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Semi-Supervised Generation with Cluster-aware Generative Models

Lars Maaløe 1 Marco Fraccaro 1 Ole Winther 1

Abstract
Deep generative models trained with large
amounts of unlabelled data have proven to be
powerful within the domain of unsupervised
learning. Many real life data sets contain a small
amount of labelled data points, that are typi-
cally disregarded when training generative mod-
els. We propose the Cluster-aware Generative
Model, that uses unlabelled information to in-
fer a latent representation that models the natu-
ral clustering of the data, and additional labelled
data points to refine this clustering. The gen-
erative performances of the model significantly
improve when labelled information is exploited,
obtaining a log-likelihood of−79.38 nats on per-
mutation invariant MNIST, while also achieving
competitive semi-supervised classification accu-
racies. The model can also be trained fully un-
supervised, and still improve the log-likelihood
performance with respect to related methods.

1. Introduction
Variational Auto-Encoders (VAE) (Kingma, 2013;
Rezende et al., 2014) and Generative Adversarial Net-
works (GAN) (Goodfellow et al., 2014) have shown
promising generative performances on data from complex
high-dimensional distributions. Both approaches have
spawn numerous related deep generative models, not
only to model data points like those in a large unlabelled
training data set, but also for semi-supervised classification
(Kingma et al., 2014; Maaløe et al., 2016; Springenberg,
2015; Salimans et al., 2016). In semi-supervised classifi-
cation a few points in the training data are endowed with
class labels, and the plethora of unlabelled data aids to
improve a supervised classification model.

Could a few labelled training data points in turn improve
a deep generative model? This reverse perspective, doing
semi-supervised generation, is investigated in this work.

1Technical University of Denmark. Correspondence to: Lars
Maaløe <larsma@dtu.dk>, Marco Fraccaro <marfra@dtu.dk>,
Ole Winther <olwi@dtu.dk>.

Many of the real life data sets contain a small amount of
labelled data, but incorporating this partial knowledge in
the generative models is not straightforward, because of
the risk of overfitting towards the labelled data. This over-
fitting can be avoided by finding a good scheme for up-
dating the parameters, like the one introduced in the mod-
els for semi-supervised classification (Kingma et al., 2014;
Maaløe et al., 2016). However, there is a difference in opti-
mizing the model towards optimal classification accuracy
and generative performance. We introduce the Cluster-
aware Generative Model (CaGeM), an extension of a VAE,
that improves the generative performances, by being able
to model the natural clustering in the higher feature repre-
sentations through a discrete variable (Bengio et al., 2013).
The model can be trained fully unsupervised, but its per-
formances can be further improved using labelled class in-
formation that helps in constructing well defined clusters.
A generative model with added labelled data information
may be seen as parallel to how humans rely on abstract do-
main knowledge in order to efficiently infer a causal model
from property induction with very few labelled observa-
tions (Tenenbaum et al., 2006).

Supervised deep learning models with no stochastic units
are able to learn multiple levels of feature abstraction. In
VAEs, however, the addition of more stochastic layers is
often accompanied with a built-in pruning effect so that the
higher layers become disconnected and therefore not ex-
ploited by the model (Burda et al., 2015a; Sønderby et al.,
2016). As we will see, in CaGeM the possibility of learn-
ing a representation in the higher stochastic layers that can
model clusters in the data drastically reduces this issue.
This results in a model that is able to disentangle some
of the factors of variation in the data and that extracts
a hierarchy of features beneficial during the generation
phase. By using only 100 labelled data points, we present
state of the art log-likelihood performance on permutation-
invariant models for MNIST, and an improvement with re-
spect to comparable models on the OMNIGLOT data set.
While the main focus of this paper is semi-supervised gen-
eration, we also show that the same model is able to achieve
competitive semi-supervised classification results.
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2. Variational Auto-encoders
A Variational Auto-Encoder (VAE) (Kingma, 2013;
Rezende et al., 2014) defines a deep generative model for
data x that depends on latent variable z or a hierarchy of
latent variables, e.g. z = [z1, z2], see Figure 1a for a graph-
ical representation. The joint distribution of the two-level
generative model is given by

