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Abstract 

In this paper a thorough analysis of the equivalent indenter concept applied to nano-indentation is carried out, 

motivated by the fact that previous works in the field have not considered the requirement of a consistent relation 

between contact depth and projected contact area. Dimensional analysis is initially used to prove that the shape 

of the axisymmetric equivalent indenter can be regarded as a material property, provided that size-effects are 

negligible. Subsequently, it is shown that such shape can effectively be employed to describe the nano-

indentation unloading stage by means of Sneddon’s elastic solution which is formally valid only for indentation 

into a flat surface. This allows for formulating the problem of extracting Young’s modulus from the unloading 

curve as an optimization problem. However, it is proved that the latter does not have a unique solution, due to 

the particular mathematical structure of the underlying equations; hence, additional constraints are needed to set 

restrictions on the admissible equivalent indenter shapes. An example of such constraint is hidden in some 

apparent inconsistencies of the well-known Oliver-Pharr method, which is demonstrated to be based on an 

equivalent conical indenter whose semi-apical angle depends on the ratio between residual and total penetration. 

Specifically, this angle tends to 90 degrees when the material exhibits extensive inelastic deformation, whereas it 

reduces to the one characteristic of the real indenter for a perfectly elastic material. This provides a new physical 

explanation for the relatively good accuracy of the method even in presence of a non-negligible residual contact 

impression on the sample. 
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1. Introduction 

Instrumented nano-indentation is a well-established technique which is widely used for probing mechanical 

properties of materials at length scales in the sub-micrometer range. Its high scientific relevance combined with 

a relatively simple experimental setup have attracted the attention of many researchers in the last decades, and 

several dedicated review papers exist which offer extensive accounts of the subject, e.g. (Fischer-Cripps, 

2006)(Oliver and Pharr, 2004)(Cheng and Cheng, 2004).  

In essence, a nano-indentation test consists in pressing a 3-sided pyramidal Berkovich indenter onto the surface 

of the sample under investigation and recording the resulting applied force vs penetration curve (figure 1-a). The 

main difference compared to traditional indentation techniques performed at the micron or millimeter scale is 

that the area of the residual impression left on the material is normally not measured, due to its much reduced 

size. For this reason, mechanical properties are usually estimated on the basis of the loading and unloading 

characteristics alone. Concerning this, a number of methods have been proposed so far which allow deriving 

parameters related to elastic and plastic material behavior, fracture toughness, creep, impact resistance, etc., a 

full list of which has recently been given in a comprehensive monograph (Fischer-Cripps, 2011). Focusing in 

particular on the determination of the isotropic elastic constants from nano-indentation data, the methodology 

initially proposed by (Doerner and Nix, 1986) and later extended and improved by (Oliver and Pharr, 1992) is 

 

(a) 

 

(b) 

Figure 1: Nano-indentation test. (a) Recorded load vs penetration curve. The hatched area indicates the elastic 

work associated with the unloading stage. (b) Definition of the main geometrical quantities for axisymmetric 

conical indentation: 𝛼𝛼 is the indenter semi-apical angle, ℎ is the total indenter penetration, ℎ𝑐𝑐 is the contact 

depth and 𝑎𝑎 is the contact radius. 
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probably the most well-known. The technique relies on a closed-form solution to the so-called Boussinesq’s 

problem of indentation into an elastic half-space (Boussinesq, 1885), and it has proved very successful mainly 

due to its simplicity combined with relatively good accuracy.  

Over the years, several modifications and improvements to the original Oliver-Pharr method have been 

suggested. Firstly, with respect to the experimental setup, continuous stiffness measurements have been 

introduced to measure properties as a continuous function of the penetration depth (Pharr et al., 2009)(Hay et al., 

2010). In addition to enabling a very precise detection of the point of initial contact between the indenter and the 

sample, these measurements provide the possibility to analyze the moduli of materials which show pronounced 

time dependent deformation. As a consequence, nano-indentation based characterization of polymers and soft 

biological tissues has gained considerable interest in recent times, as mentioned in the reviews by (Gibson, 2014) 

and (McKee et al., 2011). Secondly, methods to account for the influence of the substrate during indentation of 

thin films have been established. This issue, addressed in an early paper by (Nix, 1989), becomes relevant when 

the maximum indentation depth is approximately 10 % of the film thickness, or even less in some cases (Saha 

and Nix, 2002). Recent contributions to this field include the work of (Ni and Cheng, 2005), (Xu and Pharr, 

2006), (Wang et al., 2010) and (Hay and Crawford, 2011), among others. Finally, in order to account for the 

residual contact stress and for errors in the contact area calculation, new techniques based on partial 

modifications of the equations behind the Oliver-Pharr method have been devised as well (Gong et al., 

2004)(Troyon and Huang, 2005), even though they do not appear to offer indisputable advantages in terms of 

accuracy (Troyon and Huang, 2006). 

In parallel, significant efforts have been made to find reliable ways to determine the elastic properties for 

materials which pile-up considerably, for which the Oliver-Pharr method is often inapplicable (Fischer-Cripps, 

2006). To circumvent the problem of estimating the correct contact area between the sample and the indenter, 

which is the main cause of uncertainty in this case, (Cheng and Cheng, 1998) and (Cheng et al., 2002) proposed 

dimensionless relations connecting Young’s modulus to experimentally accessible quantities. The same idea was 

the basis of the work of (Dao et al., 2001) and (Wang and Rokhlin, 2005), who constructed dimensionless 

functions from fitting the results of a large number of finite element simulations of the indentation process. 

Strategies to optimize the data-fitting procedure via algorithms based on neural networks were proposed later by 

(Tyulyukovskiy and Huber, 2006) and (Tyulyukovskiy and Huber, 2007). Unfortunately, an intrinsic drawback 

of this approach is the range of validity of the derived dimensionless relations, which are typically obtained 

under specific assumptions for the material inelastic behavior during loading. As a consequence, they should be 

used with caution for materials whose constitutive response is either completely unknown or remarkably 

different from the one employed in the numerical simulations. To overcome this limitation, methods which make 

use of additional experimental quantities, for instance measurements of the residual surface profile using the 
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atomic force microscope (Li et al., 2002)(Mata and Alcala, 2003) or of the contact area at maximum load using 

electrical resistance techniques (Poon et al., 2008a) have been devised as well. Despite delivering very precise 

results, the application of these procedures has been limited somehow by the much higher degree of 

experimental complexity they involve, which seems in contrast to the conceptual simplicity of a nano-

indentation test. Therefore, it may be concluded that it does not seem possible to improve the accuracy of the 

Oliver-Pharr method without paying a price in terms of complexity and/or range of validity of the measurements. 

This is probably the reason why this method is still largely adopted in the scientific community, despite some of 

its aspects may appear difficult to understand at first glance.  

Particularly, how purely elastic solutions developed for axisymmetric indenters (Love, 1939)(Harding and 

Sneddon, 1945)(Sneddon, 1948)(Segedin, 1957)(Sneddon, 1965) can effectively be used to analyze nano-

indentation data, which is normally affected by an appreciable amount of inelastic deformation, is a matter which 

deserves a special comment. The very first point to note is that the Oliver-Pharr method considers only the 

unloading part of a nano-indentation test, which is assumed to be an entirely elastic process. Furthermore, the 

force-penetration curve produced by the pyramidal Berkovich indenter is supposed to be the same as that 

generated by a conical indenter with the same area-to-depth ratio. Extensive finite element calculations and 

experimental investigations have confirmed that these two assumptions are either fully satisfied, or lead to 

negligible errors in almost all practical cases (Dao et al., 2001)(Pharr and Bolshakov, 2002)(Poon et al., 

2008a)(Sakharova et al., 2009).  

