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Abstract

Second generation biorefineries transform lignocellulosic biomass into chemicals

with higher added value following a conversion mechanism that consists of:

pretreatment, enzymatic hydrolysis, fermentation and purification. The objective

of this study is to identify the optimal operational point with respect to maximum

economic profit of a large scale biorefinery plant using a systematic model-based

plantwide optimization methodology. The following key process parameters are

identified as decision variables: pretreatment temperature, enzyme dosage in

enzymatic hydrolysis, and yeast loading per batch in fermentation. The plant

is treated in an integrated manner taking into account the interactions and

trade-offs between the conversion steps. A sensitivity and uncertainty analysis

follows at the optimal solution considering both model and feed parameters.
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It is found that the optimal point is more sensitive to feedstock composition

than to model parameters, and that the optimization supervisory layer as part

of a plantwide automation system has the following benefits: (1) increases the

economical profit, (2) flattens the objective function allowing a wider range of

operation without negative impact on profit, and (3) reduces considerably the

uncertainty on profit.

Keywords: Second generation bioethanol plant; Nonlinear model-based

optimization; Uncertainty and sensitivity analysis; Steam pretreatment;

Enzymatic hydrolysis; C5 and C6 co-fermentation.

Nomenclature

βk The β coefficient in global sensitivity analysis.

δk Non-dimeansional local differential sensitivity measure of cost function c

with respect to parameter θk.

ẋ Vector of state derivatives used in dynamic modelling.

ẋf Vector of state derivatives used in fermentation dynamic model.

RF Correlation matrix for fermentation model parameters.

RL Correlation matrix for liquefaction model parameters.

RP Correlation matrix for pretreatment model parameters.

R Correlation matrix for the entire integrated process.

σy Standard deviation of the objective function.

σθk
Standard deviation of parameter θk.

θk Model parameter k. See Table 1 from the supplimentary material for a

full list of model parameters.
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c(x, u) Cost function as a relation of model states x and decision variables u.

[unitcost].

Cb Feedstock composition in [g/kg].

cf Cost of fermentation.

co Value of cost function at the optimal solution.

CACS
Acetyls concentration [g/kg].

CCS
Cellulose concentration [g/kg].

ceh Cost of enzymatic hydrolysis.

CEth Concentration of ethanol [g/kg].

cssk
Cost value in steady-state when varying parameter k.

EHMF 5-HMF activation energy.

f(x, u) Nonlinear process model of states x and inputs u formulated as equality

constraints.

Fb Feedstock flow rate [kg/h].

Fe Enzyme dosage [kg/h].

Fs Steam flow rate [kg/h].

g(x, u) Inequality constraints used as ranges for decision variables.

h(xf , uf ) Dynamic model for C5-C6 co-fermentation.

K2 Cellulose to glucose reaction constant.

My Yeast seed [kg].

MEth Mass of ethanol [kg].

Pb Feedstock price [unitcost/(kg/h)].
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Pe Enzyme price [unitcost/(kg/h)].

Ps Steam price [unitcost/(kg/h)].

Py Yeast price [unitcost/kg)].

PMPX
Ethanol inhibition on xylose uptake.

qMaxAc
Maximum acetate uptake rate.

RB Severity factor dependency.

tf Final time in fermentation [h].

Ttr Thermal reactor temperature [◦C].

u Vector with all decision variables.

uf Input variables in fermentation.

xf Process states in fermentation.

YCellG Biomass growth on glucose.

YEthG
Ethanol production from glucose uptake.

YEthX
Ethanol production from xylose uptake.

zi Initial guess for the optimization problem.

zo Optimal solution.

1. Introduction

Second generation lignocellulosic biorefineries reached commercial reality in

2012 [1], and several large scale plants are in operation nowadays including Beta

Renewables, Abengoa Bioenergy, GranBio and POET-DSM [2]. Most biorefineries

produce bioethanol, but the drop in oil price reduced the demand on the biofuel.

However, plant upgrades for chemicals with higher-added values are pursued

making biorefineries still competitive in an oil dependent environment [3].
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This study deals with optimizing the daily operation of a large scale second

generation biorefinery with a well established conversion route for bioethanol

production. The focus is not a techno-economic assessment of alternative biomass

conversion technologies but rather assumes a plant has already been built and is

in operation.

The latest developments in biorefinery technology show that integrating the

facility with a nearby power plant following the Integrated Biomass Utilization

System (IBUS) [4] has a major impact on cost efficiency. E.g. the Inbicon

plant is integrated with Asnæsværket situated in Kalundborg Denmark and they

are both owned by the same company DONG Energy. The symbiosis between

the biorefinery and the power plant allows the exchange of by-products for

consumables, e.g. lignin bio-pellets for steam.

Modeling and simulation are used in this study as enabling technology to

analyze plant performance as basis for an overall optimization. The objective of

the optimization problem is to maximize the plant economical profit, considering

prices for the most important consumables and end products of the process:

biomass, enzymes, yeast and ethanol.

The conversion route from lignocellulosic material to products with higher

added value consists of: pretreatment, enzymatic hydrolysis, fermentation, and

purification [1, 4]. Lignocellulosic biomass contains cellulose, hemicellulose

(xylan and arabinan), lignin, ash, and other residues [5]. The scope of the

pretreatment process is to open the biomatrix, relocate lignin and partially

hydrolyze the hemicellulose such that cellulose would become more accessible

to the downstream process of enzymatic hydrolysis [6]. During pretreatment,

inhibitors such as organic acids, furfural, and 5-Hydroxymethylfurfural (5-HMF)

are also created due to sugar degradation. Organic acids change the pH of

medium, but can be automatically neutralized by a pH controller for ensuring

optimal enzymatic conditions [7]. Furfural, 5-HMF, and acetate are fermentation

inhibitors [8], while the remaining hemicellulose fraction leads to xylooligomers

and xylose formation in the enzymatic hydrolysis process, which strongly inhibit

the enzymatic activity [9].
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There are trade-offs between the conversion steps. Too little biomass pre-

treatment would reduce the exposed cellulose to enzymes, and also increases

the amount of hemicellulose for enzymatic hydrolysis, which would eventually

decrease the glucose yield due to xylose and xylooligomers inhibition. On the

other hand, too much biomass pretreatment would increase the amount of

fermentation inhibitors leading to a lower ethanol yield.