pθ(x, z1, z2) = pθ(x|z1)pθ(z1|z2)p(z2) ,

where

pθ(z1|z2) = N (z1;µ
1
θ(z2), σ

1
θ(z2))

p(z2) = N (z2; 0, I)

are Gaussian distributions with a diagonal covariance ma-
trix and pθ(x|z1) is typically a parameterized Gaussian
(continuous data) or Bernoulli distribution (binary data).
The probability distributions of the generative model of a
VAE are parameterized using deep neural networks whose
parameters are denoted by θ. Training is performed by opti-
mizing the Evidence Lower Bound (ELBO), a lower bound
to the intractable log-likelihood log pθ(x) obtained using
Jensen’s inequality:

log pθ(x) = log

∫∫
pθ(x, z1, z2)dz1dz2

≥ Eqφ(z1,z2|x)
[
log

pθ(x, z1, z2)

qφ(z1, z2|x)

]
= F(θ, φ) .

(1)

The introduced variational distribution qφ(z1, z2|x) is
an approximation to the model’s posterior distribution
pθ(z1, z2|x), defined with a bottom-up dependency struc-
ture where each variable of the model depends on the vari-
able below in the hierarchy:

qφ(z1, z2|x) = qφ(z1|x)qφ(z2|z1)
qφ(z1|x) = N (z1;µ

1
φ(x), σ

1
φ(x))

qφ(z2|z1) = N (z2;µ
2
φ(z1), σ

2
φ(z1)) .

Similar to the generative model, the mean and diagonal co-
variance of both Gaussian distributions defining the infer-
ence network qφ are parameterized with deep neural net-
works that depend on parameters φ, see Figure 1b for a
graphical representation.

We can learn the parameters θ and φ by jointly maximiz-
ing the ELBO F(θ, φ) in (1) with stochastic gradient as-
cent, using Monte Carlo integration to approximate the
intractable expectations and computing low variance gra-
dients with the reparameterization trick (Kingma, 2013;
Rezende et al., 2014).

x

z1

z2 θ

(a) Generative model pθ

x

z1

z2 φ

(b) Inference model qφ

Figure 1: Generative model and inference model of a Vari-
ational Auto-Encoder with two stochastic layers.

Inactive stochastic units A common problem encoun-
tered when training VAEs with bottom-up inference net-
works is given by the so called inactive units in the
higher layers of stochastic variables (Burda et al., 2015a;
Sønderby et al., 2016). In a 2-layer model for example,
VAEs often learn qφ(z2|z1) = p(z2) = N (z2; 0, I), i.e. the
variational approximation of z2 uses no information com-
ing from the data point x through z1. If we rewrite the
ELBO in (1) as

F(θ, φ) = Eqφ(z1,z2|x)
[
log

pθ(x, z1|z2)
qφ(z1|x)

]
−

Eqφ(z1|x) [KL [qφ(z2|z1)||p(z2)]]

we can see that qφ(z2|z1) = p(z2) represents a local max-
ima of our optimization problem where the KL-divergence
term is set to zero and the information flows by first sam-
pling in z̃1 ∼ qφ(z1|x) and then computing pθ(x|z̃1) (and
is therefore independent from z2). Several techniques have
been developed in the literature to mitigate the problem of
inactive units, among which we find annealing of the KL
term (Bowman et al., 2015; Sønderby et al., 2016) or the
use of free bits (Kingma et al., 2016).

Using ideas from Chen et al. (2017), we notice that the in-
active units in a VAE with 2 layers of stochastic units can be
justified not only as a poor local maxima, but also from the
modelling point of view. Chen et al. (2017) give a bits-back
coding interpretation of Variational Inference for a genera-
tive model of the form p(x, z) = p(x|z)p(z), with data x
and stochastic units z. The paper shows that if the decoder
p(x|z) is powerful enough to explain most of the structure
in the data (e.g. an autoregressive decoder), then it will be
convenient for the model to set q(z|x) = p(z) not to incur
in an extra optimization cost of KL[q(z|x)||p(z|x)]. The
inactive z2 units in a 2-layer VAE can therefore be seen as
caused by the flexible distribution pθ(x, z1|z2) that is able
to explain most of the structure in the data without using
information from z2. By making qφ(z2|z1) = p(z2), the
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model can avoid the extra cost of KL [qφ(z2|x)||pθ(z2|x)].
A more detailed discussion on the topic can be found in
Appendix A.