Besides the points just discussed, another critical aspect exists which relates to the applicability of solutions 

obtained for indentation into a perfectly flat half-plane to the description of the unloading stage, which involves 

contact with a surface containing a residual impression. In principle, this particular contact condition can be 

described by the equivalent indenter concept (Bolshakov et al., 1995), whose profile is determined pointwise by 

the vertical distance between the real indenter and the profile of the sample surface after unloading, as 

schematically shown in figure 2. That is, the elastic solutions previously mentioned can be effectively used to 

model the unloading stage provided that the equivalent indenter geometry is entered into the equations.  
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According to (Woirgard and Dargenton, 1997)(Woirgard et al., 1998a)(Pharr and Bolshakov, 2002), the Oliver-

Pharr method is intrinsically based on the equivalent indenter concept. This justifies the relative good accuracy 

of the method, achieved even when the residual impression left on the sample is actually not negligible. In 

particular, the dependency on the equivalent geometry is reflected explicitly in the value of the parameter 𝜖𝜖 

appearing in the formula  

 ℎ𝑐𝑐 = ℎ − ϵ
𝑃𝑃
𝑃𝑃′

 (1) 

which allows calculating the contact depth ℎ𝑐𝑐  from knowledge of the applied load 𝑃𝑃 , the total downward 

displacement ℎ of the indenter tip relative to the undeformed sample surface and the slope 𝑃𝑃′ of the unloading 

curve. Figure 1-b provides the geometrical definition of these quantities. 

It is the present authors’ opinion, however, that there are two aspects of the Oliver-Pharr method which do not 

appear to be fully consistent with the equivalent indenter concept, at least apparently. The first one is the way the 

projected contact area 𝐴𝐴 (equal to 𝜋𝜋𝑎𝑎2 in figure 1-b) is estimated after ℎ𝑐𝑐 has been calculated from equation (1). 

Indeed, an expression based on the real indenter geometry is assumed to hold, which usually has the form 

 𝐴𝐴 = 𝐴𝐴𝑟𝑟(ℎ𝑐𝑐) = 𝐶𝐶0ℎ𝑐𝑐2 + 𝐶𝐶1ℎ𝑐𝑐 + 𝐶𝐶2ℎ𝑐𝑐
1/2 + 𝐶𝐶3ℎ𝑐𝑐

1/4 + ⋯  (2) 

where the coefficients 𝐶𝐶1,𝐶𝐶2, 𝐶𝐶3, … account for tip rounding effects and are normally obtained from calibration 

on fused silica samples (Oliver and Pharr, 2004). In the hypothetic situation of an indenter with ideal geometry, 

this expression reduces to 

  𝐴𝐴 = 𝐴𝐴𝑟𝑟(ℎ𝑐𝑐) = 𝜋𝜋 tan2(𝛼𝛼)ℎ𝑐𝑐2 (3) 

where 𝛼𝛼 = 70.30  is the semi-apical angle of the conical punch with the same area-to-depth ratio of the 

 

 
(a)                                                                   (b) 

Figure 2: Definition of the equivalent indenter concept. (a) Real conical indenter after unloading. (b) Equivalent indenter 
geometry. 
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Berkovich indenter. The key point is that, within the equivalent indenter framework, one would expect the 

contact area to be determined by means of the relation 𝐴𝐴 = 𝐴𝐴𝑒𝑒𝑞𝑞(ℎ𝑐𝑐) proper to the equivalent indenter instead. 

Clearly, it should be recognized that the relation 𝐴𝐴 = 𝐴𝐴𝑒𝑒𝑞𝑞(ℎ𝑐𝑐) is generally unknown, as can be realized easily 

from figure 2. In fact, it depends on the shape of the residual impression left on the sample, which in turn is 

determined by the mechanical properties of the material under investigation.  

The second aspect of the Oliver-Pharr method which is seemingly in contrast to the equivalent indenter concept 

is the particular value of ℎ used in equation (1). In fact, as previously said, ℎ is assumed to represent the total 

downward displacement of the indenter tip. At first glance, according to the geometrical construction of figure 2 

it would appear more logical to assume ℎ to represent only the recoverable part of the penetration, i.e. the total 

minus the residual. In the standard Oliver-Pharr procedure, equation (1) is evaluated only at maximum load. 

Nevertheless, by assuming the equivalent indenter concept to hold, the elastic relations describing the unloading 

stage should be satisfied for any value of the load, and so should equation (1). However, it is easily seen that 

when the indenter separates from the sample at the end of the unloading stage, meaning that ℎ𝑐𝑐 = 0, ℎ is equal to 

the residual penetration ℎ𝑝𝑝 indicated in figure 1-a. But then, to satisfy the equation, some load 𝑃𝑃 ≠ 0 should still 

be transmitted across the contact surface, which is non-physical.  

For the sake of clarity, it is useful to say at this point that with a value for the projected contact area at hand, the 

reduced Young’s modulus 𝐸𝐸∗ can be found via the well-known relation between 𝐴𝐴, 𝐸𝐸∗ and 𝑃𝑃′ as 

 𝐸𝐸∗ =
√𝜋𝜋
2𝛽𝛽

𝑃𝑃′

√A
 (4) 

where 𝛽𝛽 is a correction factor which normally takes the value of ≈ 1.05 (Oliver and Pharr, 2004). Subsequently, 

the standard Young’s modulus 𝐸𝐸 can be eventually calculated on the basis of the relation 

 𝐸𝐸∗ =
𝐸𝐸

1 − 𝜈𝜈2
 (5) 

assuming that the Poisson’s ratio 𝜈𝜈 of the material being indented is known. 

In light of the arguments put forth so far, it appears that the Oliver-Pharr method does not seem to be fully 

consistent with the equivalent indenter concept. This raises two questions. First of all, what would happen if a 

fully consistent method were used? Would it provide better results? Secondly, how to explain the relatively good 

accuracy of the Oliver-Pharr method then, since it does not satisfy the equivalent indenter assumptions? In other 

words, why does this method work anyway? 

In order to clarify these points, it is the aim of the present paper to re-examine the application of the equivalent 

indenter concept to the Young’s modulus estimation from nano-indentation unloading curves by means of classic 

analytical solutions to the Bousinnesq’ problem. Initially, the latter will be reviewed and re-formulated at the 
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same time in a more convenient dimensionless form. Subsequently, the validity of the equivalent indenter 

concept for the description of the contact condition with a deformed surface will be tested, emphasizing the level 

of accuracy which can be possibly obtained. After that, the inverse problem (Dao et al., 2001) will be defined 

and critically analyzed within a rigorous and consistent framework. Finally, solution strategies will be discussed, 

eventually establishing a link with the traditional Oliver-Pharr method and showing that its apparent 

inconsistencies are in reality associated with a concealed, convenient choice of the equivalent indenter profile. 

2. Theory 
In this section, the most common solutions available in the literature for axisymmetric indentation into an 

isotropic elastic half-space are presented and reformulated for convenience in a dimensionless format. The main 

geometrical parameters considered are shown in figure 1-b. 

2.1 General solution by Sneddon 

Let us assume that the axisymmetric profile of a rigid indenter is given by a smooth monotonic function 

 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) ⇒ 𝑦𝑦 = 𝑓𝑓(𝑎𝑎𝑥𝑥�) (6) 

where 𝑎𝑎 is the contact radius and 𝑥𝑥� = 𝑥𝑥/𝑎𝑎 is a normalized x-coordinate. According to (Sneddon, 1965), the load 

𝑃𝑃 and penetration ℎ corresponding to a certain value of 𝑎𝑎 are given by  

 ℎ = �
𝑓𝑓𝑥𝑥�′(𝑎𝑎𝑥𝑥�)
√1 − 𝑥𝑥�2

𝑑𝑑𝑥𝑥�
1

0
,           𝑃𝑃 = 2𝐸𝐸∗𝑎𝑎�

𝑥𝑥�2𝑓𝑓�̅�𝑥′(𝑎𝑎𝑥𝑥�)
√1 − 𝑥𝑥�2

𝑑𝑑𝑥𝑥�
1

0
 (7) 

where the symbol 𝑓𝑓𝑥𝑥�′ indicates the derivative of 𝑓𝑓 with respect to 𝑥𝑥� 

 𝑓𝑓𝑥𝑥�′ =
𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥�

=
𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥

𝑑𝑑𝑥𝑥
𝑑𝑑𝑥𝑥�

= 𝑓𝑓′𝑎𝑎 (8) 

and 𝐸𝐸∗ is the reduced Young’s modulus defined in equation (5). 

