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Abstract 

We studied the role of advancing water contact angles on superhydrophobic surfaces that yet exhibited 

strong pinning effects as known in nature from rose petals.  Textured surfaces were engineered in silicon by 

lithographical techniques. The textures were comprised of hexagonal microstructures superimposed with 

randomly distributed nanospikes and were coated with a hydrophobic fluorocarbon agent.  A step in the 

advancing water contact angle bounding specific areas was obtained by engineering a corresponding 

topographic step in the hexagonal micro-texture.  This enabled a surface texture design confining drops to 

areas with the lower advancing contact angle.  
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Introduction 

The interaction between liquids and surfaces is an important research topic that has been widely explored 

for decades due to the promising applications in a wide range of areas such as self-cleaning, anti-icing, drag 

reduction, anti-fogging, anti-fouling, and microfluidics. [1-9] Some of the earlier descriptions deal with the 

wetting state of liquids on heterosurfaces.[10, 11] A couple of decades ago the lotus-effect was discovered 

[12] and spawned a huge interest for the engineering of self-cleaning (superhydrophobic) surfaces.[13]  

However, while the repelling of liquids has been widely studied, we believe that the liquid surface 

adhesion, when further explored, has potential for even more applications, due to the variable degree of 

interaction. To this end, another biomimetic effect, the rose petal effect, sometimes also reffered to as the 

Cassie-impregnating state,[14-17] with its extreme pinning effect, is particularly interesting. The rose petal 

effect has been widely studied,[18-20] and is also the subject of interest in this paper. A few other 

examples of recent studies that we here build upon are; the numerical studies of pinning and depinning on 

chemically patterned surfaces,[21] the pinning due to a topographic ring,[22] pinning when a wettability 

contrast is present,[23] and trapping of sliding drops by wetting defects[24].  

 

From an engineering point of view, the up-scaling aspect is of major concern. Hence, the surfaces should 

preferably be compatible with techniques of mass replication, such as Si micro-fabrication, [17, 25, 26], 

nano-imprint lithography,[27] injection molding,[17, 28] or polymer replication by roll-to-roll processes [29, 

30]. For this reason we shall deal with chemically homogeneous surfaces as the fabrication of these is 

compatible with the mentioned techniques; in addition, the replication process is simpler as it does not 

require a fabrication a step with chemical patterning[31]. 

 

In their article on chemical steps, Semprebon et al (2016) [32] showed how contact angle hysteresis can be 

exploited to direct and control liquid drops. Here we develop upon this idea and facilitate a step in the 

wetting properties, but through pure surface topography. By inflating drops across the step, we show how 

the advancing contact angle plays a crucial role for drops subject to the rose petal effect.  Furthermore, we 

exploit this effect to create a surface with self-aligning properties, which additionally allows access to 

almost any desired contact angle using only two different microscopic wetting structures.  

 

The investigated surface is shown in Figure 1. It consists of a hierarchical structure comprising a two-level 

hexagonal micro-pit structure superimposed with a random nanograss texture. The hexagonal micro-pit 

pattern has linewidth 𝑎𝑎, side length 𝑠𝑠 and a step in depth between an inner shallow area with depth ℎ, 

where drops are placed, and an outer area with larger depth 𝐻𝐻. Both areas have the same hydrophobic 



surface chemistry. Drops pipetted to the inner shallow area and subsequently inflated tend to align to the 

center and remain in this area, until the whole area is filled, and the drop matches the advancing contact 

angle of the outer area. 

 

 

Figure 1: An example of an investigated surface and its micro-structures. a) Photograph of a sample surface 

with self-aligned pipetted drops of base diameter 𝑑𝑑. b) 30 degree tilted Scanning Electron Microscopy (SEM) 

image showing the surface topography including the step in hexagon pit depth from left to right. The drop 

from (a) is located on the left-hand side, with the lower pits. c) Schematic top view of the used structures 

with defined hexagon side length 𝑠𝑠, and hexagon linewidth, 𝑎𝑎. d) Schematic cross-sectional side view of the 

structures along the A-A line from (c), and with the lower pits having depth ℎ and the deeper depth 𝐻𝐻. E) 30 

degree tilted SEM image showing a close-up of (b) for the lower pits. 

