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Preface 
The PhD thesis was carried out at the Department of Environmental 
Engineering, Technical University of Denmark under the supervision of 
Professor Charlotte Scheutz and co-supervision of Senior Researcher Alessio 
Boldrin from November 15,2013 to February 28,2017.   
 
The thesis is organised into two parts. The first places into context the 
findings of the PhD in an introductive review, whilst the second part consists 
of the papers listed below. These will be referred to in the text by their paper 
number, written in the Roman numerals I-IV. 
 

I Fitamo, T., Boldrin, A., Boe, K., Angelidaki, I., Scheutz, C. 2016. Co-
digestion of food and garden waste with mixed sludge from wastewater 
treatment in continuously stirred tank reactors, Bioresource Technology 
206, 245–254.  
 

II Fitamo, T., Boldrin, A., Dorini, G., Boe, K., Angelidaki, I., Scheutz, C. 
2016. Optimising the anaerobic co-digestion of urban organic waste using 
dynamic bioconversion mathematical modelling, Water Research 106, 
283-294. 

 
III Fitamo, T., Treu, L., Boldrin, A., Sartori, C., Angelidaki, I., Scheutz, C. 

Microbial population dynamics in urban organic waste co-digestion 
during a change in feedstock composition and different hydraulic 
retention times. Water Research. Accepted with revisions. February 2017.  

 
IV Fitamo, T., Triolo, J.M, Boldrin, A., Scheutz, C. Rapid biochemical 

methane potential prediction of urban organic waste with Near Infrared 
Reflectance Spectroscopy. Submitted to Bioresource Technology, 
February 2017.  

In addition, the following publications, not included in this thesis, were also 
concluded during this PhD study:  

Boldrin, A., Baral, K.R., Fitamo, T.M., Vazifehkhoran, A.H., Jensen, I.G., 
Kjærgaard, I., Lyng, K-A., van Nguyen, Q., Nielsen, L.S., Triolo, J.M. (2016) 
Optimised biogas production from the co-digestion of sugar beet with pig 
slurry: integrating energy, GHG and economic accounting. Energy, 112, 606-
617.  
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Fitamo, T., Boldrin, A., Boe, K., Angelidaki, I., Scheutz, C. (2015). 
Combined anaerobic digestion of green waste with wastewater treatment 
plant mixed sludge in continuous stirred tank reactor (CSTR). Proceedings 
Sardinia symposium 2015, 15th International Waste Management and Landfill 
Symposium.   

 
Fitamo, T., Boldrin, A., Boe, K., Angelidaki, I., Scheutz, C. (2015). Co-
digestion of food waste and garden waste with wastewater treatment plant 
mixed sludge in CSTR. Proceedings AD World Congress Series, 14th World 
Congress on Anaerobic Digestion.   
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Kjærgaard, I., Lyng, K-A., Van Nguyen, Q., Nielsen, L. S. & Triolo, J. M. 
(2015). Integration of Energy, GHG and Economic accounting to optimise 
biogas production based on co-digestion. Proceedings DTU-Sustain 2015, 
DTU Conference.  
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(2016). Dynamic bioconversion mathematical modelling and simulation of 
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Summary 
Organic household waste can be treated in various ways, depending on the 
preferred choice of waste management hierarchy and European member state 
and individual country legislation. Currently, there is renewed interest in 
gradually introducing the compulsory, separate collection of biowaste from 
households, restaurants and commercial and industrial sources by 2020 in 
Denmark and throughout the European Union. In Denmark, conventionally 
organic household waste has been incinerated, so the biological treatment of 
organic household waste is very limited. Current policies promote moving 
away from incineration and increasing the recycling of household waste by 
50%, according to Danish and EU targets. The Danish government has opted 
for the production of biogas from recycled organic household waste whilst 
decreasing the amount sent to incineration plants, while the EU favours 
composting and biogas production in comparison to incinerating and 
landfilling organic household waste, in order to reduce environmental 
impacts. Biogas production from urban organic waste (UOW) could also 
contribute to achieving the EU’s renewable energy directive targets by 
producing 20% of overall energy and 10% of vehicle fuel from renewable 
sources. Moreover, biogas could play a vital role, together with wind energy, 
in accomplishing the ambitious Danish government’s energy strategy of 
becoming a 100% fossil fuel-free nation by 2050.  

This PhD research was carried out as part of the BioChain project, seeking to 
optimise the biogas production value chain in Denmark. The BioChain 
project focuses on identifying technical, economic and legislative barriers 
and challenges throughout the biogas production value chain and aims at 
providing decision support tools to produce scientifically-based and sound 
solutions.  

The main objective of this PhD study was systematic quantification of biogas 
production and biochemical transformation of urban organic waste 
comprising organic household waste, garden waste and industrial organic 
waste. The overall objective of this PhD research has been carried out in four 
phases: (i) Developing a near-infrared reflectance spectroscopy (NIRS)-based 
computational model for predicting the methane potential of urban organic 
waste, (ii) Performance of co-digestion of urban organic waste with mixed 
sludge from wastewater treatment plants in a continuous reactor operation, 
(iii) Analysis of microbial population dynamics during the co-digestion of 
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urban organic waste in a continuous reactor and (iv) Identification of optimal 
co-digestion scenarios of urban organic waste.  

The biochemical methane potential (BMP) of organic waste is normally used 
to quantify the energy content of various biomasses. However, performing 
BMP measurements is very time-consuming and can take several weeks to 
complete, depending on the degradability of the biomasses being tested, 
which challenges the optimisation of biogas production and feedstock 
management at biogas plants. Therefore, there is a need to develop new 
methods for rapid determination of urban organic waste BMP. In this study, a 
BMP prediction method, using NIRS, was developed. A total of 87 samples 
consisting organic household waste, garden waste and industrial organic 
waste (e.g. cheese and milk)  were collected, prepared and analysed for BMP 
and NIR. Partial least square (PLS) models were built based on measured 
BMPs and NIRS spectra. The root mean square error of prediction (RMSEP) 
and the coefficient of determination (R2) of the best PLS model for predicting 
the BMP of urban organic waste was 44 mL CH4/g VS and 0.88, respectively 
with a relative root mean square error (rRMSE) of 9%. In addition, 175 
samples were considered, in order to develop a joint UOW and plant biomass 
BMP prediction model. The model predicting the BMP of joint UOW and 
plant biomasses had an RMSEP of 50 mL CH4/g VS, a rRMSE of 16% and an 
R2 value of 0.89. The NIRS-based prediction of BMP was satisfactory and 
moderately successful. The models can be used for quantifying the BMP of 
UOW and plant biomasses. Traditional BMP measurements can thus be 
replaced with NIRS-based BMP measurement for first hand estimation of the 
BMP.     

The co-digestion of urban organic waste with sewage sludge was studied in 
continuous stirred tank reactors, R1 and R2, each with a working volume of 
7.5 L operated in thermophilic conditions. Both R1 and R2 was fed with co-
substrates of sewage sludge, food waste, grass clippings and garden waste. 
The amount of mixed sewage sludge was fixed at 10% of the total VS of co-
substrates and the remaining 90% consisted of food and green waste with a 
corresponding VS mixing ratio of 75:25 and 50:50 in R1 and R2 respectively. 
The green waste was a mixture of 70% grass clippings and 30% garden waste 
on VS basis. Accordingly, the reactors were fed with co-substrates of sludge 
and food waste, grass clippings and garden waste with a corresponding 
percentage VS of 10:67.5:15.75:6.75 (R1) and 10:45:31.5:13.5 (R2). The 
effects of the co-substrate mixing ratio and hydraulic retention time (HRT) on 
reactor performance and operational parameters were investigated. The 
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methane yield of mixed sewage sludge was 287 mL CH4/g VS, whereas it 
was 424 and 359 mL CH4/g VS for R1 and R2 respectively at HRT of 30 
days. The co-digestion of food and green waste with sludge thus improved 
the specific methane yield by about 48% in the reactor fed with a high 
proportion of food waste (R1) and by 35% in the reactor fed with a high share 
of green waste (R2) in comparison to the anaerobic digestion (AD) of 100% 
mixed sludge. Methane productivity increased in line with decreasing HRTs 
(30, 20 and 15 days), whereas methane yield remained almost constant. 
However, the specific methane yield dropped considerably when reducing the 
HRT to 10 days. The anaerobic digestion of mixed sludge with UOW at low 
HRTs (<10 days) is problematic, due to microbial washout and overloading. 
In conclusion, the addition of UOW to sewage sludge digesters enhanced 
biogas production significantly.  

Analysis of microbial population dynamics was conducted with samples 
taken during the co-digestion of urban organic waste with mixed sludge in a 
continuous reactor in a steady state condition. DNA was extracted via the 
PowerSoil® DNA Isolation Kit protocol, and sequencing was done with an 
Illumina MiSeq 16S ribosomal RNA. A shift in microbial community 
diversity was observed during the co-digestion of urban organic waste 
compared to the mono-digestion of sludge. During the AD of 100% mixed 
sewage sludge, Proteobacteria was the dominant bacteria in the microbial 
community, though this decreased considerably during the co-digestion of 
UOW. In contrast, a new, predominant community of Thermonema increased 
during the anaerobic co-digestion of UOW. The most prevalent methane 
formation occurred through syntrophic acetate oxidation, followed by 
hydrogenotrophic methanogenesis (Methanothermobacter). At a HRT of 10 
days, the relative abundance of Methanothermobacter decreased, while the 
abundance of Methanosarcina increased in the archaeal community. 
Hydrolytic microbes were found to be correlated with the concentration of 
acetate, methane productivity and methane yield. In conclusion, this study 
showed that the composition of microbial diversity is linked to feedstock 
composition and operational process parameters, whilst biogas production 
process parameters are associated with the relative abundance of particular 
microbes.  

The identification of optimal co-digestion scenarios for urban organic waste 
with wastewater sludge was achieved using a dynamic mathematical 
bioconversion model (BioModel). The BioModel was applied to simulate the 
co-digestion of urban organic waste with sludge at various mixing ratios of 
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co-substrates and HRTs, in order to identify optimal biogas production 
scenarios. Reactor performance and operational parameters obtained by 
BioModel simulations were in agreement with the experimental results 
obtained in the co-digestion of urban organic waste conducted in a 
continuous reactor. The simulation scenario analysis showed that increasing 
the amount of sludge in the co-substrate had a marginal effect on reactor 
performance, whereas increasing the amount of food and garden waste 
improved methane productivity and yield.  

The maximum methane productivity for optimal feedstock composition with 
a VS mixing ratio of 10% mixed sludge, 79% food waste, 8% grass clippings 
and 3% garden waste was 2557 mL CH4/L·day, but the specific methane 
yield was 393 mL CH4/g VS at a HRT of 12 days. On the contrary, the 
maximum specific methane yield of 418 mL CH4/g VS was achieved at a 
HRT of 30 days, whereas productivity dropped twofold. Identifying the 
optimal mixing of substrates (sludge, food waste and green waste), to achieve 
maximum biogas production, should be based on trade-off between methane 
productivity, specific methane yield and stable microbial process operation. 
The bioconversion model can be used for the quantification of biogas 
production from UOW. Moreover, the model can provide support for 
quantifying the biochemical transformation of UOW, by controlling, 
monitoring and running the AD of UOW at its full potential. 
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Dansk sammenfatning 
Organisk husholdningsaffald kan behandles på forskellige måder alt efter 
hvad foretrækkes på baggrund af affaldshierarkiet og lovgivningen i 
europæiske medlemslande eller individuelle lande. I øjeblikket er der fornyet 
interesse for gradvist at introducere tvungen separat indsamling af bioaffald 
fra husstande, restauranter samt kommercielle og industrielle kilder inden 
2020 både i Danmark og resten af EU. I Danmark er organisk 
husholdningsaffald traditionelt blevet håndteret via affaldsforbrænding, 
hvorfor biologisk behandling af denne fraktion er begrænset. De nuværende 
politikker i Danmark og EU taler for at gå væk fra forbrænding af organisk 
husholdningsaffald, og i Danmark er det besluttet at 50 % af 
husholdningsaffaldet skal genanvendes. Den danske regering vil bruge 
indsamlet organisk husholdningsaffald til produktion af biogas og reducere 
affaldsmængden til forbrænding, mens EU foretrækker kompostering og 
biogasproduktion frem for forbrænding og deponering for at reducere de 
relaterede miljøpåvirkninger. Biogasproduktion fra bioaffald af urban 
oprindelse kan desuden hjælpe til at opnå EU's mål om at vedvarende 
energikilder skal stå for 20 % af den samlede energiproduktion og 10 % af 
energien til transportområdet, som det er beskrevet i EU-direktivet om 
vedvarende energikilder. Desuden kan biogas spille en vigtig rolle sammen 
med vindenergi i bestræbelserne på at opnå den danske regerings ambitiøse 
energistrategi om at blive 100 % uafhængig af fossile brændsler inden 2050. 

Dette Ph.d.-studie blev udført som en del af BioChain-projektet: Optimering 
af værdikæden for biogasproduktion i Danmark. BioChain-projektet 
fokuserer på at identificere tekniske, økonomiske og lovgivningsmæssige 
barrierer og udfordringer i værdikæden for biogasproduktion, og sigter efter 
at fremsætte beslutningsværktøjer for at skabe videnskabeligt baserede og 
velfunderede løsninger.  

Hovedformålet ved dette Ph.d.-studie var at systematisk kvantificere 
biogasproduktionen ved biokemisk omdannelse af organisk affald af urban 
oprindelse herunder organisk husholdningsaffald, haveaffald og organisk 
industriaffald. Ph.d.-studiet er blevet udført i fire faser: (i) Udvikling af en 
computermodel til forudsigelse af metanpotentialet af organisk affald af 
urban oprindelse baseret på nær infrarød reflektans spektroskopi (NIRS), (ii) 
Undersøgelse af udbyttet ved samudrådning af organisk affald af urban 
oprindelse iblandet slam fra renseanlæg i anaerobe reaktorer, (iii) Analyse af 
dynamikker i populationer af mikroorganismer under samudrådning af 
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organisk affald af urban oprindelse i anaerobe reaktorer, og (iv) Identifikation 
af optimale samudrådnings-scenarier for organisk affald af urban oprindelse.  