The normalization with respect to the contact radius is somewhat inconvenient, as this quantity is usually an 

unknown for the problem. Therefore, it is useful to introduce a normalization based on a length scale which is 

directly available from an indentation test, for instance the maximum penetration ℎ𝑚𝑚, which will be indicated 

with the symbol ( � ). Accordingly, relations (7) take the form 

 ℎ� = �
𝑓𝑓′(ℎ𝑚𝑚�̅�𝑥)

�1 − (�̅�𝑥/𝑎𝑎�)2
𝑑𝑑�̅�𝑥

𝑎𝑎�

0
,           𝑃𝑃 = 2𝐸𝐸∗ℎ𝑚𝑚2 �

�̅�𝑥2𝑓𝑓′(ℎ𝑚𝑚�̅�𝑥)
√𝑎𝑎�2 − �̅�𝑥2

𝑑𝑑�̅�𝑥
𝑎𝑎�

0
 (9) 

Note that as 𝑓𝑓′ is dimensionless, with this formulation the integrals appearing in the last two equations turn out 

to be dimensionless as well. 
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2.2 Segedin’s formulas and extensions 

Let us assume that the function 𝑓𝑓 in equation (6) is given by the following polynomial expression 

 𝑦𝑦� = �𝑏𝑏�𝑛𝑛�̅�𝑥𝑛𝑛
𝑁𝑁

𝑛𝑛=1

,        𝑏𝑏�𝑛𝑛 = 𝑏𝑏𝑛𝑛ℎ𝑚𝑚𝑛𝑛−1 (10) 

By introducing the coefficients 

 𝑐𝑐�̅�𝑛 = √𝜋𝜋
𝛤𝛤 �𝑛𝑛2 + 1�

𝛤𝛤 �𝑛𝑛2 + 1
2�
𝑏𝑏�𝑛𝑛 (11) 

where 𝛤𝛤  denotes the gamma-function, it is possible to demonstrate that the relation between normalized 

penetration depth ℎ� and contact radius 𝑎𝑎� can be written in closed-form as 

 ℎ� = �𝑐𝑐�̅�𝑛𝑎𝑎�𝑛𝑛
𝑁𝑁

𝑛𝑛=1

 (12) 

Similarly, the expression for the load 𝑃𝑃 becomes 

 𝑃𝑃 = 2𝐸𝐸∗ℎ𝑚𝑚2 �
𝑛𝑛

𝑛𝑛 + 1
𝑐𝑐�̅�𝑛𝑎𝑎�𝑛𝑛+1

𝑁𝑁

𝑛𝑛=1

 (13) 

The last two equations are commonly attributed to Segedin (Segedin, 1957).  

Expressions (12) and (13) allow for deriving other useful relations. The load derivative with respect to 

normalized penetration is given by 

 𝑃𝑃′ =
𝑑𝑑𝑃𝑃
𝑑𝑑ℎ�

=
𝑑𝑑𝑃𝑃
𝑑𝑑𝑎𝑎� �

𝑑𝑑ℎ�
𝑑𝑑𝑎𝑎��

−1

= 2𝐸𝐸∗ℎ𝑚𝑚2 𝑎𝑎� (14) 

It is important to point out that the last relation, which justifies equation (4), can be obtained directly from the 

general relations (7), as demonstrated in (Pharr et al., 1992).  

Similarly, the elastic work 𝑊𝑊 done during indentation, corresponding to the hatched area in figure 1-a, can be 

calculated as 

 𝑊𝑊 = � 𝑃𝑃
ℎ

0
𝑑𝑑ℎ = � 𝑃𝑃

𝑎𝑎�

0

𝑑𝑑ℎ
𝑑𝑑𝑎𝑎�

𝑑𝑑𝑎𝑎� = 2𝐸𝐸∗ℎ𝑚𝑚3 �
𝑛𝑛𝑛𝑛

(𝑛𝑛 + 𝑛𝑛)(𝑛𝑛 + 1)
𝑐𝑐�̅�𝑛𝑐𝑐�̅�𝑠𝑎𝑎�𝑛𝑛+𝑠𝑠+1

𝑁𝑁

𝑛𝑛,𝑠𝑠=1

 (15) 

If only one term is retained in the expansion (10), the following direct relation between load and penetration may 

be obtained by combining equations (12) and (13) together: 
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 𝑃𝑃 = 2𝐸𝐸∗ℎ𝑚𝑚2
𝑛𝑛

(𝑛𝑛 + 1)𝑐𝑐�̅�𝑛1/𝑛𝑛 ℎ�
1+1/𝑛𝑛 (16) 

For a conical indenter 𝑛𝑛 = 1. Then, equation (11) reduces to 

 𝑐𝑐1̅ = √𝜋𝜋
𝛤𝛤 �1

2 + 1�

𝛤𝛤 �1
2 + 1

2�
𝑏𝑏�1 = √𝜋𝜋

√𝜋𝜋/2
1

𝑏𝑏�1 =
𝜋𝜋
2
𝑏𝑏�1 (17) 

By inserting the latter result with 𝑏𝑏�1 = cot (𝛼𝛼) into equation (16) one obtains 

 𝑃𝑃 = 𝐸𝐸∗ℎ𝑚𝑚2
2

𝜋𝜋cot (𝛼𝛼)
ℎ�2 (18) 

which represents the traditional load-penetration formula for a conical indenter of semi-apical angle 𝛼𝛼, originally 

derived by Love (Love, 1939).  

3. Material and methods 
3.1 Numerical simulations 

It seems logical to test the validity of the equivalent indenter concept for indented surfaces with realistic 

geometries. To avoid direct experimental measurements, which would require a huge investment of time and 

resources, nano-indentation tests are simulated via the finite element software ABAQUS. In this way, a large 

number of residual impression profiles can be generated without resorting to atomic force microscope 

profilometry.  

As already explained in the introduction, previous investigations have demonstrated that the Berkovich 

indentation process can be analyzed by means of the simplified axisymmetric geometry depicted in figure 3-a, 

where the semi-apical angle of the conical indenter is set to 𝛼𝛼 = 70.3° (Oliver and Pharr, 2004). The latter is 

represented in ABAQUS by an analytic rigid surface, whereas the sample is assumed to be made of a generic 

metallic material whose behavior is considered to be isotropic elasto-plastic. A standard large-strain J2-flow 

plasticity formulation is adopted and the material parameters are chosen as follows: Young’s modulus is set to 

𝐸𝐸 = 100 𝐺𝐺𝑃𝑃𝑎𝑎 and the yield stress 𝜎𝜎𝑦𝑦 is varied in the range 1𝑥𝑥10−4𝐸𝐸 ÷ 2𝑥𝑥10−2𝐸𝐸, which should be sufficiently 

wide to cover values for all common metals (Ashby et al., 2010). Concerning hardening, following (Larsson et 

al., 1996) and (Bolshakov and Pharr, 1998) an isotropic linear law is used, with three different values for the 

hardening modulus 𝐾𝐾: 0.05𝐸𝐸, 0.01𝐸𝐸 and 0.002𝐸𝐸. Finally, as Poisson’s ratio of almost all metals lies between 

0.25 and 0.35 (Greaves et al., 2011), a fixed mean value of 0.3 is adopted, except for those simulations in which 

the dependence of the results on this specific parameter is investigated explicitly. 

The interaction between the cone and the sample surface is realized via a finite sliding, surface-to-surface 

contact discretization with zero friction, as previous studies have reported a minor influence of this last 
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parameter on the results (Larsson et al., 1996)(Sakharova et al., 2009). In addition, in all simulations a maximum 

indentation depth of 1 micron is used, which is sufficiently deep to ensure that indenter tip rounding effects, 

often observed during real nano-indentation tests, do not need to be taken into account (Oliver and Pharr, 2004). 

Accordingly, the height and radius of the cylindrical sample are both set to 100 microns following the criterion 

proposed by (Poon et al., 2008b), which guarantees fulfillment of the “infinite” half-space assumption, common 

to all analytical solutions presented in the previous section.  

The adopted mesh, visible in figure 3-b, consists of approximately 2000 axisymmetric quadrilateral hybrid 

elements CAX4H. To avoid excessive distortion close to the indenter tip during loading, an Arbitrary 

Lagrangean-Eulerian (ALE) adaptive technique is employed (Dassault Systèmes Simulia Corp., 2013). The 

quality of the mesh is sufficient to ensure a precision of 1 % on the slope of the recorded 𝑃𝑃 vs ℎ curves. 