 

Methods 

Fabrication 

Figure 2(a-m) is a schematic of the fabrication process flow. Surfaces with spatial variance in advancing 

contact angle were achieved by having hexagonal micro-pits of different depths. The spatial variance in 

depth was achieved by utilizing a double resist layer. The first layer was a SiO2 mask of the hexagonal 

pattern (a-e). It was fabricated by the following process.[33] (a) Dry oxidation of 100 mm <100> n-doped 



silicon wafers at 1100°C for 1 hour created an oxide layer of 118 nm. (b) The wafers were then treated with 

hexamethyldisilazane (HMDS) to enhance adhesion, and subsequently spin coated (Süss MicroTec Gamma 

2M spin coater) with 1.5 μm positive tone photoresist (AZ Mir 701). The resist was soft baked at 90 ºC for 

60 seconds to evaporate residual solvents. Afterward, the resist was exposed for 22 seconds with an 

intensity of 7.0 mW/cm2 on a mask aligner (SÜSS MA6) in hard contact mode with the desired hexagonal 

pattern. (c) The resist was then baked at 110 °C for 60 seconds to maximize process latitudes and to 

mitigate standing wave effects caused by monochromatic exposure, and hereafter, developed in AZ 726 

MIF (Metal Ion Free) for 60 seconds (Süss MicroTec Gamma 2M). (d) The pattern was transferred to the 

SiO2 by wet etching in buffered hydrofluoric acid (BHF) for 100 seconds followed by a 5-minute rinse in 

deionized (DI) water. Lastly, the AZ Mir 701 resist was stripped using plasma ashing (300 Semi Auto Plasma 

Processor from TePla) with 400 sccm O2, 70 sccm N2, and 1000 W for 25 minutes. (f-g) The second resist 

layer was prepared with AZ Mir 701 in the same way as explained for the first. The resist was exposed for 

30 seconds in flood exposure mode with a mask placed directly onto the wafers. The mask was made by 

printing 3 times on top of each other on Premium Transparencies from Xerox with a Xerox 7502V/U printer 

using the by-pass feeder. The pattern was developed as for the first resist layer. (h) The hexagon pattern in 

the developed regions was first etched using reactive ion etch (RIE, Pegasus D-RIE, STS, UK) in a Bosch 

process to a depth of 𝐻𝐻 −  ℎ. (i) The AZ Mir 701 resist was then stripped in the Pegasus in 200 sccm O2 

plasma for 5 minutes. (j) The Bosch process was continued to a depth of h. (k) The oxide mask was stripped 

in BHF for 100 seconds with a 5-minute rinse in DI water. (l) In a final RIE process, nanograss was created 

over the full wafer. The nanograss recipe is obtained from Schneider et al.[25] and uses a mixture of 80 

sccm O2 and 80 sccm SF6 gas for 8 minutes. (m) Finally, perfluorodecyltrichlorosilane (FTDS) was deposited 

using molecular vapor deposition (MVD, MVD 100, MST, USA) in order to make the surface hydrophobic. 

 



 

Figure 2: Self-explanatory schematic of the sample fabrication yielding the hierarchical surface structure 

comprising a two-level microstructure fabricated by UV-lithography and deep reactive ion etching (DRIE), 

superimposed with a random nanograss texture etched into Si, and finally coated with a hydrophobic agent, 

FDTS. 

Sample characterization 

The dimensions of the samples were characterized using SEM. The linewidth, 𝑎𝑎, was across all the samples 

measured to (845±80) nm, and the mean hexagon side length, 𝑠𝑠, to (20.01±0.08) µm. The depths of the 

micro-pits were calculated by measuring the scallop height for the Bosch process, and multiplying this 

height with the number of etching cycles. Three samples were prepared with calculated depths, ℎ, of 0, 