Man bruger oftest det biokemiske metanpotentiale (BMP) af organisk affald 
til at kvantificere energiindholdet af forskellige biomasser. Udførelsen af 
BMP-målinger er dog ganske tidskrævende og kan, afhængig af 
nedbrydeligheden af den testede biomasse, tage adskillige uger, hvilket 
besværliggør optimeringen af biogasproduktionen og håndtering af 
råmaterialer ved biogasanlæg. Derfor er der brug for udvikling af nye 
metoder, der hurtigt kan bestemme BMP af organisk affald af urban 
oprindelse. I dette studie blev der udviklet en metode til at estimere BMP ved 
hjælp af NIRS. 87 organiske affaldsprøver af urban oprindelse blev 
indsamlet, behandlet og analyseret for BMP og NIR. De 87 prøver 
indbefattede prøver af organisk husholdningsaffald, haveaffald og 
industriaffald (bl.a. brie og mælk). På baggrund af målte BMP-værdier og 
NIRS-spektre blev der udviklet en ”partial least square” (PLS)-model. ”Root 
mean square error of prediction” (RMSEP) og korrelationskoefficienten (R2) 
af den bedste model til forudbestemmelse af BMP of organisk affald af urban 
oprindelse var henholdsvis 44 mL CH4/g VS og 0,88 med en relativ RMSE på  
9 %. Desuden blev 175 prøver brugt til at udvikle en model til 
forudbestemmelse af BMP fra bioaffald af urban oprindelse samt 
plantebaseret biomasse. Modellen havde en RMSEP på 50 mL CH4/g VS, og 
en relativ RMSE på 16 % og en R2-værdi på 0,89. Det NIRS-baserede estimat 
af BMP var tilfredsstillende og klassificeres som moderat succesfuld. 
Modellerne kan bruges til kvantificering af BMP af bioaffald af urban 
oprindelse og plantebaserede biomasser. De traditionelle BMP-målinger kan 
derfor udskiftes med NIRS-baseret BMP-måling til et første estimat af 
metanpotentiale. 

Samudrådning af organisk affald af urban oprindelse og spildevandsslam blev 
undersøgt i kontinuert omrørte reaktorer med et arbejdsvolumen på 7,5 L 
under termofil temperatur. De to reaktorer, i det følgende betegnet R1 og R2, 
blev tilført biomasse bestående af spildevandsslam og madaffald, afklippet 
græs og haveaffald. Mængden af spildevandsslam i samudrådnings-
blandingen var fastsat til 10 % af det totale organiske tørstof (VS), og de 
resterende 90 % bestod af madaffald og haveaffald i et blandingsforhold på 
henholdsvis 75:25 og 50:50 for R1 og R2. Haveaffaldet bestod af en blanding 
af afklippet græs og andet haveaffald i et forhold på henholdvis 70 % og 30 
% af VS. Dette betyder at det endelige procentvise blandingsforhold for 
spildevandsslam, madaffald, afklippet græs og haveaffald var på 
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10:67,5:15,75:6,75 (R1) og 10:45:31,5:13,5 (R2). Det blev undersøgt, 
hvordan forholdet mellem de forskellige biomassers blandingsforhold og den 
hydrauliske retentionstid (HRT) påvirkede reaktorens ydeevne og 
driftsparametre. Det specifikke metanudbytte fra blandet spildevandsslam var 
287 mL CH4/g VS, mens det for R1 og R2 var henholdsvis 424 og 359 mL 
CH4/g VS (HRT = 30 days). Samudrådning af madaffald og grønt affald med 
slam forøgede derved det specifikke metanudbytte med ca. 48 % i reaktoren 
med høj tilførsel af madaffald (R1) og med 35 % i reaktoren med høj tilførsel 
af grønt affald (R2), i forhold til anaerob udrådning af 100 % blandet slam. 
Produktiviteten i forhold til metandannelse steg med en faldende HRT (30, 20 
og 15 dage), hvorimod metanudbyttet stort set forblev konstant. Dog faldt det 
specifikke metanudbytte betydeligt ved reduktion af den HRT til 10 dage. Det 
blev observeret, at anaerob udrådning af blandet slam med organisk affald af 
urban oprindelse ved lave HRTer (<10 dage) er problematisk grundet 
mikrobiel udvaskning og overbelastning. Det kan heraf konkluderes at 
tilførsel af organisk affald af urban oprindelse til rådnetanke for 
spildevandsslam vil forøge biogasproduktionen betydeligt.  

Analyse af udviklingen i sammensætningen af den mikrobielle population 
blev udført ved udtag af prøver fra samudrådning af organisk affald af urban 
oprindelse og slam i anaerobe reaktorer ved stabile forhold. DNA blev 
udtrukket med PowerSoil ® DNA Isolation Kit protokollen og 
sekvenseringen blev foretaget med Illumina MiSeq 16S ribosomal RNA. En 
ændring i den mikrobielle sammensætning blev observeret under 
samudrådning af organisk affald af urban oprindelse i forhold til udrådning af 
slam alene. Under anaerob udrådning af 100 % blandet spildevandsslam var 
Proteobacteria den dominerende bakterie i det mikrobielle samfund, men 
forekomsten faldt drastisk under samudrådning med organisk affald af urban 
oprindelse. I modsætning til under anaerob udrådning af 100 % blandet 
spildevandsslam, steg  den nye dominerende bakterie Thermonema i det 
mikrobielle samfund under samudrådning med organisk affald af urban 
oprindelse. Metandannelse forekom primært gennem syntrofisk 
acetatoxidering efterfulgt af hydrogenotrof metanogenese 
(Methanothermobacter). Ved en HRT på 10 dage faldt den relative andel af 
Methanothermobacter, mens forekomsten af Methanosarcina steg. Det sås, at 
hydrolytiske mikrober korrelerede med koncentrationen af acetat, 
metanproduktion og metanudbytte. Dette studie viste, at sammensætningen af 
den mikrobielle diversitet hænger sammen med sammensætningen af 
biomasser og de operationelle procesparametre. Procesparametre for 
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biogasproduktion hænger sammen med den relative forekomst af særlige 
mikrober. 

Bestemmelsen af optimale scenarier for samudrådning af organisk affald af 
urban oprindelse og spildevandsslam blev udført ved hjælp af en dynamisk 
matematisk bio-omdannelsesmodel (BioModel). BioModellen blev anvendt 
til at simulere samudrådning af organisk affald af urban oprindelse og slam 
ved forskellige blandingsforhold af biomasse og forskellige HRT’er for at 
identificere scenarierne for den optimale biogasproduktion. Reaktorens 
ydeevne samt operationelle parametre som blev fundet ved BioModel-
simuleringer stemte overens med de eksperimentelle resultater fundet ved 
samudrådning af organisk affald af urban oprindelse i anaerobe reaktorer. 
Simuleringerne viste, at forøgelse af slammængden kun har en marginal 
effekt på reaktorens ydeevne, hvorimod en forøgelse af mængden af 
madaffald og haveaffald både øger metanproduktionen og metanudbyttet.  

Den optimale sammensætning af indfødningsmaterialet til samudrådning blev 
fundet til at have et VS-blandingsforhold på 10 % slam, 79 % madaffald, 8 % 
afklippet græs og 3 % haveaffald. Den maksimale metanproduktivitet for 
denne blanding af biomasser var 2557 mL CH4/L·dag, og det specifikke 
metanudbytte var 393 mL CH4/g VS ved en HRT på 12 dage. Derimod blev 
det maksimale specifikke metan udbytte på 418 mL CH4/g VS opnået ved en 
HRT på 30 dage, hvilket dog betød en halvering af metanproduktiviteten. For 
at opnå den maximale biogasproduktion bør sammensætningen af 
indfødningsmaterialer (slam, madaffald og grønt affald) baseres på en 
afvejning mellem metanproduktivitet, specifikt metanudbytte og en stabil 
mikrobiel proces. Bio-omdannelsesmodellen kan bruges til at kvantificere 
biogasproduktionen fra organisk affald af urban oprindelse, Desuden kan 
modellen bruges som support til at kvantificere den biokemiske omdannelse, 
ved at kontrollere, monitorere og operere den anaerobe udrådning for at opnå 
det fulde potentiale. 
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1 Introduction  

1.1 Background 
Globally, there is increasing interest in substituting conventional fossil fuels 
with clean, renewable energy systems to mitigate the accumulation of 
greenhouse gases in the atmosphere which result in climate change. For this 
reason, the share of renewable energy production is expected to increase in 
future energy systems in many European Union (EU) countries (European 
Union, 2016). The EU Parliament recently adopted the renewable energy 
directives (REDs), which include targets generating 20% of overall energy 
and 10% of vehicle fuel from renewable energy sources (European 
Parliament, 2009) by 2020. Similar initiatives in China involve the 
construction of several rural household biogas digesters and the provision of 
improved service systems such as raw material supply, technology, policy 
and regulations (Peidong et al., 2009). In addition, the USA adopted the 2007 
Energy Independence and Security Act, which paved the way for an increase 
in advanced biofuel production (U.S. Congress, 2007). The EU has also set a 
target of an 80 - 90% greenhouse gas emissions reduction, below the 1990 
level, by 2050 (European Comission, 2012).  

Meanwhile, Denmark has adopted a very ambitious energy strategy to 
become a fossil-free nation in 2050, whereby all energy demands will be 
serviced by renewable energy sources. If the strategy is realised, Denmark 
will be the first nation to be 100 % independent of fossil fuels (Energinet.dk, 
2010). This could be achieved mainly through the production of renewable 
energy from wind sources; however, when wind energy is in short supply, 
biogas could meet demand, whilst if there is a surplus of wind energy, it 
could be used to produce hydrogen (H2) via electrolysis, which could then be 
used to upgrade biogas to biomethane.  

Biogas is a versatile form of renewable energy and can be used to produce 
natural gas-grade biomethane, vehicle fuel, heat and electricity in a combined 
heat and power plant. Biomethane can be supplied to the existing natural gas 
grid infrastructure, or the heat produced can be utilised in district heating 
systems. In Denmark, there are 65 sewage sludge-based biogas plants, 82 
agricultural plants (primarily manure-based) and five industrial biogas 
facilities (Biogas, 2014). Several new large-scale and centralised biogas 
plants are being built or are at the time of writing in the planning phase. In 
addition, there are six biogas upgrading plants and eight gas filling stations 
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(IMF, 2014). In Denmark, currently 3.8 PJ of biogas is produced, with the 
majority found in the agricultural plant (2.88 PJ), sewage sludge (0.79 PJ) 
and industrial (0.41 PJ) fields (Biogas, 2014). Currently, only 7% of the 
animal manure produced in agriculture (Energistyrelsen, 2014) is exploited 
for biogas production. By 2020, 50 % of the manure should be treated by 
anaerobic digestion (AD). Combining the AD of animal manure and 
industrial and household organic waste and sewage sludge could potentially 
contribute significantly, increasing the production of biogas by up to 40 PJ 
(Biogas, 2014). This shows that there is huge untapped potential for biogas 
production from organic waste in Denmark. Accordingly, the Danish Energy 
Agency has predicted a fourfold increase (up to 16 PJ) of total biogas 
production by 2020, which could be accomplished through utilising various 
kinds of feedstock such as animal manure, plant biomass, agricultural crop 
residues, industrial organic waste and urban organic waste (UOW) from 
households. The energy strategy, however, has set a cap of 25% on the 
maximum share of energy crops that can be used in biogas production (2015-
2017). Between 2018-2020, this cap will be reduced further to 12% and 
gradually diminish the utilisation of energy crops for bioenergy production 
after 2021 (Styrelsen, 2012). Hence, introducing and utilising urban organic 
waste could play a vital role in increasing the share of biogas in the Danish 
energy system.   

The EU promotes the separate collection of biowaste and favours composting 
and biogas production from biowaste compared to incineration and landfilling 
(European Commission, 2008). As of 2010, between 118 and 138 million 
tonnes of biowaste were generated annually in the EU (European 
Commission, 2008), which could be a huge input potential for biogas 
production. By 2020, the generation of biowaste in the EU is projected to 
increase by 10% (European Commission, 2008). In addition, the Danish 
government is promoting new policies, with the view of gradually 
introducing compulsory source separation and the collection of biowaste from 
households, restaurants and commercial and industrial sources, as well as 
treatment by anaerobic digestion, thereby reducing the amount of organic 
waste sent to incineration plants (The Danish Government, 2013). The 
amount of residual household waste generated in Denmark in 2014 was 1.1 
million tonnes (417, 000 tonnes from single-family and 687,000 tonnes from 
multi-family houses), consisting of about 25% food waste (Miljøministeriet, 
2014). The potential for biogas production from available feedstock materials 
(animal manure, energy crops, sewage sludge or industrial waste and green 
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waste), if fully exploited, could reach up to 80 PJ (Biogas, 2014), which is 
about 12 % of current national energy consumption.    

