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Characterization of fine particles using optomagnetic
measurements†

Jeppe Fock,a Christian Jonasson,b Christer Johansson,b and Mikkel Fougt Hansen∗a

The remanent magnetic moment and the hydrodynamic size are important parameters for the syn-
thesis and applications of magnetic nanoparticles (MNPs). We present the theoretical basis for
the determination of the remanent magnetic moment and the hydrodynamic size of MNPs with a
narrow size distribution by use of optomagnetic measurements. In these, the 2nd harmonic varia-
tion of the intensity of light transmitted through an MNP suspension is measured as function of an
applied axial oscillating magnetic field. We first show how measurements of the optomagnetic sig-
nal magnitude at a low frequency vs. magnetic field amplitude can be used to determine the MNP
moment. Subsequently, we use linear response theory to describe the dynamic non-equilibrium
response of the MNP suspension at low magnetic field amplitudes and derive a link between
optomagnetic measurements and magnetic AC susceptibility measurements. We demonstrate
the presented methodology on two samples of commercially available multi-core MNPs. The re-
sults compare well with those obtained by dynamic light scattering, AC susceptibility and vibrating
sample magnetometry measurements on the same samples when the different weighting of the
particle size in the techniques is taken into account. The optomagnetic technique is simple, fast
and does not require prior knowledge of the concentration of MNPs and it thus has potential to be
used as a routine tool for quality control of MNPs.

1 Introduction
Magnetic nanoparticle (MNP) suspensions are important for
many applications including shock absorbers (magnetorheolog-
ical fluids), magnetic fluid hyperthermia, magnetic resonance
imaging (MRI), and biodetection.1

Magnetic nanoparticles can be very complex nanomaterials.
Single-core particles consists of a single crystalline and single do-
main magnetic core surrounded by a shell. In contrast, multi-core
nanoparticles feature a particle core containing several such mag-
netic cores embedded in or encapsulated by, e.g., a polymer. De-
pending on, e.g., their size, the magnetic cores may be super-
paramagnetic or magnetically blocked relative to the physical ori-
entation of the MNP. In the following we will focus on the de-
termination of the effective remanent magnetic moment and the
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hydrodynamic size of single-core and multi-core MNPs.

These properties are in most cases critical parameters for the
performance of the particle suspensions and are moreover highly
sensitive to a variation in the conditions during fabrication of the
particles. Therefore, measurements of the particle size and mag-
netic moment are parameters of key importance for the quality
control of commercially produced nanoparticle suspensions. In
many cases the hydrodynamic particle size is measured batch-
wise using dynamic light scattering (DLS). However, due to the
expensive and time consuming measurements required to mea-
sure the magnetic moment, this is often only measured in the
R&D process and is not included in a continuous quality monitor-
ing process during particle production.

The size of nanoparticles can be obtained using a range of
methods that each has advantages and disadvantages.2 In trans-
mission electron microscopy (TEM), the size of the magnetic cores
and particles are estimated from the 2D projection images. The
non-magnetic shell has low contrast compared to iron oxide mag-
netic cores and particles may further agglomerate during sample
preparation. Thus, TEM imaging provides a good method to mea-
sure the magnetic core sizes, but it can be difficult to extract the
particle size from the images. Atomic force microscopy is also
used to measure the size (height) of the particles on a substrate.
Both methods provide number-weighted distributions. However,
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they rely on expensive equipment, trained users, they are time
consuming, and sample preparation can be difficult.

Several scattering techniques are also used to extract the par-
ticle size distribution. From X-ray diffraction (XRD), the mean
magnetic core size can be determined from the width of the
diffraction peaks. Small-angle X-ray scattering (SAXS) can be
used to extract the particle size.3 Static light scattering (SLS) and
dynamic light scattering (DLS) can be used to extract the mean
hydrodynamic particle size and to assess the distribution of hy-
drodynamic particle sizes. For the optical methods, the nanopar-
ticle suspension has to be very clean because a small amount of
dust in the solution can dominate the measurement. Therefore, a
filtration step is often applied before the measurement.

AC susceptibility (ACS) measurements can provide information
on the hydrodynamic size of magnetic nanoparticles with a rema-
nent magnetic moment. For the simplest case, the Brownian re-
laxation frequency ( fB) is found as the peak position of the out-of
phase magnetic susceptibility and the size is determined from

fB =
kBT

6πηVh
, (1)

where kBT is the thermal energy, η is the dynamic viscosity and Vh

is the particle hydrodynamic volume. At low amplitude of the ap-
plied magnetic field and at low frequencies, ACS measurements
probe the equilibrium initial susceptibility, which is proportional
to the square of the particle magnetic moment. Thus, ACS mea-
surements can also be used to extract the mean magnetic mo-
ment of the particles using the amplitude of the signal assuming
that the particle concentration in the sample is known.4 Models
that take the size distribution into account can also be applied.
In these, the spectra are fitted using the Debye model with a dis-
tribution of hydrodynamic volumes or particle core volumes.5,6

The models can also include Néel relaxation.7 It is also possible
to extract the mean magnetic moment of the particles from more
non-standard ACS measurements of the Brownian relaxation re-
sponse in a range of transverse applied magnetic fields.8 Finally,
the magnetic moment can be estimated using vibrating sample
magnetometry, or, for single-core particles, from the core size
measured by TEM assuming a known magnetization.

Optical measurements on magnetically actuated nanoparticles
have been used extensively for biodetection assays9–16 as well
as for the characterization of the hydrodynamic size of magnetic
nanorods.10,17,18

We have previously introduced a simple optical method that
measures the modulation of light transmitted through an MNP
suspension in response to an applied axial oscillating magnetic
field, and demonstrated this method for biodetection.12–16 The
basis for the method is measurements of the magnetic-field-
induced modulation of the optical extinction of the MNP suspen-
sion. To distinguish the method from measurements of traditional
magnetooptical effects, it was termed optomagnetic (OM). For a
sinusoidal magnetic field variation, it was hypothesized that the
complex OM signal is related to the complex ACS signal as13,14

V2 = iVACχ̃
2, (2)

where VAC is a real constant describing the scattering properties
of the particles in the measurement setup, χ̃ = χ/χ0 is the mag-
netic susceptibility normalized with the DC susceptibility, and V2

is the optomagnetic signal measured as the second harmonic of
the signal from the photodetector (see Fig. 1c). The relation, al-
though being based on reasonable assumptions, was not derived
theoretically.

Here, we present the theoretical basis for OM measurements
on MNP suspensions and demonstrate that the OM method can be
used to extract both the magnetic moment and hydrodynamic size
of magnetic nanoparticles in suspension with a blocked magnetic
moment and a comparatively narrow size distribution.

In Section 2 we describe the theories for the equilibrium re-
sponse and the dynamic response of suspensions of ensembles of
identical particles in an applied oscillating magnetic field and we
calculate the resulting OM signal. Then, we give the correspond-
ing expressions for particle suspensions with distributions of pa-
rameters. In Section 4 we show experimental examples where
the measurement technique is applied to determine the remanent
magnetic moment (Section 4.1) and the hydrodynamic size (Sec-
tion 4.2) of two multi-core nanoparticle samples. We will show
that OM method provides information comparable to ACS, but
the measurement is fast (less than 10 min), it does not require
prior knowledge of the particle concentration to determine the
particle magnetic moment and it can be made at low cost. Fur-
ther, there are subtle differences between the two techniques that
will be elaborated upon below.

