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Systems biology solutions for biochemical production
challenges
Anne Sofie Lærke Hansen, Rebecca M Lennen,
Nikolaus Sonnenschein and Markus J Herrgård

There is an urgent need to significantly accelerate the

development of microbial cell factories to produce fuels and

chemicals from renewable feedstocks in order to facilitate the

transition to a biobased society. Methods commonly used

within the field of systems biology including omics

characterization, genome-scale metabolic modeling, and

adaptive laboratory evolution can be readily deployed in

metabolic engineering projects. However, high performance

strains usually carry tens of genetic modifications and need to

operate in challenging environmental conditions. This

additional complexity compared to basic science research

requires pushing systems biology strategies to their limits and

often spurs innovative developments that benefit fields outside

metabolic engineering. Here we survey recent advanced

applications of systems biology methods in engineering

microbial production strains for biofuels and -chemicals.
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Introduction
One of the key challenges in the 21st century is to identify

technical solutions for the transition away from a petro-

chemical-based economy. The production of chemicals

and fuels from renewable feedstocks in a commercially

and ecologically sustainable fashion is a central compo-

nent of these solutions [1]. A handful of bio-based che-

micals and fuels have already been commercialized for

industrial scale production including 1,3-propanediol [2],

succinic acid [3], and 1,4-butanediol [4]. However,

despite microbial fermentation-based production offering

multiple advantages over current petrochemical pro-

cesses, its full implementation has been hampered by

difficulties in reaching cost-effective yields from low cost

feedstocks [5].

Metabolic engineering offers a systematic workflow for

rational cell factory development by overexpression of

pathway genes, elimination of byproducts, balancing of

cofactors and increasing precursor supply among other

approaches [6,7]. Recent advances in the field of synthetic

biology, such as the development of the CRISPR/Cas9

system [8,9], and other genome editing tools, have

increased the pace and ease with which microbial cell

factories can be built [10–12]. However, the number of

obvious gene targets for optimization is limited, and

genetic manipulations often lead to unintended effects

due to complex genotype–phenotype relationships [6].

Facilitated by the emergence of high-throughput tech-

nologies like next-generation sequencing and quantita-

tive proteomics, systems biology offers several methods

to unravel complexity of microbial metabolism and

physiology.

The scope of systems biology is to investigate biological

systems in a holistic manner to elucidate the mechanisms

underlying the cellular behavior in contrast to the classic

reductionist approaches where single elements of the

system are studied in detail. Similarly, metabolic engi-

neering requires, in addition to manipulation of single

enzymes and pathways, also engineering of the interac-

tions between the target pathway and endogenous metab-

olism [6]. In the field of systems biology, quantitative

workflows have been developed in recent years to study

responses of microorganisms to relatively simple environ-

mental and genetic changes [13�,14], together with data-

and model-driven approaches for predicting phenotypes

[15,16]. These workflows can now be extended to engi-

neered cell factories to understand effects of complex

manipulations and to design more robust and efficient

production organisms.

Here we review some of the most recent applications of

systems biology tools for metabolic engineering of micro-

organisms for sustainable production of chemicals with

special focus on non-native biofuels and bulk chemicals.

We will focus on three particular technology platforms

that have demonstrated impact in metabolic engineering:

omics data collection and analysis, genome-scale models

(GEMs) of cellular processes, and adaptive laboratory

evolution (ALE). Indeed, the integration of omics and

computational techniques together with the recent
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possibility to screen, select and fine-tune cellular

responses [17,18] hold promise to speed up the systems

metabolic engineering approach. In this context, GEMs

offer a useful framework for interpretation of collected

data as well as formulation and assessment of potential

engineering strategies. The application of ALE for sys-

tems-level optimization of host robustness and biochem-

ical production, and the subsequent investigation of

causal mutations by omics and computational analysis,

allows for simultaneous strain improvement and identifi-

cation of potential targets for further engineering.