1.2 Anaerobic digestion and quantification of 
biogas production  

The conversion of organic materials into biogas occurs through an anaerobic 
digestion (AD) process. AD bioconversion involves complex biochemical 
reactions such as hydrolysis, acidogenesis and acetogenesis fermentation as 
well as methanogenesis. Organic polymers, for instance lipids, carbohydrates 
and proteins, are hydrolysed to monomers of fatty acids, glucose and amino 
acids by faculitative or strictly anaerobic bacteria during the hydrolysis 
process (Treu et al., 2016; Yu et al., 2010). The monomers are then converted 
into intermediate products, mostly volatile fatty acids (VFAs), during the 
acidogenesis stage (Ali Shah et al., 2014). VFAs undergo biochemical 
transformation into acetate, carbon dioxide (CO2) and methane (CH4) through 
acetogenesis. These products are then converted to methane via 
methanogenesis. The production of methane proceeds through acetoclastic 
and/or syntrophic acetate oxidation (SOA). During acetoclastic 
methanogenesis, acetate is cleaved into methyl and carboxyl groups, which 
are converted later to CH4 and CO2, respectively, by Methanosarcinaceae or 
Methanosaetaceae (Ferry, 1993). Meanwhile, in the second methanogenic 
pathway, the acetate is oxidised to a H2 and a carboxyl group (converted to 
CO2) by SAO, followed by the syntrophic association of hydrogenotrophic 
methanogenesis reducing the CO2 to CH4 by H2. This process is facilitated by 
Methanomicrobiales or Methanobacteriales (Hattori et al., 2000; Petersen 
and Ahring, 1991; Zinder and Koch, 1984). Due to technological 
advancements in sequencing techniques, the role of bacteria and archea in 
bioconversion processes, along with community composition in the AD 
process, has been established (Campanaro et al., 2016; Eikmeyer et al., 
2013). Microorganisms act as the main engine in the biogas production 
process. The AD process can be influenced or enhanced by microorganisms. 
Fotidis et al. (2013) reported that ammonia inhibition can be overcome 
through the bio-augmentation of hydrogenotrophic methanogens, while 
Kougias et al. (2014) reported that foaming incidents in biogas reactors have 
been associated with Microthrix or Nocardia bacteria. However, the effects 
of microbial composition on process performance, and the correlation of 
biochemical parameters with the relative abundance of microorganisms, have 
not been established yet.  
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Methane, which potentially can be produced from various feedstock materials 
involving complex biochemical reactions, is conventionally measured with a 
biochemical methane potential (BMP) assay, in order to understand the extent 
of biodegradability. The BMP of organic materials is measured 
conventionally in a batch reactor incubated either in mesophilic (37oC) or 
thermophilic (55oC) conditions with proper inoculum (Hansen et al., 2004). 
However, the experimental BMP measurement technique is very costly and 
time-consuming, as it can take between 30 and 90 days to complete, 
depending on the degradability of the feedstock. Hence, estimating the 
theoretical biochemical methane potential (T-BMP) of various feedstocks 
based on elemental composition (C,H,O,N) and chemical components 
(carbohydrates, lipids and proteins) has been proposed.   

The T-BMP is calculated with the Bushwell formula, by taking into 
consideration the elemental chemical composition (Symons and Buswell, 
1933). Nevertheless, this BMP estimation technique overestimates the 
methane potential of organic materials, since it takes both degradable and 
non-degradable matter into account (Davidsson et al., 2007). Determining 
maximum methane potential based on chemical components provides more 
realistic estimations compared to elemental composition (Davidsson et al., 
2007); nevertheless, this method involves rigorous sample preparation and 
analytical methods to measure the physicochemical parameters of the 
feedstock, which may lead to high uncertainty, particularly for very 
heterogeneous and solid waste samples. Furthermore, this technique is costly, 
time-consuming and may involve the use of chemicals during analytical 
analysis.  

Currently, a new rapid and reliable methane potential prediction technique 
based on near-infrared reflectance spectroscopy (NIRS) and measured BMP 
is gaining increased interest and attention. NIRS has been applied moderately 
successfully to estimate the BMP of municipal solid waste (MSW) (Lesteur et 
al., 2011), meadow grass (Raju et al., 2011), MSW and agro-industrial waste 
(Doublet et al., 2013) and plant biomass (Triolo et al., 2014). BMP prediction 
based on the NIRS method supports biogas plant operators making decisions 
regarding substrate feeding into the digester as well as feedstock inventory 
management, and it also improves the efficiency of the overall biogas 
production value chain. BMP prediction using NIRS is still in the early 
stages, but it seems a promising method. Up to this point in time, there has 
been a lack of knowledge on a dedicated model for predicting the BMP of 
urban organic waste. Furthermore, there is also interest in developing a robust 
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NIRS model for the BMP prediction of various organic waste fractions. 
Normally, BMP values differ between laboratories, due to the biological 
nature of the experiment, such as the source and activity of inoculum, so the 
quality of the reference data is important, in order to develop rapid and 
reliable BMP prediction models.  

The batch BMP value provides an estimate about the anaerobic 
biodegradation of organic waste. However, normally in biogas plants, the AD 
process proceeds under less optimal conditions in comparison to short-term 
laboratory incubation test assays. Mostly, continuously stirred tank reactors 
(CSTRs) are used on a laboratory scale to simulate full-scale biogas plants. 
The continuous reactors can be operated in mesophilic or thermophilic 
conditions. AD in thermophilic conditions provides improved yields, better 
organic matter reductions and biological and chemical reactions, reduced 
costs for digestate disposal and better hygienisation compared to mesophilic 
conditions (Angelidaki et al., 2006). The thermophilic AD of single 
substrates has been studied extensively for sewage sludge (Astals et al., 2012; 
Ferrer et al., 2008; Gavala et al., 2003) and food waste (Climenhaga and 
Banks, 2008; Forster-Carneiro et al., 2008) as mono-digestion. However, 
food waste mono-digestion does exhibit technical challenges, due to high 
protein content which leads to the accumulation of volatile fatty acids (VFAs) 
because of ammonia inhibition. For this reason, the co-digestion of substrates 
at optimal mixing ratios could possibility avoid process instability. Primary 
and secondary sludge generated in wastewater treatment plants (WWTPs) is 
normally treated and stabilised through anaerobic digestion (AD) to produce 
biogas. The energy produced during the bioconversion of sludge is mostly 
utilised to meet onsite demand, but sometimes it is delivered to energy utility 
companies. However, the addition of food and green waste as a co-substrate 
could boost biogas production in WWTP facilities. In pilot-scale and full-
scale plants, the co-digestion of activated sludge with food waste has 
improved performance relative to mono-digestion (Bolzonella et al., 2006; 
Cecchi et al., 1988). Nowadays, the addition of new feedstocks such as food 
waste and green waste is attractive for biogas plants looking to boost biogas 
production. A few studies have reported on the co-digestion of food and 
green waste, but experiments were limited to batch tests. Chen et al. (2014) 
reported that an increased amount of food waste in the co-substrate did 
indeed improve methane yield. The thermophilic AD of food and garden 
waste is reported to provide enhanced reactor performance compared to 
mesophilic conditions (Liu et al., 2009). While several studies considering 
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sludge as a main substrate are available in the literature, there is generally a 
lack of information on the co-digestion of food and green waste as the main 
substrate with sludge to improve the yield and productivity of biogas 
production (Mata-Alvarez et al., 2014).  

The continuous AD process is prone to process disturbances such as changes 
in pH, the accumulation of VFAs and ammonia inhibition unless monitored 
thoroughly. The operation may take several weeks or months until it reaches 
a steady-state condition. Operating the reactors at optimal conditions is also 
very important to maximise gas production. Unforeseen process disturbance 
could be detrimental to microorganisms, and it could actually lead to process 
instability and breakdown, which could be very costly to biogas plant 
operators. Mathematical modelling of the AD process could provide a great 
support to biogas plant operators when making decisions regarding process 
monitoring, simulation, optimisation and stability. Kaspar and Wuhrmann 
(1978) proposed the mathematical modelling of sewage sludge AD based on 
the chemical oxygen demand (COD) of the substrate, whereas Angelidaki et 
al. (1999) proposed a comprehensive dynamic bioconversion model 
(BioModel) based on the composition of feedstock to simulate the AD of 
complex organic materials. The BioModel has been applied for simulating, 
monitoring and controlling cattle manure AD to analyse the effect of 
ammonia, pH and temperature (Angelidaki et al., 1993), as well as olive oil 
mill effluent co-digestion with manure. In response to the need for an 
internationally generic AD model, the IWA (the International Water 
Association) task group for the mathematical modelling of AD proposed “AD 
Model No.1” (ADM1). ADM1 expresses the concentration of substrates in 
terms of COD (Batstone et al., 2002) and has been applied mainly to simulate 
the AD of sludge in WWTPs (Batstone, 2006; Parker, 2005). The application 
of ADM1 to model the co-digestion of sludge with biowaste is reported to be 
relatively limited (Derbal et al., 2009). However, the application of the 
BioModel is convenient for modelling and simulating AD when the 
characterisation of COD is challenging, particularly for solid waste. 
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1.3 Research Objectives   
The overall objective of this PhD study was to systematically quantify the 
biogas production and biochemical transformation of urban organic waste. 
The specific objectives of the research included:  

 Assessing and quantifying the production of biogas during the co-
digestion of urban organic waste (UOW) with sewage sludge by varying 
the mixing ratio of co-substrates and hydraulic retention times (HRTs)  

 Identifying important anaerobic co-digestion scenarios for optimal biogas 
production from urban organic waste using a bioconversion model  

 Analysing the association of biogas production from co-digestion of urban 
organic waste at various feedstock compositions and HRTs with changes in 
microbial communities  

 Developing a systematic method for the quantification of biogas 
production from urban organic waste. 

The specific objectives of the PhD thesis are provided in four papers. The 
assessment and quantification of biogas production from the co-digestion of 
urban organic waste is presented in Fitamo et al. I. The identification of key 
anaerobic co-digestion scenarios for urban organic waste is described in Fitamo 
et al. II. The dynamicity of microbial communities with the production of 
biogas from the co-digestion of urban organic waste is described in Fitamo et 
al. III, and the systematic quantification of biogas production from urban 
organic waste is reported in Fitamo et al. IV.  

The PhD thesis is structured in five sections. The methods are described in 
section 2, while the results and discussion of the main findings of the 
research are presented in section 3. Conclusions and suggestions for further 
research are provided in sections 4 and 5, respectively.  

 

 

 

 

 



8 

1.4 BioChain Project  
This PhD study has been part of the BioChain project, supported by the 
Danish Innovation Fund, focusing on identifying technical, economic and 
legislative barriers and challenges in the biogas production value chain and 
aiming at providing decision support tools to make scientifically-based and 
sound solutions. The BioChain research project involves value chain analysis 
of biomass production/collection, transportation, pre-treatment, energy 
conversion, energy carrier substitution and the application of digestate as a 
fertiliser. AD is going through a number of technological advancement; 
however, the process is not yet fully optimised, efficient or economic. The 
composition of biomass and the value chain management of biomass 
production (agricultural or household waste) up to delivering electricity and 
heat to customers, and the application of digestate as fertiliser, are 
customarily related to biogas production and the reduction of greenhouse gas 
emissions. Computational models and decision support tools that could take 
up the analysis of a comprehensive biogas production value chain framework 
is crucial for supporting politicians, investors, farmers and biogas companies 
seeking to make scientifically-based decisions. The holistic approach is vital 
to identifying investment barriers, improving the efficiency of digesters and 
also exploring new alternative biomasses. 

BioChain research consists of the value chain optimisation, integration and 
validation of models, biomass analysis, environmental impacts, logistics and 
economics. The biomass analysis part looks at developing methods that could 
enable the systematic quantification of biogas production from agricultural 
and household sources. This PhD study focuses mainly on the quantification 
of biogas production from urban organic waste (UOW), i.e. characterisation, 
methane potential, computation prediction of methane potential, co-digestion 
of urban organic waste, mathematical modelling of the anaerobic co-digestion 
of UOW and the dynamics of the microbial population in the AD of UOW. 
The data generated in this research will be used in the plant- and national-
level optimisation of biogas production in Denmark, while digestate produced 
during the co-digestion process will be analysed further, to assess the 
environmental impact and define how digestate quality could affect carbon 
sequestration and greenhouse gas emissions when applied to agricultural 
land.  
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2 Methodology  
The methods and materials used in this PhD study are described in this 
section regardless of the order of the papers. Section 2.1 explains the overall 
sample collection, sampling technique, sample preparation methods and 
sample analysis (Fitamo et al., I, II, III, IV). The BMP assay methodology, 
including the gas chromatographic analysis used to analyse the methane 
potential of organic waste, is described in section 2.2 (Fitamo et al., I and 
IV). Section 2.3 describes the methods and materials used in BMP, predicting 
partial least square (PLS) computational model development (Fitamo et al., 
IV). The co-digestion of urban organic waste reactor configuration, 
experimental set up and monitoring, including the methods used for microbial 
analysis during the co-digestion of UOW in CSTR, are provided in section 
2.4 (Fitamo et al., I, II, and III). In section 2.5, the mathematical modelling 
of the anaerobic co-digestion of UOW, using BioModel, is described (Fitamo 
et al., II).  

2.1 Preparation and characterisation of waste  

2.1.1 Sample collection and preparation  
The samples were collected mainly from municipalities and private 
households in Copenhagen, Odense Kommune, Frederica wastewater 
treatment plant (WWTP), Econet and Ecogi A/S. In Fitamo et al., I, during 
the co-digestion of UOW, primary and secondary sludge (mixed at a volume 
ratio of 1:1) was obtained from Avedøre WWTP, garden waste was collected 
from Borgervænget recycling station (in Copenhagen municipality) and grass 
clippings and food waste collected from private gardens and the main canteen 
at Technical University of Denmark, respectively. These samples also served 
as the basis for developing a mathematical UOW co-digestion process model 
in Fitamo et al., II, as well as when investigating the dynamics of microbial 
composition in Fitamo et al., III. A large sample database was essential to 
create a dedicated computational UOW methane potential-predicting PLS 
model (Fitamo et al., IV). For this reason, source-segregated organic 
household waste from private households, Econet A/S (Copenhagen area) and 
Odense Kommune was collected, while biopulp (a mixture of food and green 
waste) was obtained from Ecogi A/S and industrial organic waste from 
Frederica WWTP. 

A series of mechanical pre-treatments was used to reduce the particle size of 
course solid waste materials, in order to obtain representative samples for 
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analytical and experimental tests (Fitamo et al., I and II). The samples were 
shredded with a shear shredder (ARP SC 2000) down to 16 mm particles. The 
required amount of representative sample was obtained after laying the 
shredded waste sample on elongated 1-D multilayer piles divided equally into 
portions to be accepted or rejected. Due to technical problems such as 
laboratory reactor piping and pumping issues, the particle size of the waste 
was reduced further to 4 mm in diameter with a comminutor (Fitzmill model 
D,Daso-6) and a cutter knife mill (Wiencken 19225). The pre-treated samples 
were then transferred into small containers and stored at a temperature of -
20oC. The required amount of sample was prepared once (Fitamo et al., I) 
and then used throughout the co-digestion experimental period and analytical 
testing. However, the samples were further freeze-dried and ground down to a 
maximum particle size of 1 mm for NIRS analysis (Fitamo et al., IV).  