2 Theory
In Section 2.1 we first describe the basic principle of the OM mea-
surement as performed by us on a suspension of MNPs with a
remanent magnetic moment. Then, in Section 2.2 we develop
an equilibrium model that can be used to determine the rema-
nent magnetic moment from measurements of the low-frequency
response vs. magnetic field amplitude. Finally, in Section 4.2.1
we calculate the linear response of the particles to obtain the dy-
namics of relaxing magnetic particles in a magnetic field and we
derive the expression for the dynamic OM signal.

2.1 The optomagnetic method

The technique relies on synchronized measurements of the inten-
sity of light transmitted through a suspension of MNPs, I(t), in
response to an oscillating applied magnetic field,

B(t) = B0 sin(2π f t). (3)

The sinusoidal magnetic field variation is chosen to make the
analysis consistent with the detection electronics used in our ini-
tial work and because it has the convenient feature that the field
is zero at time t = 0. Fig. 1 shows a schematic of the behavior dur-
ing a period of magnetic excitation at a frequency f � fB. When
B(t)≈ 0 the particles are randomly orientated. However, at finite
magnetic fields the particles partly align their magnetic moments
with the field. When the particles have an optical anisotropy,
which is correlated to the magnetic orientation, an increase (or
decrease) in light intensity is observed at finite (negative as well
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Fig. 1 (a) Schematic of one period of the magnetic field excitation (red)
and the corresponding modulation of intensity of transmitted light (blue).
The particle orientations are indicated as ellipses with an arrow showing
the magnetic moment. (b) The extinction cross-sections of particles ori-
ented parallel to, perpendicular to and at an angle θ to the light direction.
(c) Schematic of the setup. The photodetector signal V (t) measures the
intensity of light transmitted through a suspension of magnetic particles.
The light intensity is modulated by an external magnetic field generated
from two coils controlled by a current source.

as positive) magnetic fields.

To develop a model for the OM response, we assume that the
particles have extinction cross sections σ‖ and σ⊥ when they are
aligned parallel and perpendicular to the light path, respectively
(Fig. 1b). Thus, σ‖ is the extinction cross section parallel to the
magnetic moment and σ⊥ is the average extinction cross section
perpendicular to the moment direction. The normalized intensity
of transmitted light for a homogeneous suspension of MNPs is
then19

T (t) =
I(t)
I0

= exp
[
−nz

((
σ‖−σ⊥

)
e2

z (t) +σ⊥
)]

. (4)

Here, I0 and I(t) are the intensities of the incoming and transmit-
ted light, respectively, n is the MNP number concentration and
z is the optical path length. e2

z (t) is the time-dependent ensem-
ble average of cos2 θ where θ is the angle between the optical
anisotropy of the particle and the light path. For randomly ori-
ented particles, e2

z = 1/3.

T (t) is independent of the polarization of the light because the
magnetic field is applied along the light path. Consequently, the
particle orientations perpendicular to the light path are random
and no dependence on light polarization is observed.14 We there-
fore perform measurements using unpolarized light.

In practice we measure the photodetector voltage V (t) =

QI0T (t), where Q is the quantum efficiency of the photodetector.
Thus, the signal from a suspension of randomly oriented particles
is

Vref = QI0 exp
[
−1

3
nz(2σ⊥+σ‖)

]
. (5)

To correct for possible variations in I0, we normalize the signal by
Vref. In the limit of thin samples and small ∆σ = σ‖−σ⊥ where

nz∆σ � 1, the signal becomes

V (t)
Vref

= 1−nz∆σ

(
e2

z (t)−
1
3

)
. (6)

The signal is measured using phase-sensitive detection (fast
Fourier transformation (FFT) of the time response or lock-in-
based detection). We can write the normalized pth harmonic
complex signal, Vp( f ) = V ′p( f )+ iV ′′p ( f ), with respect to the mag-
netic field modulation at frequency f as

Vp( f )
Vref

=−nz∆σ 2icp( f ), p≥ 1 (7)

and
V0

Vref
= 1−nz∆σ

(
c0−

1
3

)
(8)

with

cp( f ) = f
∫ 1/ f

0
e2

z (t)exp(−2πip f t)dt. (9)

Here cp is the complex Fourier coefficient of the pth harmonic of
e2

z (t), and 2icp is the corresponding FFT signal response to a sine
reference signal for p≥ 0 (see Section S1†).

From Eq. (8) it is observed that the mean signal, V0, is equal
to Vref for randomly oriented particles for which c0 = 1/3. In
an applied magnetic field c0 6= 1/3 and thus Vref can no longer
be assumed to be equal to V0. Writing the signal as a Tay-
lor series in terms of the magnetic field excitation, V (t) = Vref +

∑
∞
p=1 Sp sinp(2π f t), we find that all even powers (2p) contribute

not only to a signal in the 2pth harmonic signal, V2p, but also to
the lower even harmonics (see Section S2†), and we find that

Vref =
N

∑
p=0

V2p. (10)

For the analysis of measurements, N should be chosen large
enough to ensure that V2N is lower than the measurement noise.

Comparing the OM signal, Eq. (7), with the signal from AC sus-
ceptibility measurements, i.e., the ensemble average of the pro-
jection of the magnetic moment of the particles along the applied
magnetic field, it is clear that the two methods are closely related.
Below, this relation will be investigated further in the derivation
of the equilibrium model and in derivation of the dynamic OM
response.

2.2 Equilibrium model

The magnetic nanoparticles have a remanent magnetic moment
m, which is assumed to be independent of the applied mag-
netic field. Further, assuming that the particles have an optical
anisotropy, which is aligned along the remanent magnetic mo-
ment, e2

z can be found analytically in equilibrium using Boltz-
mann statistics. The probability for the magnetic moment to form
an angle θ to a magnetic field B is proportional to exp(β cosθ),
where β = B ·m/(kBT ) is the ratio between the magnetic and ther-
mal energies. Below, we denote thermal equilibrium values by
〈· · · 〉 and ensemble averages by · · ·. For a magnetic field applied
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Fig. 2 (a) Optomagnetic response calculated vs. time for β0 =1.1, 2.2,
3.3, 4.4, 6.5, 11, 18, 21, 100. (b) Numerically calculated imaginary 2nd
harmonic of the equilibrium response, e2

z (t). The circles correspond to
the curves shown in (a).

along the light path (Fig. 1), we obtain

〈ez〉= coth(β )− 1
β

= L (β )' β

3
+ · · · (11)

〈e2
z 〉= 1− 2

β
L (β )' 1

3
+

2β 2

45
+ · · · (12)

where L (β ) is the Langevin function, and the expressions after
' are Taylor expansions to second order. The Taylor series con-
verges for β < π. For small β , the Taylor expansion enables us to
relate 〈e2

z 〉 to 〈ez〉 as

〈e2
z 〉 '

1
3
+

2
5
〈ez〉2. (13)

Fig. 2a shows the equilibrium response calculated during one pe-
riod of β (t) = β0 sin(2π f t) from Eq. (12) with f = 0.5 Hz and the
indicated values of β0. As a sinusoidal magnetic field excita-
tion is used and the signal only depends on the absolute value
of the magnetic field, the signal, which is in phase with the
excitation is measured in V ′′2 (see Section S1†). Fig. 2b shows
the normalized imaginary value of the second harmonic signal,
V ′′2 /(2nz∆σVref) = 2ic2(β0), calculated numerically for increasing
values of β0. This signal shows a maximum at β0 ' 9.4. This max-
imum is thus a characteristic feature related to the magnitude of
the magnetic moment.