 
 
 

 
(a)  

(b) 

Figure 3: Finite element model for nano-indentation. (a) Geometry of the indenter and of the sample. (b) Mesh adopted. 
Dimensions are in microns. 

3.2 Determination of the equivalent indenter profile 

From each ABAQUS simulation, the shape of the residual impression after unloading is extracted in the form of 

a function 𝑢𝑢𝑟𝑟(𝑥𝑥), which describes the permanent downward displacement of the sample surface relative to the 

Cartesian coordinate system (𝑥𝑥,𝑦𝑦) shown in figure 1-b. 

The shape of the equivalent indenter profile turns out to be naturally defined by the function 

 𝑓𝑓𝑒𝑒𝑞𝑞(𝑥𝑥) = 𝑢𝑢𝑟𝑟(𝑥𝑥)− �ℎ𝑝𝑝 − 𝑥𝑥cot(𝛼𝛼)� (19) 
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where ℎ𝑝𝑝 is the recorded residual plastic penetration, visible in figure 1-a, and 𝛼𝛼 is the semi-apical angle of the 

conical indenter. For convenience, the last expression can be re-cast in dimensionless form as follows: 

 𝑓𝑓�̅�𝑒𝑞𝑞(�̅�𝑥) = 𝑢𝑢�𝑟𝑟(�̅�𝑥) − �ℎ�𝑝𝑝 − �̅�𝑥 cot(𝛼𝛼)� (20) 

In order to obtain a representation for the function 𝑓𝑓�̅�𝑒𝑞𝑞(�̅�𝑥) which can easily be used in combination with the 

analytical solutions presented in section 2, the following polynomial approximation is introduced: 

 𝑓𝑓�̅�𝑒𝑞𝑞(�̅�𝑥) ≈ �𝑏𝑏�𝑛𝑛�̅�𝑥𝑛𝑛
𝑁𝑁

𝑛𝑛=1

 (21) 

The optimal choice of the coefficients appearing at the right-hand-side of the last expression depends on the 

extension of the domain considered for 𝑓𝑓�̅�𝑒𝑞𝑞(�̅�𝑥). In the present work, two possible options are investigated: 

• The “contact” domain, suggested by (Pharr and Bolshakov, 2002): �̅�𝑥 ∈ [0,𝑎𝑎�𝑚𝑚] , where 𝑎𝑎�𝑚𝑚  is the 

normalized value of the contact radius at maximum load. 

• The “extended” domain: �̅�𝑥 ∈ [0,5], which is approximately double the size of the previous one. 

Figure 4 shows an example of the function 𝑢𝑢�𝑟𝑟(�̅�𝑥) extracted from ABAQUS, with indication of the two different 

domains mentioned above.    

3.3 Young’s modulus calculation 

The 𝑏𝑏�𝑛𝑛 coefficients determined according to equation (21) can be employed to find analytical estimates for the 

sample Young’s modulus using the simulated force-penetration curves as starting point. In fact, the two 

functions 𝑃𝑃(𝑡𝑡) and ℎ�(𝑡𝑡) recorded during the elastic unloading stage can be extracted from ABAQUS and used 

together with the 𝑏𝑏�𝑛𝑛 to solve the system of equations (11)-(12)-(13) for the function 𝐸𝐸∗(𝑡𝑡), where 𝑡𝑡 indicates the 

relative time-coordinate with respect to the entire unloading process. Subsequently, conversion to the standard 

Young’s modulus 𝐸𝐸(𝑡𝑡) may be easily performed by means of equation (5), assuming that Poisson’s ratio is 

known.  

The function 𝐸𝐸(𝑡𝑡) determined in this way turns out to be defined over 100 points, which simply correspond to 

the ABAQUS increments the unloading step is subdivided into. An average value of 𝐸𝐸(𝑡𝑡)  may then be 

calculated on the basis of the upper 50 % of the unloading data. The lower 50 % is discarded for three main 

reasons. Firstly, it is affected by an artificial lack of smoothness due to the fact that the number of mesh elements 

in contact with the indenter reduces quickly, eventually becoming zero at 100 % unloading. Secondly, as will be 

explained in the next section, it is sometimes necessary to correct the equivalent indenter profile close to the 

indenter tip. While this does not sort any significant effect on the top part of the unloading curve, it might 

adversely affect the results when the contact area becomes very small. Thirdly, in this way the analysis becomes 
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more similar to a real nano-indentation test, in which it is common practice to consider only the upper part of the 

unloading curve for the calculation of the Young’s modulus. 

For the sake of clarity, it is important to remark that only the elastic part of the indenter tip penetration is entered 

in the analytical expressions presented in section 2, i.e. the difference between the absolute penetration relative 

to the original undeformed sample surface and the residual plastic penetration ℎ�𝑝𝑝. Unless stated otherwise, ℎ�(𝑡𝑡) 

and ℎ� will always denote this elastic part of the indenter penetration throughout the rest of the analysis. 

 

Figure 4: Example of residual impression profile extracted from ABAQUS, with indication of the two different domains 
considered to approximate the function 𝑓𝑓�̅�𝑒𝑞𝑞(�̅�𝑥). The data refer to a simulation run using 𝜎𝜎𝑦𝑦/𝐸𝐸 = 𝐾𝐾/𝐸𝐸 = 1%. 
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4. Results and Discussion 
4.1 Functional dependence of the equivalent indenter shape 

Before attempting any description of the relation between force and penetration during unloading using the 

equivalent indenter concept, it is essential to examine whether or not the analytical form of the function 𝑓𝑓�̅�𝑒𝑞𝑞(�̅�𝑥) 

defined in (20) can be considered as a material property. 

The first step to clarify this point is to write down explicitly the functional dependence of the function 𝑢𝑢𝑟𝑟 

appearing in (19), which gives the shape of the residual impression. If size-effects are negligible, it is not 

difficult to realize that the variables influencing 𝑢𝑢𝑟𝑟 are the maximum penetration achieved during loading, the 

elastic and plastic material parameters and obviously the coordinate 𝑥𝑥: 

 𝑢𝑢𝑟𝑟 = 𝑢𝑢𝑟𝑟(ℎ𝑚𝑚,𝐸𝐸, 𝜈𝜈,𝜎𝜎𝑦𝑦,𝐾𝐾, 𝑥𝑥) (22) 

The dimension matrix associated with the latter expression has a rank equal to 2. As there are 7 physical 

quantities involved, Buckingham’s Pi Theorem (Barenblatt, 1996) indicates that it can be rewritten in terms of  

7 − 2 = 5 dimensionless variables. For the sake of convenience, the following dimensionless groups are chosen: 

 𝑢𝑢�𝑟𝑟 =
𝑢𝑢𝑟𝑟
ℎ𝑚𝑚

, �̅�𝑥 =
𝑥𝑥
ℎ𝑚𝑚

, 𝜈𝜈,
𝜎𝜎𝑦𝑦
𝐸𝐸

,
𝐾𝐾
𝐸𝐸

     (23) 

so that (22) becomes 

 𝑢𝑢�𝑟𝑟 = 𝛱𝛱1(𝜈𝜈,𝜎𝜎𝑦𝑦/𝐸𝐸,𝐾𝐾/𝐸𝐸, �̅�𝑥) (24) 

Similar arguments may be used to show that the normalized residual penetration ℎ�𝑝𝑝 has to be function of the last 

three dimensionless groups appearing in (23) (Dao et al., 2001): 

  ℎ�𝑝𝑝 = 𝛱𝛱2(𝜈𝜈,𝜎𝜎𝑦𝑦/𝐸𝐸,𝐾𝐾/𝐸𝐸) (25) 

By inserting relations (24) and (25) into (20) one obtains 

 𝑓𝑓�̅�𝑒𝑞𝑞(�̅�𝑥) = 𝛱𝛱1 �𝜈𝜈,
𝜎𝜎𝑦𝑦
𝐸𝐸

,
𝐾𝐾
𝐸𝐸

, �̅�𝑥� − 𝛱𝛱2 �𝜈𝜈,
𝜎𝜎𝑦𝑦
𝐸𝐸

,
𝐾𝐾
𝐸𝐸
� + �̅�𝑥 tan(𝛼𝛼) (26) 

The latter relation proves that the shape of the equivalent indenter, i.e. the analytical form of the function 𝑓𝑓�̅�𝑒𝑞𝑞(�̅�𝑥), 

depends only on dimensionless combinations of the material parameters and it is hence unaffected by the 

particular choice of the maximum indentation depth. This guarantees that the results are insensitive to the 

arbitrary values of ℎ𝑚𝑚 and 𝐸𝐸 employed in the present numerical simulations. 