2.1.2 Physicochemical characterisation  
The characterisation of the waste samples was conducted according to the 
APHA standard methods for the examination of water and wastewater  
(APHA, 2005), in order to determine total and volatile solid content, pH, total 
concentration of ammonia and total Kjeldahl nitrogen (TKN). The 
determination of fat content, total nitrogen and total carbon was carried out in 
a commercial laboratory (Eurofins, DK) under the corresponding DHF 42, 
ISO 13878 and DS/EN 13137 standards. Gas chromatography (GC) 
(Shimadzu GC-2010AF, Kyoto, Japan), fitted with a flame ionisation detector 
(FID), was used to analyse the amount of VFAs and alcohol.  

2.2 Biochemical methane potential (BMP) assay  

2.2.1 Batch BMP set up  
The determination of substrate BMP was performed in triplicate in 1 L batch 
reactors with a working volume of 0.3 L incubated in mesophilic conditions 
(Fitamo et al., I and IV). The inoculum-to-substrate ratio (ISR) was 2, while 
the organic loading rate (OLR) was 2.7 g VS/L (Hansen et al., 2004). 
Accordingly, the required amount of substrate and inoculum obtained from 
Va Syd Sjölunda WWTP (Malmö, SE) was transferred into the batch assay 
reactors. Finally, the batch reactors were purged with 100% N2 to remove 
trace amounts of oxygen from the headspace of the bottle and to create 
anaerobically favourable conditions for microorganisms.    

Generally, the batch BMP set up consists of blank and control experiments 
besides test substrates under consideration. Blank reactors were set up to 



11 

determine the gas produced from the inoculum, whereas the control test 
checks and certifies if the BMP test has been conducted correctly and is used 
as a tool to validate the experiment. The standard substrate, Avicel (Fluka, 
DK), was used as a control in all BMP batch set ups. Methane production 
from the substrate assays was determined after subtracting the background 
contribution of gas produced from the inoculum (Angelidaki et al., 2009).  

The theoretical methane potential (T-BMPs) of substrates considered in the 
co-digestion of urban organic waste in CSTR (Fitamo et al., I) was 
determined based on the chemical composition of carbohydrates, proteins and 
lipids, as reported in Møller et al. (2004) and Triolo et al. (2011). The 
maximum methane yield of the substrates was estimated by considering 
analytically determined chemical components and the respective T-BMP of 
the components. The theoretical methane potential of VFA (acetic acid), 
carbohydrate, protein and lipid gave the corresponding values of 370, 415, 
496 and 1014 mL CH4/g VS (Møller et al., 2004).  

2.2.2 Gas Chromatography Analysis 
Methane production over time, during the batch BMP test period, was 
analysed by taking gas samples followed with a manual injection into a 
thermo-scientific trace gas chromatograph (TRACE 1310 GC) equipped with 
a thermal flame ionisation detector (FID) in a 160oC oven (Fitamo et al., I 
and IV). The method utilised by the instrument was selected as a standard 
operating procedure (SOP) split/splitless (SSL) injector FID, and a CO2/CH4 
method was used for data treatment. Gas sampling and analysis were performed 
regularly until methane generation reached a steady-state condition (Fitamo et 
al., I and IV).   

During the co-digestion of UOW in CSTR, biogas composition (the content CH4 
and CO2) was measured through the manual injection of gas samples into a 
thermal conductivity detector gas chromatograph (TCD-GC) (GC82 MikroLab, 
Aarhus A/S, DK) equipped with a packed column for compound separation 
(main column: 1.1 m × 1/16’’ Molsive 137 + 0.7 m × ¼’’ Lithiumsorb K8) 
(Fitamo et al., I). The oven temperature, detector and TCD-GC injector were all 
set to 50oC, while the flow of carrier gas, namely hydrogen in this instance, over 
the column was set at 40 mL/min (10 mL/15 s on a flow meter).  
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2.3 Computational BMP-Predicting Model 
This section describes the methods and materials used to develop a rapid and 
reliable model for BMP prediction (Fitamo et al., IV). Experimentally 
measured BMP was used as a reference dataset together with corresponding 
NIR spectral data to build a dedicated UOW BMP-predicting model.  

2.3.1 NIR spectroscopic analysis 
NIR spectral analyses of the waste samples were performed with a Bomem 
QFA Flex Fourier Transform spectrometer, fitted with an InAs detector (Q-
interline A/S, Copenhagen, Denmark), was used to obtain reflectance spectral 
data from the samples. Initially, the samples were prepared (maximum 
particle size of 1 mm) as described in section 2.1.1 of the methodology 
section. A glass rotating powder sampler (120 mL), filled up to 70% capacity, 
was used as a sampling test tube. The entire NIR spectral region of the 
samples was scanned 200 times at a resolution of 32 cm-1, and average spectra 
were attained to ensure representative spectra were available, due to the 
heterogeneity of the waste samples. The spectral data collections took less 
than 2 mins per sample.             

2.3.2 Data processing and statistical analysis of the PLS model  
Spectral data analysis and computational BMP-predicting model development 
were carried out with Eigenvector Research Inc. Stand Alone Chemometrics 
Software Solo 8.0 (R8.0.1). The pre-processing of spectral data was done 
with common techniques to remove artefacts, make baseline corrections and 
remove background noise with a standard normal variate (SNV) (Barnes et 
al., 1989), de-trend (DT), first and second derivative Savistsky-Golay (SG) 
algorithm with smoothing (Rinnan, 2014; Rinnan et al., 2009). In order to 
analyse the input spectral data, and to understand if there were any unusual 
samples, principal component analysis was carried out. 

Two PLS regression models for BMP prediction, based on transformed 
spectral data and reference BMP, were built. The first model was based on 
samples of UOW, whereas the second model was developed based on both 
UOW samples and samples of plant biomass, as reported by Triolo et al. 
(2014).  

In the dedicated UOW BMP-predicting model development, a total of 87 
samples were considered. The total sample dataset was separated into 
calibration (66 samples) and prediction sets (21 samples) at ratios of 3:4 and 
1:4, respectively, using the Kennard-Stone (KNS) algorithm at a latent 
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variable (LV) of 7 with SNV + DT + SG (9,2,1) data transformation. A PLS 
regression model with leave one out (LOO) cross validation (CV) was built 
on the calibration dataset (66 samples). Samples with high Q residuals and 
high Hoteling T^2 (a mixture of edible food waste, rhubarb pulp and mixed 
dairy and meat products), either due to a variance in the spectral variable or 
extreme variations, were excluded from the calibration set based on the 
influence plot. Finally, the calibration model was tested with a prediction set.   

In the combined PLS model, a total of 175 samples (87 UOW and 88 plant 
biomass) were used to develop the BMP-predicting model. The combined 
dataset was split into calibration and prediction sets at ratio of 2:3 and 1:3, 
respectively, using transformed data at an LV of 16 with the KNS algorithm. 
The distribution of the measured BMP was presented in Fitamo et al., IV. 
The PLS regression calibration model of the combined data was developed 
based on transformed data with a cross-validation of LOO. Samples that 
showed high Q residuals and high Hoteling T^2 in the specific UOW and 
plant biomass PLS model appeared to have high Q residuals and high 
Hoteling T^2 in the combined calibration PLS model, too. In addition, three 
samples (meat, unavoidable food waste and straw) were excluded based on 
the influence plot, due to either the uniqueness of the spectral variable or a 
reference data error – or the combination of both effects. The combined 
calibration model was built without outliers and then tested with a prediction 
dataset.  

The performance of the models was evaluated with the coefficient of 
determination (R2) and root mean square error (RMSE) of the model to assess 
its quality. The lower RMSE and closer R2 are to a value of 1 means that the 
prediction and measured BMP values are correlated well. In order to compare 
the current models with previously reported examples, and then to analyse the 
degree of prediction success, the relative root mean square error (rRMSE) 
and the ratio of performance to deviation (RPD) were determined (Fitamo et 
al., IV).  
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2.4 Co-digestion of UOW in CSTR 
The co-digestion of food and garden waste with mixed sludge from a WWTP 
was carried out in a continuously stirred tank reactor (CSTR) (Fitamo et al., 
I). The same experimental set up was used to analyse microbial population 
dynamics in respective co-digestion process conditions (Fitamo et al., III).   

2.4.1 CSTR experimental set-up and monitoring   
The co-digestion of UOW was performed in two CSTR reactors, each with a 
7.5 L working volume, R1 and R2, in thermophilic process conditions. Both 
R1 and R2 were fed via an automated feeding system (a timer connected to 
the feeding pump). An automated stirring system, set at 150 rpm every 2-
minute on/off interval, was used to continuously mix the reactor mixture 
throughout the experimental period. Reactor temperature was maintained at a 
constant by circulating hot water through the outer glass chamber of the 
reactors. The experimental set up is provided in Figure 1. Both reactors, R1 
and R2, were equipped with an automatic stirring control unit, a liquid 
samples port, a temperature control unit and a gas sampling port. A liquid 
displacement gas metering system (Angelidaki et al., 1992) was used to 
measure the volume of gas produced on a daily basis, whilst gas samples and 
digestate were taken twice a week via a gas and a liquid sampling port to 
analyse the corresponding composition of biogas and the concentration of 
VFAs, ammonia and pH to monitor the co-digestion process. Biogas 
composition was analysed with TCD-GC, as described in Section 2.2.2.  

 

Figure 1. CSTR experimental set up used for the anaerobic co-digestion of urban organic 
waste (Fitamo et al. I, Supplementary Information). 
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The co-digestion of UOW in CSTR involved five phases spanning over a 
total experimental duration of 230 days to investigate the effect of co-
substrate mixing ratios and hydraulic retention time (HRT) on reactor 
performance. In Phase I, the mono-digestion of sludge (primary and 
secondary sludge blended at 1:1 v/v%) was conducted to achieve baseline 
biogas production without the addition of co-substrates. During Phase II and 
up to Phase V, R1 and R2 were fed with different VS basis mixing co-
substrate ratios (food and garden waste, grass clippings and sludge). The 
characteristics of the co-substrates and an overview of the process parameters 
are given in Table 1. The mixing ratio of the co-substrates was chosen by 
considering the current state of existing WWTPs, where the mono-digestion 
of sludge occurs in comparison to exploring the potential of sludge co-
digestion and UOW to maximise biogas production with small changes in 
infrastructure to accommodate the new co-substrates. The amount of mixed 
sludge in the co-substrates was set at 10% of the total VS whereas the 
remaining 90% of the VS was food waste:green waste with a mixing ratio of 
75:25 in R1 and 50:50 in R2.The green waste consisted a fixed ratio of 70% 
grass clippings and 30% garden waste on VS basis. According to the mixing 
conditions for co-substrates above, in Phase II up to Phase V, the 
corresponding mixing ratio of sludge, food waste, grass clippings and garden 
waste for R1 was 10:67.5:15.75:6.75, whereas for R2 it was 10:45:31.5:13.5 
on a VS basis. This experimental plan helps compare the effect of sludge 
mono-digestion in Phase I relative to the effect of sludge co-digestion with 
UOW in Phase II up to Phase V in both R1 and R2. The composition of the 
co-substrate in the individual reactors R1 and R2 remained the same 
throughout the experiment, whereas HRT was changed to investigate the 
effect of retention time on reactor performance; during Phases I and II, III, IV 
and V the HRT was set at 30, 20, 15 and 10 days, respectively. The 
accumulation of soil and sediment build-up inside the reactor was quantified 
as 12% of the working volume, due to the content of particulate and soil in 
the co-substrates, particularly in grass clippings and garden waste. 
Consequently, HRT time was corrected, as seen in Table 1, based on the 
actual working volume and the average feed rate assuming a linear build-up 
of sediments inside the reactor. Additionally, a correction was made to the 
OLR, based on the measured TS/VS of the co-substrates and the actual daily 
feed pumping rate.  

 

 



16 

Table 1. Overview of the process parameters for the anaerobic co-digestion of food and 
green waste with mixed sludge in CSTR, the VS mixing ratio of substrates and the 
characteristics of the substrates. The standard deviation is given in brackets. OLR and HRT 
were computed in steady-state conditions, whereas TS and VS were analysed in duplicate 
(Fitamo et al., I).  

 
 
 
Parameter 

 
 
 
Unit 

 
Phase 1 

(days 0-74) 

 
Phase 2 

(days 75-130) 

 
Phase 3 

(days 131-164) 

 
Phase 4 

(days 165-204) 

 
Phase 5 

(days 205-230) 

 
R1 

 
R2 

 
R1 

 
R2 

 
R1 

 
R2 

 
R1 

 
R2 

 
R1 

 
R2 

 
HRT 

 
Days 

 
30 

 
30 

 
30 

 
30 

 
20 

 
20 

 
15 

 
15 

 
10 

 
10 

 
Temperature 

 
°C 

 
55 

 
55 

 
55 

 
55 

 
55 

 
55 

 
55 

 
55 

 
55 

 
55 

Corrected 
working 
volume 

 
L 

 
7.0 

 
7.4 

 
7.0 

 
7.4 

 
7.0 

 
7.4 

 
7.0 

 
7.4 

 
7.0 

 
7.4 

 
Feed 

 
L d-1 

 
~0.250 

 
~0.250 

 
0.262 

 
0.248 

 
0.381 

 
0.388 

 
0.508 

 
0.544 

 
0.789 

 
0.804 

 
HRT * 

 
D 

 
~28 

 
~29.60 

 
26.72 

 
29.84 

 
18.37 

 
19.07 

 
13.78 

 
13.60 

 
8.9 

 
9.2 

 
OLR * 

 
g VS 
L-1 d-1 

 
0.65 

(0.03) 

 
0.62 

(0.04) 

 
2.55 

(0.21) 

 
2.25 

(0.15)

 
3.91 

(0.08) 

 
3.74 

(0.30)

 
5.04 

(0.11) 

 
4.99 

(0.26) 

 
7.79 

(0.28) 

 
7.57 

(0.39)

 
TS 

 
% ww 

 
2.85 
(0.1) 

 
2.85 
(0.1) 

 
7.97 
(0.1) 

 
8.19 
(0.3) 

 
8.33 
(0.1) 

 
8.52 
(0.1) 

 
7.94 
(0.2) 

 
8.21 
(0.1) 

 
7.89 
(0.2) 

 
7.93 
(0.4) 

 
VS 

 
% ww 

 
2.02 
(0.1) 

 
2.02 
(0.1) 

 
7.06 
(0.1) 

 
6.92 
(0.2) 

 
7.3 

(0.1) 

 
7.3 

(0.1) 

 
6.93 
(0.1) 

 
6.77 
(0.1) 

 
6.91 
(0.1) 

 
6.70 
(0.3) 

 
VS/TS 

 
% TS 

 
   70.93 

(4) 

 
70.93 

(4) 

 
88.50 

(2) 

 
84.25 

(4) 

 
87.19 

(2) 

 
84.32 

(2) 

 
86.37 

(3) 

 
82.57 

(2) 

 
87.54 

(3) 

 
84.25 

(6) 

Mixed 
sludge 

 
% VS 

 
100.00 

 
100.00 

 
10.00 

 
10.00 

 
10.00 

 
10.00 

 
10.00 

 
10.00 

 
10.00 

 
10.00 

 
Food waste 

 
% VS 

 
0 

 
0 

 
67.50 

 
45.00 

 
67.50 

 
45.00 

 
67.50 

 
45.00 

 
67.50 

 
45.00 

Grass 
clippings 

 
% VS 

 
0 

 
0 

 
15.75 

 
31.50 

 
15.75 

 
31.50 

 
15.75 

 
31.50 

 
15.75 

 
31.50 

Garden 
waste 

 
% VS 

 
0 

 
0 

 
6.75 

 
13.50 

 
6.75 

 
13.50 

 
6.75 

 
13.50 

 
6.75 

 
13.50 

 The volume of sediments accumulated in the CSTR in the final phase of the reactor operation was found to be 
0.9 L.  
*: values based on corrected working volume, due to accumulations of soil, sand and sediments in a steady 
state.  
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2.4.2 Microbial population analysis in CSTR  
Microbial composition and relative abundance variation, along with a change 
in feedstock composition and HRT time, is described in Fitamo et al., III. 
The reactor configuration and experimental set up are described in Section 
2.4.1.  