It is now clear that if we want a VAE to exploit the
power of additional stochastic layers we need to define it
so that the benefits of encoding meaningful information
in z2 is greater than the cost KL [qφ(z2|x)||pθ(z2|x)] that
the model has to pay. As we will discuss below, we will
achieve this by aiding the generative model to do represen-
tation learning.

3. Cluster-aware Generative Models
Hierarchical models parameterized by deep neural net-
works have the ability to represent very flexible distribu-
tions. However, in the previous section we have seen that
the units in the higher stochastic layers of a VAE often be-
come inactive. We will show that we can help the model to
exploit the higher stochastic layers by explicitly encoding
a useful representation, i.e. the ability to model the natural
clustering of the data (Bengio et al., 2013), which will also
be needed for semi-supervised generation.

We favor the flow of higher-level global information
through z2 by extending the generative model of a VAE
with a discrete variable y representing the choice of one
out of K different clusters in the data. The joint distribu-
tion pθ(x, z1, z2) is computed by marginalizing over y:

pθ(x, z1, z2) =
∑
y

pθ(x, y, z1, z2)

=
∑
y

pθ(x|y, z1)pθ(z1|y, z2)pθ(y|z2)p(z2) .

We call this model Cluster-aware Generative Model
(CaGeM), see Figure 2 for a graphical representa-
tion. The introduced categorical distribution pθ(y|z2) =
Cat(y;πθ(z2)) (πθ represents the class distribution) de-
pends solely on z2, that needs therefore to stay active for
the model to be able to represent clusters in the data. We
further add the dependence of z1 and x on y, so that they
can now both also represent cluster-dependent information.

3.1. Inference

As done for the VAE in (1), we can derive the ELBO for
CaGeM by maximizing the log-likelihood

log pθ(x) = log

∫∫
pθ(x, z1, z2)dz1dz2

= log

∫∫ ∑
y

pθ(x, y, z1, z2)dz1dz2

≥ Eqφ(y,z1,z2|x)
[
log

pθ(x, y, z1, z2)

qφ(y, z1, z2|x)

]
.

x

y z1

z2 θ

(a) Generative model pθ

x

y z1

z2 φ

(b) Inference model qφ

Figure 2: Generative model and inference model of a
CaGeM with two stochastic layers (black and blue lines).
The black lines only represent a standard VAE.

We define the variational approximation qφ(y, z1, z2|x)
over the latent variables of the model as

qφ(y, z1, z2|x) = qφ(z2|x, y, z1)qφ(y|z1, x)qφ(z1|x) ,

where

qφ(z1|x) = N (z1;µ
1
φ(x), σ

1
φ(x))

qφ(z2|x, y, z1) = N (z2;µ
2
φ(y, z1), σ

2
φ(y, z1))

qφ(y|z1, x) = Cat(y;πφ(z1, x))

In the inference network we then reverse all the dependen-
cies among random variables in the generative model (the
arrows in the graphical model in Figure 2). This results
in a bottom-up inference network that performs a feature
extraction that is fundamental for learning a good repre-
sentation of the data. Starting from the data x we construct
higher levels of abstraction, first through the variables z1
and y, and finally through the variable z2, that includes the
global information used in the generative model. In order
to make the higher representation more expressive we add
a skip-connection from x to z2, that is however not funda-
mental to improve the performances of the model.

With this factorization of the variational distribution
qφ(y, z1, z2|x), the ELBO can be written as

F(θ, φ) = Eqφ(z1|x)

[∑
y

qφ(y|z1, x)·

·Eqφ(z2|x,y,z1)
[
log

pθ(x, y, z1, z2)

qφ(y, z1, z2|x)

]]
.