Experimentally, the field-dependent equilibrium response can
be obtained by measuring V ′′2 vs. magnetic field amplitude at a
frequency, which is low enough to ensure that the response is

frequency-independent and in phase with the magnetic field ex-
citation. The magnetic moment can be obtained by analyzing the
measurements in terms of the magnitude of

V2(B0)

Vref
=−nz∆σ 2ic2

(B0 ·m
kBT

)
. (14)

Generally, c2(β0) can be evaluated numerically. In Section S3†,
we present an analytical approximation to c2(β0), which can be
used in a fitting routine.

2.3 Non-equilibrium model

The dynamic magnetic response of MNPs in an oscillating mag-
netic field can for small fields be calculated using linear response
theory.

When a magnetic field is applied to a suspension of MNPs, they
will rotate to align their moments along the field direction. For
low magnetic fields, the characteristic time for this process is the
rotational Brownian relaxation time τB = 1/(2π fB) with fB given
by Eq. (1). The differential equation governing the approach to
equilibrium is

dez

dt
=− 1

τB

(
ez(t)−b(t)

)
(15)

where
b(t) = 〈ez〉= β (t)/3 (16)

is the equilibrium value of cosθ in the low-field limit as given by
Eq. (11). Taking the Fourier transform and rearranging we obtain

ez(ξ ) =
B(ξ )

1+2πiξ τB
. (17)

where ξ is the frequency and B(ξ ) is the Fourier transform of b(t).
For b(t) = b0 sin(2π f t) we have

B(ξ ) = b0(δ (ξ − f )−δ (ξ + f ))/2i. (18)

The magnetic susceptibility fulfills H0χ( f ) = n〈mcosθ〉( f ). Using
Eq. (18) and the relation between τB and fB we obtain the well-
known Debye model

χ( f ) =
χ0

1+ i f/ fB
(19)

with χ0 = nµ0m2/(3kBT ).

The low-field approximation, Eq. (13), relates e2
z to ez at low

frequencies where e2
z = 〈e2

z 〉 and ez = 〈ez〉 (thermal equilibrium).
Making the simplifying assumption that this relation also holds
for the dynamic ensemble averages, i.e., that e2

z ' 1
3 + 2

5 ez
2, and

performing a time differentiation, we can write

de2
z

dt
' 2

5
d
(
ez

2)
dt

=
4
5

ez
dez

dt
. (20)

Taking the Fourier transform and inserting ez(ξ ) from Eq. (17),
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we obtain

i2πξ e2
z (ξ ) =

4
5

∫ B(ξ −ξ ′)

1+ i(ξ −ξ ′)/ fB
2πiξ ′

B(ξ ′)
1+ i(ξ ′)/ fB

dξ
′ (21)

e2
z (ξ ) =−

b2
0

5
i f
iξ

1
1± i f/ fB

δ (ξ ∓2 f )−δ (ξ )

1+ i(ξ ∓ f )/ fB
. (22)

In the last step, we inserted B(ξ ) from Eq. (18) and evaluated the
convolution integral. The second harmonic response obtained by
inserting ξ = 2 f in Eq. (22) is

2ic2( f ) =−
ib2

0
5

(
1

1+ i f/ fB

)2

. (23)

Inserting the definition of b0, we can write the low-field 2nd har-
monic optomagnetic signal as

V2( f )
Vref

=
inz∆σ

45

(
B0m
kBT

)2 ( 1
1+ i f/ fB

)2
. (24)

Eq. (24) has the same frequency dependence as Eq. (2). Thus, we
can identify VAC in Eq. (2) as

VAC =
nz∆σ

45

(
B0m
kBT

)2
Vref. (25)

It is noteworthy for the employed experimental geometry with
the magnetic field applied along the light path that VAC has the
same sign as ∆σ = σ‖−σ⊥. Thus, when VAC < 0 we can deduce
that σ‖ <σ⊥, i.e., more light will be transmitted when the particle
magnetic moments are aligned along the light path (the magnetic
field direction) than when they are randomly oriented.

The black curves in Fig. 3 show the Debye model for the com-
plex magnetic susceptibility (Fig. 3a-b) and the model for the
complex optomagnetic signal, V2 =V ′2 + iV ′′2 (Fig. 3c-d) calculated
using Eqs. (19) and (24) and normalized with χ0 and VAC respec-
tively. The frequency axis is normalized with the (median) Brow-
nian relaxation frequency, fBm.

The in-phase susceptibility, χ ′, shows a plateau at f � fB and,
in the simple Debye model, it drops to zero for f � fB when the
particles can no longer follow the field changes. A peak in the
out-of-phase susceptibility, χ ′′, is observed at f = fB, which using
Eq. (1) can be used to extract the particle size.

The black curve in Fig. 3d shows the imaginary part of the op-
tomagnetic signal, V ′′2 . This signal is observed to change sign at a
frequency fV ′′2 =0 and for the black curve in Fig. 3d (and only that),
it is observed that fV ′′2 =0 = fB. The black curve in Fig. 3c shows the
real part of the optomagnetic signal, V ′2. This signal is observed to
display a peak at a frequency fV ′2 ,peak and for the black curve, it is
found that fV ′2 ,peak = fB/

√
3. Thus, both V ′2 and V ′′2 can be used to

extract the Brownian relaxation frequency and consequently also
the hydrodynamic size.

Finally, we note that the above derivations were performed for
a sinusoidal magnetic field excitation. In Section S1† we present
the corresponding results for a cosine magnetic field excitation.
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Fig. 3 Calculated magnetic and optomagnetic response vs. normalized
frequency for lognormal distributions of Brownian relaxation frequencies
with median value f ′Bm and σ fB =0.05, 0.1, 0.3, 0.5, 0.7, 1, 1.4 and 2. (a)
and (b) show the normalized in-phase and out-of-phase magnetic sus-
ceptibility, respectively. (c) and (d) show the normalized real and imagi-
nary parts of the 2nd harmonic optomagnetic response. In (c) the vertical
line indicates fBm/

√
3 and the circles indicate the peak positions ( fV ′2 ,peak).

In (d) the filled circles indicate the zero crossings ( fV ′′2 =0).

