

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Matrix representation of a Neural Network

Christensen, Bjørn Klint

Publication date:
2003

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Christensen, B. K. (2003). Matrix representation of a Neural Network. Technical University of Denmark (DTU).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/84004923?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/matrix-representation-of-a-neural-network(f161d82e-d35b-4eec-b978-5074cf0e9289).html

 1

Matrix representation of a Neural

Network

by

Bjørn Christensen

June 2003

Contents

1 INTRODUCTION 2

2 THE WEIGHT MATRIX 3

2.1 Feedforward 4

2.2 Backpropagation 5

2.3 Squared Error 7

3 REFERENCES 7

 2

1 Introduction

This paper describes the implementation of a three-layer feedforward

backpropagation neural network.

The paper does not explain feedforward, backpropagation or what a neural network

is. It is assumed, that the reader knows all this. If not please read chapters 2, 8 and 9

in Parallel Distributed Processing, by David Rummelhart (Rummelhart 1986) for an

easy-to-read introduction.

What the paper does explain is how a matrix representation of a neural net allows for

a very simple implementation.

The matrix representation is introduced in (Rummelhart 1986, chapter 9), but only for

a two-layer linear network and the feedforward algorithm. This paper develops the

idea further to three-layer non-linear networks and the backpropagation algorithm.

h0

h1

hJ=1

hJ-1

i0

i1

iI-1

iI=1

o0

o1

oK-1

input nodes hidden nodes output nodes

Figure 1

Figure 1 shows the layout of a three-layer network. There are I input nodes, J hidden

nodes and K output nodes all indexed from 0. Bias-node for the hidden nodes is called

iI, and bias-node for the output nodes is called hJ.

 3

2 The Weight Matrix
In the matrix representation the input, hidden and output nodes are represented by

three vectors i, h and o respectively. The weights connecting each layer are

represented by a matrix. V connects the input layer with the hidden layer, and W

connects the hidden layer with the output layer. See Figure 2.

input nodes

hidden nodes

output nodes
i0 i1 iI-1 iI=1

h0

h1

hJ-1

hJ=1

o0

o1

oK-1

v0,0 v0,1 v0,I-1 v0,I

w0,0 w0,1 w0,J-1 w0,J

v1,0 v1,1 v1,I-1 v1,I

vJ-1,0 vJ-1,1 vJ-1,I-1 vJ-1,I

w1,0 w1,1 w1,J-1 w1,J

wK-1,0 wK-1,1 wK-1,J-1 wK-1,J

Figure 2

Definitions:

i - input nodes vector, dimension = I, indexed by i[0,I-1]

h - hidden nodes vector, dimension = J, indexed by j[0,J-1]

o - output nodes vector, dimension = K, indexed by k[0,K-1]

ib - input nodes vector incl bias, dimension = I+1, indexed by i[0,I]

hb - hidden nodes vector incl bias, dimension = J+1, indexed by j[0,J]

V – weight matrix from Ib to h, dimension = J(I+1), Vj,i weight ibi  hj

W – weight matrix from hb to o, dimension = K(J+1),Wk,j weight hbj  ok

Bold denotes a vector or a matrix in the text.

 4

2.1 Feedforward

The feedforward algorithm produces an output vector given an input vector. As

described in (Callan 1999, chapter 1), the input to hidden node hj is







1I

0i

jiiIj,j ViVnet
(1)

The naming convention of Callan is changed to match the definitions in this paper

which follows (Rummelhart 1986). Note that Callan has interchanged the indices in

the weight matrix.

The value of hidden node hj is

)f(netjj h (2)

Where f() is the activation function defined as

x
x

-e1

1
)(f




(3)

Using matrix-vector multiplication, the value of all hidden nodes h can be calculated

in a single operation

)F(ibVh  (4)

Where F() is the vector function that takes f() on all elements of it’s argument.

Similarly the output vector is calculated from

)F(hbWo  (5)

ib and hb are produced from

   1 ,1..0ifor ii  II ibiib (6)

   1 ,1..0jfor jj  JJ hbhhb (7)

 5

2.2 Backpropagation

The backpropagation algorithm calculates the changes of the weights based on the

error between the output o as calculated the by the feedforward algorithm, and the

desired target output value t.