Most existing studies focus on operational optimization conducting small

scale experiments in the laboratory for finding the best pretreatment conditions

such that ethanol yield is maximized [10–13]. The traditional focus is on one

unit at a time (pretreatment versus enzymatic hydrolysis versus fermentation)

but the entire process is rarely considered although the biomass conversion

steps are inherently dependent and integrated. The single step methods are

suboptimal from an economic point of view as they do not focus on overall

process economics. Furthermore, in existing studies, the enzymatic hydrolysis

and fermentation processes are usually conducted following a fixed recipe, i.e.

no correction action or feedback is taken to counteract the effects of inhibitors.

For example, one could increase the enzyme dosage when xylooligomers and

xylose inhibit glucose production, or adjust the yeast seed in fermentation to

compensate for inhibitors.

Therefore the focus of this paper is on systematic methods and tools to facili-

tate the further process optimization and daily operation of second generation

bioethanol plants. The paper shows how overall optimization can be achieved

and how sensitivity and uncertainty can be assessed with respect to feedstock

composition and kinetic parameters. A Monte Carlo technique with Latin Hy-

percube Sampling and correlation control is used for the uncertainty analysis

following the methodology from [14, 15].

This paper is structured as follows: the methods section revises the method-

ology for building the optimization layer for plantwide operation, along with the

theoretical part of the sensitivity and uncertainty analysis. The results and dis-

cussion follow where the profit curve, costs, and optimal solutions are presented

along with their uncertainty bounds. The paper concludes with a summary of all
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important findings.

2. Methods

2.1. Second Generation Bioethanol Plant

Figure 1 illustrates a generic large scale second generation biorefinery concept

for bioethanol production. The pretreatment process consists of a continuous

thermal reactor and a separation press, which were modeled and analyzed in

[16, 17]. The thermal reactor is equipped with temperature control for adjusting

the reaction temperature Ttr [18]. When hemicellulose is hydrolyzed, it produces

xylose and arabinose (C5 sugars). After separation, the liquid part containing the

C5 sugars is directly pumped into fermentation reactors, bypassing the enzymatic

hydrolysis reactors. Cellulose can also be degraded in the pretreatment process,

but the produced glucose (C6 sugar) is not lost as it is added to fermentation

along with the C5 sugars from the liquid fraction.

Figure 1: Biorefinery diagram with assumed instrumentation. Pretreatment, enzymatic hydrolysis,

and purification are continuous processes, while fermentation occurs in scheduled batch reactors.

Feedstock composition is assumed to be known, and can be measured in reality with NIR equipment.

The enzymatic hydrolysis process was thoroughly described and analyzed in

[19]. It runs at a high dry matter content in a continuous mode and consists

of a series of hydrolysis tanks. The first reactor is described in [20] followed
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by conventional continuous stirred tank reactors in order to meet the neces-

sary hydrolysis retention time of 140 h. The tanks are equipped with pH and

temperature controllers in order to keep optimal conditions for the enzymatic

activity: e.g. pH = 5, and T = 50 ◦C [21]. Enzymes are added by a pump from a

storage tank. The enzyme dosage Fe can be adjusted accordingly and constitutes

a degree of freedom in the optimization problem.

The fermentation process runs in scheduled batch mode in a number of tanks

with a maximum holdup of 250 m3. It is assumed that the size of the reactors has

been optimally designed before construction to ensure high titer of ethanol. The

fermentation tanks have pH and temperature controllers. Each batch consists

of an inoculum phase, the fed-batch phase (which cannot be neglected because

it takes 60 h to fill the tank, time when reactions already take place), the batch

stage, and an unload step. These stages are illustrated in Figure 2a. In the

inoculum phase, 10 t of hydrolyzed fibers rich in glucose are mixed with My

kilograms of yeast and diluted with water. The amount of yeast addition My

is one of the operation parameters. The fed-batch phase starts as soon as the

inhibitors are removed, after about 10 h. The fermentation tank is filled up to

220 t with a constant feed rate calculated as the sum between the enzymatic

hydrolysis outflow rate and the C5 liquid from the pretreatment process. Once

the tank is filled, the batch phase begins where the C5 and C6 sugars are slowly

depleted. The batch stage has a fixed duration set to 120 h.

A large scale biorefinery has several fermentation reactors running in parallel

following a certain scheduling algorithm. Figure 2b shows the scheduling algo-

rithm for 5 reactors such that the overall fermentation inflow and outflow rates

have minimum interruptions. This is achieved by aligning in series the fed-batch

phases from all tanks, and by synchronizing the unload stages.

The distillation and purification phase separates lignin and water from

ethanol. Lignin is recovered as bio-pellets in a evaporation unit as a refin-

ery by-product. The lignin bio-pellets are sent to a nearby power plant where

they are co-burnt with coal for steam generation. Lignin bio-pellets are very

important for the overall process economics because they contain enough energy
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(a) Fermentation process consisting of 4 phases: inoculum (10 h), fed-batch (60 h), batch

(120 h), and unload (70 h).

(b) An example of a fermentation process with 5 scheduled reactors. The reactors are

scheduled such that the liquefied fiber inflow and ethanol outflow stay constant with

minimum interrupts.

Figure 2: Fermentation process: sequential operation and scheduling.
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to produce the required steam for ethanol recovery [22]. The exchange of bio-

pellets for steam illustrates the symbiosis between the biorefinery and the nearby

power plant following the Integrated Biomass Utilization System (IBUS) [4].

Bioethanol is the main product, which achieves a high concentration of 99.5 %

with the help of several molecular sieves.

The amount of total solids in each conversion step is measured and controlled.

This is a key performance feature that enables constant residence times in the

reactors and flattens distillation steam consumption.

One can change either the reaction time by modifying the retention time

of each individual process, or adjusting the pretreatment temperature, enzyme

dosage, and yeast seed to maximize ethanol yield. Since most second generation

plants are new, the focus of this study is to maximize the daily operation efficiency

of the plant assuming a constant throughput in the refinery, also defined as Mode

I in [23]. This constraint translates to a fixed pretreatment time, i.e. 15 min, a

constant enzymatic hydrolysis time of 140 h, and a fermentation time of 190 h

per batch for the demonstration scale plant studied here. The degrees of freedom

then become: the thermal reactor temperature Ttr, the enzyme dosage Fe, and

yeast seed My, which are the key process parameters to use in the overall

optimization.

For commercial scale plants, once the efficiency has been maximized, the

optimization problem can be extended to maximize production or search for a

maximum throughput by adding the raw material inflow as a degree of freedom

in the optimization problem. Maximizing the throughput, defined as Mode II in

[23], is not in focus in this study.