2.4.2.1 DNA extraction and 16S rRNA gene sequencing  

Samples for DNA extraction were taken from both R1 and R2 at each 
operational phase (Phase I to Phase V) when the co-digestion of UOW in 
CSTR reached a steady-state condition, as provided in Table 1. The samples 
were filtered with a 100 μm nylon cell strainer to remove residual plant 
particles. Subsequently, 1.5 g of cell pellets were obtained through 
centrifugation set at 10,000 rpm for 10 minutes. The extraction of total 
microbial DNA was performed with the PowerSoil® DNA Isolation Kit 
protocol (MO BIO Laboratories, Carlsbad, 170 CA), with slight 
modifications, to isolate and purify the DNA. The concentration of the 
extracted DNA was examined with a NanoDrop 2000 (ThermoFisher 172 
Scientific, Waltham, MA), while quality was assessed with gel 
electrophoresis.  

DNA sequences were obtained through the Illumina MiSeq platform at the 
Ramaciotti Centre for Gene Function Analysis, University of New South 
Wales (Sydney, Australia). The V4 hypervariable region of the 16S 
ribosomal gene RNA was amplified using 515f-806r primers and according to 
the Earth Microbiome Project (Earth Microbiome, 2011). The raw sequences 
were submitted to the National Centre for Biotechnology Information’s (NCBI) 
sequence read archive database (SRP078424) under bio-project number 
(PRJNA328964). CLC Genomic Workbench Software (V.8.0.2), 181, 
equipped with a microbial genomics module plug-in, as presented in Kougias 
et al. (2016), was used to analyse the sequences. The alignment of the 
operational taxonomical unit (OTU) was carried out using MUSCLE software 
(Edgar, 2004). Computation of the Maximum Likelihood Phylogenetic tree 
and the alpha and beta diversity index were determined as reported in 
Kougias et al. (2016b). The number of sequence reads and total OTUs with 
respective taxonomic assignments were presented in Fitamo et al., III. OTUs 
with 10 or lower sequence reads were deemed to be extremely rare and 
excluded. Relative abundance was computed for each sample as a percentage 
of the total community. OTU classification was done according to the 
percentage of relative abundance – highly abundant (> 0.5% relative 
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abundance) and lowly abundant (between 0.01% - 0.5% of relative 
abundance) OTUs – whereas OTUs lower than 0.01% were excluded. 
Variations in relative abundance were explained with heat maps, done using a 
Multiexperiment viewer (MeV 4.9.0) (Saeed et al., 2003). 

2.4.2.2 Statistical analysis of microbial dynamics  

Variations in the percentage of microbial relative abundance, due to changes 
in co-substrate composition (R1 and R2) and HRT (Phase I - Phase V), were 
computed using a general linear model (GLM Procedure, SAS Institute, 
2009) in a series of single-train analyses, as described in Fitamo et al., III, 
based on duplicate samples obtained in each experimental condition – as 
shown in Table 1. The reactor and phase were included as effects while the 
abundance of each microbe was considered as a trait.  

In addition, overall trends (linear, quadratic and cubic) of the microbial 
relative abundance variation with respect to change in retention times was 
analysed. Phase effect was included in the analysis as a linear, quadratic or 
cubic covariate, in order to explore microbial abundance trends. For each 
microbe, the most significant model describing the shape of variation was 
chosen (linear, quadratic or cubic; P ≤ 0.05).  

The correlation between the relative abundance of OTUs and biochemical 
parameters was also computed, using the GLM, to estimate the coefficient of 
linear regression. The relative abundance of each microorganism was treated 
as a linear covariate, whereas the reactors (R1 and R2) and phases (Phase I to 
V) were treated as fixed effects to analyse the correlation of abundance and 
the biochemical process parameter as a trait, by considering changes in all 
operation process parameters. Confounding and over parameterisation were 
avoided by running a number of models, each one based on the relative 
abundance of one microorganism and a single biochemical parameter.  

2.5 Mathematical Modelling of UOW AD in CSTR  
The mathematical bioconversion modelling of food and garden waste, grass 
clippings and sludge from WWTP co-digestion was conducted using 
BioModel, as reported by Angelidaki et al. (1999). The model results were 
validated with experimental results obtained during the co-digestion of UOW 
in CSTR, as presented in Section 2.4.1.   
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2.5.1 Description of BioModel  
BioModel can be used to simulate the bioconversion of various mono- and 
co-digestion substrates regardless of the substrate type, rather than based on 
the compositions of substrates such as carbohydrates, proteins and lipids. 
Simulation of the bioconversion of organic waste, using BioModel, is 
convenient particularly when the determination of COD is challenging. 
Figure 2 shows the material flow diagram of the BioModel bioconversion 
process, which is similar to the biochemical pathways of biogas productions 
discussed in Section 1.2. Stoichiometric calculations and corresponding yield 
coefficients, kinetics and inhibition equations for the built-in BioModel are 
presented in Angelidaki et al. (1999). The model predicts the amount of 
biogas produced and the operational process parameters based on the 
composition input materials insoluble carbohydrates, proteins and lipids. 
BioModel’s biochemical process involves two enzymatic hydrolysis 
(insoluble carbohydrate and protein hydrolysis) and eight microbiological 
bioconversion stages (glucose degraders, aminoacids degraders, glycerol 
trioleate degraders, lipolytic bacteria, intermediate VFA products such as 
butyrate, valerate and propionate degraders, acetogens, degrading long chain 
fatty acids, and CH4 producing acetoclastic methanogenic bacteria), as shown 
in Figure 2. Enzymatic hydrolysis processes are described along with first-
order kinetic reactions, while all the microbiological processes are modelled 
with Monod-type kinetics. BioModel includes the inhibition of hydrolysis, 
acetogenesis (conversion of intermediate VFAs to acetate) and acetoclastic 
bacteria through the accumulation of VFA, acetate and ammonia, 
respectively; however, long chain fatty acid is assumed to inhibit all 
processes. Cell mass decay was considered as 5% of the maximum growth 
rate, while the cell mass synthesis was achieved by utilising ammonia-N as a 
nitrogen source.  
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Figure 2. Biochemical pathways and material flow diagram for the bioconversion process 
of complex organic matter in the AD BioModel (DTU-Environment, Bioenergy research 
group achieve).   

The simulation was performed using model parameters, the input 
characteristics of the substrates and inoculum. The physicochemical 
characteristics of the substrates were determined according to the methods 
described in Section 2.1.2, with the exception being the content of 
carbohydrate (computed based on the VS mass balance and the content of 
proteins, lipids and VFAs) provided in Fitamo et al., II (Table 1). The 
content of inorganic components and ions was estimated based the data for 
manure reported by Angelidaki et al. (1999). The concentration of ammonia 
was reported as total ammoniacal nitrogen (TAN), unless stated as free 
ammonia nitrogen (FAN). Stoichiometric yield coefficients remained the 
same as the previous BioModel, though kinetic parameters were slightly 
modified. The only changes were the half-saturation and inhibition constants 
for VFA degrading microbials, estimated through manual iteration until a 
favourable result was attained between the simulation and experimentally 
measured values, by considering sludge and co-substrates in terms of mono- 
and co-digestion. The input data for inoculum were obtained using the AD 
simulation of manure as a starting point and gradually feeding and running 
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the reactors with sludge and co-substrates for a year to mimic actual process 
conditions, with the aim of acquiring stable and adapted microorganisms.  

2.5.2 Simulation and co-digestion scenarios 
The effects of various feedstock compositions of food waste, green waste and 
mixed sludge at different HRTs (30, 20, 15 and 10 days) on reactor 
performance and operational process parameters were investigated using 
BioModel, as described in Section 2.5.1. The AD simulation scenarios 
comprised: i) mono-digestion of single substrates ii) co-digestion of 
substrates with a fixed amount of sludge at 10% VS of the total feedstock, 
while the VS ratio for food and green waste varied, and iii) the co-digestion 
of substrates where the amount of sludge varied from 5, 10, 12.5 and 15% VS 
while the VS ratio for food and green waste was fixed at 75:25 and 50:50% 
VS. Table 2 shows the summary of the simulation scenarios published in 
Fitamo et al., II (Table 3).  

Table 2. Overview of the urban organic waste mono- and co-digestion simulation 
scenarios in thermophilic conditions based on VS mixing ratio and hydraulic retention time 
(HRT) (Fitamo et al., II). 

Scenarios ID Mixing ratio (% VS) 

 
HRT 

(days) 

 
Temperature 

(°C) 

  MS FW GC GW 

MS 100 100 0 0 0 

I FW 100 0 100 0 0 30,20,15,10 Thermophilic

Single substrate GW 100 0 0 70 30 

FW 12.5 10 11.25 55.13 23.63 

FW 25 10 22.50 47.25 20.25 

II 
Co-substrate 

Fixed amount of mixed 
sludge 

 
 

FW 37.5 10 33.75 39.38 16.88 
30,20,15,10 

 
 
 
 

Thermophilic
 
 
 
 

FW 50 10 45.00 31.50 13.50 

FW 62.5 10 56.25 23.63 10.13 

FW 75 10 67.50 15.75 6.75 

FW 87.5 10 78.75 7.88 3.38 
 
 

III 
Co-substrates 

Fixed amount of co-
substrates 

 
 
 
 

MS 5/50 5 47.50 33.25 14.25 

MS 10/50 10 45.00 31.50 13.50 

MS 12.5/50 12.5 43.75 30.63 13.13 

MS 15/50 15 42.50 29.75 12.75 30,20,15,10 Thermophilic

MS 5/75 5 71.25 16.63 7.13   

MS 10/75 10 67.50 15.75 6.75 

MS 12.5/75 12.5 65.63 15.31 6.56     

MS 15/75 15 63.75 14.88 6.38     
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2.5.3 Identification of optimal UOW co-digestion  
The BioModel simulation of the co-digestion process resulted in several 
process performance and operational model output variables. Identification of 
the optimal combination was done via a multi-objective optimisation problem 
with no best overall option. However, increasing the number of variables 
increases the complexity of the optimisation procedure, which in turn could 
result in improvements to some of the co-digestion options whilst others may 
worsen. The assumptions of the optimisation framework included: i) the only 

decision variable available for the operator is retention time t ݐ	 ∈ ,଴ݐൣ  ௙൧ andݐ

ii) dependence between the retention time and output variables is strictly 
monotonic and either increases or decreases. A detailed description is 
provided in Fitamo et al., II. The output variables were categorised into two 
groups: the first group was named “waste products” (to be minimised, such as 
the accumulation of VFA concentrations), and the second group was 
designated as “products” (to be maximised, such as specific methane yield). 
The maximisation and minimisation objective for several outputs creates 
conflicting interests, resulting in no globally optimal solution. Accordingly, 
this provides a decision domain of Pareto efficient solutions, which are 
optimal solutions with the corresponding multi-objective optimisation 
problem. The operator can choose from amongst any number of possible 
Pareto solutions, since the solutions are not preferable to each other and are 
uncertain. Constraints were added to reduce uncertainty and restrict the 
decision domain. Upper or lower bound constraints could be set depending on 
the objective of the optimisation, in order to exclude technically or 
economically unviable solutions. Decision makers could choose the optimal 
process condition based on the restricted Pareto efficient solution, which 
provides the best possible options.   
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3 Results and Discussion  
The major outcomes and findings of this PhD research study are presented 
and discussed in this chapter. UOW characterisations are reported and 
described in Section 3.1 (Fitamo et al., I). The measured BMP and 
computational models, predicting the methane potential of UOW, are 
presented in Section 3.2 (Fitamo et al., I and IV). The co-digestion of UOW 
in CSTR and the corresponding analysis of microbial population dynamics 
and mathematical modelling of UOW co-digestion are reported and discussed 
in Section 3.3 (Fitamo et al., I, II and III). 