2.4 Distributions of parameters
The above considerations are only valid for an ensemble of par-
ticles with identical properties. However, V2 depends on the size,
shape and magnetic moment of the particles. Thus, when the
distributions of these parameters are not sufficiently narrow, the
magnetic field-dependent equilibrium signal, Eq. (14), and the
low-field dynamic signal, Eq. (24), have to be integrated over the
distribution of parameters. In the most general form, the signals
are given by

V2(B0) =−nz
∫∫∫

Vref(σ‖,σ⊥)∆σ

[
2ic2

(B0m
kBT

)]
p(m,σ‖,σ⊥)dmdσ‖dσ⊥

(26)

V2( f ) =
∫∫∫∫ inz∆σ

45

(
B0m
kBT

)2( 1
1+ i f/ fB

)2
p( fB,m,σ‖,σ⊥)dmd fBdσ‖dσ⊥.

(27)

Here, p( fB,m,σ‖,σ⊥) is a distribution describing the number frac-
tion of particles with a Brownian relaxation frequency between fB
and fB+d fB, a magnetic moment between m and m+dm, and ex-
tinction cross-sections between σ‖,⊥ and σ‖,⊥+dσ‖,⊥. The distri-
bution in Eq. (26) is independent of fB because the measurement
is performed at equilibrium ( f � fB).

The distribution, p(·), can be very complex because the param-
eters may depend both on the size and shape of the particles. m
and σ‖,⊥ both depend on the particle core size and shape and
fB is inversely proportional to the hydrodynamic volume, which
again may be correlated to the particle core size. Thus, the corre-
lations depend on the intrinsic structure and morphology of the
particles and detailed knowledge on these correlations on a sin-
gle particle level is required to perform the most general analysis.
This knowledge is most often not available. Below we therefore
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make simplifying assumptions and consider two idealized cases
for single-core particles and multi-core particles.

We defined a single-core particle as a particle containing a sin-
gle magnetic core surrounded by a non-magnetic shell. To model
a multi-core particle, we will assume that it contains multiple
magnetic cores that are randomly oriented with respect to each
other within a non-magnetic matrix. We will further assume that
the magnetic cores are distributed with constant density within
a particle volume that we refer to as the particle core. This vol-
ume may be surrounded by a non-magnetic shell. Below, we will
consider particles with a nearly spherical shape such that the ro-
tational Brownian relaxation response and hydrodynamic size is
well described by that of a sphere. Thus, we assume that the
shape of the particle (or particle core) only comes into play via
the optical anisotropy. Most commercial nanoparticle samples
have a, perhaps irregular, shape with aspect ratios close to one
and thus fall into this category. Other classes of particles, such
as needle-shaped particles, require a separate analysis to include
the effect of the particle shape, e.g., on the Brownian relaxation
time via inclusion of an appropriate Perrin rotational friction fac-
tor and in some cases, the optical extinction factors can also be
described analytically.17 For elongated particles, a field-induced
magnetic moment may significantly influence the particle dynam-
ics via shape anisotropy. In the present work, however, where the
particles have a nearly spherical shape20 and where only com-
paratively weak magnetic fields are applied, this effect is found
to be negligible. Further, it is noted that an induced magnetic
moment has no effect on the optomagnetic signal unless it influ-
ences the orientation of a particle. In the following we assume
that the (nearly spherical) shape of the particle is neither corre-
lated with the Brownian relaxation frequency nor the magnitude
of the magnetic moment.

To relate the hydrodynamic volume, extinction properties and
the magnetic moment to the volume of the particle core, Vc, the
dependence is assumed to follow a power law as

Vh = Ṽh

(
Vc

Ṽc

)nh

(28)

σ‖,⊥ = σ̃‖,⊥

(
Vc

Ṽc

)nσ‖,⊥

(29)

m = m̃
(

Vc

Ṽc

)nm

(30)

where Ṽh, σ̃‖,⊥ and m̃ are the hydrodynamic volume, extinction
properties for the ‖ and ⊥ orientations and the moment for Vc =

Ṽc and nh, nσ‖,⊥ and nm are the exponents describing the power
dependence.

If the thickness of the non-magnetic shell, ts, is large compared
to the size of the core, the hydrodynamic volume is expected to be
uncorrelated with the core volume (nh = 0). On the other hand,
if ts is small compared to the particle core size, the hydrodynamic
volume is assumed to be proportional to the particle core volume
(nh = 1).

The extinction properties will be dominated by the particle core
because the particle core will generally have a significantly larger

Table 1 Scaling exponents for particle core volume (x = x̃V nx
c ) describing

contributions to optical extinction from absorption and scattering (nσ‖,⊥),
the magnetic moment (nm) and the hydrodynamic volume (nh) for ideal-
ized single-core and multi-core particles approximated as spheres.

nσ‖,⊥ nm nh
Particle type Abs Scat ts� rc ts� rc

Single-core rc
ts

1 [0;2] 1
2 1 0

Multi-core
ts

1 [0;2] 1 1 0

refractive index than the surrounding liquid, whereas the non-
magnetic shell will have a refractive index similar to that of wa-
ter. The extinction cross sections depend on both the absorption
and scattering of the particles. For non-spherical shapes, the ex-
tinction properties can be very complex. In the following we will
describe the size-dependence for sphere-like objects with an op-
tical anisotropy along the remanent magnetic moment. We will
consider this to be due to a particle core, which is slightly elon-
gated along the magnetic moment.

The absorption scales with the volume, Vc, of the particle core.
As a first approximation, shadowing will cause particle orienta-
tions with a smaller geometric cross-sectional area to have a lower
absorption, i.e., σ‖ < σ⊥. In metallic particles, surface plasmons
may however complicate this picture.

For particles with sizes well below the wavelength of the light,
the scattering is proportional to V 2

c (Rayleigh scattering). For par-
ticles with dimensions comparable to the wavelength of the light,
the scattering is angle-dependent and no longer follows a sim-
ple dependence on Vc and it can be described by the Rayleigh-
Gans-Debye approximation.21 For a limited size range, the size-
dependent scattering approximately follows a power dependence
on Vc with nσ between 0 and 2.

It have been shown that the magnetic moment of single-core
particles scales with the volume (nm = 1) whereas the moment of
multi-core particles consisting of many crystallites scales with the
square root of the volume (nm = 1/2).4 Table 1 summarizes the
above weighting exponents for single-core and multi-core parti-
cles.

The distributions, p(m,σ‖,σ⊥) and p( fB,m,σ‖,σ⊥) can be sim-
plified to distributions only in moments and in relaxation frequen-
cies, respectively, assuming that the parameters are related ac-
cording to Eqs. (28)-(30). For narrow size distributions, we will
assume that the extinction properties, σ‖ and σ⊥, have similar
size dependencies such that nσ‖ = nσ⊥ ≡ nσ . In this case, Eqs. (26)
and (27) can be simplified to

V2(B0) =−nz
∫

Ṽref∆σ̃

[
2ic2

(B0m
kBT

)](m
m̃

) nσ
nm p(m)dm (31)

V2( f ) =
∫

iṼAC

( 1
1+ i f/ fB

)2( fB

f̃B

)− nσ +2nm
nh p( fB)d fB (32)

6 | 1–13Journal Name, [year], [vol.],



with

Ṽref = QI0 exp

[
−nz

2σ̃⊥+ σ̃‖
3

(m
m̃

) nσ
nm

]
(33)

ṼAC =−
nz∆σ̃B2

0m̃2

45(kBT )2 QI0 exp
[
−nz

2σ̃⊥+ σ̃‖
3

( fB

f̃B

)− nσ
nh
]

(34)

and ∆σ̃ = σ̃‖− σ̃⊥ and f̃B = kBT/(6πηṼh).