(1.4±0.1), and (5.6±0.2) µm. The deeper pits were all of depth 𝐻𝐻 = (7.0±0.2) µm. Before measurements, the 

substrates were submerged in DI water (Milli-Q) for 1 minute and blow-dried with nitrogen to achieve 

reproducible results. The data images were collected using an Attension Theta Optical Tensiometer 

equipped with a high-speed camera (Motion Xtra N3 with Navitar, IDT). DI water drops were pipetted onto 

the substrates using a motorized dispensing system controlled by Attension Theta software. To document 



the self-aligning properties a 100 µL drop was inflated at a rate of 1 µL/s in a 𝑑𝑑 = 5 mm field. To investigate 

the effect of the advancing contact angle on the substrate, drops were first inflated at 1 μL/s from 0 to 30 

μL and deflated again at a rate of 0.5 µL/s (Track B in Figure 4a) on a 𝑑𝑑 = 3.2 mm field. Deflation is 

continued below a critical minimum self-aligned volume where the triple-line starts to contract thus 

compromising the alignment. Afterward, drops were inflated at 1 µL/s for 75 seconds to exceed the 

maximum self-aligned volume (Track A in Figure 4a). Video recordings at a rate of 1 frame per second (fps) 

were performed during both inflation and deflation. The presence of the pipette tip inside the drop is not 

expected to influence the contact angles significantly.[34] The robustness concerning substrate tilting was 

investigated using the built-in tilt cradle and tilting at a rate of 1º/s with 1 fps. From the tilting experiment 

the pinning force was also estimated. The uncertainty for the slide-off angle, 𝛼𝛼, was estimated to be 1°, 1 

µL on the volume, and 0.05 mm on the drop field diameter. Using propagation of error for random and 

independent measurements the uncertainty on the pinning force was then calculated. Between any two 

measurements the sample was blow-dried with nitrogen for 15 seconds. The substrate had no visual 

damage after conduction of the experiments, and all measurements were performed 3 times with very high 

reproducibility. The errorbars in the plots are all determined using the standard sample deviation based on 

the three measurements series. For all frames the drop base diameter/length was measured using the 

open source software Tracker 4.9x. 

 

Results and discussion 

We consider the inflation of a microliter-sized drop in a circular micro-nano structured area of diameter 

𝑑𝑑 (see Figure 1a). A specific advancing contact angle, 𝜃𝜃𝐴𝐴,𝑖𝑖𝑖𝑖, is present in this inner drop field, and is caused 

by nanograss-covered micro-sized hexagon pits of depth h as seen in (b-e). Exterior to the field the same 

hexagon geometry is present, but with the pit depth increased to 𝐻𝐻. The consequence is an increased 

advancing contact angle, 𝜃𝜃𝐴𝐴,𝑜𝑜𝑜𝑜𝑜𝑜.  

 

In the circular region (with 𝑑𝑑 = 5 mm) inflation of a 100 μL drop was performed with an arbitrary pipetting 

position. Tracking of the distance between the drop center and the field center revealed self-aligning 

properties. The vanishing misalignment is quantified in Figure 3, where the drop has perfect alignment with 

the field when it has reached a volume of 40 μL. As we shall see later, this self-aligning property is provoked 

by the step-up in advancing contact angle. The drop is initially (0-21 μL) expanding in an arbitrary direction 

dictated by surface defects. When the triple-line of the drop arrives at the transition to the higher 

advancing contact angle, the barrier against continuous expansion in the given direction increases 



significantly, and further expansion must occur in a new direction (21-40 μL). These changes in growth 

direction can occur until the triple-line coincide completely with the boundary of the field, and at this point 

the drop has self-aligned with the field of lower advancing contact angle. The drop stays aligned (within 

uncertainty) for the remainder of the experiment (40-100 μL). 

 

Figure 3: Vanishing misalignment of a drop being inflated within the field (𝑑𝑑 = 5 mm) of lower advancing 

contact angle. The upper-right insert shows the field and how the misalignment is defined as the distance 

between drop center and field center. The 4 drop inserts show the different phases of the drop growth. At 

10 μL the growth direction of the drop is governed by structural defects. At 30 μL the drop triple line has 

been obstructed by the rim of the field, where a step in the advancing contact angle is present. At 50 μL the 

triple line coincides completely with the field boundary, and the drop has perfect alignment. From 50 to 90 

μL the drop stays while the drop volume continuous to grow. 