We maximize F(θ, φ) by jointly updating, with stochastic
gradient ascent, the parameters θ of the generative model
and φ of the variational approximation. When computing
the gradients, the summation over y is performed analyti-
cally, whereas the intractable expectations over z1 and z2
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are approximated by sampling. We use the reparameteriza-
tion trick to reduce the variance of the stochastic gradients.

4. Semi-Supervised Generation with CaGeM
In some applications we may have class label information
for some of the data points in the training set. In the fol-
lowing we will show that CaGeM provides a natural way to
exploit additional labelled data to improve the performance
of the generative model. Notice that this semi-supervised
generation approach differs from the more traditional semi-
supervised classification task that uses unlabelled data to
improve classification accuracies (Kingma et al., 2014;
Maaløe et al., 2016; Salimans et al., 2016). In our case
in fact, it is the labelled data that supports the generative
task. Nevertheless, we will see in our experiment that
CaGeM also leads to competitive semi-supervised classi-
fication performances.

To exploit the class information, we first set the number of
clusters K equal to the number of classes C. We can now
define two classifiers in CaGeM:

1. In the inference network we can compute the class
probabilities given the data, i.e. qφ(y|x), by integrat-
ing out the stochastic variables z1 from qφ(y, z1|x)

qφ(y|x) =
∫
qφ(y, z1|x)dz1

=

∫
qφ(y|z1, x)qφ(z1|x)dz1

2. Another set of class-probabilities can be computed us-
ing the generative model. Given the posterior distribu-
tion pθ(z2|x) we have in fact

pθ(y|x) =
∫
pθ(y|z2)pθ(z2|x)dz2 .

The posterior over z2 is intractable, but we can
approximate it using the variational approximation
qφ(z2|x), that is obtained by marginalizing out y and
the variable z1 in the joint distribution qφ(y, z1, z2|x):

pθ(y|x) ≈
∫
pθ(y|z2)qφ(z2|x)dz2

=

∫
pθ(y|z2)

∫ ∑
ỹ

qφ(z2|x, ỹ, z1)·

· qφ(ỹ|z1, x)qφ(z1|x)dz1

)
dz2 .

While for the labels ỹ the summation can be carried
out analytically, for the variable z1 and z2 we use

Monte Carlo integration. For each of the C classes we
will then obtain a different zc2 sample (c = 1, . . . C)
with a corresponding weight given by qφ(ỹ

c|z1, x).
This therefore resembles a cascade of classifiers, as
the class probabilities of the pθ(y|x) classifier will de-
pend on the probabilities of the classifier qφ(y|z1, x)
in the inference model.

As our main goal is to learn representations that will lead
to good generative performance, we interpret the classifi-
cation of the additional labelled data as a secondary task
that aids in learning a z2 feature space that can be easily
separated into clusters. We can then see this as a form of
semi-supervised clustering (Basu et al., 2002), where we
know that some data points belong to the same cluster and
we are free to learn a data manifold that makes this possi-
ble.

The optimal features for the classification task could be
very different from the representations learned for the gen-
erative task. This is why it is important not to update the
parameters of the distributions over z1, z2 and x, in both
generative model and inference model, using labelled data
information. If this is not done carefully, the model could
be prone to overfitting towards the labelled data. We define
as θy the subset of θ containing the parameters in pθ(y|z2),
and as φy the subset of φ containing the parameters in
qφ(y|z1, x). θy and φy then represent the incoming arrows
to y in Figure 2. We update the parameters θ and φ jointly
by maximizing the new objective

I =
∑
{xu}

F(θ, φ)− α

 ∑
{xl,yl}

(Hp(θy, φy) +Hq(φy))


where {xu} is the set of unlabelled training points, {xl, yl}
is the set of labelled ones, and Hp and Hq are the standard
categorical cross-entropies for the pθ(y|x) and qφ(y|x)
classifiers respectively. Notice that we consider the cross-
entropies only a function of θy and φy , meaning that the
gradients of the cross-entropies with respect to the param-
eters of the distributions over z1, z2 and x will be 0, and
will not depend on the labelled data (as needed when learn-
ing meaningful representations of the data to be used for
the generative task). To match the relative magnitudes be-
tween the ELBO F(θ, φ) and the two cross-entropies we
set α = βNu+NlNl

as done in (Kingma et al., 2014; Maaløe
et al., 2016), where Nu and Nl are the numbers of unla-
belled and labelled data points, and β is a scaling constant.

