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Abstract—The forward model of single scatter in the Positron
Emission Tomography for a detector system possessing an excel-
lent spectral resolution under idealized geometrical assumptions
is investigated. This model has the form of integral equations
describing a flux of photons emanating from the same anni-
hilation event and undergoing a single scattering at a certain
angle. The equations for single scatter calculation are derived
using the Single Scatter Simulation approximation. We show
that the three-dimensional slice-by-slice filtered backprojection
algorithm is applicable for scatter data inversion provided some
assumptions on the attenuation map are justified.

I. INTRODUCTION

The Compton scatter phenomenon is inherent of such
tomographic imaging modalities as the X-ray transmission
Computed Tomography (CT) [1], the Single Photon Emission
Tomography (SPECT) [2] and the Positron Emission Tomog-
raphy (PET) [3]. Many authors succesfully apply transmission
CT algoritms for the Compton scatter imaging systems both
with the external and the internal sources of radiation. It has
been shown that SPECT can be considered as Compounded
Conical Radon Transform [4], and PET as a perturbation of the
X-ray transform [5]. In this paper we focus on the analytical
aspects of deriving an idealized forward model of the Compton
single scatter in the PET.

Idealized models of image formation in tomography are
useful instruments for exploring the potentials and limits of
reconstructive ability of data acquired in an imaging modality
of interest. Usually having the form of an integral transform or
differential equation, the idealized model is expected to answer
the principal questions: whether the available noiseless data
are sufficient to restore an object under investigation, to what
extent the objects frequencies are recoverable, etc. In the case
when an explicit inversion formula is not available, a discrete
version of the idealized forward operator can be combined
with algebraic iterative methods to answer these questions.

As compared to idealized models, there is comprehensive
Monte Carlo (MC) statistical simulation in much more wide
use. The MC modeling is able to take into account every
technical detail of photon transport and detection phenomena
and therefore there is a demand for computer resources.
The MC statistical simulation (as well as physical phantom
studies) are the ‘gold standard’ for verification of scatter
modelling. Reference [3] states: “Nevertheless, the complexity

and computing requirements of Monte Carlo simulation led
to the development of analytical simulation tools based on
simplifying approximations to improve speed of operation”.
Those analytical simulation tools are known as Single Scatter
Simulation (SSS) and they have been proven to be fast and
efficient in modeling the main scatter features together with
discreteness of detectors and many other factors [6]. While
the SSS model estimates a scatter flux detected within finite
detector elements for a range of energies, the idealized model
provides a sample value of a scatter for a given energy and
detected at a given point of detector. That is, in the idealized
model the detector system has an excellent energy resolution
and the size of each detector element approaches zero. It is
assumed that detectors count all incoming single scattered
photons of a certain energy, or equivalently, the photons
scattered once under a certain angle.

II. METHODS

The integral model of PET using primary photons [5] oper-
ates with internal sources of isotope activity f(x, y, z) within
a functionalizing medical object described by the known linear
attenuation map μ(x, y, z) and a pair of detectors A and B:

PAB = exp

⎡⎣− B∫
A

μ(x′, y′, z′)dl′

⎤⎦ B∫
A

f(x, y, z)dl, (1)

where dl, dl′ are the elements of integration along AB.
Equation (1) factorizes integrals over the activity f and the
attenuation μ, thus reducing the problem to a classical X-
ray CT provided that the data PAB undergoes attenuation
correction. Then the data can be treated as integrals of f
along the lines of response, which are thought to be trajectories
of propagation of primary (unscattered) photons with energy
E = 511 keV. The support of the attenuation map μ is a
domain D(μ), and the support of the activity function f is
a domain D(f) ⊂ D(μ) of unknown structure. The PET
problem consists in reconstruction of the activity f and its
support D(f) exploiting data PAB , recorded by a multitude
of detectors (A,B) positioned around the object. A physical
feature of PET is basically a huge amount of photon pairs
(u, v), collinearly traveling in opposite directions from the
annihilation point C, where positron resulting from isotope
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Fig. 1. (a) Primary photons (u, v) of energy E = 511 keV, originating from
annihilation point C ∈ D(f). (b) Single Compton scatter happens in point
S ∈ D(μ), v′ is a photon v with energy E′, scattering with angle θ. The P
is geometrically potential point for scatter with angle θ, however it is out of
domain μ (P /∈ D(μ), μ(P ) = 0), therefore does not contribute to the B.

decay meets some of free electons of the media μ (Figure 1
(a)). In addition to primary photons, there are the ones v′ with
energies E′ < E that undergo the Compton scatter (Figure 1
(b)), and the energies are connected to the scattering angle θ
by the Compton relation: E′ = E/(2− cos θ).

