body of toxicological studies on nanoparticles and thus enable more 597 

consistent risk assessments and life cycle assessments. 598 

However, our study clearly reflected that more data are required to (i) refine the assumptions 599 

performed for translating and harmonizing the tested doses across different experimental settings 600 

(e.g. harmonizing the diversity of toxic endpoints) and for deriving chronic NOAELs for humans 601 

(see Sections 2.1-2.7 and Supplementary Methods); (ii) match the tested particles with those that 602 

are present in consumer products or subject to worker exposure; and (iii) integrate in the 603 

proposed methodology more toxicological data and encompass more physicochemical properties. 604 

Increasing consistency in reporting practice for toxicological studies, as recommended by Clark 605 

et al. (2012), should allow for studying a larger set of relevant particle properties, e.g. surface 606 

properties like coatings. The present approach should also be applied to other relevant types of 607 

nanoparticles, like silica, silver or carbon-based nanoparticles, ultimately contributing to holistic 608 

appraisals of the risks and impacts of nanotechnologies. 609 

 610 
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Electronic Supplementary Materials, including Supplementary Tables, Supplementary 612 

Figure and Supplementary Methods, accompanies this paper. The Supplementary Tables report 613 

the detailed results from the application of the methodology to micro- and nano-sized TiO2 614 

particles. The Supplementary Methods contain an account of the methodology for analyzing the 615 

relationships between nanoparticle toxicity and their physicochemical properties, as 616 

complementary to the Methods section. The Supplementary Methods also document the 617 

background data for the examples illustrating potential applications of the results to risk 618 

assessment studies. 619 
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