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Super-Positioning of Voltage Sources for Fast
Assessment of Wide-Area Thévenin Equivalents

Jakob Glarbo Møller, Student Member, IEEE, Hjörtur Jóhannsson, Member, IEEE,

and Jacob Østergaard, Senior Member, IEEE

Abstract—A method for superimposing voltage sources is
sought optimized by using a sparse triangular solver and multi-
processing. A revision to the method is suggested which exploits
Schur’s complement of the network admittance matrix and op-
timal re-use of computations. The algorithm is implemented and
parallelized for shared memory multiprocessing. The proposed
algorithm is tested on a collection of large test systems and
performance is found to be significantly better than the reference
method. The algorithm will thereby facilitate a speed-up of
methods relying on Thévenin Equivalent representation such as
the Thévenin equivalent method for contingency assessment.

Index Terms—Algorithms, Power system analysis computing,
Thévenin equivalent

I. INTRODUCTION

The work described in this paper is motivated by the recent de-

velopment of a power system solver which relies on Thévenin

equivalent representation of the network seen from each point

of constant voltage. The method can be used to detect bifur-

cations that would render normal power flow methods non-

convergent without giving further hints to the origin of the

problem [1]. It is intended for analyzing contingencies in an

online security assessment based on a steady-state hypothesis

from a state estimator. Profiling the method has revealed that

computation of Thévenin equivalents takes a significant share

of the time spent by the algorithm [2]. This directed the

author’s attention towards efficient algorithms for Thévenin

equivalent computations. However, the field of application

of Thévenin equivalents is broad and the work presented

may inspire others working with different applications of the

famous network equivalent.

Thévenin equivalent representation can be applied in de-

termining critical limits to power transmission [3]. Steady-

state stability of a generator may for example be expressed

as a power versus angle relationship derived from a network

equivalent formed on basis of Thévenin’s theorem [4].

Assessment of long-term voltage stability has also been

suggested to use Thévenin equivalent representations [5].

In [6] it was demonstrated that Thévenin Equivalents ef-

fectively can be applied in assessment of aperiodic small-

signal rotor angle stability. In [7] methods relying on the same

system representation was applied in determining preventive

actions necessary for stabilizing machines prone to aperiodic

instability.
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Usage of PMU measurements for directly assessing

Thévenin equivalents seen from a point of common connection

has been suggested with the aim of supporting local control

decisions [8]. If a central system operator is to predict how

such local controllers will respond is it of vital importance

to be able to assess those Thévenin equivalents at the control

center.

A decomposition technique where nodes or branch elements

are substituted by a Thévenin equivalent representing the

remaining system has been suggested for parallel processing

of power system simulations [9]. Another method for domain

decomposition rely on network reduction by formulation of

the Schur complement. With this method one can reduce

variables inside sub-domains of a problem while preserving the

relationship between interface variables acting on the global

domain [10]. The Schur complement decomposition method

has previously been promoted for parallelizing dynamic sim-

ulations on power systems [11].

Thévenin’s theorem was formulated independently by Her-

mann von Helmholtz in 1853 and Léon Charles Thévenin in

1883 [12]. It is apparent from the above examples that the

system representation still has wide application in the field of

power system analysis.

Efficient computation of Thévenin equivalents has been

addressed in a number of references.

Hajj published in 1976 a method for computing Thévenin

equivalents for multi-port networks which determines un-

known port-variables from inverse solutions to a system of

linear equations such as Kirchoff’s nodal equations [13].

Sommer and Jóhansson demonstrated the efficiency of ap-

plying Schur’s complement in an algorithm for computing

Thévenin impedances on large networks [14]. They develop

a sparsity oriented left-looking algorithm and prove that the

method is more efficient than previous inverse solvers for

Thévenin equivalent computations.

Wang et al. presented method for super-imposing voltage

and current sources to obtain Thévenin equivalents seen from

a load bus [15]. They apply Schur’s complement for reducing

the computational burden.