A. Single Scatter Simulation Approximation

The Single Scatter Simulation (SSS) technique [6] estimates
the expected single scatter coincidence rate in the detector pair
(A,B) as an integral over the total scatter volume V = D(μ):

SAB
V =

∫∫∫
V

dV
σASσBS

4π|AS|2|BS|2
μ

σC

∂σC

∂Ω
(εA IA + εB IB),

(2)
where

IA = e
−(

S∫
A

μdl+
B∫
S

μ′dl)
S∫

A

fdl, IB = e
−(

S∫
A

μ′dl+
B∫
S

μdl)
B∫

S

fdl.

(3)
Here, σAS and σBS are geometrical cross-sections of the
detectors A and B, f is the emitter activity, μ = μ(E, S) is the
linear attenuation coefficient depending on the photon energy
E and the scatter point S, εA = εASε

′
BS and εB = ε′AS εBS

are related to the detection efficiency for the detectors A and
B, ∂σC

∂Ω is the differential cross-section. Primed and unprimed
quantities are evaluated at the scattered and unscattered pho-
ton’s energy, respectively.

Equation (2) is symmetric in terms of A and B so that
primary photons are recorded both at A and B. We try to
modify formula (2) within idealized assumptions on excellent
energy resolution of pointwise detectors. Therefore a one-sided
version of (2) is investigated, where only one detector A is
tuned to counting the primary photons. In this case, we can
set IB = 0 in (3). Let us denote, omitting other dependencies,

Qf, μ(x, y, z) ≡
μ

σC

∂σC

∂Ω
εA e

−(
S∫
A

μdl+
B∫
S

μ′dl)
S∫

A

fdl, (4)

θ

μ(ψ,ϕ,  )r
θ

*
ψ

ϕ

Σθ

f(      ,r)ψ,ϕ

y

z

x

A B
Cxy

ASB

C
S

V

Fig. 2. A 3D geometric model of single scattering. Circular detectors are
centered at the points A and B; S is a scattering point with the polar
coordinates (ψ, ϕ, |AS|) and the scatter angle θ; Cxy is a projection of
C onto the plane xAy; C is an annihilation event. The surface Σθ is a
loci of points S of scatter under the angle θ and the spherical coordinates
(ψ, ϕ, |AS|), �ABS = θ − ϕ.

where (x, y, z) are Cartesian coordinates of the scatter point
S. Thus, we transform equation (2) to the more compact form

SAB
V =

∫∫∫
V

dV

(
σASσBS

4π|AS|2|BS|2

)
Qf, μ(x, y, z). (5)

This equation is a starting point for derivation both of total
and sample Compton scatters at a certain angle.

B. Geometrical Model of the Compton Single Scatter

The SSS approximation is sufficiently generic to deal with
the scatter volume V (or, equivalently, an integration domain,
or a support of the attenuation map μ) of an arbitrary shape.
However, for the purposes of this research, a precise boundary
of the V (and the limits in volume integral (5)) should be
explicitly specified as well as a system of coordinates needs
to be chosen. The following basic geometrical observations
are useful in analytical single scatter modeling.

Let us assume that the detectors A and B are small disks
of radius δ � 1. It is easily seen (Figure 2) that all the scatter
points S (with some scattering energy E′, or scattering angle
θ) are located on an equi-scatter surface (denoted as Σθ) of
the football-shape rotation body (denoted as Vθ) generated by
the arcs ÃSB with the detectors A and B fixed. The arcs are
parts of the circles with diameter d = |AB|/sin θ.