5. Experiments
We evaluate CaGeM by computing the generative log-
likelihood performance on MNIST and OMNIGLOT (Lake
et al., 2013) datasets. The model is parameterized by feed-
forward neural networks (NN) and linear layers (Linear),
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Figure 3: Visualizations from CaGeM-100 with a 2-dimensional z2 space. The middle plot shows the latent space, from
which we generate random samples (left) and class conditional random samples (right) with a mesh grid (black bounding
box). The relative placement of the samples in the scatter plot corresponds to a digit in the mesh grid.

so that, for Gaussian outputs, each collection of incoming
edges to a node in Figure 2 is defined as:

d = NN(x) µ = Linear(d) log σ = Linear(d) .

For Bernoulli distributed outputs we simply define a feed-
forward neural network with a sigmoid activation func-
tion for the output. Between dense layers we use the rec-
tified linear unit as non-linearity and batch-normalization
(Ioffe & Szegedy, 2015). We only collect statistics for the
batch-normalization during unlabelled inference. For the
log-likelihood experiments we apply temperature on the
KL-terms during the first 100 epochs of training (Bow-
man et al., 2015; Sønderby et al., 2016). The stochastic
layers are defined with dim(z1) = 64, dim(z2) = 32 and
2-layered neural feed-forward networks with respectively
1024 and 512 units in each layer. Training is performed
using the Adam optimizer (Kingma & Ba, 2014) with an
initial learning rate of 0.001 and annealing it by .75 every
50 epochs. The experiments are implemented with Theano
(Bastien et al., 2012), Lasagne (Dieleman et al., 2015) and
Parmesan1.

For both datasets we report unsupervised and semi-
supervised permutation invariant log-likelihood perfor-
mance and for MNIST we also report semi-supervised clas-
sification errors. The input data is dynamically binarized
and the ELBO is evaluated by taking 5000 importance-
weighted (IW) samples, denoted F5000. We evaluate the
performance of CaGeM with different numbers of labelled
samples referred to as CaGeM-#labels. When used, the
labelled data is randomly sampled evenly across the class
distribution. All experiments across datasets are run with
the same architecture.

1A variational repository named parmesan on Github.

6. Results
Table 1 shows the generative log-likelihood performances
of different variants of CaGeM on the MNIST data set. We
can see that the more labelled samples we use, the better
the generative performance will be. Even though the re-
sults are not directly comparable, since CaGeM exploits a
small fraction supervised information, we find that using
only 100 labelled samples (10 samples per class), CaGeM-
100 model achieves state of the art log-likelihood perfor-
mance on permutation invariant MNIST with a simple 2-
layered model. We also trained a ADGM-100 from Maaløe
et al. (2016)2 in order to make a fair comparison on genera-
tive log-likelihood in a semi-supervised setting and reached
a performance of −86.06 nats. This indicates that models
that are highly optimized for improving semi-supervised
classification accuracy may be a suboptimal choice for gen-
erative modeling.

CaGeM could further benefit from the usage of non-
permutation invariant architectures suited for image data,
such as the autoregressive decoders used by IAF VAE
(Kingma et al., 2016) and VLAE (Chen et al., 2017). The
fully unsupervised CaGeM-0 results show that by defin-
ing clusters in the higher stochastic units, we achieve better
performances than the closely related IWAE (Burda et al.,
2015a) and LVAE (Sønderby et al., 2016) models. It is fi-
nally interesting to see from Table 1 that CaGeM-0 per-
forms well even when the number of clusters are different
from the number of classes in the labelled data set.