The problem of obtaining Thévenin equivalents seen from a

generator has been addressed by Dmitrova et al. in [16]. The

derivation departs in circuit theory and results in formulation

of a set of coefficients describing the coupling between the

Thévenin voltage seen from each generator and all voltage

sources in the system. The method demonstrated good accu-

racy. However, no benchmark with respect to computational

efficiency was provided.

www.sospo.dk
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This publication reviews the procedure suggested in [16]

with respect to computational efficiency. Initial attempts on re-

use of triangular factorization and multiprocessing are found to

be inadequate for contingency assessment on large systems. A

revision is therefore proposed on basis of Schur’s complement.

It is further demonstrated how the revised algorithm may

parallelized on a shared memory platform.

The efficiency of applying Schur’s complement in obtaining

Thévenin voltages seen from a voltage source node has,

to the author’s knowledge, not been investigated prior to

this publication. Nor has it been demonstrated how such an

approach can be adapted for multiprocessing. It is expected

that the algorithm will be particularly applicable in circuits

with a large fraction of nodes with automatic voltage control,

such as a transmission network, or a distribution network with

high shares of distributed generation.

Section II describes the method for superposition presented

in [16]. A revision is then proposed which emphasizes re-

use of computations and network reduction. In section III

the revised algorithm is implemented for shared memory

multiprocessing and tested with respect to scalability. IV gives

perspectives on the work presented and V concludes the paper.

II. ALGORIHM DEVELOPMENT

Thévenin equivalents consists of the Thévenin equivalent

impedance Zth and the Thévenin equivalent voltage Vth such

that the Thévenin equivalent seen from a node i obeys:

Vth,i = Vi − Zth,iIi (1)

Here Vi is the node voltage and Ii is the current injected

at node i. A node may connect voltage sources, current

sources and shunt impedances to the network. All loads are

at first represented by their impedance and the network is

energized by voltage sources only. Voltage sources in a power

system could be terminals of generators with automatic voltage

regulators or internal voltages of manually excited machines.

An admittance matrix may be block-wise partitioned such that

nodes with no sources (ns) are assigned lower indices while

nodes with voltage sources (vs) are assigned higher indices.
[

0
Ivs

]

=

[

Yns Ylink

YT
link Yvs

] [

Vns

Vvs

]

(2)

As loads are represented by their admittance value no current

is injected in ns-nodes. By it-self Yns represents admittances

of a system where all voltage sources have been short-

circuited. The Thévenin impedance seen from the vs-node i is

obtained by injecting a unit test current at node i and taking the

reciprocal of the resulting voltage at node i. This is achieved

by solving the inverse problem in (3).

[

Yns Ylink,(:,i)

Ylink,(i,:) Yvc(i,i)

]

[

...

Vi|Ii=1

]

=

[

0

1

]

(3)

Zth,i = V −1
i|Ii=1 (4)

The Thévenin equivalent voltage at a given node is composed

of contributions from the voltage sources in the network.

These contributions are scaled and rotated by a complex

coefficient and superimposed to form the Thévenin voltage.

The coefficients were named grid transformation coefficients

(GTC) by Dmitrova et al. in [16]. The coefficients satisfy:

Vth,vs = GTCVvs (5)

The grid transformation coefficients may be obtained as the

ratio between the open-circuit voltages Vi|OC
Ij=1

and Vj|Ij=1 at

nodes i and j when a unit current is injected in node j and

remaining voltage sources in the system are short-circuited.

Vth,i =

|vs|
∑

j 6=i

Vi|OC
Ij=1

Vj|Ij=1
· Vj i, j ∈ vs (6)

The Thévenin voltage seen from vs-node i is then obtained by

scaling the contributions from all other vs-node voltages j ∈
vs by such a ratio and adding them together. The open-circuit

voltages Vi|OC
Ij=1

used to compute the coefficients mentioned

above are found by solving the inverse problem in (7) for all

combinations of vs-nodes i and j.