Let us assume that the detector B records the photons
scattered under the scattering angles θ such that θ ≤ T, for
some thresholding angle T ≤ π/2. We find it useful to exploit
the spherical coordinates (ψ, ϕ, r) with the origin at the point
A for describing the total scatter volume VT and the equiscatter
surface Σθ:

VT = {(ψ, ϕ, r)|ψ ∈ [0, 2π), φ ∈ [0, T ], r ∈ [0, |AS|], }
Σθ = {(ψ, ϕ, r)|ψ ∈ [0, 2π), φ ∈ [0, θ], r = |AS|}.

(6)

Let us recall the Law of Sines for $ABS

|AS|/ sin(θ − ϕ) = |BS|/ sin(ϕ) = d. (7)

It can be shown that

|AS| = |AB| sin(θ − ϕ)

sin θ
, |BS| = |AB| sinϕ

sin θ
. (8)
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The term
∫ S

A fdl is of multiple use in the scatter calculations.
For any scatter point S, it is expressed as follows

S∫
A

fdl =

|AS|∫
0

f(ψ, ϕ, r)dr =

|AB| sin(θ−ϕ)
sin θ∫

0

f(ψ, ϕ, r)dr. (9)

The idealized model for the total scatter (parameterized by the
threshold T and denoted as SAB

T ) will be developed using the
SSS integral (5) calculated at points within the small detectors
A and B, and then averaged over (A,B) disks area as follows

SAB
T = lim

δ→0

1

(π δ2

4 )
2

∫
A

dA

∫
B

dB

∫∫∫
VT

dVT

×
(

σASσBS

4π|AS|2|BS|2

)
Qf, μ(x, y, z).

(10)

The geometrical cross-sections of A and B incident to the rays
AS and SB are respectively

σAS ≈ (πδ2/4) cosϕ, σBS ≈ (πδ2/4) cos(θ − ϕ). (11)

Substituting (11) into (10), we estimate the total single scatter
in the following form

SAB
T =

∫∫∫
VT

dVT

(
cosϕ cos(θ − ϕ)

4π|AS|2|BS|2

)
Qf, μ(x, y, z). (12)

We change the rectangular variables (x, y, z) in (12) for other
(spherical-like) curvilinear coordinates (ψ, ϕ, θ), where ψ, ϕ
are the spherical coordinates and θ ∈ [0, T ] is the scattering
angle (while the distance |AB| is fixed), as follows

x = X(ψ, ϕ, θ) = |AS| sinϕ cosψ,

y = Y (ψ, ϕ, θ) = |AS| sinϕ sinψ,

z = Z(ψ, ϕ, θ) = |AS| cosϕ.
(13)

For changing variables in (12), we calculate the elementary
volume

dVT = dxdydz = |J |dψdϕdθ, (14)

where J is the Jacobian matrix

J =

⎡⎣ ∂X/∂ψ ∂X/∂ϕ ∂X/∂θ
∂Y /∂ψ ∂Y /∂ϕ ∂Y /∂θ
∂Z/∂ψ ∂Z/∂ϕ ∂Z/∂θ

⎤⎦ (15)

and |J | is its determinant. Due to (8), we have

|J | = |AB|3 sin2(ϕ) sin2(θ − ϕ)

sin4(θ)
=
|AS|2|SB|2
|AB| , (16)

and (12) becomes

SAB
T =

∫∫∫
VT

dψdϕdθ |J | cosϕ cos(θ − ϕ)

4π|AS|2|BS|2 Qf, μ(ψ, ϕ, θ)

=

2π∫
0

dψ

T∫
0

dθ

θ∫
0

dϕ
cosϕ cos(θ − ϕ)

4π|AB| Qf, μ(ψ, ϕ, θ).

(17)

Finally, we derive the total scatter equation under further
idealized assumptions εA ≡ 1 in the following integral form:

SAB
T =

T∫
0

dθ

θ∫
0

dϕ
cosϕ cos(ϕ− θ)

4π|AB|

2π∫
0

dψ
μ(ψ, ϕ, |AS|)

σC

× ∂σC

∂Ω
e
−
(

S∫
A

μdl+
B∫
S

μ′dl

) |AS|∫
0

f(ψ, ϕ, r)dr.