Trends in omics characterization for
metabolic engineering
The use of the four major omics technologies (transcrip-

tomics, proteomics, metabolomics, and fluxomics)

applied to characterize cell systems behavior has

increased rapidly in metabolic engineering-related pub-

lications since 2010 (Figure 1). This increase has been

brought about both by growth of the metabolic engineer-

ing and biofuel fields as well as improvements in omics

technologies. Among different omics methods, the devel-

opment of the quantitative RNA sequencing method has

made transcriptomics by far the most commonly used

methodology followed by proteomics and in particular

targeted pathway-oriented proteomics (Figure 1b). The

use of metabolomics and fluxomics (typically 13C-based)

is still relatively rare in metabolic engineering studies

most likely due to both incomplete coverage of metab-

olites/fluxes, and challenges and/or costs in experimental

implementation. The majority of the metabolic engineer-

ing studies using omics data focus on common biofuels

that are produced natively (e.g., ethanol, n-butanol or fatty

acids) or on platform strains without aim to produce a

particular product (Figure 1c). Studies using omics tech-

nologies characterizing strains making non-native fine or

bulk chemicals are surprisingly rare despite well-docu-

mented ability of omics methods to discover potential

bottlenecks in engineered strains [19].

Recent years have seen the emergence of multi-omic

characterization studies that often also incorporate a

modeling component to study either platform or pro-

duction strains. Examples of such studies targeting

production strains include identification of bottlenecks

in terpenoid production in Escherichia coli [20��], 3-hydro-

xypropionic acid production in baker’s yeast [21], and

L-lysine production in Corynebacterium glutamicum [22].

For platform strains, such studies have included compar-

isons of multiple possible wild type host strains [23��], in

depth characterization of less-well-studied production

hosts [24], and determination of effects of major flux

re-routing in central metabolism [25]. Multi-omic char-

acterization has also become one of the key tools

in identification of mechanisms of adaptation in ALE

studies targeting either general stress or product tolerance

[26��,27��]. In recent years, standard omics data types

are increasingly complemented by genome-wide

screening of knock-out or knock-down libraries using,

for example, transposon insertion sequencing [28,29] or
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Trends in the use of four major omics technologies in metabolic engineering and biofuel publications since 2000. The list of over 500 publications

was collected by comprehensive literature searches performed on scopus using terms in title, abstract and keywords followed by manual curation.

Genomics was excluded due to the high number of publications using this technology. (a) Overall distribution of publications by omics data type

used. (b) Publication trends as a function of time categorized by type of host organism (heterotrophic bacterial host, fungal host or prokaryotic or

eukaryotic photosynthetic host) and omics technology used. (c) Publication trends as a function of time categorized by the type of study (biofuel,

bulk chemical, fine chemical, platform strain) and omics technology used.

Current Opinion in Biotechnology 2017, 45:85–91 www.sciencedirect.com



CRISPR/Cas9-based [30] methods. These methods allow

identification of targets for further genetic manipulation

more directly than other types of omics methods.

Genome-scale models for cell factory design
and omics data interpretation
In the context of metabolic engineering, GEMs represent

an invaluable tool for estimating theoretical maximum

yields (Figure 2), enumerating heterologous production

pathways with high yields [31��], and predicting physio-

logical changes in redox balance or energy metabolism

upon perturbation [32�]. Furthermore, numerous meth-

ods for computing strain engineering strategies by over-

expression, down-regulation, and/or deletion of genes

have been developed [33]. Of particular interest in the

context of ALE experiments are gene deletions that

couple the production of a desired product to growth.

These so-called growth-coupled designs [34] can be

implemented experimentally using ALE, as the selection

for higher growth phenotypes drives the organism in the

desired corner of the growth-production phenotype space

(Figure 2). Multiple algorithms for the computation of

growth-coupled designs have been published [35–37],

and in particular the use of metabolic cut sets [38] has

been demonstrated to be scalable to larger numbers of

knock-outs and has been recently used effectively for the

engineering of E. coli for the production of itaconic acid

[39��].