Definition:

t - target vector, dimension = K, indexed by k[0,K-1]

From equation 11 in (Rummelhart 1986, chapter 8), we have the change of each

weight:

jkkj hηδΔW  (8)

Where  is the learning rate, k is the error signal form output node ok, and hj is the

value of node hj. This formula applys to all weights in the network. The error signal

from the output layer and the hidden layer are calculated differently. Rummelhart

defines the error signal as follows

Error signal from output node k)o)(to(1oδo kkkkk  (9)

Error signal from hidden node j





1-K

0k

kjkjjj Wδo)h(1hδh
(10)

Definition:

o- error signal from output nodes dimension = K, indexed by k[0,K-1]

h- error signal from hidden nodes dimension = J, indexed by j[0,J-1]

Now we are ready to calculate the weight change W for all weights in a singe

operation:

 

hbo

W

































































δη

hhhh

δo

δo

δo

η

hδohδohδohδo

hδohδohδohδo

hδohδohδohδo

η

WWWW

WWWW

WWWW

ηΔ

J1-J10

1-K

1

0

J1-K1-J1-K11-K01-K

J11-J11101

J01-J01000

J1,-K1-J1,-K1,1-K1,0-K

J1,1-J1,1,11,0

J0,1-J0,0,10,0

(11)

So W is  times the outer product of o and hb.  is the operator for the outer

product. Similarly for V we get

ibhV  δηΔ (12)

 6

We need to express o and h in vector form. Let us define a vector multiplication

operator % that multiplies the components of vector x and y as follows:





















n*n

2*2

1*1

%

yx
yx
yx

yx
(13)

Calculating o is easy:

)()(%% oto1oδo  (14)

Where 1 is a vector of 1’s with same dimension as o.

Calculating h requires a little more work. Let us define a vector S as:

oW δ Ts (15)

WT
 is the transpose of W. Expanding W and o gives us:
































































































































1-K

0k

kjk

...

...

...

...

Wδo

WδoWδoWδo

WδoWδoWδo

WδoWδoWδo

WδoWδoWδo

δo

δo

δo

WWW

WWW

WWW

WWW

δo

δo

δo

WWWW

WWWW

WWWW

jswhere

s

s

s

s

s

T

J

1-J

1

0

J1,-K1-K J1,1J0,0

1-J1,-K1-K 1-J1, 11-J0,0

1,1-K1-K 1,1 10,10

1,0-K1-K 1,010,00

1-K

1

0

J1,-KJ1,J0,

1-J1,-K1-J1,1-J0,

1,1-K1,10,1

1,0-K1,00,0

1-K

1

0

J1,-K1-J1,-K1,1-K1,0-K

J1,1-J1,1,11,0

J0,1-J0,0,10,0

(16)

 The component sj is operand in the error signal hj. Note that we do not need an error

signal from hJ since it is a bias node. Therefore we skip the last component of s, and

create a vector s defined as:

  1..0jfor s jj  Js (17)

Dimension of s is J. Finally we can write h as:

sh)(1hh %%δ  (18)

Here 1 has same dimension as h.

Let us sum up the important equations of the backpropagation algorithm:
Error signal from output nodes)()(δ %% oto1oo  (19)

Changes of weights connected to output nodes hboW  δη (20)

Propagated errors from output nodes oW δ Ts (21)

Error signal from hidden nodes sh)(1hh %%δ  (22)

Changes of weights connected to hidden nodes ibhV  δηΔ (23)

 7

2.3 Squared Error

The squared error is a measure of the correctness of the network. It is calculated for

each input pattern p. Rummelhart defines the squared error as:







1K

0k

2
kkp)o(t

2

1
E

(24)

In vector notation using the inner product this is

o)(to)(t 
2

1
Ep

(25)

Summing the squared errors for all patterns, we get the squared error E for an epoch





n

1p

pEE
(26)

Where n is the number of patterns in the training set.

3 References

Rummelhart 1986 Parallel Distributed Programming: Explorations in the

Microstructure of Cognition. Vol 1

 David E Rummelhart, James L McClelland

MIT-press 1986

Callan 1999 The Essence of Nearal Networks

 Robert Callan

 Prentice Hall 1999