 

Next, we validate that it is a step in advancing contact angle that causes the self-aligning properties. 

Surfaces with fixed 𝐻𝐻 =7.0 μm, 𝑠𝑠 =20.0 μm, and 𝑎𝑎 =0.8 μm, but with different values of ℎ (0, 1.4, and 5.6 

μm) were fabricated. A drop was inflated from 0 to 75 μL on a 𝑑𝑑 =3.2 mm field. Both the advancing contact 

angle and the drop base diameter were measured during the drop inflation. The result can be seen in 

Figure 4b. The two cases with shallower inner hexagon-pits have advancing contact angles, 𝜃𝜃𝐴𝐴,𝑖𝑖𝑖𝑖, 

significantly different from the advancing contact angle on the outside of the field, 𝜃𝜃𝐴𝐴,𝑜𝑜𝑜𝑜𝑜𝑜 (we define this 

difference as: ∆𝜃𝜃𝐴𝐴 = 𝜃𝜃𝐴𝐴,𝑜𝑜𝑜𝑜𝑜𝑜 −  𝜃𝜃𝐴𝐴,𝑖𝑖𝑖𝑖). For ℎ = 0 and 1.4 μm ∆𝜃𝜃𝐴𝐴 evaluates to (47±3)° and (23±6)° 

respectively.  The consequence is an approximately constant contact angle during inflation until the triple 

line coincides with the field boundary. However, as seen in Figure 4c, there seems to be a slight positive 

correlation between the advancing contact angle and the base diameter during the self-alignment phase, 



which has also been observed by Drelich et al. [35, 36] At this point the contact angle increases drastically 

while the drop base width basically stays constant. The contact angle continues to increase until it matches 

𝜃𝜃𝐴𝐴,𝑜𝑜𝑜𝑜𝑜𝑜 and afterward the drop base diameter resumes the increase. This abrupt behavior is completely 

absent for the ℎ = 5.6 μm structure, where ∆𝜃𝜃𝐴𝐴 is zero within uncertainty. This validates the hypothesis that 

it is a step in the advancing contact angle that causes the self-aligning properties. We emphasize that it 

needs to be a step that increases the advancing contact angle in order to make a barrier against further 

propagation. When a drop was inflated just outside of the field, making ∆𝜃𝜃𝐴𝐴 highly negative, we observed 

on the contrary a pull of the drop far into the field once the triple-line touched the rim of the field. 

 

To take full advantage of this system for self-alignment of pipetted drops, it is crucial to realize the 

existence of two different tracks of propagation once the drop has self-aligned. This is shown in Figure 4. 

Figure 4a illustrates the two tracks of continuation. Track A is a continued inflation. This is also the situation 

explored in Figure 4b. As discussed before, the drop will be aligned with the field until its contact angle 

matches the advancing contact angle on the exterior, 𝜃𝜃𝐴𝐴,𝑜𝑜𝑜𝑜𝑜𝑜. At this point the triple-line will initiate 

movement and its alignment will be lost. Track A gives access to a drop volume as large as possible. 

However, the triple-line is strongly pinned, which gives the opportunity to deflate the drop rather than 

continuing the inflation. Track B illustrates this possibility. Also in this case the triple-line will be pinned, and 

will not contract before the contact angle matches the receding contact angle on the field, 𝜃𝜃𝑅𝑅,𝑖𝑖𝑖𝑖. Utilizing 

both tracks allows access to a much wider range of drop volumes for a specific design base diameter, 𝑑𝑑. The 

two tracks (A and B) were pursued forℎ = 1.4 µm. The result can be seen in Figure 4c, and the insert 

illustrates how the drop inflation is from the region of shallower hexagon pits and towards the deeper 

ones. Each data point is an average based on 3 measurement series and with associated sample standard 

deviation plotted as errorbars. It is observed how the drop base diameter keeps expanding until it reaches 

3.2 mm. At this point the drop volume continues to change while the drop base diameter is practically 

fixed. A very low receding contact of the inner field is evident as the drop base diameter does not start to 

decrease before volumes corresponding to a receding contact angle less than 10°.[37] Thus, as indicated in 

Figure 4c, introducing a step-up in the advancing contact angle, allows a surface with self-aligning 

properties and with access to any contact angle in a large span; here, 10° to 164°. 