In Eqs. (32) and (34) a correlation between the particle core
size and the hydrodynamic size is assumed, nh 6= 0. If no such
correlation exists, the integration over m and σ‖,⊥ will be inde-
pendent of fB (nσ = nm = 0) and ṼAC = VAC can be treated as a
fitting parameter.

For thin nanoparticle samples with sufficiently narrow size and
shape distributions, Ṽref and consequently also ṼAC can be con-
sidered constant and may therefore be treated as fitting param-
eters. Consequently the calculation of the equilibrium signal in
Eq. (31) and the low-field dynamic signal in Eq. (32) are simple
integrations of the single particle signal over the relevant dis-
tribution with exponents of the weighting factors of nσ/nm and
−(nσ +2nm)/nh, respectively.

2.4.1 Lognormal distribution

A lognormal distribution weighted by a power function is also
a lognormal distribution but with a scaled median (see Section
S4.4†). Letting pln(x) denote a number-weighted distribution of
magnetic moments or hydrodynamic sizes, the weighted distribu-
tions in Eqs. (31) and (32) can be written as

p′ln(x) = xn pln(x). (35)

The analysis of the data in terms of p′ln(x) results in the median
values m′m and f ′Bm and widths σm and σ fB . The parameters for
the number-weighted lognormal distributions, pln(x), can subse-
quently be obtained by scaling the median values according to

mm = exp
(
− nσ

nm
σ

2
m

)
m′m (36)

fBm = exp
(nσ +2nm

nh
σ

2
fB

)
f ′Bm (37)

Thus p′ln(x) can describe data with power law weighted lognormal
distributions of fB or m for any value of the exponent in the power
law. Therefore, a good starting point is to fit the data using a log-
normal distribution with no additional power-law weighting (i.e.,
to use p′ln(x) during fitting). The median values of the number-
weighted distribution can then be obtained using Eqs. (36) and
(37)

Moreover, the mean value g of a lognormal distributed param-
eter g with median value gm and distribution width σg is

g = gm exp(
1
2

σ
2
g ). (38)

The particle size distribution is often considered to be lognor-
mal. Consequently, it is of interest to calculate model spectra for
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Fig. 4 The ratio between minimum and maximum of V ′′2 (left axis), and
ratio between peak position and zero crossing (right axis) versus the
width of a lognormal distribution, σ . The data is from the calculated
curves in Fig. 3. The solid lines are numerical fits to the data which
can be used to estimate the width of a lognormal distribution. The width
of the distribution can be determined using x =

√
3 fV ′2 ,peak/ fV ′′2 =0: σ =

− ln(x/(1.14− x))/3.09+ 0.67 or using x = −min(V ′′2 /VAC)/max(V ′′2 /VAC):
σ =− ln(x/(0.16− x))/3.00+0.49

a lognormal distribution of Brownian relaxation frequencies,

p′ln( fB) =
1

fBσ fB

√
2π

exp

(
− ln2( fB/ f ′Bm)

2σ2
fB

)
, (39)

where f ′Bm is the median Brownian relaxation frequency and σ fB

is the width of the power-law-weighted distribution. The cor-
responding number-weighted lognormal distribution, pln, can be
found by scaling the median as shown in Eq. (37). Then the num-
ber fraction of particles with Brownian relaxation frequencies be-
tween fB and fB +d fB is pln( fB)d fB.

Figs. 3a-b and c-d show the real and imaginary parts of χ̃ =

(χ ′− iχ ′′)/χ0 (Eq. (19)) and V2/ṼAC (Eq. (32)), respectively, cal-
culated vs. f/ f ′Bm.

Fig. 3b shows that χ ′′ peaks at f = f ′Bm irrespective of the width
of the distribution. Therefore, the frequency corresponding to
the peak in χ ′′ can be used to extract the Brownian relaxation
frequency of a particle with median size. For broad size distri-
butions, it is observed that χ ′ 6= χ ′′ at f ′Bm and consequently, the
frequency where V ′′2 crosses zero, fV ′′2 =0, is shifted to higher values
as observed in Fig. 3d. Generally, it can be shown that

fV ′′2 =0 = f ′Bm exp(σ2
fB
). (40)

When the width of the size distribution increases, the negative
peak in V ′′2 /ṼAC just above f/ f ′Bm = 1 is smeared out and con-
sequently for broad size distributions, fV ′′2 =0 is not well-defined.
Hence, for broad size distribution a different strategy is needed
to determine the hydrodynamic size.

Fig. 3c shows that the peak position of V ′2, fV ′2 ,peak, also depends
on the width of the distribution, but to a much smaller extent than
fV ′′2 =0. This makes fV ′2 ,peak a more robust estimator for the median
Brownian relaxation frequency for disperse size distributions.

The width of the lognormal distribution can be estimated using
the ratio between the positive and negative peak in V ′′2 or from
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the ratio between fV ′2 ,peak and fV ′′2 =0 as shown in Fig 4.

3 Experimental

3.1 Materials

Suspensions of particles with a remanent magnetic moment and
nominal diameters of 80 nm (MM80: 80 nm BNF-Starch, 10-00-
801, Micromod, DE) and 100 nm (MM100: 100 nm BNF-Starch,
10-00-102, Micromod, DE) were diluted in de-ionized water to
particle concentrations of 0.91 g/L and 0.83 g/L, respectively, cor-
responding in both cases to an iron concentration of 0.5 g/L.

3.2 Optomagnetic measurements

Figure 1b shows a schematic of the readout system described pre-
viously by Donolato et al.14 In brief, a photodetector (ThorLabs
PDA36A) collected light from a laser (Sanyo Blu-ray optical pick-
up, λ = 780 nm) after the light passed through the measurement
chamber on a microfluidic disk. The chamber had a thickness
of 0.92 mm, which defined the optical path length. Two elec-
tromagnets positioned along the optical axis produced a sinu-
soidally varying magnetic field resulting in a modulation of the
light transmission through the MNP suspension. The signal from
the photodetector, V (t), was collected using a data acquisition
card (National Instruments 6251). The frequency f of the applied
magnetic field was swept from 4 Hz to 2603.5 Hz in 38 logarith-
mically equidistant steps. A complete field and frequency sweep
was recorded in less than 10 min.

3.3 AC susceptibility measurements

Dynamic AC susceptibility (ACS) measurements were performed
using the commercially available DynoMagTM AC susceptome-
ter.22,23 Samples of 200 µL were measured in the frequency range
from 1 Hz up to 100 kHz at room temperature. In the measure-
ments, the amplitude of the excitation field started at 0.5 mT at
lower frequencies and falled off above 10 kHz. At 100 kHz, the
amplitude was about 0.1 mT. The well predicted change in field
amplitude was considered in the determination of the AC suscep-
tibility. The ACS system was calibrated (with respect to amplitude
and phase) in the whole frequency range. A measurement con-
sisting of 30 points was recorded in 20 min.