Yns Ylink(:,i) Ylink(:,j)

Ylink(i,:) Yvs(i,i) Yvs(i,j)

Ylink(j,:) Yvs(j,i) Yvs(j,j)













...

Vi|OC
Ij=1

Vj|Ij=1









=





0

0
1





(7)

A. Re-use of triangular factorization

Taking advantage of the fact that the block matrix Yns is

the same in all cases allow a significant problem reduction

[14]. This is achieved by conducting only a single LU -

decomposition such that Yns = LnsUns and employing a left-

looking algorithm for decomposition of the remaining rows

and columns of (3). By this procedure the column and row

that should be appended to Uns and Lns respectively to form

the factorization used in solving (3) are found by:

Û(:,i) = L−1
ns Ylink(:,i) (8)

L̂T
(:,i) = UT

ns

−1
Y T
link(:,i) (9)

The Thévenin impedance seen from i is the inverse of the ith
diagonal element in the Schur complement Yeq = Y/Yns of

an admittance matrix where ns-nodes are eliminated [14]. If

L̂ is unit diagonal this equivalent admittance is found as:

Z−1
th,i = Û(i,i) = Yvs(i,i) − L̂(i,:)Û(:,i) (10)

The grid transformation coefficients can be obtained naively

by solving the inverse problem of (7) for each of the (|vs|−1)2

entries in GTC. Or one may use the same approach as in (10)

for obtaining Ûj,j and the sub-sequent Ûj,i and Ûi,j needed

to represent the factorization of the admittance matrix in (7).

Vi|OC
Ij=1

= −
Û(j,i)

Û(j,j)

Û−1
(i,i)

Vj|Ij=1 = Û−1
(j,j) ⇒

GTC(j, i) = Û(j,i) · Zth,i
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This procedure is followed in algorithm 1. The outer for-loop

determines the Thévenin impedance using the same approach

as in [14]. The inner for-loop determines the coupling between

open-circuit voltages and current injections. Algorithm 1 takes

as input the block partitioned admittance matrix given in (2),

the number of nodes n and the number of vs-nodes k.

norelsize 1 Obtain Thévenin equivalents

Lns,Uns ← factorization of (Yns)

for each vs-node i do

Ûi(:,i) ← solve(Lns, YLink(:,i))

L̂T
(:,i) ← solve(UT

ns, Y
T
Link(i,:))

Û(i,i) ← Yvs(i,i) − L̂(i,:)Û(:,i)

Zth,(i) ← Û−1
(i,i)

for each remaining vs-node j 6= i do

Ûi,j ← solve

([

Lns 0

L̂(i,:) 1

]

,

[

YLink(:,j)

YLink(i,j)

])

GTC(i, j)← −Ûi,j(n−k+1)Zth,i

end for

end for

return Zth and GTC

B. Parallelization of Algorithm 1

A test was conducted in Matlab on the PTI-WECC-1648 test

system seen in table I. Algorithm 1 determines Thévenin

equivalents for all voltage sources in 11.0s. Such execution

time is not satisfactory for contingency assessment where

many scenarios must be analysed. Therefore the benefit of

multiprocessing is investigated. Profiling the algorithm show

that 2% of the runtime is spent on LU -decomposition. Thus

98% parallelism may be achieved by solving the two nested

for-loops for smaller chunks of the vs-nodes in parallel.

Results of the parallelization is shown in figure 1. It is found

that the algorithm scales well on up to 12 processors at

which point the increase in communication overhead seems

to dominate the advantage of adding more processors. Lns,

Uns and Ylink must be accessible in their entirety for all

processes. The cluster at which the algorithm is tested is

composed of nodes of 2 dual core CPUs which means that the

matrices must be copied to a new memory location for every

4 processors. This might explain why the speed-up saturates

around 12 processors for the given problem. The wall-time

passed during execution on 12 processors is 1.2s which is

still not quite satisfactory if the equivalents are to be used in

contingency assessment.