2.2. The Optimization Layer

This study aims to develop an optimization method for maximizing the daily

operational efficiency that would be implemented as a supervisory layer at a

large scale facility. Figure 3 shows the role of the optimization layer, and how it

interacts with the system identification layer, the control system, and the real

plant. The model identification layer utilizes real measurements to calibrate
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the plant model such that predictions become more accurate. The control layer

translates the optimal setpoints into actuator commands to ensure reference

tracking for the key process states or variables. For pretreatment, temperature

regulation is the key variable [18]. For enzyme dosage, the flow of enzymes is

controlled. Yeast seed control requires a mass estimator and control of added

yeast. Common practice for a new plant is to design the control system to keep a

constant throughput [23].

The dynamic models used in this study were validated against data that were

collected at the Inbicon demonstration scale plant for a throughput of 1 t/h of

raw biomass. This flow rate was chosen in order to minimize the impact of

pretreatment disturbances on fiber composition. At higher throughputs vertical

temperature gradients appear in the thermal reactor that create layers of different

biomass composition [16].

Figure 3: Block diagram showing the interaction between the optimization layer designed in this

study and the real plant. The optimization layer calculates setpoints for pretreatment temperature,

enzyme dosage and yeast seed. All models are calibrated by the system identification layer based on

plant measurements.

The optimization layer is solved or updated either when the underlying

models are recalibrated to fit new acquired data, when feedstock composition

changes (e.g. due to different biomass type or variability in feedstock content,
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which can be measured either offline or online with NIR equipment), or when

prices change (e.g. ethanol price increases, enzymes price decreases, yeast can

be grown at a lower price etc.). Model calibration and feedstock composition

can change on a daily basis while prices are set through contracts with suppliers

and remain constant over a much longer period.

The solution of the optimization problem provides setpoints for the pretreat-

ment temperature, enzyme dosage, and yeast seed. The system constraints are

formulated based on validated large scale models for: hydrothermal pretreatment

with steam [17], enzymatic hydrolysis [19], and C5 and C6 co-fermentation [24].

The optimization problem is formulated as a constrained nonlinear programming

problem (NLP) with the following generic formulation [25]:

max
u

c(x, u)

subject to f(x, u) = 0

g(x, u) ≤ 0

(1)

where u is a vector of the decision variables or degrees of freedom, x represents

the process variables, and c(x, u) is the nonlinear objective function. f(x, u) = 0

and g(x, u) ≤ 0 are equality and inequality nonlinear constraints as functions of

process and decision variables. The solution of optimization problem (1) is found

by a nonlinear programming solver (e.g. the optimization toolbox in Matlab

contains function fmincon, which finds the minimum of a constrained nonlinear

multivariate function).

2.3. Mathematical Models

The optimization layer uses a dynamic biorefinery simulator to calculate the

stabilized or steady-state outputs for the continuous processes of pretreatment

and enzymatic hydrolysis, and the final states at the end of the batch fermenta-

tion. The mathematical models are complex and nonlinear. Finding an analytical

solution for steady-states might not be feasible. An alternative is to run a suf-

ficiently long simulation until all outputs reach steady state. The fermentation

model is a batch process and the outputs are collected after running a dynamic

12



simulation for 190 h, i.e. the end of the batch phase as shown in Figure 2a, which

is a fixed amount of time by design due to setting a constant throughput of

material in the biorefinery. The pretreatment and enzymatic hydrolysis models

have already been published in [17] and [19]. The fermentation tank is modeled

as a continuous stirred tank reactor (CSTR) with reaction kinetics derived from

[24, 26]. The equations of all models used to simulate the integrated process

are provided in the supplementary material.

The plant simulator is implemented in modules, one for each conversion

step, i.e. pretreatment, enzymatic hydrolysis and fermentation. Each module

has inputs, internal states, outputs and a set of parameters. The inputs and

the outputs are data structures containing information on flow rate (in kg/h),

composition (in g/kg) and enthalpy (in kJ/kg). E.g. the pretreatment block has

1 biomass input (i.e. the feedstock), which has a feed rate set to 1000 kg/h

with the composition from Table 2, and 1 steam input. The thermal reactor is

temperature controlled and the steam valve is adjusted accordingly to reach the

desired pretreatment temperature. The pretreatment block has 2 outputs: 1 of

fibers with high dry matter and 1 liquid stream rich in C5 sugars. The fibers

output from the pretreatment block is connected to the input of the enzymatic

hydrolysis block, while the output with C5 sugars is connected to one of the

inputs of the fermentation block. The inputs and outputs of each block and their

interconnection are represented with arrows in Figure 1.

Table 1 offers a summary of the integrated model complexity. The overall

model accounts for 96 kinetic parameters, 580 states, 10 inputs and 25 outputs.

The table also offers a split of the modular model based on the conversion step.

The high number of states in pretreatment and enzymatic hydrolysis is due to

the computational fluid dynamics tools (the convection equation discretized in

space) used for modeling the thermal reactor and the first enzymatic hydrolysis

tank. Nominal values for kinetic and feed parameters are given in Table 1 in the

supplementary material.
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Table 1: Model summary: number of parameters, states, inputs and outputs. Half of the pretreatment

outputs (the pretreated fibers) are directed to the enzymatic hydrolysis process, while the other

half (the C5 liquid) is connected to fermentation. The outputs from the enzymatic hydrolysis are

connected to fermentation.

Model Parameters States Inputs Outputs

Pretreatment 17 298 10 36

Enzymatic Hydrolysis 46 257 18 19

Fermentation (1 tank) 33 25 37 25

Total 96 580 10 25

2.4. Plantwide Optimization Methodology

The methodology steps for finding the optimal operational point of a plant

are extended from [25]:

1. Select the objective or cost function;

2. Identify the decision variables;

3. Formulate process model constraints and set bounds for decision variables;

4. Formulate and solve the NLP optimization problem;

5. Sensitivity and uncertainty analysis of the optimal solution.

The optimal solution is analyzed from a sensitivity point of view using similar

tools as in [14, 15, 17]. Mathematical models that describe complex systems are

often over-parametrized. The sensitivity analysis quantifies the relation between

the cost function and model parameters when the system runs at the optimal

point. The aim is to rank all model parameters by their significance with respect

to the profit value at the nominal operational point. Also a subset of relevant

parameters can be extracted for calculating the uncertainty bounds.