Another important observation can be made regarding the 𝑏𝑏�𝑛𝑛 coefficients defined in (21), which are used to 

approximate 𝑓𝑓�̅�𝑒𝑞𝑞(�̅�𝑥). From a mathematical point of view, they can be seen as provided by an operator which 

accepts 𝑓𝑓�̅�𝑒𝑞𝑞(�̅�𝑥) and its domain size as input. In the context of the present analysis, the latter is either fixed or 
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defined by the upper limit 𝑎𝑎�𝑚𝑚  as explained in section 3.2. However, straightforward application of 

Buckingham’s Pi Theorem can show that the normalized value 𝑎𝑎�𝑚𝑚 of the contact radius at maximum load is also 

uniquely determined in terms of material properties (Cheng and Cheng, 1999). As a consequence, the 𝑏𝑏�𝑛𝑛 

coefficients turn out to be material parameters as well. 

4.2 Shape of the equivalent indenter profile from finite element simulations 

Figure 5 shows the equivalent indenter profiles calculated for selected values of the plastic material parameters 

according to the procedure described in section 3.2. As the “contact” domain assumption is considered, all 

curves are interrupted in correspondence to the point where �̅�𝑥 = 𝑎𝑎�𝑚𝑚 . As already pointed out by (Pharr and 

Bolshakov, 2002), it can be seen that the function 𝑓𝑓�̅�𝑒𝑞𝑞(�̅�𝑥) is not linear, and the deviation from linearity is larger 

for higher values of the 𝜎𝜎𝑦𝑦/𝐸𝐸 ratio. On the other hand, in contrast to the observations of the previous authors, the 

function 𝑓𝑓�̅�𝑒𝑞𝑞(�̅�𝑥) determined from the present simulations is not always monotonic. For large 𝜎𝜎𝑦𝑦/𝐸𝐸 values a small 

initial decrease is visible, where 𝑓𝑓�̅�𝑒𝑞𝑞(�̅�𝑥)  becomes negative. The reason is that during the final part of the 

unloading stage, the area of the sample in contact with the indenter gradually shrinks to a point which does not 

coincide with the indenter tip. As this local lack of monotonicity in 𝑓𝑓�̅�𝑒𝑞𝑞(�̅�𝑥) near �̅�𝑥 = 0 would preclude the 

application of the general Sneddon’s equations (9), the equivalent profiles featuring this characteristic are 

modified by “flattening” their tips as shown in figure 6-a. It must be emphasized that since the maximum 

negative value of 𝑓𝑓�̅�𝑒𝑞𝑞(�̅�𝑥) is always small in comparison to the equivalent indenter size, less than 1% of the 

contact radius at maximum load, this shape modification does not sort any significant effects on how the upper 

(a) (b) 

Figure 5: Calculated equivalent indenter profiles for selected values of the ratio 𝜎𝜎𝑦𝑦/𝐸𝐸, considering the “contact” domain. 
In (a) the ratio 𝐾𝐾/𝐸𝐸 is 0.2 %, whereas in (b) it is 5.0 %.  
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part of the unloading curve is described by the equivalent indenter. 

The varying curvature of the profiles shown in figure 5 suggests seeking an approximation to 𝑓𝑓�̅�𝑒𝑞𝑞(�̅�𝑥) based on a 

3rd order polynomial. This means that only the first three terms are retained in equation (21). Moreover, 

preliminary analyses showed that the quadratic term did not play a major role, so that it can be neglected in order 

to keep the number of fitting parameters as low as possible. Consequently, the following expression is used to 

approximate 𝑓𝑓�̅�𝑒𝑞𝑞(�̅�𝑥): 

 𝑓𝑓�̅�𝑒𝑞𝑞(�̅�𝑥) ≈ 𝑏𝑏�1�̅�𝑥 + 𝑏𝑏�3�̅�𝑥3 (27) 

Figure 6-b shows an example of equivalent indenter profile fitted using the formula above. 

 

  

  

Figure 6: Analysis of the equivalent indenter profile corresponding to 𝜎𝜎𝑦𝑦/𝐸𝐸 = 1% and 𝐾𝐾/𝐸𝐸 = 0.2%. (a) Correction for 
local lack of monotonicity close to the indenter tip. (b) Third-order polynomial fitting of the equivalent indenter profile. 
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4.3 Validity of the equivalent indenter concept 

On the basis of the 𝑏𝑏�𝑛𝑛 coefficients determined using equation (27), the procedure described in section 3.3 can be 

carried out to obtain estimates for the sample Young’s modulus, which can then be compared with the reference 

value given as input to the finite element simulations. The agreement between the two provides a quantitative 

indication of the capability of the equivalent indenter geometry to describe the contact condition with a surface 

containing a residual impression. 

Results obtained in this way are reported in figure 7-a. It can be noticed that a consistent overestimation of the 

Young’s modulus (calculated on the basis of the upper 50 % of the unloading data) seems to be present. 

Nevertheless, the maximum relative deviations from the reference value are limited to 10 ÷ 15 % for all 

combinations of material parameters tested. In addition, the associated standard deviation, shown in figure 7-b, is 

always below 1.5 %. This is important, as in principle the same value of Young’s modulus should be obtained 

independently of the particular point along the force-penetration curve considered for the calculation, i.e. the 

particular pair of (𝑃𝑃,ℎ) values.  

The consistent Young’s modulus overestimation can be explained, at least partly, by the fact that all analytical 

solutions presented previously neglect the radial displacement of the material points in contact with the 

axisymmetric indenter. This issue was thoroughly addressed in the work of (Hay et al., 1999), where it was 

shown that Sneddon’s equations are formally correct only for Poisson’s ratio equal to 0.5. Conversely, when a 

 
(a) 

 
(b) 

Figure 7: Results for third-order polynomial fitting of the equivalent indenter profile over the “contact” domain. (a) 
Mean value of the Young’s modulus and (b) associated standard deviation.  
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certain amount of material compressibility is introduced, a progressive error builds up, which leads to a Young’s 

modulus overestimation of about 8 % for a Poisson’s ratio of 0.25. The relevance of this aspect for the present 

analysis is made clear in figure 8, which shows results obtained for different values of the latter parameter. It can 

be noticed that the deviation from the reference value of Young’s modulus decreases as 𝜈𝜈  tends to 0.5, in 

agreement with the considerations of the former authors. As a consequence, by implementing correction factors 

in the analytical solutions which take into account the influence of Poisson’s ratio, such as the ones proposed in 

(Hay et al., 1999), the 10 ÷ 15 % error bound could probably be reduced by a considerable amount. This means 

that the equivalent indenter concept is actually very suitable to model the particular contact problem arising 

during the unloading part of a nano-indentation test, provided that a sufficiently good approximation to the 

function 𝑓𝑓�̅�𝑒𝑞𝑞(�̅�𝑥) is available. 

 

Figure 8: Effect of the Poisson’s ratio on the calculated mean value of the Young’s modulus using third-order polynomial 
fitting over the “contact” domain. A value of 𝐾𝐾/𝐸𝐸 = 0.2 % is assumed. 