(18)
Let us represent equation (18) in the form

SAB
T =

T∫
0

ξAB
θ dθ, (19)

where the integrand

ξAB
θ =

θ∫
0

dϕ
cosϕ cos(ϕ− θ)

4π|AB|

2π∫
0

dψ
μ(ψ, ϕ, |AS|)

σC

× ∂σC

∂Ω
e
−
(

S∫
A

μdl+
B∫
S

μ′dl

) |AS|∫
0

f(ψ, ϕ, r)dr

(20)

is a sample value of the scatter. Here θ and E′ are fixed,
therefore the factor 1

σC

dσC

dΩ in (20) is a scalar and for brevity
can be omitted without loss of generality .

C. Slice-by-slice Convolution Blurring Model

An essential simplification can be achieved assuming μ =
const. Then equation (20) can be written down in the cylin-
drical coordinates (ψ, ρ, z) after some algebra as follows

ξAB
θ =

μ

4π|AB|

|AB|∫
0

dz

Rθ(z)∫
0

dρ
z(z cos θ + ρ sin θ)

ρ(z2 + ρ2)3/2

× e
− |AB|μ√

z2+ρ2
(z+ρ tan(θ/2))

2π∫
0

dψf(ψ, ρ, z),

(21)

where radius of the circular section of Vθ with the coordinate
z is

Rθ(z) =

√
a2 − (z − a)2 sin2 θ − a cos θ

sin θ
, a ≡ |AB|

2
. (22)

Multiplying equation (21) by 1 ≡ ρ/ρ and denoting the kernel

hθ(ρ, z) ≡
μ

4π|AB|
z(z cos θ + ρ sin θ)

ρ2(z2 + ρ2)3/2
e
− |AB|μ(z+ρ tan(θ/2))√

z2+ρ2 ,

(23)
we can reduce (21) to

ξAB
θ =

|AB|∫
0

dz

2π∫
0

dψ

Rθ(z)∫
0

hθ(ρ, z)f(ψ, ρ, z)ρdρ. (24)

It follows from this representation that the inner double inte-
gral

∫ 2π

0 dψ
∫ Rθ(z)

0 hθ(ρ, z)f(ψ, ρ, z)ρdρ in (24) is a value of
the convolution of the function f section by the plane parallel
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to xOy with the coordinate z, and the radially symmetric
kernel hθ(ρ, z) with a circular support of radius Rθ(z). The
outer integral

∫ |AB|
0

dz represents the X-ray transform of
the slice-by-slice blurred version of the activity function f
along the lines parallel to the direction z. This slice-by-slice
distance-dependent blurring model of the projection formation
is known in Transmission Electron Microscopy and it is proven
to be invertible [7] provided full data are available. The
reconstruction technique derived was named as the Defocus-
gradient Corrected Backprojection (DGCBP) algorithm. Thus,
we have reduced the simplified Compton scatter model to the
already developed reconstruction algorithm. This algorithm
was numerically tested [7] by simulating different types of
noise based on the principles proposed by Baxter et al. [8].
Theoretical study of the noise propagation properties of the
scatter forward transform (20) is a subject of the future
research.

Let us introduce the Fourier transform pairs: F (k1, k2, k3)
= F3

{
f(x, y, z)

}
, Hθ(k1, k2, z) = F2

{
hθ(ρ, z)

}
, and Pα,β

θ

= F2{ξα,βθ }. Here ξα,βθ is a scatter projection in the direction
specified by the unit vector parameterized by the spherical
angles (α, β) ∈ S2. The scatter projection ξα,βθ is a collection
of the scatter forward transform (20) samples ξAB

θ , where the
points A and B belong to the lines that constitute a bundle of
parallell lines in the direction (α, β). The DGCBP algorithm
consists of the following steps.