A non-dimensional measure of local sensitivity suitable for steady-state signals

is the differential sensitivity measure defined in [27] and [28]:

δk = ∂ck
∂θk

θk
cssk

(2)
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where ∂ck/∂θk is the variation in profit with respect to a model parameter, and is

calculated based on finite differences. θk is the kth parameter, and cssk
is the profit

or the value of the cost function in steady-state. All model parameters are sorted

in descending order with respect to δk, and a subset is created with all parameters

that have δk above a threshold. The reduced subset of model parameters reduces

model complexity and is then used in the uncertainty analysis.

The propagation of uncertainty is analyzed with a Monte Carlo procedure as

described in [14]:

1. Define input uncertainty;

2. Parameter sampling;

3. Monte Carlo simulations;

4. Output uncertainty.

The input uncertainty is defined with standard deviations and correlation

matrices obtained from previous studies. Dealing with many parameters implies

a large number of combinations of parameter values with high correlation be-

tween them. In order to reduce the number of parameter samples but preserve

statistical meaning, a Latin Hypercube Sampling (LHS) technique with correla-

tion control is utilized [29]. LHS generates less samples of parameters but is

made statistically plausible with the help of a distribution function, standard

deviation, and correlation matrix. For each set of samples, a simulation is then

run and the output is collected. After all Monte-Carlo simulations are performed,

enough output information is obtained to statistically compute the median and

the 5th-95th percentile confidence intervals.

A global sensitivity analysis supplements the Monte-Carlo simulations results.

The statistical distribution of both the model parameters and the biomass inflow

composition are taken into account. The methodology includes two steps [15,

30]: (1) fitting a linear model from each variable of interest (model parameter

and biomass composition) to the optimization objective function, which is the

biorefinery profit calculated as in Equation (6) and generated through Monte

Carlo simulations; (2) calculating the standardized regression coefficients as
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a global sensitivity measure, which indicate how much of the output standard

deviation is explained by the standard deviation in each input variable.

Step (1) finds coefficients a and bk from Equation (3) using a least squares

method. The linear model fits the objective function while the input param-

eters are contained in vector θ, i.e. both model parameters θR and feedstock

composition Cb.

yreg = a+
∑
k

bkθk (3)

Step (2) uses Equation (4) to calculate the β coefficients, which reflects how

much of the output variation is explained by parameters uncertainty:

βk = σθk

σy
bk (4)

3. Results and Discussion

This section first presents values of model and feed parameters. The opti-

mization problem is then formulated, it is shown how a solution is found and

the properties of the results are discussed. A sensitivity analysis with respect to

model kinetic parameters is then presented. A subset of sensitive parameters is

identified, and Monte Carlo simulation is employed to quantify the uncertainty

of the optimal solution. The costs and profit curves are also computed with

uncertainty bounds. Furthermore, a global sensitivity analysis is made in order

to identify bottlenecks in model predictions with respect to feed and model

parameters. Uncertainty is then embedded in the formulation of a stochastic

optimization problem. As a final result, dynamic simulations show the refinery

operation at the optimal point.

3.1. Model Initialization

Table 2 shows the feed parameters, i.e. raw biomass inflow rate, composition

and initial temperature. The inflow rate is set to 1000 kg/h, the throughput of

a demonstration scale plant. The biomass composition resembles wheat straw

with an initial dry matter of 89 % [6].
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Table 2: Biorefinery inputs: inflow rate, raw biomass composition, and initial temperature.

Description Value Unit % of dry matter

1 Inflow rate 1000 kg/h

2 Cellulose 360 g/kg 40.45

3 Xylan 187 g/kg 21.01

4 Arabinan 23 g/kg 2.58

5 Lignin 200 g/kg 22.47

6 Acetyls 44 g/kg 4.94

7 Ash 26 g/kg 2.92

8 Water 110 g/kg -

9 Other 50 g/kg 5.63

10 Temperature 15 ◦C

Table 1 from the supplementary material indicates the values with units for all

96 model parameters. The table is split into pretreatment, enzymatic hydrolysis

and fermentation. The model parameter values are taken from [17] (pretreat-

ment), [19] (enzymatic hydrolysis) and [24] (C5 and C6 co-fermentation).

3.2. The Optimization Problem

The application of the optimization methodology is now highlighted for the

case study:

1. Select the objective or cost function:

The cost function from this study represents the profit for one fermentation

batch defined as the difference between ethanol revenue and operating

costs related to biomass, steam, enzymes, and yeast:

c(MEth, Fb, Fs, Fe,My) = MEth(tf )PEth − (FbPb + FsPs + FePe +MyPy)

(5)

Ethanol revenue is calculated as MEth(tf )PEth, i.e. mass of ethanol in kg

at the end of the batch phase tf times its price per kilogram PEth. My is
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the mass of yeast added to the fermentation tank in the inoculum phase.

The operating costs are defined as flow rate or mass of utility times its

price. The refinery consists of two continuous processes, i.e. pretreatment

and enzymatic hydrolysis, and a batch process, i.e. fermentation. The

weights Pb (cost of biomass), Ps (cost of steam), and Pe (cost of enzymes)

are related to the continuous processes, i.e. pretreatment and liquefaction,

and are measured in unitcost/(kg/h). Py (cost of yeast) is measured in

unitcost/kg. The overall measuring unit of the cost function becomes the

unitcost, which can represent any currency.

Capital costs do not enter the objective function because they are not

functions of the decision variables but rather a fixed amount. Capital

costs diminish the potential profit by a constant and should be taken

into consideration to give a full meaning to the profit solution from the

optimization problem but they do not change the optimal solution.

The feedstock flow rate or refinery throughput Fb is kept constant. Product

FbPb becomes a constant and its derivative with respect to any of the

decision variables is 0. Therefore it can be dropped from the cost function.

Distillation costs are neglected because the second generation biorefinery

is considered to be integrated with a power plant exchanging lignin bio-

pellets for steam.

The cost function then becomes:

c(MEth, Fe,My) = MEth(tf )PEth − (FePe +MyPy) (6)

Table 3 shows the weight values used in this optimization study. The

weights from Table 3 are not fixed values but rather used as an example

for the method. Changing the weights would naturally lead to a different

solution, which is a matter of plant operation managers priority. The

values depend on procurement contracts of feedstock and enzymes, and

the relative importance may change.

2. Identify the decision variables:

The outcome of the pretreatment process is sensitive to the thermal reactor
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Table 3: Cost function weights (prices).

Parameter Description Value

PEth Ethanol 5 unitcost/kg

Pe Enzymes 25 unitcost/(kg/h)

Py Yeast 50 unitcost/kg

temperature and retention time [11]. When a constant throughput is

required, the retention time is constant. The thermal reactor temperature

then becomes the only degree of freedom in pretreatment.