Regarding this last point, previous works in the field have adopted almost exclusively power-law approximations 

to the equivalent indenter profile, of the type 𝑓𝑓�̅�𝑒𝑞𝑞(�̅�𝑥) = 𝑏𝑏�𝑛𝑛�̅�𝑥𝑛𝑛  (Pharr and Bolshakov, 2002; Woirgard and 

Dargenton, 1997). The main advantage compared to a polynomial approximation is that the elastic analytical 

relation between load and penetration assumes the simple form of equation (16), implying that the following 

connection should exist between the exponent 𝑛𝑛, which describes the shape of the equivalent indenter, and the 

exponent 𝑚𝑚, which describes the power-law relation between load and penetration: 

 𝑚𝑚 = 1 + 1/𝑛𝑛 (28) 
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The results reported in figure 9-a, based on the present simulations, indicate that this relation is to some extent 

satisfied, even though deviations as large as 50 % are seen for some combinations of the material parameters. In 

addition, figure 9-b suggests that the accuracy of the power-law approximation is lower compared to the one 

associated with expression (27), despite both mathematical formulations possess the same number of fitting 

parameters. Therefore, low-order polynomials seem to be a better option for describing the shape of the 

equivalent indenter. 

 

 
(a) 

 
(b) 

Figure 9: Results for power-law fitting of the equivalent indenter profile over the “contact” domain. (a) Comparison 
between the power-law exponents derived from fitting either the equivalent indenter profile or the load-penetration curve 
during the unloading stage. (b) Mean value of the Young’s modulus. 

Before leaving this section, a few considerations on the choice of the domain over which 𝑓𝑓�̅�𝑒𝑞𝑞(�̅�𝑥) is approximated 

need to be made as well. When the “contact” domain is replaced by the “extended” domain visualized in figure 

4, the number of terms considered in equation (21) has to be increased, in order to follow the more complex 

shape of the residual impression beyond the point of contact at maximum load. However, it was observed that 

the accuracy of the Young’s modulus calculation does not improve significantly compared to figure 7, for all 

combinations of material parameters tested. This indicates that, concerning the description of the elastic contact 

between the real indenter and the surface containing a residual impression, the information contained in the 

shape of the 𝑢𝑢�𝑟𝑟 function beyond 𝑎𝑎�𝑚𝑚 does not probably play a major role.  

4.4 Definition of the inverse problem 

The previous section indicates that the equivalent indenter concept does indeed provide a way to describe the 

elastic unloading stage by means of analytical solutions which are formally valid only for indentation into a flat 
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surface. The following paragraphs discuss how to use this result to extract information about the sample elastic 

constants from a real nano-indentation test. 

Let us assume that the curves 𝑃𝑃(𝑡𝑡) and ℎ�(𝑡𝑡) have been recorded during unloading, with 𝑡𝑡 denoting the time 

variable. The inverse problem consists in finding an equivalent indenter profile 𝑓𝑓�̅�𝑒𝑞𝑞(�̅�𝑥) and a value for the 

reduced Young’s modulus 𝐸𝐸∗ such that relations (9) can be satisfied at any instant 𝑡𝑡 for a smooth monotonic 

function 𝑎𝑎�(𝑡𝑡). 

On the basis of the previous findings, an expression of the type (27) is sufficient to approximate 𝑓𝑓�̅�𝑒𝑞𝑞(�̅�𝑥). 

Therefore, only 2 coefficients are needed to characterize the equivalent indenter profile. This means that the 

inverse problem could in principle be formulated as an optimization problem where suitable values for the 3 

scalar unknowns 𝑏𝑏�1,   𝑏𝑏�3 and 𝐸𝐸∗ have to be determined, which provide values for 𝑃𝑃(𝑡𝑡) and ℎ�(𝑡𝑡) according to 

Segedin’s equations (11) – (13) which are as close as possible to those recorded experimentally. This 

formulation looks particularly attractive because any deviation of the real indenter from the ideal conical 

geometry could be naturally taken into account without the need for any area-function calibration. 

The number of unknowns can be reduced by one if the dimensionless function 

 𝛷𝛷(𝑡𝑡) =
𝑊𝑊(𝑡𝑡)
𝑃𝑃(𝑡𝑡)ℎ𝑚𝑚

 (29) 

is employed. It should be noted that experimental values for 𝛷𝛷 are easily calculated, as the work 𝑊𝑊(𝑡𝑡) can be 

obtained from a nano-indentation curve via integration. By inserting (13) and (15) into the latter expression, one 

obtains 

 𝛷𝛷�𝑐𝑐1̅, 𝑐𝑐3̅,𝑎𝑎�(𝑡𝑡)� = � �
𝑛𝑛𝑛𝑛

(𝑛𝑛 + 𝑛𝑛)(𝑛𝑛 + 1) 𝑐𝑐�̅�𝑛𝑐𝑐�̅�𝑠𝑎𝑎�
𝑛𝑛+𝑠𝑠+1

𝑛𝑛,𝑠𝑠=1,3

�× � �
𝑛𝑛

𝑛𝑛 + 1
𝑐𝑐�̅�𝑛𝑎𝑎�𝑛𝑛+1

𝑛𝑛=1,3

�
−1

 (30) 

where the 𝑐𝑐�̅�𝑛 coefficients are uniquely related to the 𝑏𝑏�𝑛𝑛  via equation (11). Furthermore, relation (12) can be 

inverted by means of common formulas for the roots of third-order polynomials. If the obtained expression 

𝑎𝑎� = 𝑟𝑟(ℎ�, 𝑐𝑐1̅, 𝑐𝑐3̅) is inserted into (30), the original system reduces to the single equation 

 

𝛷𝛷 �𝑐𝑐1̅, 𝑐𝑐3̅,ℎ�(𝑡𝑡)� = � �
𝑛𝑛𝑛𝑛

(𝑛𝑛 + 𝑛𝑛)(𝑛𝑛 + 1) 𝑐𝑐�̅�𝑛𝑐𝑐�̅�𝑠𝑟𝑟�ℎ
�, 𝑐𝑐1̅, 𝑐𝑐3̅�

𝑛𝑛+𝑠𝑠+1

𝑛𝑛,𝑠𝑠=1,3

� × 

� �
𝑛𝑛

𝑛𝑛 + 1
𝑐𝑐�̅�𝑛𝑟𝑟(ℎ�, 𝑐𝑐1̅, 𝑐𝑐3̅)𝑛𝑛+1

𝑛𝑛=1,3

�
−1

 

(31) 
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A standard optimization algorithm could then be used to determine values for 𝑐𝑐1̅, 𝑐𝑐3̅  which minimize the 

deviation with the experimental values of 𝛷𝛷 over the range of ℎ� considered. After that, the reduced Young’s 

modulus 𝐸𝐸∗could be easily calculated from either (13) or (15) just replacing 𝑎𝑎� with 𝑟𝑟(ℎ�, 𝑐𝑐1̅, 𝑐𝑐3̅). 

4.5 Non-uniqueness of the solution 

Unfortunately, the inverse problem previously formulated is not well-posed, in the sense that it does not admit a 

unique solution. In fact, let us assume that a solution (𝑐𝑐1̅, 𝑐𝑐3̅) has been found. It can be checked on common 

formulas for the roots of third-order polynomials that for any 𝑘𝑘 > 0 the following equation holds true 

 𝑟𝑟�ℎ�, 𝑐𝑐1̅, 𝑐𝑐3̅� = 𝑘𝑘𝑟𝑟(ℎ�,𝑘𝑘𝑐𝑐1̅,𝑘𝑘3𝑐𝑐3̅) (32) 

By inserting this expression into equation (31) one can verify easily that 

 𝛷𝛷�𝑐𝑐1̅, 𝑐𝑐3̅,ℎ�� = 𝛷𝛷�𝑘𝑘𝑐𝑐1̅,𝑘𝑘3𝑐𝑐3̅,ℎ�� (33) 

which proves that the pair (𝑘𝑘𝑐𝑐1̅,𝑘𝑘3𝑐𝑐3̅) is also solution to the inverse problem. 