3.1 Physicochemical characteristics   
Table 3 shows the physicochemical characterisation of UOW, which formed 
the basis for the work on CSTR co-digestion experiments (Fitamo et al, I), 
microbial composition and abundance analysis (Fitamo et al, III) and the 
mathematical modelling (Fitamo et al, II) of the bioconversion of UOW in 
CSTR. TS, VS, total carbon, total nitrogen and lipids were determined in 
triplicate, while the rest of the parameters were analysed in duplicate. The 
waste fractions provided in Table 3 were also included, in order to develop 
the methane predicting PLS model (Fitamo et al., IV). Food waste and grass 
clippings had higher VS contents (% TS) compared to garden waste and 
sludge. This could be due to the relatively high content of recalcitrant 
components in sludge and inorganic material in garden waste (e.g. soil/sand 
particles) in comparison to food waste and grass clippings. The maximum 
content of fat and protein was obtained for food waste, which could be due to 
food products such as cheese, oil and meat. Food waste had a higher C/N 
ratio compared to mixed sludge (primary and secondary sludge). The high 
C/N ratio of food waste relative to mixed sludge was favourable to adjusting 
the C/N ratio of mixed substrates for the co-digestion of UOW in AD. The 
ammonia concentration of the input substrates was found to be insignificant, 
and the concentration of VFAs was less than 5% of wet weight (Table 3). 
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Table 3. Physicochemical characteristics of substrates used in the co-digestion of urban 
organic waste in a CSTR experiment. Standard deviation is provided in brackets (Fitamo et 
al. I).  

Parameter Unit Food 
waste 

Grass 
clippings 

Garden 
waste 

Primary 
sludge 

Secondary 
sludge 

DM g/kg 
ww 

160 
(1.1) 

211 
(1.84) 

369 
(1.12) 

38 
(0.51) 

17 
(0.28) 

VS g/kg 
ww 

149 
(0.93) 

184 
(1.66) 

249 
(1.60) 

28 
(0.45) 

12 
(0.27) 

VS % DM 93.41 
(0.13) 

87.28 
(0.11) 

67.62 
(0.37) 

72.94 
(0.22) 

69.08 
(0.49) 

Carbon 
(total) 

% DM 50 
(10) 

46 
(9.2) 

35 
(7) 

39 
(7.8) 

34 
(6.8) 

Nitrogen 
(total) 

% DM 3.5 
(0.7) 

3.9 
(0.78) 

1.6 
(0.32) 

2.2 
(0.44) 

6 
(1.2) 

Lipids g/kg 
ww 

30.56 
(2.14) 

12.48 
(0.87) 

9.05 
(0.63) 

2.26 
(0.16) 

0.75 
(0.05) 

VFA 
(total) 

g/kg 
ww 

2.89 
(0.002) 

4.03 
(0.97) 

0.83 
(0.04) 

1.35 
(0.03) 

0.07 
(0.004) 

Alcohol g/kg 
ww 

5.3 
(0.06) 

1.07 
(0.001) 

0.02 
(0.002) 

0.024 
(0.001) 

0.002 
(0.001) 

TKN g/kg 
ww 

5.20 
(0.38) 

6.85 
(0.31) 

5.38 
(0.23) 

0.99 
(0.05) 

1.07 
(0.17) 

Protein g/kg 
ww 

44.80 
(1,72) 

35.20 
(1.72) 

23.60 
(1.16) 

4.93 
(0.25) 

8.14 
(0.41) 

NH3-N g/kg 
ww 

0.56 
(0.16) 

0.54 
(0.17) 

0.43 
(0.03) 

0.13 
(0.02) 

0.20 
(0.03) 

 

3.2 Biochemical methane potential (BMP) 
The methane potential of substrates given in Table 3, including co-substrates 
comprising the combination of respective single substrates, was determined 
experimentally in batch incubation experiments. The corresponding T-BMP 
of the substrates and mixed substrates was estimated based on the chemical 
composition of the substrates provided in Table 3. However, the BMP of 
additional UOW substrates was quantified to build the computational 
methane predicting model. Experimental BMP is reported in Section 3.2.1, 
whereas the computational BMP predicting model is presented in Section 
3.2.2.   

3.2.1 Experimental BMP of urban organic waste  
The measured and theoretical BMP (mL CH4/g VS) of single UOW substrates 
and mixed substrates is described in Fitamo et al., I. The cumulative methane 
yield reached a steady-state condition at day 15, when 80% of the methane 
was produced, though the incubation period lasted for 28 days. Complete 



25 

degradation of the substrates’ organic components, given in Table 3, was 
assumed to estimate the T-BMP. The ratio of actual BMP to theoretical BMP, 
multiplied by 100 %, is defined as biodegradability.  

Food waste resulted in the highest BMP, whereas garden waste provided the 
lowest BMP with corresponding values of 579 and 160 mL CH4/ g VS, 
respectively. Food waste showed better degradability and a higher BMP 
compared to the rest of the substrates, partly due to the high content of fats 
and proteins. The measured BMPs of garden waste, grass clippings and 
secondary sludge were significantly lower compared to the corresponding T-
BMP (Fitamo et al., I), possibly due to the content of recalcitrant cell 
biomass in the secondary sludge and lignocellulosic components in plant 
materials. The measured methane potential values obtained in this study were 
comparable to values reported in the literature for food waste (500 – 700 mL 
CH4/g VS), grass clippings and garden waste (160 – 390 mL CH4/g VS) and 
primary sludge (up to 590 mL CH4/g VS) (Chynoweth et al., 1993; 
Nallathambi Gunaseelan, 1997; Zhang et al., 2007). Browne and Murphy 
(2013) also reported BMP values between 467 and 529 mL CH4/g VS for 
source-segregated food waste collected from a canteen. The BMPs of grass 
clipping and garden waste co-digestion at VS mixing ratios of 70:30, 50:50 
and 30:70 were found to be 283, 249 and 201 mL CH4/g VS, respectively 
(Fitamo et al., I). This indicates that BMP could provide important 
information regarding the effect of mixing ratios on the performance of co-
digestion. When co-digesting grass and garden waste, a higher methane yield 
was achieved in line with an increasing amount of grass clippings compared 
to the amount of garden waste, probably due to higher soil and lignocellulosic 
woody material content in the garden waste in comparison to grass clippings 
(Fitamo et al., I). The BMP of co-substrates in R1 provided an enhanced 
specific methane yield compared to R2, possibly owing to the higher content 
of food waste in R1 rather than R2, as described in Section 2.4.1.   

In addition to the investigation of substrate BMP considered for the co-
digestion of UOW in CSTR, the methane potential of several substrates was 
determined to develop a dedicated methane potential BMP-predicting model 
(Fitamo et al. IV). The samples considered for continuous reactor operation 
mode were also included as reference data to build the prediction model. In 
total, 87 waste samples were used to develop the computational BMP 
prediction model. The UOW fractions were categorised into six classes: food 
waste, biopulp, fibre fraction, plant materials, industrial organic waste and 
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mixed waste. The distribution of the VS (% TS) and measured BMP profile 
of the waste fractions are provided in Figure 3.  

 
Figure 3. Biochemical methane potential and volatile solid content expressed as a 
percentage TS of urban organic waste fractions (Fitamo et al. IV).  

Meat waste had the highest BMP (904 ± 49 mL CH4/g VS), due to the high 
content of fat in meat products, whereas straw (119 ± 7 mL CH4/g VS) used 
as animal bedding resulted in the lowest BMP, most likely due to the high 
content of lignocellulosic material. Food waste fractions can be classified as 
“avoidable” (food products that could have been edible but are thrown out as 
a waste) and “non-avoidable” food waste (non-edible parts of food products 
such as peel, egg shells and bones). The average BMP of the food waste 
fractions was calculated as 592 mL CH4/g VS; however, the minimum 
methane yield was found to be 260 mL CH4/g VS for unavoidable vegetable 
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food waste. These results are comparable with the BMPs of fruit and 
vegetable solid waste (300 mL CH4/g VS) reported by Gunaseelan (2004).  

The BMP of biopulp fractions (a mixture of source-segregated organic waste 
(SSOW) and green waste, pre-treated using a pulping technique) resulted in 
higher yields when the amount of food waste in the biopulp was increased. 
The BMP of biopulp waste fractions composed of 100% SSOW resulted in 
672 ± 75 mL CH4/g VS, whereas biopulp composed of 75% green waste and 
25% SSOW provided a BMP value of 292 ± 15 mL CH4/g VS. The BMPs of 
fibre waste fractions, such as kitchen tissue contaminated with food waste, 
books and moulded fibre, were found to be 544 ± 6, 136 ± 25 and 232 ± 17 
mL CH4/g VS, respectively. Industrial waste fractions such as milk and a mix 
of dairy and meat product substrates had BMPs of 818 ± 24 mL CH4/g VS 
and 762 ± 22 mL CH4/g VS, respectively. Digested sludge before the final 
dewatering stage obtained from a WWTP provided a BMP of 148 ± 10 mL 
CH4/g VS.  

Figure 3A shows that the average VS content (% TS) of biopulps (65% TS) 
was lower in comparison to plant materials (83% TS) and fibre fractions 
(85%). Nevertheless, the average biopulp BMP (528 mL CH4/g VS) was 
found to be higher compared to plant materials (277 mL CH4/g VS) and fibre 
fractions (335 mL CH4/g VS), as seen in Figure 3B. This indicates that the 
VS in biopulp was easily degradable in comparison to plant materials and 
fibre fractions.  

3.2.2 Computation BMP prediction model  

3.2.2.1 Local PLS model (BMP prediction of UOW)  

A PLS model for predicting the BMPs of UOW, with and without pre-
processing, was developed and is presented in Fitamo et al., IV. The R2 and 
RMSE of the prediction set were found to be 0.82 and 61 mL CH4/g VS, 
respectively, without spectral pre-processing (Fitamo et al., IV). The best 
prediction model, developed with transformed data using pre-processing 
technique of SNV, DT and SG first derivative with smoothing data points of 9, 
resulted in an R2 and an RMSE of the prediction dataset with a corresponding 
value of 0.88 and 44 mL CH4/g VS (Fitamo et al., IV). This shows that the 
model’s performance improved following pre-processing the spectral data, 
which removes noise and background effects (SNV), baseline correction to 
remove tilting and offset (DT) and the removal of background noise whilst 
emphasising relevant chemical information (SG) (Agelet and Hurburgh, 
2010). Based on data transformation, the numbers of PLS components 
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obtained were in the range of 7-10. The combined data transformation 
provided lower PLS components. Figure 4 shows the BMP of measured and 
predicted calibration and prediction datasets. The model prediction error 
obtained in this study is comparable with previously reported values of 28 
mL CH4/g VS (Lesteur et al., 2011), 37 mL CH4/g VS (Raju et al., 2011), 40 
mL CH4/g VS (Doublet et al., 2013) and 37 mL CH4/g VS (Triolo et al., 
2014) for a corresponding feedstock of MSW, meadow grass, combined 
MSW and agro-industrial waste and plant biomass. A comparison of model 
performance parameters for the present and previous studies is given in Table 
4.  

Table 4. Comparison of models predicting BMP using near-infrared reflectance 
spectroscopy (NIRS)   

 
Substrates type  

 
Pre-

processing 

Number 
of 

samples 

 
Min 

 
Max 

 
Mean 

 
R2 

 
RMSEp 

 
RPD 

Meadow grass 
(Raju et al., 2011) 

Mean 
normalisation 

 

 
95 

 
51 

 
406 

 
288 

 
0.69 

 
37 

 
1.75 

Municipal solid waste  
(Lesteur et al., 2011) 

 
SNV + DT 

 
74 

 
23 

 
400 

 
234 

 
0.76 

 
28 

 
2.36 

Municipal solid waste 
and agro-industrial 
waste 
(Doublet et al., 2013) 

 
SNV + DT+ 

SG (15, 2, 2) 
 

 
243 

 
0 

 
1344 

 
291 

 
0.85 

 
40 

 
2.61 

Plant biomasses 
(Triolo et al., 2014) 

SNV + DT+ 
SG (11, 2, 2) 

 

 
88 

 
104 

 
502 

 
251 

 
0.84 

 
37 

 
2.49 

Urban organic waste 
(Current study, Fitamo 
et al. IV)  

SNV + DT+ 
SG (9, 2, 1) 

 

 
87 

 
119 

 
906 

 
494 

 
0.88 

 
44 

 
2.9 

Combined urban 
organic waste and 
plant biomasses 
(Current study, Fitamo 
et al. IV) 

SNV + DT+ 
SG (11, 2, 1) 

 
175 

 
104 

 
906 

 
372 

 
0.89 

 
50 

 
2.98 

 

The RPD and rRMSE of the best PLS prediction model were 2.9 and 9%, 
respectively (Fitamo et al., IV). The degree of prediction success is reported 
to be moderately successful if the RPD is in the range of 2.25 – 3.00, 
according to the model performance criteria set by Malley et al. (2005). This 
shows that the PLS model built for predicting the BMP of UOW is 
moderately successful. The model error of the best PLS model (9%) is 
comparable with model error values of 12.7% and 14.6% reported by Doublet 
et al. (2013) and Triolo et al. (2014), respectively. The repeatability standard 
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deviation (RSD) of the reference method, determined as the ratio of standard 
deviation of triplicates (SDr) to the overall mean, resulted in a value of 6.2%, 
which corresponds to 30 mL CH4/g VS. This shows the prediction model 
error, which is the sum of square error of reference method. In addition, the 
sum of square of the PLS model algorithm error is higher than the error of the 
reference method. The RSD is comparable to the value of 6.6% obtained by 
Triolo et al. (2014). Doublet et al. (2013) also reported an RSD of 19 mL 
CH4/g VS for an entire dataset and 34 mL CH4/g VS for samples with a BMP 
value of above 500 mL CH4/g VS.  

 

Figure 4. The measured and predicted biochemical methane potential values of the best 
PLS model developed for predicting the methane potential of urban organic waste (Fitamo 
et al. IV). 

3.2.2.2 Combined PLS model (BMP prediction of UOW and plant 
biomass) 

The computational PLS model for predicting the BMP of UOW and plant 
biomass, with and without transformed data, is reported in Fitamo et al., IV. 
The best prediction of the combined PLS model resulted in an R2 and an 
RMSE of 0.89 and 50 mL CH4/g VS for the prediction dataset (Fitamo et al., 
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IV). The RMSE of the combined model is higher than the specific models 
built for the BMP prediction of UOW and plant biomass with a corresponding 
value of 44 and 37 mL CH4/g VS. The performance of model prediction may 
be affected by the diversity of the samples, as presented in Doublet et al. 
(2013), and the reference method error (Ward, 2016). The measured and 
predicted BMP values were reported in Fitamo et al., IV. The RPD and 
rRMSE of the best PLS model for the BMP prediction of combined feedstock 
were 2.98 and 16.12%, whereas the RSD was 6.2%. The RPD of the 
combined PLS model improved slightly compared to the RPD of the specific 
models, but the predictive power of the model remained moderately 
successful. The specific models built for the BMP prediction of UOW and 
plant biomass provided lower model errors compared to the combined PLS 
model. The addition of more samples to the calibration dataset may decrease 
model errors.  