The key parameters in enzymatic hydrolysis are: pH, temperature, and

concentration of enzymes. The enzymatic activity is a function of pH and

temperature, which resemble Gaussian curves with single peaks at pH

of 5 units and temperature 50 ◦C [19]. Any deviations from the optimal

point would reduce the enzymatic efficiency. Control loops keep the pH

and temperature close to optimality [7] and it is not indicated to vary

these variables. However, the concentration of enzymes can be adjusted by

changing the inflow rate of enzymes Fe and constitutes the only degree of

freedom in enzymatic hydrolysis for the optimization problem.

The efficiency of the fermentation process is a function of pH, temperature,

and yeast seed. The optimal pH level of the GMO yeast is relatively close

to that of the enzymes, i.e. 5.5 units. The optimal fermentation tempera-

ture is 35 ◦C, which is different from the enzymatic optimal temperature.

Controllers keep the pH and temperature conditions at the GMO yeast

optimal levels throughout the entire fermentation process. The only degree

of freedom considered in fermentation for the optimization problem is the

yeast seed My in the inoculum phase.

In summary, the decision variables are: the pretreatment temperature Ttr

defined as the set-point for the thermal reactor temperature controller, the

inflow rate of enzymes Fe expressed in kg/h, and the yeast seed My in kg
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as a set-point for the amount of yeast used to start the inoculum phase:

u = [Ttr Fe My]> (7)

3. Process model constraints, and bounds for decision variables:

The dynamic integrated models for pretreatment and enzymatic hydrolysis

are detailed in the supplementary material, and are formulated as:

ẋ = f(x, u) (8)

where f(x, u) is a nonlinear function of states x and inputs u. The steady

states are then found as the solution of ẋ = 0:

0 = f(x, u) (9)

Due to the model complexity and the nonlinear nature of f(x, u), an

analytical solution to (9) cannot be easily found. As an alternative, the

steady states are calculated by running a sufficiently long simulation till all

states stabilize.

The dynamic model for fermentation is described by:

ẋf = h(xf , uf ) (10)

where h(xf , uf ) represents a nonlinear complex model of states xf and

inputs uf . The final states at time 190 h are found by integrating the model

numerically (dynamic simulation):

xf (tf ) =
tf∫

0

h(xf , uf )dt (11)

where tf = 190 h, i.e. the end of the batch phase.

The decision variables are bounded as follows:

150 ≤ Ttr ≤ 210 ◦C

10 ≤ Fe ≤ 1000 kg/h

10 ≤ My ≤ 1000 kg

(12)

which allows a wide range of operation for searching the optimal point.
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4. Formulate and solve the overall NLP optimization problem:

max
Ttr,Fe,My

MEth(tf )PEth − (FePe +MyPy)

subject to 0 = f(x(t), u(t))

ẋf = h(xf , uf )

150 ≤ Ttr ≤ 210 ◦C

10 ≤ Fe ≤ 1000 kg/h

10 ≤ My ≤ 1000 kg

(13)

The previous optimization problem is solved numerically by a constrained

minimization solver (e.g. fmincon from Matlab) set to use a sequential

quadratic programming algorithm (SQP) with scaled objective and con-

straints. The initial solution guess is picked to be feasible, and set to:

zi =


Ttr

Fe

My

 =


170 ◦C

150 kg/h

200 kg

 (14)

The initial states of all models are set to 0. The solver takes approximately

3 min to converge on a computer equipped with an Intel i7-5600U CPU.

The following optimal point is reached:

zo =


Ttr

Fe

My

 =


172 ◦C

110 kg/h

142 kg

 (15)

The thermal reactor temperature should be set to 172 ◦C, the enzyme

dosage is of about 110 kg/h, and the yeast seed is of 142 kg. This optimal

set point gives a profit of:

co = 7.6714× 104 unitprofit (16)

disregarding raw biomass, distillation and capital costs.

In order to gain process insight and to observe how pretreatment conditions

affect the downstream processes, an iteration is created through pretreatment
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temperatures between 160 ◦C to 180 ◦C with a step of 1 ◦C. Each pretreatment

temperature changes the fibers and C5 liquid composition. The enzymatic hy-

drolysis and fermentation processes are then optimized in an integrated manner

for each pretreatment temperature:

max
Fe,My

MEthPEth − (FePe +MyPy)

subject to 0 = f(x(t), u(t))

ẋf = h(xf , uf )

10 ≤ Fe ≤ 1000 kg/h

10 ≤ My ≤ 1000 kg

(17)

In this way the pretreatment, liquefaction and fermentation costs, as well as

refinery profit can be observed with respect to pretreatment conditions. The same

methodology can be applied even if there are recycles between fermentation and

liquefaction because these two processes are analyzed in an integrated manner

in optimization problem (17). Algorithm 1 shows how to calculate the curves

for profit, costs, and optimal solution as functions of pretreatment temperature.

z is the optimal solution returned by the optimization problem solver, ceh, cf

are the enzymatic hydrolysis, and fermentation costs, respectively. c is the value

of the cost function or the profit. Algorithm 1 is used later in Algorithm 2 to

determine the uncertainty bounds on profit, costs, and setpoints with respect to

the pretreatment temperature.

3.3. Sensitivity Analysis of Profit Value at the Optimal Point

Figure 4 illustrates the sensitivity analysis of the profit curve with respect

to all model parameters calculated as in Equation (2) at the optimal solution

(15). A sensitivity threshold separates important parameters from unimportant

ones. The sensitivity threshold is typically based on the context of application

[30]. E.g. 1 % as a threshold states that any factors not contributing with 1 % to

the output variance are unimportant while the ones above that are important

for further considerations (e.g. parameter estimation, optimization). For this

particular application a value of 4.6 % is chosen. A lower value would increase
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Algorithm 1 Calculate optimal costs and profit with respect to pretreatment

temperature given a fixed set of model parameters θ and feedstock composition

Cb.

1: function [z, ceh, cf , c] = COSTS(θ, Cb)

2: Set a range of pretreatment temperatures Ttr ← 160 ◦C : 1 ◦C : 180 ◦C

3: Set initial solution guess to z0 ← [100 kg/h 80 kg]>

4: for Each temperature in Ttr do

5: Run pretreatment process at temperature Ttri and obtain composition

of pretreated fibers and C5 liquid.

6: zi ← Solution of optimization problem (17) given the pretreated

fibers composition and C5 liquid from previous step as inputs. Use as initial

guess the solution from previous iteration zi−1.