The non-uniqueness of the solution stems directly from the particular mathematical structure of the general 

equations (9), which implies that the same elastic load penetration curve can be generated by different indenter 

profiles in combination with different values of the reduced Young’s modulus. Indeed, let us consider an 

indenter profile described by the function 𝑓𝑓𝑒𝑒𝑞𝑞,1(𝑥𝑥) and a value 𝐸𝐸1∗ of the reduced Young’s modulus. For a given 

value 𝑎𝑎�1 of the contact radius, Sneddon’s equations (9) deliver load and penetration as follows: 

 ℎ� = �
𝑓𝑓𝑒𝑒𝑞𝑞,1
′ (ℎ𝑚𝑚�̅�𝑥)

�1 − (�̅�𝑥/𝑎𝑎�1)2
𝑑𝑑�̅�𝑥

𝑎𝑎�1

0
,           𝑃𝑃 = 2𝐸𝐸1∗ℎ𝑚𝑚2 �

�̅�𝑥2𝑓𝑓𝑒𝑒𝑞𝑞,1
′ (ℎ𝑚𝑚�̅�𝑥)

�𝑎𝑎�12 − �̅�𝑥2
𝑑𝑑�̅�𝑥

𝑎𝑎�1

0
 (34) 

Now, let us introduce the quantities 

 𝑓𝑓𝑒𝑒𝑞𝑞,𝑘𝑘(𝑥𝑥) = 𝑓𝑓𝑒𝑒𝑞𝑞,1(𝑘𝑘𝑥𝑥),       𝐸𝐸𝑘𝑘∗ = 𝑘𝑘𝐸𝐸1∗,     𝑎𝑎�𝑘𝑘 = 𝑎𝑎�1/𝑘𝑘        (35) 

with 𝑘𝑘 > 0. 

By inverting the 2nd and 3rd of the relations (35) and inserting them into (34) one obtains 

 ℎ� = �
𝑓𝑓𝑒𝑒𝑞𝑞,1
′ (ℎ𝑚𝑚�̅�𝑥)

�1 − �̅�𝑥2/(𝑘𝑘𝑎𝑎�𝑘𝑘)2
𝑑𝑑�̅�𝑥

𝑘𝑘𝑎𝑎�𝑘𝑘

0
,           𝑃𝑃 = 2

𝐸𝐸𝑘𝑘∗

𝑘𝑘
ℎ𝑚𝑚2 �

�̅�𝑥2𝑓𝑓𝑒𝑒𝑞𝑞,1
′ (ℎ𝑚𝑚�̅�𝑥)

�𝑘𝑘2𝑎𝑎�𝑘𝑘2 − �̅�𝑥2
𝑑𝑑�̅�𝑥

𝑘𝑘𝑎𝑎�𝑘𝑘

0
 (36) 

By noticing that 

 𝑓𝑓𝑒𝑒𝑞𝑞,1
′ (𝑥𝑥) =

𝑑𝑑𝑓𝑓𝑒𝑒𝑞𝑞,1(𝑥𝑥)
𝑑𝑑𝑥𝑥

=
𝑑𝑑𝑓𝑓𝑒𝑒𝑞𝑞,𝑘𝑘(𝑥𝑥/𝑘𝑘)

𝑑𝑑𝑥𝑥
=

𝑑𝑑𝑓𝑓𝑒𝑒𝑞𝑞,𝑘𝑘

𝑑𝑑(𝑥𝑥/𝑘𝑘)
𝑑𝑑(𝑥𝑥/𝑘𝑘)
𝑑𝑑𝑥𝑥

=
1
𝑘𝑘
𝑓𝑓𝑒𝑒𝑞𝑞,𝑘𝑘
′ (𝑥𝑥/𝑘𝑘) (37) 

one may rewrite (36) as 
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 ℎ� = �
𝑓𝑓𝑒𝑒𝑞𝑞,𝑘𝑘
′ (ℎ𝑚𝑚�̅�𝑥/𝑘𝑘)

𝑘𝑘�1 − �̅�𝑥2/(𝑘𝑘𝑎𝑎�𝑘𝑘)2
𝑑𝑑�̅�𝑥

𝑘𝑘𝑎𝑎�𝑘𝑘

0
,           𝑃𝑃 = 2

𝐸𝐸𝑘𝑘∗

𝑘𝑘
ℎ𝑚𝑚2 �

�̅�𝑥2𝑓𝑓𝑒𝑒𝑞𝑞,𝑘𝑘
′ (ℎ𝑚𝑚�̅�𝑥/𝑘𝑘)

𝑘𝑘�𝑘𝑘2𝑎𝑎�𝑘𝑘2 − �̅�𝑥2
𝑑𝑑�̅�𝑥

𝑘𝑘𝑎𝑎�𝑘𝑘

0
 (38) 

Finally, by making the dummy variable substitution �̅�𝑥/𝑘𝑘 = 𝑧𝑧̅ in the integrals appearing in the last formulas one 

obtains 

 ℎ� = �
𝑓𝑓𝑒𝑒𝑞𝑞,𝑘𝑘
′ (ℎ𝑚𝑚𝑧𝑧̅)

�1 − (𝑧𝑧̅/𝑎𝑎�𝑘𝑘)2
𝑑𝑑𝑧𝑧̅

𝑎𝑎�𝑘𝑘

0
,           𝑃𝑃 = 2𝐸𝐸𝑘𝑘∗ℎ𝑚𝑚2 �

𝑧𝑧̅2𝑓𝑓𝑒𝑒𝑞𝑞,𝑘𝑘
′ (ℎ𝑚𝑚𝑧𝑧̅)

�𝑎𝑎�𝑘𝑘2 − 𝑧𝑧2
𝑑𝑑𝑧𝑧̅

𝑎𝑎�𝑘𝑘

0
 (39) 

which show that the quantities 𝑓𝑓𝑒𝑒𝑞𝑞,𝑘𝑘(𝑥𝑥) and 𝐸𝐸𝑘𝑘∗ defined in (35) produce a load penetration curve identical to that 

associated with the indenter profile 𝑓𝑓𝑒𝑒𝑞𝑞,1(𝑥𝑥) and the reduced Young’s modulus 𝐸𝐸1∗. From a physical point of 

view, this means that if the indenter profile is made shallower (resp. steeper) by a scaling transformation 

quantified by the parameter 𝑘𝑘, the elastic force-penetration relation does not change if the reduced Young’s 

modulus is increased (resp. decreased) correspondingly by the same scaling factor. Interestingly, the contact 

depth remains unaffected by this scaling transformation: 

 ℎ𝑐𝑐,𝑘𝑘 = 𝑓𝑓𝑒𝑒𝑞𝑞,𝑘𝑘(ℎ𝑚𝑚𝑎𝑎�𝑘𝑘) = 𝑓𝑓𝑒𝑒𝑞𝑞,1(𝑘𝑘ℎ𝑚𝑚𝑎𝑎�𝑘𝑘) = 𝑓𝑓𝑒𝑒𝑞𝑞,1(ℎ𝑚𝑚𝑎𝑎�1) = ℎ𝑐𝑐,1 (40) 

for any 𝑘𝑘 > 0. 

One possibility to remove the non-uniqueness affecting the inverse problem identified by equation (31) is to 

introduce additional assumptions, which somehow pose limitations on the shape of the equivalent indenter. This 

could be achieved by prescribing the value of either 𝑐𝑐1̅ or 𝑐𝑐3̅ by means of a scalar condition of the type 

 𝑔𝑔(𝑐𝑐�̅�𝑛) = 0,     𝑛𝑛 = 1 ∨  3 (41) 

In principle, the function 𝑔𝑔 should be universal, i.e. independent of the material parameters. However, it seems 

more realistic to be able to construct one such function which depends on one or more experimentally accessible 

quantities which are related to the material properties. On the other hand, if the chosen 𝑔𝑔 turned out to be 

dependent on more than one parameter, the overall idea of using an analytical solution combined with the 

equivalent indenter concept would break down, as Dao et al. (Dao et al., 2001) showed that the reduced Young’s 

modulus itself can be expressed as a function of two indentation parameters: 

 𝐸𝐸∗ =
𝑃𝑃𝑚𝑚
ℎ𝑚𝑚2

𝛱𝛱3 �
𝑃𝑃𝑚𝑚′ ℎ𝑚𝑚
𝑃𝑃𝑚𝑚

,ℎ�𝑝𝑝�  (42) 

where the subscript “m” denotes evaluation of the physical quantity at maximum load. Fortunately, it seems to 

be actually possible to find 𝑔𝑔 functions which depend on less than two parameters and, at the same time, allow 

solving the inverse problem to a sufficient level of accuracy in most practical cases. An example of this is given 

in the next section. 
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4.6 The Oliver-Pharr method 

In the following, it will be shown that the classic Oliver-Pharr method can be considered as a particular case of  

inverse problem consistent with the equivalent indenter concept as discussed in section 4.4, where very specific 

assumptions are made for the constraint (41). Remarkably, it turns out that these assumptions are intrinsically 

embedded in the apparent inconsistencies of the method which were pointed out in connection with expressions 

(1) and (3). 