Ideally, suitable experimental data can be used to shrink

the feasible solution space of GEMs to obtain more

reliable predictions (Figure 2). Quantitative analysis of

omics data with GEMs, however, has proven to be diffi-

cult. While numerous methods have been published for

the integration of transcriptomics and proteomics data

with GEMs, a comprehensive benchmark of published

methods [40�] has revealed that none of these methods

surpass methods that do not take omics data into account

[41] in the quantitative prediction of metabolic fluxes.

While this does not preclude the use of GEMs in more

qualitative types of omics-data analyses [20��,23��,42],
the lack of ability to accurately predict rates of by-product

formation makes the model-guided analysis of transcrip-

tomics and proteomics data in strain engineering projects

challenging. New modeling approaches that extend

GEMs beyond metabolism provide a platform for direct

integration of proteomics and transcriptomics data [43]

and can result in improved flux predictions. Furthermore,

integrating multi-omic data with both mechanistic and

machine learning models that encompass additional cel-

lular systems, for example, transcriptional regulatory net-

works, could be a further avenue [44].

Significant new modeling method development will be

needed to allow interpretation of metabolomics data in

the context of GEMs as these models do not use metabo-

lite concentrations as state variables. Recently, Zelezniak

et al. [45�] proposed a network based framework for

reconciling transcriptome changes with metabolome

changes highlighting the importance of network context

and kinetics. Finally, fluxomics data, that is, the measure-

ment of intracellular fluxes with 13C labeling experiments

[46�,47] in addition to uptake and secretion rates, likely

holds the largest potential in informing metabolic engi-

neering projects, as such data can be incorporated unam-

biguously as flux constraints into GEMs. The main chal-

lenge with fluxomics data is the small number of fluxes

that can be directly estimated requiring the use of meth-

ods such as sampling to estimate the remaining fluxes

with GEMs.
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Experimental data integration and growth-coupled design with GEMs. The production envelopes of the initial strain (theoretical: blue, constrained

with experimental data: green), and a knock-out mutant strain predicted with genome-scale metabolic modelling (orange). The black dot indicates

the maximum theoretical product yield, the green dot indicates the typical initial growth and product yield, whereas the movement of the yellow

dot indicates how the growth and product yield of the growth-coupled knock-out production mutant strain is improved by ALE.
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Traditional and emerging uses of adaptive
laboratory evolution for metabolic engineering
Sparsity of biological knowledge necessitates both the use

of omics technologies as a characterization tool, and ALE

to determine non-intuitive routes to improve strain

robustness and production metrics. In a typical ALE

experiment (Figure 3a), a laboratory selection pressure

is maintained (in either batch cultures or a chemostat) to

select for cells with better growth, which are typically

acquired through spontaneous mutations. Ultimately,

individual isolates or populations with improved growth

under the selection condition are whole genome re-

sequenced to determine the acquired mutations. Evolved

isolates can then be used directly as production strains, or

selected mutations can be reintroduced into production

hosts to generate the desired phenotype.

Because of the requirement of a growth selection, more

traditional ALE studies (Figure 3b) relevant for biofuel

and chemical production applications have focused on

wild-type strains challenged with more direct effectors of

growth. ALE of E. coli on minimal glucose [48�] and

minimal glycerol media [49] has resulted in the identifi-

cation of numerous key regulatory and metabolic muta-

tions. Two of these regulatory mutations in RNA poly-

merase were further studied by structural modeling,

transcriptomic, and metabolomic analyses to determine

a novel trade-off mechanism for growth in constant versus

fluctuating environments [50]. Both E. coli and Saccharo-
myces cerevisiae have been evolved for thermotolerance