7: Calculate mass of ethanol at final fermentation time: MEthi
←M(tf )·

CEth(tf ) where tf is the final batch time, M(tf ) is the reactor mass in kg at

time tf , and CEth(tf ) is the ethanol concentration at time tf in g/kg.

8: Enzyme dosage: Fei ← zi(1).

9: Yeast seed: Myi
← zi(2).

10: Calculate liquefaction cost: cehi
← Fei

Pe.

11: Calculate fermentation cost: cfi ←MyiPy.

12: Calculate revenue: ri ←MEthiPEth.

13: Calculate profit ci ← ri − (cehi
+ cfi

).

14: end for

15: end function
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the subset of important parameters but with little or negligible impact on the

solution of the optimization problem.
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Figure 4: Sensitivity measure δk of profit value with respect to model parameters. The model

parameters set is reduced to 22 significant parameters out of 96.

The most sensitive parameter is EF , i.e. the furfural formation activation

energy. Furfural is a strong fermentation inhibitor produced during pretreatment,

and ethanol yield is directly affected by the amount of furfural. The next sensitive

parameter is YEthG
, a yield parameter indicating the amount of ethanol in g

produced per 1 g of glucose. EG or glucose activation energy follows indicating

that cellulose degradation in pretreatment impacts the ethanol yield. Three more

fermentation parameters with similar sensitivity follow, i.e. maximum acetate

uptake parameter qMaxAc
, cell biomass yield on glucose YCellG , and ethanol yield

on xylose YEthX
. 5-HMF production during pretreatment has a relatively high

sensitivity too as it influences both the glucose yield, by degrading it further, and

also by inhibiting ethanol production in fermentation.

The first sensitive enzymatic hydrolysis parameter is RB, i.e. the severity

dependence of the enzymatic activity. RB shows the importance of biomatrix

opening from the pretreatment process as a structural breakdown of the fiber,

which affects cellulose accessibility for enzymes. Other important liquefaction

parameters are K2 and K7, which indicate glucose production rate and enzyme

deactivation in time.

The placement of pretreatment parameters such as EF , EG, EH , and EAc
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among the sensitive parameters shows how important pretreatment conditions

are for downstream. Fermentation parameters are also numerous among the

sensitive parameters. Fermentation with enhanced GMO yeast for bioethanol

production is a key process in the biorefinery together with steam pretreatment.

Liquefaction parameters have a lower importance because the overall hydrolysis

time is long enough to compensate for any parameter uncertainties. The lique-

faction process has a pure hydrolysis phase of 140 h followed by fermentation

where enzymes are still active continuing cellulose degradation (simultaneous

saccharification and fermentation).

The sensitivity threshold is set at 0.046, which reduces the parameters count

to 22 out of 96 showing the importance of the sensitivity analysis in reducing

model complexity. These parameters are then used in the following uncertainty

analysis.

3.4. Uncertainty Analysis of Costs, Profit and Optimal Solution

The standard deviation and correlation matrix for pretreatment and enzy-

matic hydrolysis parameters is obtained from [17] and [18, 28], respectively.

Table 4 displays a list of all sensitive parameters with their assumed uncertainty

as a normal distribution of a mean value and standard deviation. Regarding

the model parameters for fermentation, there is no published real data that

could be used for uncertainty characterization. Therefore, this study follows

techniques from experimental design for system identification, and generates

measurements through simulation, i.e. glucose, xylose and ethanol levels, which

can be obtained in reality from sample based HPLC readings. Normally dis-

tributed measurement noise with 5 % standard deviation is added, and then a

parameter estimation procedure runs on the simulated data for estimating the

standard deviation and correlation matrix for these parameters. The results are

included in Table 4 where the standard deviation for fermentation parameters is

obtained from simulated data as previously described.

The correlation matrix for the sensitive parameters presented in Table 4 is
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Table 4: List with all sensitive parameters with their assumed distribution for uncertainty analysis.

N(m,σ) stands for normally distributed with mean m and standard deviation σ.

Parameter Distribution Reference

Pretreatment

EF N(327 255, 285) [17]

EG N(335 616, 249) [17]

EH N(299 999, 2639) [17]

RB N(2.915, 0.048) This study

EAc N(242 693, 174) [17]

EXo N(298 010, 98) [17]

Enzymatic Hydrolysis

K2 N(0.0065, 0.0001) [18, 28]

K7 N(2.5× 10−7, 0.041 25× 10−7) [18, 28]

EEMC
N(0.016, 0.000 26) [18, 28]

IG2 N(0.067, 0.0011) [18, 28]

Fermentation

YEthG
N(0.47, 6.0744× 10−3) This study

qAcMax
N(1.23× 10−5, 8.2395× 10−7) This study

YEthX
N(0.4, 1.3127× 10−2) This study

YCellG N(0.115, 4.3453× 10−3) This study

PMPX
N(100.2, 1.2852) This study

qMaxX
N(0.8× 10−3, 1.6115× 10−5) This study

qMaxG
N(0.3× 10−3, 6.7299× 10−6) This study

KAcS
N(2.5, 5.7082× 10−2) This study

KIAcX
N(0.2, 8.9583× 10−3) This study

γX N(0.608, 4.0872× 10−2) This study

mG N(2.6944× 10−5, 8.6390× 10−7) This study

KIAcG
N(2.74, 4.2621× 10−2) This study
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built as a block diagonal matrix with the following structure:

R =


RP 0 0

0 RL 0

0 0 RF

 (18)

where RP, RL and RF are full matrices, and represent the correlation of the

sensitive pretreatment, liquefaction and fermentation parameters grouped by

refinery step. It is assumed that the refinery steps are not correlated with

each other, e.g. pretreatment parameters are not correlated with liquefaction

and fermentation parameters. Therefore, R has a block diagonal shape. The

numerical values for RP, RL and RF are included in the supplementary material.

RP and RL are obtained from [17] and [28], respectively. The correlation matrix

for fermentation parameters RF is obtained in this study from simulated data.

Latin Hypercube Sampling (LHS) with correlation control can then be per-

formed for all model parameters. Feedstock composition is sampled assuming

uniform distribution with 5 % variation in composition. N = 200 LHS samples

are extracted for model and feed parameters. The Monte Carlo simulations are

performed by running Algorithm 1 for each set of parameters. The simulation

outputs are collected, and the 5th, 50th and 95th percentiles are then calculated

for profit, costs, and optimal solution.

The uncertainty analysis is carried out separately for feed, and then for model

parameters in order to observe the contribution of each source of uncertainty.

