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1 Introduction 
 

This paper describes the implementation of a three-layer feedforward 

backpropagation neural network. 

 

The paper does not explain feedforward, backpropagation or what a neural network 

is. It is assumed, that the reader knows all this. If not please read chapters 2, 8 and 9 

in Parallel Distributed Processing, by David Rummelhart (Rummelhart 1986) for an 

easy-to-read introduction. 

 

What the paper does explain is how a matrix representation of a neural net allows for 

a very simple implementation. 

 

The matrix representation is introduced in (Rummelhart 1986, chapter 9), but only for 

a two-layer linear network and the feedforward algorithm. This paper develops the 

idea further to three-layer non-linear networks and the backpropagation algorithm. 
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Figure 1 

 

Figure 1 shows the layout of a three-layer network. There are I input nodes, J hidden 

nodes and K output nodes all indexed from 0. Bias-node for the hidden nodes is called 

iI, and bias-node for the output nodes is called hJ. 
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2 The Weight Matrix 
In the matrix representation the input, hidden and output nodes are represented by 

three vectors i, h and o respectively. The weights connecting each layer are 

represented by a matrix. V connects the input layer with the hidden layer, and W 

connects the hidden layer with the output layer. See Figure 2. 
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Figure 2 

 

Definitions: 

i  - input nodes vector,   dimension = I,  indexed by i[0,I-1] 

h - hidden nodes vector,  dimension = J,  indexed by j[0,J-1] 

o - output nodes vector,   dimension = K,  indexed by k[0,K-1] 
 

ib  - input nodes vector incl bias, dimension = I+1,  indexed by i[0,I] 

hb - hidden nodes vector incl bias, dimension = J+1,  indexed by j[0,J] 
 

V – weight matrix from Ib to h, dimension = J(I+1), Vj,i weight ibi  hj 

W – weight matrix from hb to o, dimension = K(J+1),Wk,j weight hbj  ok 

Bold denotes a vector or a matrix in the text. 
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2.1 Feedforward 

 

The feedforward algorithm produces an output vector given an input vector. As 

described in (Callan 1999, chapter 1), the input to hidden node hj is 







1I

0i

jiiIj,j ViVnet  
(1)  

The naming convention of Callan is changed to match the definitions in this paper 

which follows (Rummelhart 1986).   Note that Callan has interchanged the indices in 

the weight matrix. 

 

The value of hidden node hj is 

)f(netjj h  (2)  

Where f() is the activation function defined as 

x
x

-e1

1
)(f


  

(3)  

 

Using matrix-vector multiplication, the value of all hidden nodes h can be calculated 

in a single operation 

)F( ibVh   (4)  

Where F() is the vector function that takes f() on all elements of it’s argument. 

Similarly the output vector is calculated from 

)F( hbWo   (5)  

 

ib and hb are produced from 

     1                ,1..0ifor     ii  II ibiib  (6)  

     1             ,1..0jfor     jj  JJ hbhhb  (7)  
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2.2 Backpropagation 

The backpropagation algorithm calculates the changes of the weights based on the 

error between the output o as calculated the by the feedforward algorithm, and the 

desired target output value t. 
 

Definition: 

t - target vector,    dimension = K,  indexed by k[0,K-1] 

 

From equation 11 in (Rummelhart 1986, chapter 8), we have the change of each 

weight: 

jkkj hηδΔW   (8)  

Where  is the learning rate, k is the error signal form output node ok, and hj is the 

value of node hj. This formula applys to all weights in the network. The error signal 

from the output layer and the hidden layer are calculated differently. Rummelhart 

defines the error signal as follows 

 
Error signal from output node k )o)(to(1oδo kkkkk   (9)  

Error signal from hidden node j 





1-K

0k

kjkjjj Wδo)h(1hδh  
(10)  

 

Definition: 

o- error signal from output nodes dimension = K,  indexed by k[0,K-1] 

h- error signal from hidden nodes dimension = J,  indexed by j[0,J-1] 

 

 

Now we are ready to calculate the weight change W for all weights in a singe 

operation: 

 

hbo

W

































































δη

hhhh

δo

δo

δo

η

hδohδohδohδo

hδohδohδohδo

hδohδohδohδo

η

WWWW

WWWW

WWWW

ηΔ

J1-J10

1-K

1

0

J1-K1-J1-K11-K01-K

J11-J11101

J01-J01000

J1,-K1-J1,-K1,1-K1,0-K

J1,1-J1,1,11,0

J0,1-J0,0,10,0

 

(11)  

 

So W is  times the outer product of o and hb.  is the operator for the outer 

product. Similarly for V we get 

ibhV  δηΔ  (12)  
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We need to express o and h in vector form. Let us define a vector multiplication 

operator % that multiplies the components of vector x and y as follows: 





















n*n

2*2

1*1

%

yx
yx
yx

yx  
(13)  

 

Calculating o is easy: 

)()( %% oto1oδo   (14)  

Where 1 is a vector of 1’s with same dimension as o. 

 

Calculating h requires a little more work. Let us define a vector S  as: 

oW δ Ts  (15)  

WT
 is the transpose of W. Expanding W and o gives us: 
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(16)  

 The component sj is operand in the error signal hj. Note that we do not need an error 

signal from hJ since it is a bias node. Therefore we skip the last component of s, and 

create a vector s defined as: 

    1..0jfor  s    jj  Js  (17)  

Dimension of s is J. Finally we can write h as: 

sh)(1hh %%δ   (18)  

Here 1 has same dimension as h.  

 

Let us sum up the important equations of the backpropagation algorithm: 
Error signal from output nodes )()(δ %% oto1oo   (19)  

Changes of weights connected to output nodes hboW  δη  (20)  

Propagated errors from output nodes oW δ Ts  (21)  

Error signal from hidden nodes sh)(1hh %%δ   (22)  

Changes of weights connected to hidden nodes ibhV  δηΔ  (23)  
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2.3 Squared Error 

The squared error is a measure of the correctness of the network. It is calculated for 

each input pattern p. Rummelhart defines the squared error as: 







1K

0k

2
kkp )o(t

2

1
E  

(24)  

In vector notation using the inner product this is 

o)(to)(t 
2

1
Ep  

(25)  

 

Summing the squared errors for all patterns, we get the squared error E for an epoch 





n

1p

pEE  
(26)  

Where n is the number of patterns in the training set. 
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