Step 1. Deconvolution of the projection Pα,β
θ with the

Tikhonov regularized inverse filter and stacking the results
along z for all directions (α, β) ∈ S2:

bα,βθ (x, y, z) = F−1
2

{ Pα,β
θ (k1, k2)Hθ(k1, k2, z)

Hθ(k1, k2, z)2 + λ(k21 + k22)

}
. (25)

Step 2. Generation of the integral image cθ(x, y, z) as
summation of the backprojections bα,βθ over all the projection
directions (α, β) ∈ S2:

cθ(x, y, z) =

∫∫
S2

bα,βθ (x, y, z)∂α∂β. (26)

Step 3. Ramp-filtering in the Fourier domain of the integral
image Cθ(k1, k2, k3) = F3

{
cθ(x, y, z)

}
:

F (k1, k2, k3) ≈ Cθ(k1, k2, k3)×
√
k21 + k22 + k23 . (27)

III. SIMULATION STUDY

The numerical experiments were performed using a nu-
merical test phantom of 2563 size. It consists of 7 and 11
spheres serving as a support of the activity function f ≡ 1
immersed into a larger sphere filled with water with the linear
attenuation coefficient μ = 0.096cm−1 (Figure 3 (a)). Images
of three central sections are shown in Figure 3 (b) of the test
object (the upper row), and of the reconstruction (the bottom
row) from 1, 000 scatter projections randomly oriented over
S2. Projections of 256 × 256 size each beeing numerically
generated with a scattering angle θ = 30◦ using formula (20).
The regularization parameter λ = 0.01 of the Tikhonov filter
is used in the DGCBP algorithm, Step 1, equation (25).

(a) (b)

Fig. 3. (a) The 3D view of a test object with 7 and 11 spheres of the unit
activity immersed into the imaginable sphere filled with water and digitized
into an image of 2563 size. (b) Images of three central sections of the test
object (the upper row), and the DGCBP reconstruction (the bottom row) from
1, 000 randomly chosen scatter projections.

IV. CONCLUSION

The closely related integral transforms (18) and (20) de-
scribing the total and sample single scatter projection forma-
tion have been derived from the classical SSS approximation
(2). The single scatter image formation includes integration
of the emitter activity f over a bundle of compound cones
with a common vertex at the point A. Those cone integrals
are weighted by the linear attenuation μ and some geometrical
factors. We can conclude therefore that the integral transforms
obtained belong to the family of the Compounded Conical
Radon Transforms [4]. With some improvements in the de-
tector energy resolution, the energy-selected PET could be a
source of the new opportunities.

ACKNOWLEDGMENTS

We thank Drs. Robert Lewitt and Samuel Matej for fruitful
discussions. This work was partially supported during the stay
of the first author with the Department of Physics of the
Technical University of Denmark.

REFERENCES

[1] S. Norton, “Compton scattering tomography”, Journal of Applied
Physics, vol. 76, no. 4, pp. 2007–2015, 15 August 1994.

[2] G. Rigaud, M. K. Nguyen and A. K. Louis, “Modeling and simulation
results on a new Compton scattering tomography modality,” Simulation
Modeling: Practice and Theory, vol.33, pp. 28–44, April 2013.

[3] H. Zaidi, “Scatter modelling and correction strategies in fully 3-D PET,”
Nuclear Medicine Communications, vol. 22, pp. 1181–1184, 2001.

[4] M. K. Nguyen, T. T. Truong, C. Driol and H. Zaidi, “On a Novel
Approach to Compton Scattered Emission Imaging,” IEEE Trans. Nucl.
Sci., vol. 56, no. 3, pp. 1430–1437, June 2009,

[5] Th. Koesters, “Derivation and Analysis of Scatter Correction Algorithms
for Quantitative Positron Emission Tomography”, Disseration Thesis,
Muenster University, 2010.

[6] C. C. Watson, “New, faster, image-based scatter correction for 3D PET,”
IEEE Trans. Nucl. Sci., vol. 47, pp. 1587–1594, 2000.

[7] I. G. Kazantsev, J. Klukowska, G. T. Herman, and L. Cernetic, “Fully
three-dimensional defocus-gradient corrected backprojection in cryo-
electron microscopy”, Ultramicroscopy, vol. 110, pp. 1128–1142, 2010.

[8] W. T. Baxter, R. A. Grassucci, H. Gao, and J. Frank, “Determination of
signal–to–noise ratios and spectral SNRs in cryo–EM low–dose imaging
of molecules”, Journal of Structural Biology, vol. 166, pp. 126–132,
2009.

The 4th International Conference on Image Formation in X-Ray Computed Tomography

580