A last analysis combines the samples of feed and model parameters to find the

overall effect of the uncertainty sources on the outputs.

The entire sensitivity and uncertainty analysis for combined model and

feed parameters is summarized in Algorithm 2. To separate model and feed

parameters step 11 from Algorithm 2 is modified either by keeping Cb or θ

constant.

The results of the uncertainty analysis are displayed in Figure 5 and com-

mented below:

• The profit curve is drawn in Figure 5a, which is used to identify the optimal
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Algorithm 2 Sensitivity and uncertainty analysis with combined model and feed

parameters.

1: Initialize model parameters θ and feed composition Cb.

2: Optimal deterministic solution: [Ttr, Fe,My]← (13).

3: Sensitivity analysis of the cost function in [Ttr, Fe,My]: calculate δk as in

equation (2).

4: Rank all parameters with respect to δk.

5: Select a subset θR such that θR is above a threshold.

6: Set standard deviations and correlation matrices for θR.

7: θ ← LHS of θR with correlation control to generate N sets of model parame-

ters.

8: Set bounds for feedstock composition.

9: Cb ← Uniform LHS for feedstock composition to generate N sets of composi-

tions.

10: for Each set of model and feed parameters do

11: [zi, cehi , cfi , ci] = COSTS(θi, Cbi)

12: end for

13: Calculate the 5th, median and 95th percentile for profit, costs, and optimal

solution.
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operational point. The traditional biorefinery operation is to follow a fixed

recipe with little adjustments to pretreatment conditions. This traditional

recipe is most often found by offline experiments on decoupled refinery

steps that do not take into account the interactions between the conversion

stages and utilities prices. The results show that the traditional operation is

sub-optimal from an economic point of view. In contrast, the optimization

layer is capable of adapting to pretreatment temperatures and finds the

optimal operation by considering the integrated process. The optimized

operation is superior to a traditional recipe with a higher median profit

curve at any pretreatment temperature.

At low temperatures, most of the uncertainty is due to model parameters,

but it shifts after 165 ◦C when feed uncertainty becomes dominant. The

traditional operation is highly affected by feed uncertainty, while the

optimized operation has a reduced uncertainty on the profit curve.

Another important result is that the optimized profit curve is flatter than the

traditional curve allowing a wider range of operation with little impact on

profit value. The optimal operational point can be picked as the maximum

point on the median profit curve, and lies between 171 ◦C to 176 ◦C. The

optimal refinery operates at around 18 % higher profit than a traditional

plant without an optimization layer.

• Figure 5b shows the refinery costs split into liquefaction and fermentation

as a function of pretreatment conditions. From left to right, the uncertainty

analysis is carried with respect to separate feed and model parameters (left

and center plots), and combined parameters (right plot). The pretreatment

costs are only due to the steam used in the thermal reactor. The biorefinery

is considered to be integrated with a local power plant, possibly owned

by the same company following the IBUS principle [4]. Such a design

lowers the cost of steam significantly and can be neglected. A higher

pretreatment temperature demands more steam but the overall increase

in cost for modifying the temperature from 160 ◦C to 180 ◦C is negligible
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compared to enzymatic hydrolysis or fermentation.

Liquefaction costs are high at low temperature because: (1) the biomatrix

is not sufficiently opened to expose the whole cellulose, and (2) there is a

large amount of unhydrolyzed hemicellulose, which leads to a high pro-

duction of xylooligomers and xylose that inhibit the enzymatic hydrolysis

further. In order to compensate for these negative effects, both the enzyme

and yeast dosage are increased. The liquefaction costs decrease as the

pretreatment temperature increases, which makes sense as the biomatrix

opens significantly to expose cellulose, and also hemicellulose is partially

removed from the enzymatic hydrolysis process.

Fermentation costs have the shape of a convex curve due to: (1) at low

pretreatment temperatures a higher yeast seed could contribute to a faster

digestion of sugars, which enhances the saccharification process from

fermentation by reducing the C5 sugars inhibition leading to a higher

ethanol yield; (2) at high temperatures the amount of inhibitors negatively

affect fermentation but more yeast could compensate for the inhibitory

effects of the pretreatment degradation products.

Feed uncertainty is rather constant through the entire temperature range.

Uncertainty due to model parameters is high at low temperatures where

the biomatrix opening highly affects the cost range. After 165 ◦C the model

uncertainty is significantly reduced becoming lower than the feed. The

combined model and feed uncertainty indicate high uncertainty at low

temperatures when the pretreatment is insufficient.

• Figure 5c illustrates the optimal solution as a function of pretreatment

temperatures. Enzyme dosage is expressed in kg/h, while yeast seed is

given in kg. Uncertainty is higher at lower temperatures when the biomass

is not sufficiently pretreated, and remains relatively constant once the

biomatrix opens. Also, feed uncertainty has a higher impact than model

parameters after 165 ◦C.

Increasing pretreatment temperatures is beneficial for enzymatic hydrolysis
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as it lowers the necessary enzyme dosage, but is negative for fermentation

as the amount of inhibitors rises with temperature. Also, around the

optimal operational point, uncertainty due to feed parameters dominates

that of model parameters.

In reality there are several factors that can degrade the performance of the

optimization layer, and should be accounted for in real implementation. The feed

rate in this study case was set to a low value, which does not allow inhibitors

accumulation in the fermentation tank. However, at higher feed rates inhibitors

accumulation becomes a bottleneck, which can be counteracted by calculating

an optimal feed rate profile [31]. This study also disregards the temperature

dependence of the yeast performance. In reality the enzymatic hydrolysis and

fermentation processes run at different optimal temperatures. The solution is to

calculate a temperature profile for finding the best trade-off between the two

processes [32, 33].

3.5. Global Sensitivity Analysis at the Optimal Point

The β coefficients are displayed in Table 5. The profit curve is mostly sensitive

to feedstock composition, i.e. cellulosic fiber and acetyls content CCS
and CACS

.

88 % of profit curve variability is explained by cellulose content changes, while

31 % is due to acetyls. A positive β coefficient indicates that an increase in

cellulose content would determine an increase in profit, while a negative value

decreases the profit. Acetyls have a negative impact on profit because they are

responsible for acid release in pretreatment and enzymatic hydrolysis, which

inhibit both the liquefaction and fermentation processes. Yield performance to

convert glucose YEthG
follows with 27 %. It is also noted that unlike the local

sensitivity analysis results presented above, only about 6 parameters are found

to be globally influential on the profit curve (considering a threshold value for

β2 >= 1 %). This means that the profit curve is primarily influenced by feedstock

composition.