To begin with, it has to be noted that the latter of these relations can be rewritten in dimensionless form as   

 𝑎𝑎� = ℎ�𝑐𝑐 tan(𝛼𝛼) (43) 

due to the fact that �̅�𝐴 = 𝜋𝜋𝑎𝑎�2. It is also useful to re-cast equation (1) in the following form 

 ℎ�𝑐𝑐,𝑂𝑂𝑂𝑂 = ℎ� + ℎ�𝑝𝑝 − ϵ
𝑃𝑃
𝑃𝑃′

 (44) 

We emphasize that now the symbol ℎ�  appearing in the last expression denotes only the elastic part of the 

penetration, i.e. the difference between the total penetration recorded and the plastic residual penetration ℎ�𝑝𝑝, 

both normalized by the total maximum penetration ℎ𝑚𝑚. Hence, ℎ� + ℎ�𝑝𝑝 corresponds to the total penetration. 

The first step to unveil the underlying assumptions of the method is to note that the factor 𝑃𝑃/𝑃𝑃′ appearing at the 

right-hand-side of equation (44) was derived in (Oliver and Pharr, 1992) from the original Sneddon’s solution 

for a conical indenter, equation (18). By differentiating that expression, one can easily see that 𝑃𝑃/𝑃𝑃′ = ℎ�/2. This 

result holds also for indenters with power-law profiles, as can be easily checked by taking the derivative of 

equation (16). By inserting it into (44) one obtains 

 ℎ�𝑐𝑐,𝑂𝑂𝑂𝑂 = ℎ�𝑝𝑝 + (1 − ϵ/2)ℎ� (45) 

As mentioned in the introduction, in the Oliver-Pharr method this formula is used only at maximum load. 

Consequently, it is possible to use the identity ℎ� + ℎ�𝑝𝑝 = 1 to rewrite it as 

   ℎ�𝑐𝑐,𝑂𝑂𝑂𝑂 = �
ℎ�𝑝𝑝

1 − ℎ�𝑝𝑝
+

2 − ϵ
2 �ℎ� (46) 

Finally, equations (43) and (46) can be combined together to obtain 

 ℎ� = cot(𝛼𝛼)�
ℎ�𝑝𝑝

1− ℎ�𝑝𝑝
+

2 − ϵ
2 �

−1

𝑎𝑎� (47) 

The last expression represents a linear relation between contact radius and elastic penetration. By comparing it 

with equation (12), it is immediately realized that the constant multiplying 𝑎𝑎� at the right-hand-side corresponds 

to the 𝑐𝑐1̅ coefficient for an equivalent indenter with linear profile, whose slope is delivered by equation (17) as 
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 𝑏𝑏�𝑂𝑂𝑂𝑂 =
2
𝜋𝜋
𝑐𝑐1̅ =

2 cot(𝛼𝛼)
𝜋𝜋 �

ℎ�𝑝𝑝
1 − ℎ�𝑝𝑝

+
2 − ϵ

2 �
−1

 (48) 

and whose semi-apical angle 𝛼𝛼𝑂𝑂𝑂𝑂 turns out to be 

 𝛼𝛼𝑂𝑂𝑂𝑂 = 𝜋𝜋/2 − atan�𝑏𝑏�𝑂𝑂𝑂𝑂� (49) 

A few crucial observations can be made at this point. First of all, the Oliver-Pharr method can be considered as 

entirely based on the equivalent indenter concept, without any inconsistencies. Secondly, such equivalent 

indenter is assumed to be conical a priori. Thirdly, the associated semi-apical angle turns out to be given by 

equations (48)-(49). Consequently, it can be stated that the method is based on two constraints of the type (41): 

one forces 𝑐𝑐3̅ to zero and the other one, corresponding to equation (48), prescribes the value of 𝑐𝑐1̅ according to 

the recorded value of ℎ�𝑝𝑝. 

Concerning this last aspect, figure 10-a shows the dependence of 𝛼𝛼𝑂𝑂𝑂𝑂  on ℎ�𝑝𝑝 . Two different values for the 

constant ϵ are considered: 0.72, which is typical of a conical indenter, and 0.75, which relates to a paraboloid but 

is often used in practice as it seems to provide better results (Oliver and Pharr, 2004). It can be noted that when 

the material is perfectly elastic, i.e. ℎ�𝑝𝑝 = 0, 𝛼𝛼𝑂𝑂𝑂𝑂 reduces to 𝛼𝛼 = 70.30, the semi-apical angle of the real indenter. 

This happens exactly for 𝜖𝜖 = 0.72, whereas a small deviation is seen for 𝜖𝜖 = 0.75. Conversely, when the 

material exhibits extensive plastic deformation and ℎ�𝑝𝑝 tends to one, 𝛼𝛼𝑂𝑂𝑂𝑂 approaches 90 degrees, independently 

of the 𝜖𝜖 value. This is sensible, as during loading the material conforms perfectly to the real indenter shape, 

which is retained during subsequent unloading due to negligible elastic recovery. A reason for the big success of 

the Oliver-Pharr method could be this concealed convenient choice of the equivalent indenter profile, which 

explains why the underlying elastic equations describe the unloading stage relatively well even in the presence of 

a non-negligible residual impression on the sample.  

The present analysis is also useful to re-examine the predictive capabilities of the Oliver-Pharr method under a 

different perspective. As extensively discussed in the literature (Bolshakov and Pharr, 1998)(Hay et al., 

1999)(Poon et al., 2008a) errors above 10 % are likely when ℎ�𝑝𝑝 grows beyond 0.7, due to extensive plastic flow 

with associated pile-up, and these are usually larger for materials showing little amount of work-hardening. This 

seems to be the case also for the present findings, reported in figure 10-b. The visible strong influence of the 

hardening parameter indicates that, for a given value of ℎ�𝑝𝑝, multiple values of the equivalent indenter angle 𝛼𝛼𝑂𝑂𝑂𝑂 

would be required to match the theoretical value of Young’s modulus. As a consequence, to further improve the 

accuracy of the method, equation (48), should be modified somehow to include a dependency on some other 

experimentally accessible quantities related to work-hardening. Nevertheless, this would make the method less 
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attractive compared to other procedures suggested in the literature, for the reason explained in the last paragraph 

of section 4.5.  

 
(a) 

 
(b) 

Figure 10: The Oliver-Pharr method. (a) Semi-apical angle of the implicitly assumed equivalent conical indenter as a 
function of the ratio between residual and maximum penetration. (b) Young’s modulus predictions using the data of the 
present simulations. 

5. Conclusions 

The main findings of the present paper can be summarized as follows: 

• The shape of the axisymmetric equivalent indenter can be considered as a material property and can be 

used to describe, within engineering accuracy, the nano-indentation unloading stage by means of 

Sneddon’s elastic solution which is formally valid for indentation into a flat surface only. 

• A consistent method of extracting the elastic moduli from nano-indentation data would imply solving an 

optimization problem where the unknowns are both the reduced Young’s modulus and the shape of the 

equivalent indenter. This problem is ill-posed and additional assumptions are necessary to make its 

solution unique.  

• One such assumption is hidden in the apparent inconsistencies of the Oliver-Pharr method, which may 

be seen as based on an equivalent conical indenter whose semi-apical angle depends on the ratio 

between residual and total penetration. Specifically, this angle tends to 90 degrees when the material 

exhibits extensive inelastic deformation, whereas it reduces to the one characteristic of the real indenter 

for a perfectly elastic material.  
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• Altogether, these results offer a new physical explanation for why the elastic equations of the Oliver-

Pharr method, which are formally valid for contact with a perfectly flat surface, allow for a quite 

accurate calculation of the Young’s modulus even in the presence of a residual impression on the sample 

during unloading. 
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