 

 

 

 



 

 

 

 
 

Figure 4: a) Schematic showing the initial self-alignment phase and two different tracks A and B to follow 

once the drop has self-aligned. Track A is a continued inflation and a triple-line being pinned until the critical 

contact angle, 𝜃𝜃𝐴𝐴,𝑜𝑜𝑜𝑜𝑜𝑜, is reached. Track B is the choice to deflate the drop while the triple-line stays pinned 

until the contact angle has decreased to the receding contact angle of the inner field, 𝜃𝜃𝑅𝑅,𝑖𝑖𝑖𝑖. b) Advancing 

contact angle and drop base diameter measured for a 75 μL drop during inflation on a 𝑑𝑑 =3.2 mm field. An 

abrupt change is present for ℎ = 0 and 1.4 μm while absent for ℎ = 5.6 μm. ∆𝜃𝜃 is the difference in advancing 

contact angle on the outer and inner field. c) The pursuit of Track A and B from (a). A 75 μL drop is inflated 

on the ℎ = 1.4 µm sample for Track A and a 30 µL drop for Track B. The drop base diameter is measured 

during the inflation and deflation procedure. The insert shows the expansion direction of the inflated drop, 



and how it arrives from the shallower pits and approaches the deeper. Also here we clearly see the triple-

line stall at a drop base diameter of 3.2 mm.  

 

Figure 5 addresses the stability of the aligned drop. A tilting experiment was performed, where drops of 

various sizes were tilted. The drop base length was in each case measured at different tilting angles to find 

the onset of an irreversible elongation caused by an advancement of the leading drop end. Drops of sizes 

30, 35, 40, and 45 μL were tested on ℎ = 0 μm, and 30 and 40 μL on ℎ = 1.4 μm. A drop was initially aligned 

and the substrate was afterward tilted at an angular velocity of 1 degree per second. All drop sizes were 

tested 3 times. Figure 5a shows that the smaller the drop, the larger inclination is needed to cause 

elongation of the base length. In the investigated domain the onset is believed to be a simple function of 

the difference between the apparent contact angle, 𝜃𝜃, for the given drop, and the advancing contact angle 

on the exterior to the field, 𝜃𝜃𝐴𝐴,𝑜𝑜𝑜𝑜𝑜𝑜. To validate this hypothesis a linear fit was calculated using between 9 

and 15 data points just after the onset of the elongation, and then extrapolation was used to determine the 

angle equivalent to the initial drop length of 3.2 mm. The initial (for zero tilt) apparent contact angle was 

also measured, and the error associated was found using the standard sample deviation with the 3 

measurements. On the insert in Figure 5a the sum of the initial apparent contact angle (CA) and the tilting 

onset is plotted for the tested volumes. The sum is consistent with the hypothesis of being independent on 

both structure type and drop volume. A constant fit is made giving a sum value for ℎ = 0 μm of (158±1)°. 

From Figure 4b the exterior advancing contact angle is found to be (167±2)°, which is not consistent with 

the constant fit, suggesting that the model may be qualitatively correct but inadequate. The pinning force 

for these hierarchical structures are also visualized in Figure 5b, where a 50 μL drop on a 5 mm field stays 

pinned even under vertical tilting conditions. The pinning force (per unit of length) can be calculated from: 

𝑓𝑓 =
2𝑉𝑉𝑉𝑉𝑉𝑉
𝜋𝜋𝜋𝜋

sin𝛼𝛼 ,           (1) 

[38]. Here 𝜌𝜌 is the water density, 𝑉𝑉 the drop volume, 𝛼𝛼 the slide-off angle, 𝑔𝑔 the acceleration of gravity, 

and 𝑑𝑑 the field diameter. From the 50 µL vertically pinned drop in Figure 5b a lower bound for the pinning 

force can be found to be (63±3) mN/m. In Figure 5a, we see that drops of 40 and 45 μL in volume for  ℎ = 0 

μm slide off the surface at inclination angles 𝛼𝛼 of 68° and 59° respectively (as determined from the angle 

where the curves diverge). This allows the pinning force to be estimated by equation 1) to be (72±2) mN/m 

and (75±2) mN/m respectively. This force is consistent with the previously found lower bound of 63 mN/m 

from the larger d = 5 mm field, thereby supporting the appropriateness of using a force density to 

characterize the pinning. 