C. Schur’s complement and Thévenin equivalents

Performance of algorithm 1 is dissatisfying, but it turns out

that there is potential for improvement. It is found that the

problem L−1
ns Ylink(:,i) is solved |vs| times when solving for

Ûi and Ûj,i for all j where only the last element is different

from Ûi. The benefit of re-using Ûi is therefore a performance

enhancement of an order of magnitude.
Re-using computations and vectorisation of for-loops leads

to a revised expression for the GTC-matrix:

GTC = I − D(Zth)Yeq (11)
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Fig. 1. Strong scaling of algorithm 1 compared to Amdahl’s law for a 98%
parallel algorithm. For the given problem size the proposed algorithm scales
well on up to 12 processors. CPU: Intel Xeon X5550 Dual Core @ 2.66 GHz

Here I is the identity matrix, D(Zth) is a diagonal matrix

with Thévenin impedances and Yeq is the Schur complement

of an admittance matrix where ns-nodes are eliminated. The

validity the above equation is proven in the following.

It will here be demonstrated how the Schur complement is

related to computations of Thévenin equivalents. The starting

point is the partitioned network from (2). For the sake of gen-

erality loads are represented by a current source cs injecting

a current of arbitrary direction in the network.

[

Ics
Ivs

]

=

[

Ycs YLink

YT
link Yvs

] [

Vcs

Vvs

]

(12)

Eliminating Vcs from (12) yields;

Ivs +Qac · Ics = YeqVvs (13)

Yeq = Yvs −YT
linkY

−1
cs Ylink (14)

Qac = −Y
T
linkY

−1
cs (15)

Yeq is called the Schur complement matrix and Qac is the

accompanying matrix [17].

The Thévenin impedance seen from a node i is the

impedance to be measured when all voltage sources are short

circuited and all current sources are open-circuited. For the

impedance matrix Zcs = Y−1
cs this translates to the following

expressions:

Zth,i =

{

Zcs,(i,i) for i ∈ cs
Y−1

eq(i,i) for i ∈ vs
(16)

With the definition of Thévenin voltage given in (6) the

Thévenin voltage at vs-nodes may be expressed as;

Vth,vs = Vvs − Zth,vsIvs

= Vvs −D(Zth,vs)(YeqVvs −QacIcs)⇒

Vth,vs = (I−D(Zth,vs)Yeq) ·Vvs+D(Zth,vs)Qac ·Ics (17)
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TABLE I
TESTSYSTEM DATA

Case no. of
buses

no. of volt-
age sources

non-zeros
in Y

non-zeros
in GTC

Nordic32 46 20 160 126

Pegase1354 1354 260 4774 29260

PTI-WECC-1648 1648 313 6680 56791

Polish-Summer 2737 193 9263 31314

Polish-Winter 2746 382 9292 64174

PTI-EECC-7917 7917 1325 32211 1132107

Pegase9241 9241 1445 37655 533487

Similar relation can be obtained for the cs-nodes:

Vth,cs = Vcs − Zth,csIcs

= −Y−1
cs YlinkVvs +Y−1

cs Ics −D(Zth,cs)Ics ⇒

Vth,cs = −ZcsYlinkVvs + (Zcs −D(Zth,cs)) Ics (18)

The expression for cs-nodes in (18) is equivalent to an

expression used for assessing voltage stability in [15].

In [16] loads were represented by their admittance value.

Under such system representation the current injection at a

load bus is zero and (17) turns into the expression stated in

(11).

III. IMPLEMENTATION AND TEST OF REVISED

ALGORITHM

Equation (11) is implemented in algorithm 2. The test systems

used are shown in table I. The Pegase and Polish systems can

be found in Matpower 5.1 [18]. The PTI systems are included

among the PSS/E 33.0 examples.