In Figure 4 we show in detail how the performance of
CaGeM increases as we add more labelled data points.
We can also see that the ELBO F test1 tightens when

2We used the code supplied in the repository named auxiliary-
deep-generative-models on Github.
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≤ log p(x)

NON-PERMUTATION INVARIANT

DRAW+VGP (TRAN ET AL., 2016) −79.88
IAF VAE (KINGMA ET AL., 2016) −79.10
VLAE (CHEN ET AL., 2017) −78.53

PERMUTATION INVARIANT

AVAE, L=2, IW=1 (MAALØE ET AL., 2016) −82.97
IWAE, L=2, IW=50 (BURDA ET AL., 2015A) −82.90
LVAE, L=5, IW=10 (SØNDERBY ET AL., 2016) −81.74
VAE+VGP, L=2 (TRAN ET AL., 2016) −81.32
DVAE (ROLFE, 2017) −80.04

CAGEM-0, L=2, IW=1, K=20 −82.18
CAGEM-0, L=2, IW=1, K=10 −81.60
CAGEM-20, L=2, IW=1 −81.47
CAGEM-50, L=2, IW=1 −80.49
CAGEM-100, L=2, IW=1 −79.38

Table 1: Test log-likelihood for permutation invariant and
non-permutation invariant MNIST. L, IW and K denotes
the number of stochastic layers (if it is translatable to the
VAE), the number of importance weighted samples used
during inference, and the number of predefined clusters
used.

adding more labelled information, as compared toFLVAE
1 =

−85.23 and FVAE
1 = −87.49 (Sønderby et al., 2016).

The PCA plots of the z2 variable of a VAE, CaGeM-0 and
CaGeM-100 are shown in Figure 5 . We see how CaGeMs
encode clustered information into the higher stochastic
layer. Since CaGeM-0 is unsupervised, it forms less
class-dependent clusters compared to the semi-supervised
CaGeM-100, that fits its z2 latent space into 10 nicely
separated clusters. Regardless of the labelled informa-
tion added during inference, CaGeM manages to acti-
vate a high amount of units, as for CaGeM we obtain
KL[qφ(z2|x, y)||p(z2)] ≈ 17 nats, while a LVAE with 2
stochastic layers obtains ≈ 9 nats.

The generative model in CaGeM enables both random sam-
ples, by sampling the class variable y ∼ pθ(y|z2) and feed-
ing it to pθ(x|z1, y), and class conditional samples by fix-
ing y. Figure 3 shows the generation of MNIST digits from
CaGeM-100 with dim(z2) = 2. The images are gener-
ated by applying a linearly spaced mesh grid within the la-
tent space z2 and performing random generations (left) and
conditional generations (right). When generating samples
in CaGeM, it is clear how the latent units z1 and z2 cap-
ture different modalities within the true data distribution,
namely style and class.

Regardless of the fact that CaGeM was designed to op-
timize the semi-supervised generation task, the model
can also be used for classification by using the classifier
pθ(y|x). In Table 2 we show that the semi-supervised clas-
sification accuracies obtained with CaGeM are comparable

Figure 4: Log-likelihood scores for CaGeM on MNIST
with 0, 20, 50 and 100 labels with 1, 10 and 5000 IW sam-
ples.

Figure 5: PCA plots of the stochastic units z1 and z2 in a 2-
layered model trained on MNIST. The colors corresponds
to the true labels.

to the performance of GANs (Salimans et al., 2016).

The OMNIGLOT dataset consists of 50 different alphabets
of handwritten characters, where each character is sparsely
represented. In this task we use the alphabets as the clus-
ter information, so that the z2 representation should divide
correspondingly. From Table 3 we see an improvement
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LABELS 20 50 100

M1+M2 (KINGMA ET AL., 2014) - - 3.33% (±0.14)
VAT (MIYATO ET AL., 2015) - - 2.12%
CATGAN (SPRINGENBERG, 2015) - - 1.91% (±0.1)
SDGM (MAALØE ET AL., 2016) - - 1.32% (±0.07)
LADDER NETWORK (RASMUS ET AL., 2015) - - 1.06% (±0.37)
ADGM (MAALØE ET AL., 2016) - - 0.96% (±0.02)
IMP. GAN (SALIMANS ET AL., 2016) 16.77% (±4.52) 2.21% (±1.36) 0.93% (±0.65)