 



 

 

 

 
 

Figure 5: a) Drop base length measured for different tilting angles. The drop length is equal to the initial 

drop length (the length for a zero tilt) until a certain onset (with positions indicated by arrows). The position 

of the onset clearly depends on the drop volume. The drops measured on are all self-aligned initially causing 

them to have the same initial base diameter but in return different apparent contact angles. The insert 

shows the sum of the onset angle and the apparent contact angle for zero tilt. The dashed line is a constant 

value fit for ℎ = 0 µm showing how the sum seems independent of both drop volume and structure height, 



ℎ. b) A 50 μL drop on a 𝑑𝑑 = 5 mm region at different tilting angles. The high drop-surface adhesion force 

causes the drop to stay pinned even under vertical conditions. 

 

The meaningfulness of using the advancing contact angle for wetting characterization has spawned a long-

lasting debate. It has for a long time been the belief that the difference in advancing and receding contact 

angle, the so-called hysteresis, is a good descriptor for the surface-water adhesive properties. Recent 

results, however, seem to indicate that for superhydrophobic surfaces only the receding contact angle 

varies, while the advancing contact angle is invariably 180 degrees. [38, 39] Nevertheless, an interpretation 

of the apparent contact angle in a drop advancing situation, as being the advancing contact angle still 

seems to be useful. Our finding, that ∆𝜃𝜃𝐴𝐴 ≠ 0 has a measurable pinning effect for the advancement across 

the step, shows that the advancing contact angle can differ from 180°, and is not merely a consequence of 

poor determination of the contact angles. The measuring of a <180º advancing angle is thus likely a 

consequence of the drop being in a rose petal type of wetting configuration. This is particularly clear when, 

as observed, an abrupt change in the conventional advancing contact angle[40] can cause a sudden 

immobilization of the triple-line. Zhang et al did a numerical study in 2015,[41] where they claimed to have 

shown that pinning of the triple-line on chemically heterogeneous surfaces is only subject to a slow-down, 

rather than a complete immobilization. For chemical patterns, this is supported by the Hu et al paper on 

wettability contrast in 2016.[23] A structural step may however impose a much stronger pinning effect for a 

drop to pass.  

 

The results presented in this work further provide insight of how to accurately predict the contact angle. 

Uses of the Wenzel or the Cassie-Baxter equation is far from adequate, as we have observed how the 

contact angle can be strongly dependent on the drop volume. We have found how the contact angle is a 

simple function of drop base diameter and drop volume for pinned triple-lines. This independence of the 

particular surface structures involved is consistent with the work of Liu et al from 2011,[42] who examines 

exactly this situation and propose a new wetting mechanism when the triple contact line is pinned. 

 

Conclusion 

We presented a method to spatially confine a liquid volume and force it to have a specific surface contact 

area. The confinement was achieved by implementing a step in the advancing contact angle. This acts as an 

energetic barrier opposing further advancement, which eventually causes the drop triple-line to self-align 

with the boundary of the designed confinement area. The stability of the self-aligned drop was 

characterized and we revealed a simple correlation between drop volume and the maximum tilting angle 



before compromising the alignment. The water-surface pinning force was measured to be (75±2) mN/m, 

which is equivalent to vertical pinning of a (38±2) μL drop on a 3.2 mm circular area. The toolbox to 

manipulate liquids has been continuously expanded over the past decades. But, only recently have the 

advancing and receding contact angles received attention. With this work, we contributed in pinpointing 

the importance of the advancing contact angle properties for pinned rose petal type surfaces.  
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