The algorithm is implemented in C++ with SuiteSparse

[19].Yns is ordered to an approximate minimum degree

(AMD) prior to LU -decomposition. The triangular solves are

implemented with a sparse solver to exploit the small number

of non-zero entries in Ylink and YT
link . Wall-time spent by

executing algorithm 2 on test systems of various sizes are

shown in Fig. 3. The times stated include time spent on AMD

ordering and LU -decomposition of Yns. The performance en-

hancement introduced by revising the algorithm is substantial.

The 1648 bus WECC test system which took algorithm 1 11.0s

to solve is solved in just 25ms by algorithm 2.

norelsize 2 Schur complement Thévenin equivalent

Lns,Uns ← factorization of (Yns)

Û← solve(Lns,YLink)

L̂T ← solve(UT
ns,Y

T
Link)

Yeq ← Yvs − L̂Û

Zth ← D(Yeq)
−1

GTC← I −D(Zth)Yeq

return Zth and GTC

The precision of algorithm 2 is evaluated by comparing the

resulting Thévenin voltages from algorithms 1 and 2 respec-

tively. The error is stated in table II in terms of sum of squared

TABLE II
RESIDUALS AND LARGEST VECTOR ERROR FOR THÉVENIN VOLTAGES

COMPUTED WITH ALGORITHM 2 COMPARED TO ALGORITHM 1

Case
∑

r2 ‖TVE%‖∞

Nordic32 1.88 · 10−30 1.06 · 10−13

Pegase-1354 3.56 · 10−26 1.25 · 10−11

PTI-WECC-1648 9.80 · 10−27 6.34 · 10−12

Polish-Summer 2.11 · 10−26 6.06 · 10−12

Polish-Winter 9.56 · 10−27 2.93 · 10−12

PTI-EECC-7917 1.07 · 10−25 2.04 · 10−11

Pegase-9241 5.94 · 10−25 2.72 · 10−11

TABLE III
PARTIAL EXECUTION TIMES FOR POLISH SUMMER AND WINTER CASES

Case Time on LU-
factorization

Time on solve
and multiply

Polish-Summer 2.5ms 17.2ms

Polish-Winter 1.7ms 27.9ms

residuals and as the single largest total vector error (TVE%) as

defined in IEEE C37.118. On basis of these results algorithm

2 is found to have good precision.

It is relevant to investigate how the algorithm performs

under different loading scenarios. It has therefore been at-

tempted conduct a study on two scenarios based on the Polish

system under winter peak load of 25GW and summer off-peak

load of 11GW. The difference in execution times between

the two cases could indicate a correlation between system

load and execution time. From table III it is apparent that

it is more costly to perform the triangular solves and matrix

multiplications for the highly loaded case. However, referring

to table I it is apparent that this case has twice as many nodes

with active voltage control and twice as many non-zero entries

in the GTC-matrix. Thus, the algorithm computes twice as

many vector products for the Polish-Winter case than the

Polish-Summer case. On this basis it is not possible to identify

a correlation between the system loading and the execution

time. In fact the precision stated in table II is better for the

winter case than the summer case.

Though algorithm 2 performs much better than algorithm

1 the execution time from figure 3 shows a polynomial

relation to the system size. Thus, slightly larger systems may

exhaust the algorithm substantially. It is investigated how

multiprocessing may assist in solving this problem.

A. Parallelization of Algorithm 2

The algorithm is parallelized for shared memory processing

using OpenMP. Each thread solves a chunk of the triangular

problems Û = L−1
ns Ylink and L̂T = UT

ns

−1
YT

link . The

matrix products needed to determine Yeq = Yvs − L̂Û are

implemented as a sparse implementation of Fox’s algorithm

where each chunk of L̂ is passed from thread to thread until

all sub-matrices of Yeq are computed [20]. The layout of the

parallel algorithm 2 is presented in figure 2 where 2.a shows

the triangular solves and 2.b shows Fox’s algorithm applied

from the viewpoint of a thread j.
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The parallel implementation of algorithm 2 is accessible

online1.