3.4 Vibrating sample magnetometry

Hysteresis loops were measured at room temperature in a
LakeShore Model 7407 vibrating sample magnetometer (VSM).
Samples were prepared by pipetting a volume of the MNP sus-
pensions into thin-walled plastic tubes, capturing the MNPs at the
bottom of the tubes, removing most of the supernatant and let-
ting the remaining liquid evaporate over several days. The mass
of each sample was determined as the difference in mass of the
tube before the sample was added and after drying of the sam-
ple. The resulting sample pellet was fixed using transparent nail
polish. The measured hysteresis loops and more details on the
analysis are given in the Section S5†. The remanent magnetic
moment of each of the particle samples was estimated assuming
that the particles were non-interacting with randomly oriented

uniaxial anisotropy axes. For this case, the measured remanent
magnetic moment is equal to half the value of the average rema-
nent magnetic moment of the particles.

3.5 Dynamic light Scattering

Dynamic light Scattering (DLS) measurements were performed
using a Zetasizer Nano ZS. The samples were diluted to 0.25 g/l
and measured three times each. The mean Z-average and PDI
were calculated from the measurements using the instrument
software.

4 Results and discussion
Below, we first apply the equilibrium theory developed in Section
2.2 to determine the remanent magnetic moment of the particles
for the two investigated MNP systems. Then, we apply the theory
developed in Section 2.3 to determine the distribution of hydro-
dynamic sizes of the MNPs for the same two systems.

4.1 Magnetic moment determination

The magnetic moment distribution can be obtained from mea-
surements of the optomagnetic signal at low frequency vs. the
amplitude B0 of the magnetic flux density. Fig. 5a shows the op-
tomagnetic signal for the MM100 sample vs. time during a cycle
in a f = 0.5 Hz sinusoidal magnetic field modulation for the indi-
cated values of B0 and where B(t = 0) = 0. First, we note that the
photodetector signal and hence the intensity of transmitted light
is lower when the magnetic field is low than when it is high, i.e.,
∆σ = σ‖−σ⊥ < 0. For this size range of particles, this observation
indicates that the particles have a lower geometrical cross-section
along the magnetic moment than perpendicular to it, which could
be due to the particles being elongated along the magnetic mo-
ment. Next, we consider the dependence on B0. At low values of
B0, a sine response of frequency 2 f is observed. At high values of
B0, a "peak-like" response is observed. This agrees well with the
expectations from the equilibrium model, see Fig. 2a. No phase
lag of the signal is observed with respect to the magnetic field. It
is therefore justified to apply the equilibrium model described in
Section 2.2. To proceed we calculate the 2nd harmonic optomag-
netic signal, V2.

Fig. 5b shows V ′′2 for the MM80 and MM100 samples vs. B0.
For the MM100 sample, we observe a peak in V ′′2 as expected
for a large MNP magnetic moment. For the MM80 sample, this
peak is not observed and thus a smaller MNP magnetic moment
is expected.

To determine the particle magnetic moments for each of the
two samples, the equilibrium model, Eq. (26), was fitted to the
data. It was not possible to obtain a good fit assuming a sin-
gle magnetic moment. Instead, the data were analyzed with
a lognormal distribution of magnetic moments, Eq. (31), with
p′ln(m) = (m/m̃)nσ/nm pln(m) (see Section 2.4.1). Free parameters
in this fit were nzṼref∆σ̃ , m′m and σm. The value of nσ/nm affects
only the median value of the magnetic moment as described in
Section 2.4.1 and the median value for nσ/nm 6= 0 can be calcu-
lated using Eq. (36). The fits for the two samples are shown as
solid lines in Fig. 5b and the obtained magnetic moment distri-
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Fig. 5 (a) Photodetector signal measured vs. time for a 0.5 Hz sine excitation of the MM100 sample for B0 =0.35, 0.71, 1.06, 1.42, 2.12, 2.83, 3.54,
4.24, 4.95, 5.66, 6.37, 7.07 and 7.36 mT. (b) Measured 2nd harmonic imaginary signal at f = 0.5 Hz (points) for MM80 (blue) and MM100 (red) versus
B0. The solid lines are fits to the equilibrium model, Eq. (31), with nσ/nm = 0 using a lognormal distribution of magnetic moments. (c) Lognormal
magnetic moment distributions obtained from the fits in (b). The vertical dotted lines indicate the mean magnetic moments of 6.12 aJ/T and 13.13 aJ/T
for the MM80 and MM100 samples, respectively.

butions are shown in Fig. 5c.
From the fits we obtain median magnetic moments m′m of

5.22 aJ/T (MM80) and 10.98 aJ/T (MM100) and lognormal dis-
tribution widths σm of 0.57 (MM80) and 0.59 (MM100), respec-
tively. Next, we estimate values of nσ and nm to establish the
weighting of the signal in the above fits and to obtain the median
value of the number-weighted lognormal distribution of magnetic
moments, pln(m). Both investigated samples are multi-core MNPs
with no extra non-magnetic shell (ts ' 0). We can therefore ap-
proximate nm ≈ 1/2. At present, the value of nσ is unknown, but
assuming that absorption dominates the light extinction, the ex-
tinction is proportional to the particle volume, i.e., nσ ≈ 1. Then,
according to Eq. (31), the lognormal distribution is scaled with
m to a power of nσ/nm ≈ 2. The corresponding mean values of
the m2-weighted distribution calculated using Eq. (38) are given
in Table 2. The number-weighted median magnetic moments are
estimated from the above values of m′m and σm using Eq. (36) to
3.2 aJ/T (MM80) and 6.4 aJ/T (MM100), respectively.

The weighting of the measurement magnetic moments ob-
tained from VSM and ACS measurements is as follows: For a
single MNP, the ACS signal is proportional to m2. The remanent
magnetic moment measured by VSM is weighted by the mass (or
volume) of the particle. For the ideal multi-core particle, m ∝ V 1/2

or V ∝ m2, and hence the VSM measurement can also be consid-
ered to be m2-weighted. Table 2 compares the obtained mean m2-
weighted magnetic moments from optomagnetic measurements
to corresponding results obtained from VSM and ACS measure-
ments (Sections S5-S6†).

The magnetic moments determined by ACS are 10-30% higher
than those determined using the OM method. Note, that the ACS
determination of the magnetic moment from the initial suscepti-
bility requires prior knowledge of the particle concentration and
that these measurements are performed in a weak magnetic field,
whereas the OM measurements do not rely on knowledge on the
particle concentration and are performed as function of the mag-
netic field amplitude. The ACS measurements can be calibrated to

a traceable standard whereas this is not easily feasible for the OM
measurements due to the dependence on the anisotropy of the op-
tical extinction properties of the particles. These factors as well as
the simplifying assumption of nσ/nm ≈ 2 may be the cause of the
observed deviations between the two techniques. The magnitude
of the remanent magnetic moment determined by VSM relies on
the assumption of non-interacting particles as well as knowledge
on the size and mass density of the MNPs. Magnetic dipole inter-
action between the MNPs are generally demagnetizing and this
may cause an underestimation of the magnetic moment. Con-
sidering the differences between the techniques and the above
mentioned possible sources of deviation, the agreement between
the obtained values is remarkable.

Table 2 Mean m2-weighted magnetic moments obtained from optomag-
netic measurements, the magnitude of the AC susceptibility data and
from the remanent magnetic moment in VSM measurements.