3.2.2.3 Uncertainty of the BMP prediction model  

Quantifying the BMP of organic waste is a complex biological process which 
involves microorganisms. The main source of this reference data uncertainty 
could be the variability and activity of inoculum, instrumental errors such as 
sampling and gas chromatographic analysis, human error or sample 
heterogeneity. The quality of the input reference data must be verified. 
Hence, a control (Avicel) with a theoretical BMP of 415 mL CH4/g VS was 
used to examine the quality of the BMP data obtained during the batch test. 
Accordingly, the average BMP of the control was 392 ± 28 mL CH4/g VS for 
eight batch BMP test set up performed in this study. This shows the results of 
the batch experiment was acceptable. The uncertainty of the PLS model 
predicting BMP arises mostly from the combined error of the reference 
method and the model algorithm. The prediction error is expected to be 
higher than the sum of the reference method and the model algorithm error. 
The estimation of BMP by means of elemental composition analysis tends to 
overestimate methane potential, while the chemical component based on 
BMP prediction is expensive and prone to uncertainty of analytical and 
human error due to analysis of several physicochemical parameters. Hence, 
NIRS-based PLS models for predicting the BMP of organic waste could be an 
alternative option. Furthermore, the uncertainty of the PLS model could be 
reduced if additional samples were added to the calibration dataset. However, 
the prediction results obtained in this study are satisfactory. The relevance of 
such a model is in its ability to support biogas plant operators, optimise stock 
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and the bioconversion process and identify rapidly and slowly degradable 
substrates.  

3.3 Co-digestion of urban organic waste  
This section (3.3.1) presents the co-digestion of food and green waste with 
sludge from waste water in CSTR (Fitamo et al., I). During the co-digestion 
process, reactor broth was taken in a steady-state condition, to analyse 
microbial composition and study variations in relative abundance within each 
operational phase (Fitamo et al., III). The results are described in Section 
3.3.2. Finally, CSTR experimental data was used to validate the BioModel 
simulation output results (Fitamo et al., II), reported in Section 3.3.3.  

3.3.1 Co-digestion of urban organic waste in CSTR  
The productivity and specific methane yield obtained during the co-digestion 
of food and green waste with sludge from a WWTP are provided in Figure 5. 
In both R1 and R2, methane productivity increased substantially when HRT 
was decreased. The addition of UOW co-substrates in Phase II improved 
methane productivity compared to the mono-digestion of sludge in Phase I. 
During Phase II, higher methane productivity (approximately 21%) was 
obtained in R1 in comparison to R2, due to the higher share of food waste in 
the mixed feedstock. In general, AD of co-substrates in R1 provided 10-20% 
higher methane productivity compared to R2. The content of methane was 
70% in Phase I (AD of 100% sludge) but dropped considerably to 60% during 
the co-digestion of UOW in Phase II, as seen in Figure 6. However, in both 
R1 and R2, the content of methane in the biogas remained at approximately 
60% during subsequent changes of HRT.  

The co-digestion of substrates (in Phase II) resulted in a specific methane 
yield of 424 mL CH4/g VS in R1 and 391 mL CH4/g VS in R2 compared to 
the AD of only sludge (i.e. 287 mL CH4/g VS). The results are comparable 
with previous studies. Jansen et al. (2004) reported a methane yield of 270 
mL CH4/g VS for the AD of WWTP sludge in Malmo. Co-digestion of 
sewage sludge with an organic fraction of municipal solid waste (75:25 v/v) 
in CSTR and UASB provided a methane yield in the range of 400- 600 mL 
CH4/g VS, as reported by Sosnowski et al. (2003). In Phase II to Phase V, the 
yield in R1 was higher than R2 by 9, 13, 14 and 14%, respectively, with 
corresponding HRTs of 30 (Phase II), 20 (Phase III), 15 (Phase IV) and 10 
days (Phase V). The results obtained in this study are comparable with 
previous co-digestion experiments on food and activated sludge (50:50) with 
a methane yield of 321 mL CH4/g VS at an OLR of 2.43 g VS/(L·day) and 
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HRT of 13 days, as reported by Heo et al. (2004). The methane yield 
remained more or less constant at around 430 mL CH4/g VS and 376 mL 
CH4/g VS in R1 and R2, respectively, when HRT was decreased from 30 to 
20 and then 15 days. Nevertheless, when HRT was changed to 10 days a 
significant drop in specific methane yield was observed in both reactors. This 
could be due to microbe washout and the overloading of the reactors. When 
HRT was changed from 15 (Phase IV) to 10 days (Phase V), the yield 
decreased from 430 to 359 mL CH4/g VS in R1 (dropped by 17%) and 375 to 
315 mL CH4/g VS in R2 (dropped by 19%), respectively. The methane yield 
measured in the batch test and estimated through chemical compositions is 
comparable with the values obtained during co-digestion in CSTR (Fitamo et 
al., I). This could be due to indefinite biodegradation and nutrient supplement 
in batch testing compared to the continuous reactor mode experiment.  

During the AD of co-substrates (Phase II), the concentration of total VFA and 
ammonia increased considerably compared to the AD of mixed sludge alone 
(Figure 6). However, the concentration of ammonia decreased slightly in 
Phases II to V, probably due to microbial adaptation to the newly added 
substrates and process conditions. The concentration of ammonia observed in 
R1 was higher by 4 -12% compared to R2, possibly due to the high share of 
food waste in the co-substrate of R1. In both R1 and R2, the concentration of 
total VFA and ammonia-N was, however, lower than the maximum inhibition 
limit of 3100 mg-N/L (Mata-Alvarez et al., 2000). The concentration of total 
VFA was similar to the acetate concentration in Phase I, since the amounts of 
butyrate, valerate and propionate were insignificant during the AD of sludge, 
as reported in Fitamo et al., I. However, the concentration of acetate 
increased during the AD of UOW (Phase II), and the concentration of 
propionate increased in subsequent phases. Overall, the concentration of 
valerate and butyrate remained insignificant during the AD of co-substrates 
in Phases II –V. Due to the higher fraction of food waste in the co-substrate 
composition, the VFA in R1 was higher compared to R2. The pH increased in 
Phase II compared to Phase I, but only very small changes were seen during 
Phases II-V, which could be due to the combined effect of the accumulation 
of VFA and ammonia.  
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Figure 5. Methane productivity, yield and organic loading rate in both R1 and R2 reactors 
during the mono-digestion of sludge in Phase I (0 - 75 days) and co-digestion of food and 
green waste with sludge in Phase II (76-130 days), III (131-164 days), IV(165-203 days) 
and V (204-230 days) (Fitamo et al. I).     
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Figure 6. The concentration of ammonia, pH, total volatile fatty acid and the methane 
content in both R1 and R2 reactors during the mono-digestion of sludge in Phase I (0 - 75 
days) and the co-digestion of food and green waste with sludge in Phases II (76-130 days), 
III (131-164 days), IV (165-203 days) and V (204-230 days) (Fitamo et al. I).     
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Figure 7 shows the trade-off between methane yield and productivity in a 
steady-state condition. Methane productivity increased when the co-
substrates were introduced in Phase II and also increased with subsequent 
changes in HRT (30, 20, 15 and 10 days) in Phases II-V for both reactors (R1 
and R2). On the contrary, methane yield increased between Phases I and II 
but remained nearly constant for R1, though it decreased slightly in R2 
during Phases II-IV (HRT of 30, 20 and 15 days). Nevertheless, methane 
yield decreased considerably when HRT was changed from 15 to 10 days in 
both reactors, while methane productivity increased. Accordingly, optimum 
process conditions in terms of specific methane yield and methane 
productivity are achieved at a HRT of 15 days for both reactors, where 
process parameters such as ammonia, pH and VFA are also stable and below 
the maximum inhibition limits.          

 

Figure 7. Specific methane yield versus methane productivity trade-off during the co-
digestion of food and green waste with mixed sludge (Fitamo et al. I). 
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3.3.2 Microbial population dynamics of UOW co-digestion  
In general, the main bacterial community observed at the phylum level in the 
CSTR reactors included Firmicutes, Proteobacteria and Bacteroidetes, OP9, 
Synergistetes, Thermotogae, Dicyoglomi and Chrloroflexi and the archaeal 
group of Euryarchaeota.  

The similarities and differences between the microbial community for 
different Phases (I-V) during the AD of sludge and co-substrates in both 
reactors (R1 and R2) were evaluated using principal coordinate analysis, 
PCoA (Fitamo et al., III). A shift in microbial community diversity was 
observed when the feedstock was changed from the mono-digestion of sludge 
in Phase I to the AD of co-substrates in Phase II. Microbial community 
diversity decreased probably due to the increased content of lipids and 
proteins in the co-substrates, which may inhibit certain groups of 
microorganisms (De Francisci et al., 2015; Fotidis et al., 2013; Palatsi et al., 
2010). In Phase II, R2 showed low microbial diversity compared to R1.   

In both reactors, a shift in microbial community diversity during Phase III 
was observed compared to Phase II, which could possibly be due to the 
adaptation of microorganisms to the new process conditions and substrate. In 
Phases III and IV, R1 showed increased microbial diversity, but R2 
developed a specialised community. In Phase V (HRT of 10 days), microbial 
diversity decreased in R1 (feed with more food waste), probably due to 
washout, but the microbial community in R2 was more resistant, which could 
be because of microbes adhering to the lignocellulosic materials from the 
green waste.  

Figure 8 shows the percentage relative abundance of the microbial 
community in both reactors, R1 and R2, at the phylum and genus levels. 
Proteobacteria (11%) observed during AD of 100% sludge in Phase I became 
undetectable in Phase II (AD of co-substrates); however, a new community of 
Bacteroidetes (10.1%), absent in Phase I, was seen in Phase II. In both R1 
and R2, the percentage relative abundance of Thermotogae increased in 
Phases II-V compared to Phase I. The role of Thermotogae bacteria is in the 
fermentation of organics into hydrogen, acetate and CO2.  
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Figure 8. The variation in percentage relative abundance during the mono-digestion of 
sludge and the co-digestion of urban organic waste in both reactors (R1 and R2) in Phases 
I, II, III, IV and V based on a taxonomical classification of the microbial community: 8a) 
phylum level, 8b) at genus level (> 0.5% OTUs relative abundance) and 8c) community of 
archaeal at genus level (> 0.5% OTUs relative abundance).Unclassified represents all other 
unidentified OTUs (Fitamo et al. III).   

The archaeal community found in both reactors involved in methane 
production included hydrogenotrophic Methanothermobacter and 
Methanosarcina. This indicated that archaeal community composition was 
similar regardless of the feedstock composition. When the AD of sludge in 
Phase I was changed to AD of co-substrates in Phase II, the relative 
abundance of Euryarchaeota increased from 2 to 9% in R1 and from 2 to 7% 
in R2. Conversely, the relative abundance of Euryarchaeota dropped from 
3% to 0.5% (R1) and from 6% to 0.3% (R2) during the UOW co-digestion 
process when HRT was changed from 15 days (Phase IV) to 10 days (Phase 
V). At a HRT of 10 days, the abundance of Methanothermobacter decreased, 
but Methanosarcina increased. The acetoclastic and hydrogenotrophic 
Methanosarcina is favourable at elevated ammonia and VFA concentrations 
(Calli, 2005; De Vrieze et al., 2012; Staley et al., 2011).  

The relative abundance of S1 (Thermotogales, order) and Thermonema was 
found to be significantly higher during the AD of feedstock composition 
dominated by readily degradable food waste (R1) compared to the AD of 
feedstock composition composed of mostly slowly degradable lignocellulosic 
materials (R2) (Fitamo et al., III). However, the relative abundance of 
Thermacetogenium, Anaerobaculum, Ruminococcaceae (Clostridia), 
Porphyromonadaceae (Bacteroidia) and Clostridium in R2 (lignocellulosic 
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feedstock) was significantly higher relative to R1 (readily degradable 
feedstock).  

The relative abundance of Coprothermobacter and Anaerobaculum decreased 
when the HRTs were sequentially decreased (30, 20, 15 days), except for a 
HRT of 10 days. In contrast, the abundance of S1 and Thermonema increased, 
as reported in Fitamo et al., III. The association of biochemical parameters 
with respective variations in the relative abundance of OTUs is described in 
Fitamo et al., III.  

The correlation of the biochemical parameter with the relative abundance of 
OTUs showed that acetate, methane yield and methane productivity 
significantly increase (P ≤ 0.05) when the relative abundance of 
Proteobacteria (Acinetobacter iwoffii, OTU: 532569; Allochromatium), 
Firmicutes (Coprothermobacter, Syntrophomonas, clostridium), Thermotogae 
(S1, Fervidobacterium, two OTUs) and Bacteroidetes (Thermonema) 
increase. This shows that the performance of the reactors was affected by 
microorganisms involved mainly in the hydrolysis stage. Acetate 
concentration was also significantly related (P ≤ 0.01) to the relative 
abundance of Methanosarcina. Methane content was significantly associated 
(P ≤ 0.001) with the relative abundance of Chloroflexi, class Anaerolinea, 
which was observed mainly during the AD of sludge in Phase I. The increase 
in ammonia concentration was associated with an increase in the relative 
abundance of Syntrophomonas (OUT 203894); however, the decrease in 
ammonia concentration was associated with Anaerobaculum. 
Syntrophomonas is known for reducing molecular N to ammonia (Sieber, 
2010), while Anaerobaculum ferments organic acids (Menes and Muxí, 
2002).  