Measuring the inflow composition accurately would help to plan the produc-

tion process in advance and reduce the uncertainty on the profit curve.
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Table 5: Sensitivity measure at the optimal point zo. The linear model determination coefficient

R2 = 0.99.

θ Description β

1 CCS Cellulose concentration in feedstock 0.88

2 CACS Acetyls concentration in feedstock −0.31

3 YEthG Ethanol production from glucose 0.27

4 qMaxAc Maximum acetate uptake rate 0.14

5 YCellG Biomass growth on glucose 0.12

6 YEthX Ethanol production from xylose 0.11

7 PMPX Ethanol inhibition on xylose uptake 0.07

8 EH 5-HMF activation energy 0.06

9 RB Severity factor dependency −0.06

10 K2 Cellulose to glucose reaction constant 0.06

3.6. Stochastic Optimization Solution

Finding the optimal point by running the process through a wide range

of pretreatment temperatures requires a long computational time, and is not

feasible in an industrial application. A better way is to embed the feed and model

parameters uncertainty into the objective function, and pick the mean cost value:

max
Ttr,Fe,My

1
N

N∑
1

[MEth(tf )PEth − (FePe +MyPy)]

subject to 0 = f(x(t), u(t))

ẋf = h(xf , uf )

150 ≤ Ttr ≤ 210 ◦C

10 ≤ Fe ≤ 1000 kg/h

10 ≤ My ≤ 1000 kg

(19)

This stochastic optimization is done using N = 200 as the number of random

samples generated through LHS with correlation control. For each sample a

simulation is run and the profit is assessed. After performing all N simulations

the mean value of the profit is calculated, which becomes the cost function. The

33



following optimal solution and cost value are found:

zso =


Ttr

Fe

My

 =


171.5 ◦C

113 kg/h

147 kg

 cso = 7.6020× 104 unitprofit (20)

where zso is the optimal solution in the stochastic optimization case, and cso is

the value of the cost function. Solution (20) is relatively close to the one found

in the deterministic case from (15). A slightly lower profit value is found due to

the nonlinear nature of the process. The model and feed parameters are assumed

to be normally distributed but when propagating through a nonlinear process

the outputs change their distribution type including the mean value.

3.7. Deterministic Simulations at the Optimal Point

As a final result, a deterministic simulation is run corresponding to the optimal

operational point from solution (15). The pretreatment and the enzymatic

hydrolysis are continuous processes and the steady state values at the optimal

point are shown in Table 6. The pretreated fibers are rich in cellulose and have a

dry matter content of about 35 % as suggested by [34] for an efficient liquefaction

process. Most solubles were separated from the fibers in the pretreatment process

before liquefaction. The remaining hemicellulose continues to be degraded to

sugars in the enzymatic hydrolysis tanks. When the level of C5 sugars increase,

they strongly inhibit glucose production and a part of cellulosic fibers remain

in solid state. This is why the liquefied fibers still contain cellulose before

fermentation, i.e. 50 g/kg, approximately 30 % of the initial cellulose content.

The remaining cellulose continues conversion to glucose in the fermentation

tank where enzymes are still active.

Figure 6 shows the fermentation batch process at the optimal point. The top

plot illustrates C6 and C5 sugars depletion, ethanol production, and biomass

growth. The bottom plot displays remaining cellulose and xylan conversion

during simultaneous saccharification and fermentation. In the inoculum phase

(first 10 h) the yeast concentration is high but as the fed-batch phase starts,
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Table 6: Steady states for pretreatment and enzymatic hydrolysis at the optimal point.

Pretreated fibers C5 liquid Liquefied fibers Fermentation

Flow/Mass 2316 kg/h 628 kg/h 2487 kg/h 220 t

Composition 1000 g/kg 1000 g/kg 1000 g/kg 1000 g/kg

Cellulose 146 1.2 50 4.4

Xylan 60 0.5 1 0

Arabinan 0 0 0 0

Lignin 85 0.7 78 60

Acetyls 16 0.1 0.1 0

Ash 6 18 5.7 7.8

Acids 1.5 4.1 16 0

Glucose 3.5 10 98 0

Xylooligomers 0.5 1.2 5.8 0.1

Xylose 10 29.7 59 0

Arabinose 5 15.5 5 0

Furfural 0.2 0.5 0.2 0

5-HMF 0.1 0.3 0.1 0

Base 0 0 6.6 9.5

Enzymes 0 0 4.9 2.4

Biomass 0 0 0 8.4

Ethanol 0 0 0 79

CO2 0 0 0 80

Water 645 918 643 702

Other 21.2 0.2 26.6 46.4

Temperature 50 ◦C 50 ◦C 50 ◦C 35 ◦C

35



biomass concentration is diluted in liquefied fibers from the enzymatic hydrolysis

and C5 liquid from the pretreatment process. Ethanol production has several

stages: (1) formation on glucose consumption till around 100 h, (2) production

based on xylose consumption till 170 h, (3) as xylose is depleted, its inhibition

on enzymatic hydrolysis disappears and glucose production from simultaneous

saccharification and fermentation is accelerated in the last 20 h.
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Figure 6: Simultaneous saccharification and C5-C6 co-fermentation.
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4. Conclusions

This paper has presented a study on economical optimization of a large

scale second generation biorefinery in a simulated environment. The proposed

optimization method advices the operators of the plant at what temperature to

pretreat the biomass, how many enzymes to add in the enzymatic hydrolysis

tanks, and what the yeast seed should be in fermentation such that economical

profit is kept high. Adjustments on these key figures need to be made on a daily

basis in operation due to biomass composition and type variability, changes in

consumables prices, and also due to any other disturbances that can reduce

ethanol yield.

The optimization procedure is based on steady-state models (pretreatment

and enzymatic hydrolysis), and dynamic fermentation model. It was found

that increasing pretreatment temperature is positive for the performance of the

enzymatic hydrolysis while negative for ethanol yield. Uncertainties in kinetics

of pretreatment, liquefaction and fermentation were found to be negligible on

the economic objective function around the optimal operational point. The main

source of uncertainty was found to be the inflow feed composition.

The optimization layer reduced the uncertainty and flattened the profit curve

allowing a wider range of operation with higher profit making the plant operation

more robust to disturbances. The overall improvement of the optimization layer

was found to be 18 % higher than the traditional plant operation.

In addition to these specific results, the paper has contributed by suggesting

a generic method for biorefinery operation optimization and with quantification

of sensitivity and uncertainty on earnings.
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