Name MM80 MM100
m̄OM [aJ/T] 6.12(3) 13.13(3)
m̄ACS [aJ/T] 8.2 14.7
m̄VSM [aJ/T] 4.8 14

4.2 Size determination

4.2.1 Optomagnetic measurements

The hydrodynamic size can be obtained from a measurement of
V2/Vref vs. frequency f of a weak applied magnetic field. Fig-
ures 6a-b show V ′2/Vref and V ′′2 /Vref vs. f measured for B0 =

0.25 mT.

First, we note that the signals are generally negative. A com-
parison to Fig. 3 reveals that VAC and hence also ∆σ = σ‖−σ⊥ is
negative (see Eq. (25)) in agreement with the observation for the
equilibrium response in Section 4.1.

From the Brownian relaxation frequency, the hydrodynamic di-
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ameter of an equivalent sphere can be obtained from Eq. (1) as

Dh =
3
√

kBT/(π2η fB), (41)

where T = 22◦C and η = 9.548 ·10−4 Pa s.
Before we estimate values of the Brownian relaxation fre-

quency, it is relevant to discuss how the OM signal is weighted
with the hydrodynamic volume, which is proportional to f−1

B . In

Eq. (37) we found that the signal is weighted by f−(nσ+2nm)/nh
B .

Using the previously estimated values of nσ ≈ 1 and nm ≈ 0.5 and
noting that the hydrodynamic volume is proportional to the parti-
cle core volume (nh = 1), we have (nσ +2nm)/nh ≈ 2, i.e., the OM
signal is weighted by the square of the hydrodynamic volume.

The analysis presented below was performed using Eq. (32)
with the volume-squared (V 2

h )-weighted lognormal distribution,
p′ln ( fB) = ( fB/ f̃B)−(nσ+2nm)/σn pln( fB) = ( fB/ f̃B)−2 pln( fB), and re-
sulted in the median value, f ′Bm, of the Brownian relaxation fre-
quency and a lognormal standard deviation σ fB .

The number-weighted distribution of Brownian relaxation fre-
quencies, pln( fB), is also a lognormal distribution with the same
value of σ fB and a median value given by Eq. (37) with (nσ +

2nm)/nh ≈ 2.
The volume (Vh)-weighted distribution of Brownian relaxation

frequencies, which will also be of interest below, has the same
width and a median value of fBm ≈ f ′Bm exp(σ2

fB
). The volume-

weighted median hydrodynamic diameter Dm can be obtained by
insertion of fBm in Eq. (41). Further, we note that σDh = σ fB/3.

First, we consider the peak in the V ′2 signal. As described in
Section 2.4.1 the position fV ′2 ,peak of this peak is only weakly sen-
sitive to a lognormal distribution of hydrodynamic sizes, and it
relates to the median Brownian relaxation frequency as fV ′2 ,peak ≈
f ′Bm/
√

3. From the data in Fig. 6a we obtain values of fV ′′2 =0
(marked with circles) of 120 Hz (MM80) and 75 Hz (MM100), re-
spectively, corresponding to V 2

h -weighted median hydrodynamic
diameters D′V ′2 ,peak of 128 nm (MM80) and 149 nm (MM100), re-
spectively.

Next, we consider the V ′′2 signal, which shows a sign change at
a frequency fV ′′2 =0 and which for the two investigated samples dis-
plays a negative saturation value at low frequencies and a positive
peak just above fV ′′2 =0. For a monodisperse sample, we found in
Section 2.3 that fB = fV ′′2 =0. For a polydisperse sample, we found
in Section 2.4.1 that fV ′′2 =0 is significantly shifted to higher val-
ues and therefore that the value of fV ′′2 =0 does not represent the
median Brownian relaxation frequency, f ′Bm. Further, the ratio be-
tween

√
3 fV ′2 ,peak and fV ′′2 =0 could be used to estimate the value of

σ fB . From the data in Fig. 6b we obtain values of fV ′′2 =0 (marked
with large points) of 553 Hz (MM80) and 269 Hz (MM100), re-
spectively. Combining with Fig. 4, we estimate σ fB = 0.90 (MM80)
and σ fB = 0.77 (MM100). In Section 2.4.1 we also found that σ fB

could be estimated from the ratio between the absolute values of
the minimum and maximum values (the ratio between the valley
and hill) of the V ′′2 spectrum as shown in Fig. 4. From the data in
Fig. 6b, we obtain σ fB = 0.91 (MM80) and σ fB = 0.70 (MM100),
respectively. The estimates of σ fB using these two methods are
consistent. Knowing σ fB and fV ′′2 =0, we can use Eq. (40) to es-
timate the median V 2

h -weighted Brownian relaxation frequency

f ′Bm and hence the median V 2
h -weighted hydrodynamic diame-

ters D′V ′′2 =0, which are found to be 121 nm (MM80) and 138 nm
(MM100), respectively.
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Fig. 6 (a) Real and (b) imaginary parts of the second harmonic opto-
magnetic signal measured vs. frequency at B0 = 0.25 mT for the MM80
sample (blue) and the MM100 sample (red). The solid lines are fits of
Eq. (32) to the data with a lognormal distribution of Brownian relaxation
frequencies, Eq. (39).

Finally, we also analyzed the measured optomagnetic spectra
in terms of Eq. (32) assuming a constant value of ṼAC. As previ-
ously, the fit was performed with a V 2

h -weighted lognormal dis-
tribution of Brownian relaxation frequencies given as p′ln( fB) =
( fB/ f̃B)−2 pln( fB) with the median hydrodynamic diameter, f ′Bm,
and width σ fB . The fits resulted in V 2

h -weighted median hydrody-
namic diameters D′h of 122 nm (MM80) and 145 nm (MM100)
and widths σ fB of 0.93 (MM80) and 0.84 (MM100), respectively.

Comparing the median sizes obtained from the fits to the val-
ues obtained by the zero crossing and peak position, we observe a
good correlation between the methods for MM80. The value ob-
tained from the peak position is slightly larger because the peak
position moves to lower frequency for a broad size distribution as
observed in Fig. 3c.

The fit for MM100 does not fully describe the data. This in-
dicates that distribution is not lognormal or that the distribution
is too wide for the assumptions to be valid, e.g., that the simple
power law assumption with a constant nσ for the size dependence
of σ‖ and σ⊥ is not fulfilled for all particle sizes.

The results of the optomagnetic measurements in terms of the
volume-weighted median, which will be useful for comparison
with other methods as we will describe below, are summarized in
Table 3.
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Table 3 Median volume-weighted hydrodynamic particle diameters and
standard deviations σDh of their lognormal distribution. For the optomag-
netic (OM) measurements, values were obtained from analyses of fV ′′2 =0,
fV ′2,peak and a full curve fit, respectively. For DLS the value was obtained
as the Z-average from the instrument software. For the ACS measure-
ments, values were obtained from the peak position of χ ′′ and a full curve
fit, respectively.