CAGEM 15.86% 2.42% 1.16%

Table 2: Semi-supervised test error % benchmarks on MNIST for 20, 50, and 100 randomly chosen and evenly distributed
labelled samples. Each experiment was run 3 times with different labelled subsets and the reported accuracy is the mean
value.

over other comparable VAE architectures (VAE, IWAE and
LVAE), however, the performance is far from the once
reported from the auto-regressive models (Kingma et al.,
2016; Chen et al., 2017). This indicates that the alphabet in-
formation is not as strong as for a dataset like MNIST. This
is also indicated from the accuracy of CaGeM-500, reach-
ing a performance of ≈ 24%. Samples from the model can
be found in Figure 6.

Figure 6: Generations from CaGeM-500. (left) The input
images, (middle) the reconstructions, and (right) random
samples from z2.

≤ log p(x)

VAE, L=2, IW=50 (BURDA ET AL., 2015A) −106.30
IWAE, L=2, IW=50 (BURDA ET AL., 2015A) −103.38
LVAE, L=5, FT, IW=10 (SØNDERBY ET AL., 2016) −102.11
RBM (BURDA ET AL., 2015B) −100.46
DBN (BURDA ET AL., 2015B) −100.45
DVAE (ROLFE, 2017) −97.43

CAGEM-500, L=2, IW=1 −100.86

Table 3: Generative test log-likelihood for permutation in-
variant OMNIGLOT.

7. Discussion
As we have seen from our experiments, CaGeM offers a
way to exploit the added flexibility of a second layer of

stochastic units, that stays active as the modeling perfor-
mances can greatly benefit from capturing the natural clus-
tering of the data. Other recent works have presented al-
ternative methods to mitigate the problem of inactive units
when training flexible models defined by a hierarchy of
stochastic layers. Burda et al. (2015a) used importance
samples to improve the tightness of the ELBO, and showed
that this new training objective helped in activating the
units of a 2-layer VAE. Sønderby et al. (2016) trained Lad-
der Variational Autoencoders (LVAE) composed of up to
5 layers of stochastic units, using a top-down inference
network that forces the information to flow in the higher
stochastic layers. Contrarily to the bottom-up inference
network of CaGeM, the top-down approach used in LVAEs
does not enforce a clear separation between the role of each
stochastic unit, as proven by the fact that all of them encode
some class information. Longer hierarchies of stochastic
units unrolled in time can be found in the sequential set-
ting (Krishnan et al., 2015; Fraccaro et al., 2016). In these
applications the problem of inactive stochastic units ap-
pears when using powerful autoregressive decoders (Frac-
caro et al., 2016; Chen et al., 2017), but is mitigated by the
fact that new data information enters the model at each time
step.

The discrete variable y of CaGeM was introduced to be
able to define a better learnable representation of the data,
that helps in activating the higher stochastic layer. The
combination of discrete and continuous variables for deep
generative models was also recently explored by several au-
thors. Maddison et al. (2016); Jang et al. (2016) used a
continuous relaxation of the discrete variables, that makes
it possible to efficiently train the model using stochastic
backpropagation. The introduced Gumbel-Softmax vari-
ables allow to sacrifice log-likelihood performances to
avoid the computationally expensive integration over y.
Rolfe (2017) presents a new class of probabilistic models
that combines an undirected component consisting of a bi-
partite Boltzmann machine with binary units and a directed
component with multiple layers of continuous variables.
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Traditionally, semi-supervised learning applications of
deep generative models such as Variational Auto-encoders
and Generative Adversarial Networks (Goodfellow et al.,
2014) have shown that, whenever only a small fraction
of labelled data is available, the supervised classification
task can benefit from additional unlabelled data (Kingma
et al., 2014; Maaløe et al., 2016; Salimans et al., 2016). In
this work we consider the semi-supervised problem from
a different perspective, and show that the generative task
of CaGeM can benefit from additional labelled data. As
a by-product of our model however, we also obtain com-
petitive semi-supervised classification results, meaning that
CaGeM is able to share statistical strength between the gen-
erative and classification tasks.