3.3.3 Mathematical modelling of UOW co-digestion  

3.3.3.1 Validation of experimental results  

Optimisation of the co-digestion of urban organic waste was carried out with 
the BioModel mathematical bioconversion model. The performance and 
operational parameters of the BioModel simulation result in comparisons to 
the reactor experiment is reported in Fitamo et al., II. The simulation outputs 
were in agreement with the experimental results, as described in Fitamo et al., 
II. Exceptions were transition periods of unstable operational processes on 
days 1-20, 85-95, 136-152, 166-188 and 205-219 in Phases I, II, III, IV and 
V, respectively, due to start-ups (sudden changes in feedstock composition 
and HRT/OLR). The deviations between the simulation and experimental 
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results on these particular days could possibly be due to technical problems 
encountered during the start-up of each phase, such as tuning and calibrating 
the feeding pumps and gas measuring devices. Other possible reasons for the 
observed deviations could be due to the adaptation of the microorganisms to 
the new process conditions (lag phase) or a delay in growth response to 
changed biochemical conditions (memory effect of microorganisms). The 
simulation outputs reach steady-state conditions quickly compared to the 
actual process (Fitamo et al., II). Overall, a good fit was observed for 
predicting yield and methane productivity in the long run, when the process 
reached steady-state conditions, typically after two HRTs (Fitamo et al., II). 
Experimentally measured methane productivity for R1 in Phase I (0.19 ± 0.01 
L CH4/L·day), Phase II (1.08 ± 0.06 L CH4/L·day ), Phase III (1.70 ± 0.06 L 
CH4/L·day), Phase IV (2.14 ± 0.12 L CH4/L·day) and Phase V (2.77 ± 0.1 L 
CH4/L·day) was comparable with the corresponding simulation output of 
Phase I (0.2 L CH4/L·day), Phase II (1.0 L CH4/L·day), Phase III (1.5 L 
CH4/L·day), Phase IV (1.9 L CH4/L·day) and Phase IV (2.8 L CH4/L·day). 
This indicates that simulated methane productivity was in agreement with the 
experiment, and the residual error of the model prediction was insignificant. 
Similarly, the model predicting methane productivity in R2 resulted I a good 
fit.  

The increased concentration of ammonia, from 0.72 g-N/L (AD of sludge in 
Phase I) to 1.72 g-N/L (AD of co-substrates in Phase II), was in agreement 
with the predicted BioModel simulation output, resulting in an insignificant 
model residual error, as described in Fitamo et al., II. The rapid increase in 
ammonia concentration on day 75 could be due to the sudden change in 
feedstock and inoculum composition. VFA concentration was in agreement 
with the simulation output in Phases I, II and III for R1, but the model value 
deviated from that measured in Phase IV, which may be due to an increased 
loading rate and the memory effect. However, the results were comparable in 
steady-state conditions except for Phase V (10 days HRT), where the process 
was unstable due to microbial washout and overloading. Components of the 
VFA simulation output, compared to the experimental results, are described 
in Fitamo et al., II. The model estimates for the VFA components in R2 
deviate from the experimental values, particularly in Phases III to V. This 
could possibly be due to reactor pipes being clogged with grass and garden 
waste in the effluent, which causes loss of digestate because of overpressure 
resulting in an explosion via the sample port. Such technical problems were 
noted on days 132, 147 and 197 in Phases III, IV and V, respectively. The 
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content of methane in the produced biogas was predicted accurately for all 
phases in both reactors, as reported in Fitamo et al., II. Methane content 
dropped from 70% in Phase I to 60% in Phase II and then remained constant, 
with subsequent changes in HRT in Phases III, IV and V being predicted well 
by the simulation BioModel.    

3.3.3.2 Simulation scenarios of UOW co-digestion  

According to the experimental plan provided in Section 2.5.2 (Table 2), 
simulation results for UOW (mono- and co-substrate) at various VS mixing 
ratios of substrates with HRT of 30, 20, 15 and 10 days are reported in 
Fitamo et al., II. Food waste resulted in improved yield and productivity 
compared to sludge and garden waste during the mono-digestion of UOW in 
scenario I. The concentration of VFA and ammonia was also found to be 
higher in the AD of food waste compared to the others. In reality, mono-
digestion of food waste or garden waste is not practical, due to an imbalance 
of process nutrients, low buffering capacity, pumping problems and a risk of 
overloading, which may create an unstable process and eventually lead to 
failure. For this reason, co-digestion seems attractive to overcome these 
challenges.  

Both methane productivity and yield increased when increasing the share of 
food waste comparatively to garden waste in scenario II, in which the VS of 
mixed sludge was fixed. Productivity increased when decreasing HRT for a 
given waste composition. When HRT was decreased from 30 to 15 days, 
methane productivity increased twofold for waste composition FW87.5 (79% 
of the total VS was food waste), but methane yield was affected only slightly 
(Fitamo et al., II). At HRT of 15 days, the highest methane yield and 
productivity were obtained for waste composition FW87.5 with a 
corresponding value of 2 L CH4/L·day and 402 mL CH4 g/VS, but the waste 
composition with a low share of food waste in the feed (FW12.5) resulted in 
a yield and productivity of 1.5 L CH4/L·day and 290 mL CH4 g/VS, 
respectively (Fitamo et al., II). This indicated that the yield and productivity 
improved in line with an increased proportion of food waste in the feed. 
Methane content increased slightly in line with increased food waste 
composition in the feed, but it was not affected at all by changes in HRT, 
which could be due to stable pH (ionisation degree of CO2 to bicarbonate and 
finally to biogas). Concentrations of ammonia and VFA increased with 
decreased HRT but increased with a high share of food in the waste 
composition. The results obtained in scenario 3 show that increasing the 
amount of sludge in the waste composition at a fixed VS ratio of food and 
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green waste in the co-substrate results in insignificant changes in methane 
productivity and yield at a given HRT. The reason could be due to low VS 
content in the mixed sludge. Concentrations of ammonia and VFA increased 
slightly in line with increasing the mixed sludge share for a given HRT and 
also increased when HRT was decreased for a given feed composition.          

3.3.3.3 Optimisation scenarios  

Generally, methane productivity increased but the yield dropped with 
decreasing retention times. The concentration of ammonia and VFA may also 
increase at low HRTs, which may cause process instability. Hence, a trade-
off between the parameters must be considered to identify the best and most 
feasible solution to maximise yield and productivity while minimising the 
inhibition parameters of ammonia and VFA concentration. Figure 9 shows an 
example of optimal scenarios aimed at maximising productivity and yield 
while minimising ammonia concentration with a lower bound limit constraint 
of methane yield and productivity with a value of 382 mL CH4/g VS and 
2405 mL CH4/L·day, respectively, with 1410 mg/L of ammonia as an upper 
bound constraint limit.  

 

Figure 9. Identification of optimal urban organic waste co-digestion scenario with 
objective of methane productivity and yield maximisation and minimisation of ammonia 
concentration with lower bound constraint of methane productivity (> 2405 mL 
CH4/L·day) and methane yield (> 382 mL CH4/ g VS) and upper bound limit of 1410 mg/L 
of ammonia concentration at hydraulic retention time of 12 -15 days (Fitamo et al. II).   
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The optimal solution and process parameters are shown in Figure 9 for the 
objective of methane productivity and yield maximisation while minimising 
the concentration of ammonia. Methane productivity was inversely 
proportional to specific methane yield, as seen in Figure 9, whereas the 
concentration of ammonia was proportional to yield, but in this case the 
amount of ammonia was below the inhibition limit. The maximum methane 
productivity was 2557 mL CH4/L·day for optimal feedstock composition of 
FW87.5 at HRT of 12 days however the maximum methane yield of  418 mL 
CH4/g VS was obtained at HRT of 30 days (Fitamo et al., II). The operator or 
practitioner makes a decision based on retention time and optimal feedstock 
composition, to maximise yield and productivity while minimising the 
concentration of ammonia. For instance, improved productivity was obtained 
at a HRT of 12 days, where methane yield was lower compared to a HRT of 
15 days and improved yield was attained but lower productivity for optimal 
feedstock compositions shown in Figure 9 between 12 and 15 HRT days. 
Hence, a trade-off should be considered to identify optimal feedstock 
composition at optimum process parameters to boost the recovery of energy 
while maintaining a stable process. 
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4 Conclusion  
The focus of this PhD study was to develop and apply methods for the 
systematic quantification of biogas production from urban organic waste 
(UOW). This was done through the physicochemical characterisation of 
various waste fractions, assessing the biochemical methane potential (BMP) 
of organic waste, developing a computational BMP-predicting model and 
performing the co-digestion of organic waste in a continuously stirred tank 
reactor with corresponding microbial dynamics analysis and mathematical 
modelling of the co-digestion process, to identify optimal co-digestion 
scenarios. The major findings and conclusions of this PhD thesis are 
summarised below.  

The addition of UOW to sewage sludge digesters enhanced both methane 
yield and productivity significantly. Specific methane yield improved by 48% 
and 35% when co-digesting sludge and food waste, grass clippings and 
garden waste, with a corresponding percentage VS ratio of 
10:67.5:15.75:6.75 in R1 and 10:45:31.5:13.5 in R2, respectively, compared 
to the mono-digestion of mixed sludge in a continuously stirred tank reactor 
(CSTR). The differences in methane yield between R1 and R2 were attributed 
to the different shares of food/green waste in the feedstock. Methane yield 
remained constant as the hydraulic retention time (HRT) was subsequently 
decreased from 30, 20, 15 days, but it dropped considerably at a HRT of 10 
days. The operation of digesters at low HRT (10 days) was found to be 
problematic, due to overloading and microbial washout.  

Distinct differences in microbial community diversity were observed during 
the production of biogas from the co-digestion of UOW in comparison to the 
anaerobic digestion (AD) of mixed sewage sludge alone. The predominant 
microbial community of Proteobacteria, detected during the AD of 100 % 
mixed sludge, decreased considerably compared to the AD of UOW co-
digestion. On the contrary, a new predominant community of Thermonema 
increased during the AD of UOW. The most prevalent pathway of methane 
formation was found to occur via syntrophic acetate oxidation, followed by 
hydrogenotrophic methanogenesis (Methanothermobacter). However, 
running the digesters at a HRT of 10 days, Methanosarcina became 
dominant. Methane productivity, methane yield and acetate concentration 
correlated with hydrolytic bacteria of Proteobacteria, Thermotogae, 
Firmicutes and Bacteroidetes, whereas the concentration of ammonia was 
associated with Anaerobaculum and Syntrophomonas and methane content 
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was related to Chloroflexi. The relative abundance and diversity of microbes 
changed in line with the operational process parameters of biogas production, 
while the biochemical parameters of biogas production were correlated with 
the relative abundance of specific microbes.   

The application of a comprehensive dynamic mathematical bioconversion 
model (BioModel), to simulate the anaerobic digestion (AD) of UOW, 
resulted in good correlation and reasonable predictions of reactor 
performances and operational parameters in steady-state conditions. 
Simulation scenario analysis revealed that an increasing the amount of mixed 
sludge in the co-substrate had only a marginal effect on methane productivity 
and yield. In contrast, reactor performance improved when the amount of 
UOW increased in the co-substrate at a given HRT. At a HRT of 12 days, the 
maximum methane productivity of 2557 mL CH4/L·day was obtained for 
optimal feedstock composition with a VS mixing ratio of 10% mixed sludge, 
79% food waste, 8% grass clippings and 3% garden waste, though specific 
methane yield was 393 mL CH4/g VS. In contrast, a maximum specific 
methane yield of 418 mL CH4/g VS was achieved at a HRT of 30 days, 
though methane productivity decreased by a factor of two. The trade-off 
between improved specific methane yield, methane productivity and stable 
operational process conditions should be considered when maximising biogas 
production with optimal process parameters and feedstock composition. The 
bioconversion model can be used to quantify biogas production, process 
control and monitoring during the biochemical transformation of sludge and 
the co-digestion of urban organic waste.  

The best partial least square (PLS) model for predicting the BMP of UOW 
had a root mean square error of prediction (RMSEP) of 44 mL CH4/g VS, a 
coefficient of determination (R2) of 0.88 and a ratio of performance to 
deviation (RPD) of 2.9, whereas the combined PLS model, comprising UOW 
and plant biomass, resulted in an RMSEP of 50 mL CH4/g VS, an R2 value of 
0.89 and an RPD of 2.98. The model predicting the BMP of UOW had a 
relative root mean square error (rRMSE) of 9 %  while the combined model 
had rRMSE of 16 %. The relative model error was slightly larger for the 
combined model due to variety of samples. The computational model for 
rapid analysis of the BMP of UOW, and a joint model based on near infrared 
reflectance spectroscopy (NIRS), was satisfactory with moderately successful 
prediction. Accordingly, future NIRS-based models for BMP measurements 
could replace traditional BMP measurements, thereby providing biogas plant 
operators with rapid decisions on improving biogas production, optimising 
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feedstock management and identifying slowly degradable feedstocks prior to 
feeding them into the biogas digester.    
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5 Further Research  
In this PhD thesis, the systematic quantification of biogas production from 
urban organic waste was presented and discussed, in order to enhance the 
performance of anaerobic digestion. However, based on the findings of the 
present study, the following further research work is suggested to improve 
the bioconversion of urban organic waste:  

 The computational model used to predict the BMP of urban organic with 
near-infrared reflectance spectroscopy (NIRS) was moderately successful. 
Including additional samples in the model could improve its performance. 
Moreover, the model should be tested with an external dataset before 
industrial application. Hence, further study is recommended to perform 
external model validation.    

 The interpretation of the NIRS spectral bands contributing to the 
prediction of the BMP model is complex, and it is hard to extract chemical 
information, due to overlapping overtones and combination bands. For 
this reason, further research is suggested to develop a computational 
model for predicting the BMP of organic waste, based on Fourier 
transform infrared photoacoustic spectroscopy (FTIR-PAS). 

 The addition of urban organic waste to mixed sludge improved biogas 
production. However, the experiment was carried out in a lab-scale 
continuous reactor operation mode. Hence, I recommend carrying out the 
co-digestion of urban organic waste in pilot-scale reactors before 
proceeding to a full-scale trial.  

 A life cycle assessment (LCA) and a complete value chain analysis of the 
anaerobic co-digestion of urban organic waste at plant and national levels, 
taking into account waste collection, various pre-treatment techniques, 
bioconversion, several options of the utilisation of biogas and the 
application of digestate as an organic fertiliser on agricultural land are 
recommended before proceeding with a full-scale plant. This 
environmental impact assessment and economic optimisation will support 
the decision-making process for biogas companies, investors, politicians 
and consulting firms.   
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