Tech. Name MM80 MM100

OM DV ′′2 =0 [nm] (σDh ) a 92 (0.30) 117 (0.23)

OM DV ′2 ,peak [nm] (σDh )b 97 (0.30) 123 (0.26)

OM DV2 ,fit [nm] (σDh , PDI) c 92 (0.31, 0.10) 114 (0.28, 0.08)
ACS Dχ ′′2 ,peak [nm] d 92 117

ACS Dχ,fit [nm] (σDh , PDI) e 95 (0.29, 0.09) 116 (0.21, 0.04)
DLS Dz [nm] (PDI)f 99 (0.08) 121 (0.09)

a The median sizes obtained from the zero crossing of V ′′2 and the distribution widths,
σDh , estimated using the ratio between the maximum and minimum value of V ′′2 .

b Sizes obtained from the peak position of V ′2 and distribution widths, σ , estimated
from fV ′2 ,peak/ fV ′′2 =0.

c Median, sigma value (σDh ) and polydispersity index (PDI) obtained from a fit to OM
data with a lognormal distribution.

d Sizes obtained from the peak position of χ ′′

e Median, sigma value (σDh ) and polydispersity index (PDI) obtained from a fit to ACS
data with a lognormal distribution.

f Z-average obtained from DLS measurements.

4.2.2 Comparison to DLS and ACS measurements

Below we compare the sizes obtained using the optomagnetic
method with those obtained using ACS and DLS. For this com-
parison, it is important that the data are obtained using the same
weighting with the particle size. Therefore, we also need to esti-
mate the weighting of the reference methods.

In ACS measurements, the signal is weighted by the magnetic
moment squared, as shown in Eq. (19). For multi-core particles,
such as the MM80 and MM100, the magnetic moment is expected
to be proportional to the square root of the particle volume, m ∝

V 1/2 (nm ≈ 0.5). Thus, V ∝ m2 and we expect the ACS result to be
volume-weighted.

Table 3 compares the results obtained using the optomag-
netic method (volume-weighted), with sizes determined from
ACS measurements (Section S6†). In the ACS measurements,
the hydrodynamic size was estimated either using the peak po-
sition, Dχ ′′2 ,peak, or from a fit to the Debye model using a lognor-
mal distribution of sizes, Dχ,fit, as described by Öisjöen et al.24

(details are given in Section S6†). It should be noted that this
analysis does not require knowledge of the particle concentra-
tion. It should further be noted that ACS studies the magnetic
relaxation, which may include both Brownian and Néel relax-
ation contributions, whereas the optomagnetic technique directly
probes the magnetic-field-induced change in the physical orienta-
tion of the particles and thus is only indirectly sensitive to Néel
relaxation via a possible induced magnetic moment and magnetic
shape anisotropy of the particles. Finally, the optomagnetic tech-
nique additionally depends on the anisotropy of the optical ex-
tinction properties of the particles.

We observe an excellent agreement between the ACS results
and the optomagnetic results for the MM80 sample. For the

MM100 sample, the values of the median hydrodynamic sizes are
in good agreement, but the width of the hydrodynamic size dis-
tribution is slightly smaller using ACS measurements than using
OM measurements.

In DLS measurements, the signal is weighted by the scattering
properties of the particle (at 90◦ in the present study). For small
particles with D� λ , the particle size dependence is described by
Rayleigh scattering, which is proportional to the volume square.
This results in the Z-value to be weighted by D5/6

h . However, for
larger particles, as in our case, the scattering becomes angle de-
pendent and no simple size dependence exists. However, com-
paring the Z-values to the mean volume-weighted sizes obtained
from ACS measurements (99 nm and 119 nm) and OM measure-
ments (96 nm 119 nm) calculated using Eq. (38), we observe an
excellent agreement. This suggests that the DLS signal is also
approximately volume-weighted.

In summary, we have found that it is important to account for
the different dependencies of the signals on the particle to be
able to obtain comparable values between the different methods.
However, when this dependence was accounted for, the agree-
ment between the employed methods is remarkable, especially
considering that the optomagnetic signal depends on a combi-
nation of magnetic and optical properties of the particles. The
detailed dependence of, e.g., the magnetic moment and of the
scattering properties of the investigated multi-core particles are
still not known in detail and therefore the method is at present
restricted to be applicable to particle ensembles with narrow size
distributions. For broader size distributions, the method may
still be applied but it is not quantitative. In particular the op-
tomagnetic method is very sensitive to larger magnetic particles
or aggregates of particles, which is advantageous for detection
of agglomerates of particles in biosensing applications. Further,
due to its simplicity, speed and low requirement for the knowl-
edge of other sample parameters, such as the particle concentra-
tion, the optomagnetic method can be highly useful for quality
monitoring in the production of magnetic nanoparticles with a
remanent magnetic moment. Finally, we note that the optomag-
netic method is at present the only method to determine the re-
lation/correlation between magnetic and optical anisotropies for
an ensemble of particles.

5 Conclusion
We presented the theory for the optomagnetic signal in equilib-
rium as function of the magnitude of the applied oscillating mag-
netic field and have derived how this response can be used to de-
duce the remanent magnetic moment of magnetic nanoparticles
in suspension. Further, we presented the theory for the dynamic
optomagnetic response as function of frequency at low magnetic
fields and how dynamic optomagnetic measurements can be used
to extract the hydrodynamic size of magnetic nanoparticles in sus-
pension. Finally, we carefully considered the influence of a distri-
bution of particle properties on the above results and provided
quantitative relations describing the influence of lognormal size
distributions on the characteristic features of the dynamic opto-
magnetic response.

The presented theory was applied for the determination of the
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remanent magnetic moment and the hydrodynamic size of two
commercially available multi-core magnetic nanoparticle systems
and the results were compared to those obtained using vibrat-
ing sample magnetometry, AC susceptibility measurements and
dynamic light scattering. The comparison illustrated the impor-
tance of accounting for the weighting of the signal in the differ-
ent techniques, which will affect the median value of a lognormal
distribution of a parameter but not the width of the distribution.
In dynamic light scattering and AC susceptibility measurements,
the signals are weighted by the optical and magnetic properties,
respectively, whereas in optomagnetic measurements, both the
magnetic moment and the optical extinction properties influence
the signal. When the weighting of the signals with the particle
size was appropriately accounted for, the results obtained by the
different techniques were found to be in good agreement.

The presented optomagnetic technique has several advantages
compared to the other applied techniques: It can be realized us-
ing low-cost components, it is compact and flexible as it requires
only a transparent sample container, and a complete measure-
ment can be performed in less than 10 min. Further, it provides
information on both the remanent magnetic moment and the hy-
drodynamic size of the magnetic nanoparticles without requiring
prior knowledge on the particle concentration. Finally, it provides
unique information on the link between the remanent magnetic
moment and the optical anisotropy of the particles.

On the downside, the technique is limited to nanoparticles with
a remanent magnetic moment and with linked optical and mag-
netic anisotropies and cannot at present be referred to traceable
standards. Moreover, it requires that the size distribution of the
nanoparticle cores is comparatively narrow such that the particles
have similar extinction properties.

We believe that the presented method provides a simple ap-
proach to characterize suspensions of magnetic nanoparticles
with a remanent magnetic moment and a narrow size distribu-
tion and thus that it is attractive for, e.g., routine monitoring of
the quality of such suspensions in a production or laboratory set-
ting.
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