[26��,51,52] and osmotolerance [53,54], which are benefi-

cial traits for economical production of biofuels and bulk

chemicals. Product tolerance is also of key importance for
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Adaptive laboratory evolution (ALE). (a) A typical ALE experiment consists of maintaining a selective pressure through either serial passaging of

batch cultures or using a chemostat and whole genome re-sequencing isolates or populations. (b) Traditional ALE applications include simple

growth selections on feedstocks containing inhibitory substrates or components, alternative substrates than those typically utilized by the strain,

exogenously added toxic products, or general stress conditions present in industrial fermentation. More pioneering ALE technologies as applied to

microbial production of bulk chemicals and fuels include engineered strains that either directly (e.g., requiring the product for biomass production)

or indirectly (e.g., by providing non-optimized pathways to balance redox potential) growth-coupled product formation (left), or that utilize product-

responsive biosensors (right) that are either employed to produce components of biomass or to negatively select against non-producers, or to

produce fluorescent reporter proteins that enable iterative rounds of cell sorting.
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reaching economically relevant product titers. Recent

examples employing ALE include detailed functional

investigation of an evolved ethanol-tolerant E. coli [55],

generation of an octanoic acid tolerant mutant with

reduced cell lysis and improved free fatty acid production

[56], and isolation of 3-hydroxypropionate tolerant

S. cerevisiae mutants with causal mutations related to

detoxification of a toxic aldehyde byproduct [27��].

The use of carbon feedstocks such as CO2, or sugars

found in lignocellulosic hydrolysates (containing signifi-

cant proportions of C5 sugars such as xylose and arabi-

nose), is preferred in biofuel and bulk chemical applica-

tions due to tight economic constraints and reducing

net CO2 emissions. While many organisms exist that

by nature can utilize these substrates, it is often desired

to apply well-studied, easy-to-engineer model organisms

such as E. coli and S. cerevisiae. The development of

pentose-fermenting S. cerevisiae strains has been an

intense area of study for the past two decades [57].

ALE has also been employed to improve two remaining

troublesome aspects: C6 and C5 sugar co-utilization [58],

and C5 transport [59], in strains expressing heterologous

xylose utilization pathways. CO2 fixation by E. coli into

biomass has been achieved by heterologously expressing

RuBisCo and phosphoribulokinase, eliminating carbon

flow from glycolysis into the TCA cycle, and performing

ALE to improve growth of the resulting strain supplied

with exogenous pyruvate while reducing xylose feeding,

which was originally required [60��]. Another example is

the evolution of E. coli and S. cerevisiae strains harboring

heterologous pathways for synthetic nitrogen and phos-

phorus sources, with ALE performed to further improve

utilization [61�]. The use of synthetic nutrient sources

could offer economic advantages due to reduced reactor

sterilization costs or reduced antibiotic supplementation.

Enabling product formation to be a selectable phenotype

through either growth-coupled designs (see above), or the

use of biosensors within synthetic gene circuits or coupled

with flow-assisted cell sorting (FACS), is a clear direction

of much future work (Figure 3b). One pioneering work

was enhancing L-valine production in C. glutamicum using

cells expressing an L-valine responsive biosensor driving a

fluorescent reporter, where cells were sorted over subse-

quent rounds of growth [62]. While ALE has not yet been

employed, directed evolution has been performed at the

pathway and protein level coupled with the use of syn-

thetic suicide riboswitches [63] or toggled selection

schemes where both negative and positive selection

can be iteratively applied to a sensor selector to isolate

cells with improved production [64].

Conclusions
Technologies that have been introduced in the field of

systems biology (omics characterization, GEMs, ALE)

have been used extensively in engineering microbial cell

factories for production of chemicals and fuels. Recent

years have seen an increase in studies that use a broader

range of these technologies at once in order to study wild-

type platform or engineered strains. Much remains still to

be done in order to allow rapid iterative development

of cell factories based on systems strategies. The cost of

omics data collection and analysis needs to be further

reduced. GEMs need to be expanded and modeling

methods need to be developed to use quantitative omics

data and make more accurate predictions of genetic

manipulation targets. In general improved phenotypic

predictions from genotypes, especially for large numbers

of simultaneous genetic perturbations, will require

development of methods that integrate mechanistic

modeling with machine learning. Novel selection strate-

gies need to be devised to allow routine use of ALE for

optimizing metabolite production. All of these develop-

ments together with improved genome editing and other

synthetic biology methods have the potential to signifi-

cantly increase the speed at which new cell factories are

developed.
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