The scaling study shows that multiprocessing can be applied

to achieve a speed-up of Algorithm 2. However, the speed-

up is determined by the size of the problem. Fig. 3 shows

the correlation between wall-time spent on Algorithm 2 and

the number of buses in the test systems. Speed-up, computed

as the execution time on one thread per execution time on

n threads, is given in figure 4. In most cases the speed-up is

about 2 for a cluster of 4 processors. Thus the multiprocessing

efficiency is about 50%. The PTI-EECC-7941 shows a greater

speed-up. This is likely due to the denser GTC-matrix.

The Nordic32 system is simply too small to benefit from

multiprocessing. In fact the execution time increases when

more processors are added to the job due to the increase in

communication overhead.

Ûj
←−−−
solve Lns

, Ylink,j

L̂T
j

←−−−
solve UT

ns
, YT

link,j

Yeq,j ←−− L̂j ∗ Ûj

(a)

k = (j − 1)/N

While unsolved fields in Yeq exist Do

Yeq,j ←−− L̂k ∗ Ûj

k = (k − 1)/N

end
(b)

Fig. 2. Parallelization of algorithm 2 seen from processor j ∈ N . (a)
Triangular solves are done in chunks. (b) Chunks of results are multiplied
by Fox’s algorithm

IV. PERSPECTIVES OF THE PROPOSED ALGORITHM

Together (17) and (18) form a coherent theorem of the relation-

ship between Thévenin equivalents and Schur complements.

1https://github.com/jakobglarbomoller/thevenin equivalents
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The relationship between the Schur complement and

Thévenin equivalents was used to obtain a simple and efficient

expression of the factors, with which each voltage source in

a network contributes to the Thévenin voltages. The proposed

algorithm proved to be quite fast. But there may yet be

potential for optimizing the computation of Thévenin voltages.

It is the matrix multiplication L̂ · Û which accounts for the

greater share of execution time. The admittance matrix is

sparse but the same is not given for Yeq and Qac. One may

note the difference between non-zero elements in GTC and

Y provided in table I. It is further noticed in figure 5 that

https://github.com/jakobglarbomoller/thevenin_equivalents
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|G
T
C
|

vs-bus index

Fig. 5. Magnitudes of the 56,791 nonzero entries in GTC-matrix for the
PTI-WECC-1648 test system. Many of the nonzero entires appear to have
insignificant influence on the Thévenin voltage.

many fill-ins seem quite insignificant and might be omitted

by setting a tolerance on the triangular solves. This would

however influence the precision of the resulting Thévenin

equivalent voltages.

Representing loads by their admittance value yield a simpler

expression for the Thévenin voltage. However, power system

loads can vary a lot which would require the Thévenin

impedance and GTC-matrix to be recalculated. For the ex-

pression given in (17) Yeq and Qac are dependent only on

changes in network topology. Using current source representa-

tion of loads should therefore reduce the computations needed

to account for load variations.

This might be used in contingency assessments as described

in [1] where Thévenin equivalents are used for assessing

steady-state stability of generators in a power system. The

algorithm can then be applied for all contingencies which

changes the bus admittance matrix or the set of nodes with

constant voltage.

V. CONCLUSION

An algorithm for superimposing voltage sources and comput-

ing Thévein equivalents seen from all voltage controlled nodes

in a network was evaluated and a revision has been proposed

which shows better performance.

Attempts were made to enhance performance of an existing

algorithm by using a sparse triangular solver and multiprocess-

ing. Yet, the resulting implementation was found to be too time

consuming for the intended application in on-line contingency

assessment.

A revision of the algorithm was suggested on basis of

prior art in computing Thévenin equivalents seen from a load

bus. The revised algorithm exploits a close relation between

super-positioning of voltage sources and Schur’s complement

of the network admittance matrix. The revision provided

an efficient and precise algorithm which enables wide area

Thévenin equivalents to be obtained for systems of thousands

of buses in fractions of a second. Benchmarking the revised

algorithm show a polynomial relation between execution time

and problem size. It is therefore demonstrated how additional

speed-up may be achieved by means of multiprocessing.
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