When modeling natural images, the performance of
CaGeM could be further improved using more powerful au-
toregressive decoders such as the ones in (Gulrajani et al.,
2016; Chen et al., 2017). Also, an even more flexible vari-
ational approximation could be obtained using auxiliary
variables (Ranganath et al., 2015; Maaløe et al., 2016) or
normalizing flows (Rezende & Mohamed, 2015; Kingma
et al., 2016).

8. Conclusion
In this work we have shown how to perform semi-
supervised generation with CaGeM. We showed that
CaGeM improves the generative log-likelihood perfor-
mance over similar deep generative approaches by creating
clusters for the data in its higher latent representations us-
ing unlabelled information. CaGeM also provides a natural
way to refine the clusters using additional labelled informa-
tion to further improve its modelling power.

A. The Problem of Inactive Units
First consider a model p(x) without latent units. We con-
sider the asymptotic average properties, so we take the ex-
pectation of the log-likelihood over the (unknown) data dis-
tribution pdata(x):

Epdata(x) [log p(x)] = Epdata(x)

[
log
(
pdata(x)

p(x)

pdata(x)

)]
= −H(pdata)−KL(pdata(x)||p(x)) ,

where H(p) = −Ep(x) [log p(x)] is the entropy of the dis-
tribution and KL(·||·) is the KL-divergence. The expected
log-likelihood is then simply the baseline entropy of the
data generating distribution minus the deviation between
the data generating distribution and our model for the dis-
tribution.

For the latent variable model plat(x) =
∫
p(x|z)p(z)dz the

log-likelihood bound is:

log plat(x) ≥ Eq(z|x)
[
log

p(x|z)p(z)
q(z|x)

]
.

We take the expectation over the data generating distribu-
tion and apply the same steps as above

Epdata(x) [log plat(x)] ≥ Epdata(x)Eq(z|x)
[
log

p(x|z)p(z)
q(z|x)

]
= −H(pdata)−KL(pdata(x)||plat(x))

− Epdata(x) [KL(q(z|x)||p(z|x))] ,

where p(z|x) = p(x|z)p(z)/plat(x) is the (intractable)
posterior of the latent variable model. This results shows
that we pay an additional price (the last term) for using an
approximation to the posterior.

The latent variable model can choose to ignore the latent
variables, p(x|z) = p̂(x). When this happens the expres-
sion falls back to the log-likelihood without latent vari-
ables. We can therefore get an (intractable) condition for
when it is advantageous for the model to use the latent vari-
ables:

Epdata(x) [log plat(x))] > Epdata(x) [log p̂(x))] +
Epdata(x) [KL(q(z|x)||p(z|x))] .

The model will use latent variables when the log-likelihood
gain is so high that it can compensate for the loss
KL(q(z|x)||plat(z|x)) we pay by using an approximate
posterior distribution.

The above argument can also be used to understand why
it is harder to get additional layers of latent variables to
become active. For a two-layer latent variable model
p(x, z1, z2) = p(x|z1)p(z1|z2)p(z2) we use a variational
distribution q(z1, z2|x) = q(z2|z1, x)q(z1|x) and de-
compose the log likelihood bound using p(x, z1, z2) =
p(z2|z1, x)p(z1|x)plat,2(x):

Epdata(x) [log plat,2(x)]

≥ Epdata(x)Eq(z1,z2|x)
[
log

p(x|z1)p(z1|z2)p(z2)
q(z1, z2|x)

]
= −H(pdata)−KL(pdata(x)||plat,2(x))
− Epdata(x)Eq(z1|x) [KL(q(z2|z1, x)||p(z2|z1, x))]
− Epdata(x)KL(q(z1|x)||p(z1|x)) .

Again this expression falls back to the one-layer model
when p(z1|z2) = p̂(z1). So whether to use the second layer
of stochastic units will depend upon the potential diminish-
ing return in terms of log likelihood relative to the extra
KL-cost from the approximate posterior.
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