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Abstract 

Advanced alkaline water electrolysis using ion-solvating polymer membranes as electrolytes 

represent a new direction in the field of electrochemical hydrogen production. Polybenzimidazole 

membranes equilibrated in aqueous KOH combines the mechanical robustness and gas-tightness 

of a polymer with the conductive properties of an aqueous alkaline salt solution, and are thus of 

particular interest in this connection. This work presents a comprehensive study of ternary alkaline 

polymer electrolyte systems developed around a polybenzimidazole derivative that is structurally 

tailored towards improved stability in alkaline environment. The novel electrolytes are extensively 

characterized with respect to physicochemical and electrochemical properties and the chemical 

stability is assessed in 0-50 wt % aqueous KOH for more than 6 months at 88 °C. In water 

electrolysis tests using porous 3-dimensional electrodes completely free from noble metals, it 

shows polarization characteristics comparable to that of commercially available separators and 

good performance stability over several days. 
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1 Introduction 

Electrochemical water splitting through water electrolysis represents an attractive approach to 

store surplus electrical energy from renewable sources in form of hydrogen.1 Proton exchange 

membrane (PEM) systems based on perfluorosulfonic acid membranes operate at high current 

densities and produce hydrogen of high purity, but depend on noble metals such as platinum and 

iridium as catalysts.2 In alkaline environments, on the other hand, the oxygen3 and hydrogen4 

evolution reactions readily occur on abundant materials, which is an important aspect when large 

scale implementation is considered. Alkaline water electrolyzers are durable and robust systems 

and have been commercially available for a long time, but the conventional systems suffer from 

high internal resistance.5 Reducing the interelectrode distance should thus be one of the key 

strategies in the development of cost-efficient and high-performing advanced alkaline water 

electrolyzers.6  

One attractive approach in this connection is to replace the porous diaphragm with an anion 

conducting membrane. This allows for a cell design with gas-diffusion type electrodes in direct 

contact with the membrane and thus an interelectrode distance of less than 100 µm.5 Anion 

exchange membranes based on quaternary ammonium functionalized polymers have received 

much attention for this purpose recently,3, 7 but improving the long term stability of the structural 

polymer backbone as well as of the anion exchange moieties in the hydroxide ionomer form 

remains a formidable challenge.8  

An alternative concept is to construct the electrolyzer around an ion-solvating polymer 

electrolyte membrane system, combining the mechanical robustness and gas-tightness of a 

polymer with the conductive properties of an aqueous alkaline salt solution.9 Of special interest is 



the ternary polybenzimidazole/KOH/H2O electrolyte system, as first investigated systematically 

by Xing and Savadogo.10 It shows ion conductivity in a practically useful range and it has therefore 

been explored for technological use as electrolyte in hydrogen10-11 and direct alcohol12 fuel cells 

as well as in electrode binders13 and supercapacitors.14 The first implementation of this electrolyte 

system in alkaline water electrolysis was recently reported,15 and by further optimization of the 

cell design it has been shown to outperform conventional state-of-the-art porous electrode 

separators even at significantly reduced KOH concentrations.16 The working principle is 

schematically depicted in Figure 1. 

 

 

Figure 1 Working principle of an alkaline water electrolyzer based on polybenzimidazole as an 

ion-solvating polymer electrolyte membrane. 

 

Of the different polybenzimidazole derivatives, poly(2,2´-(m-phenylene)-5,5-bibenzimidazole) 

(m-PBI, Figure 1) is traditionally the most widely used due to its good processing characteristics 



and straightforward synthesis from commercially available monomers. The membrane 

composition strongly depends on the KOH concentration of the bulk solution, which in turn 

determines virtually all physicochemical properties of the resulting membrane electrolytes.17 For 

example, the ion conductivity is increased by at least two orders of magnitude when the KOH 

concentration of the bulk solution is increased from 5 to 20-27 wt% to reach well above 100 mS 

cm-1.10, 17b, 18 However, increasing the KOH concentration of the bulk solution significantly 

enhances the hydrolytic degradation of the structural base-polymer.18-19 Crosslinking effectively 

mitigates the deterioration of the mechanical integrity of the membrane,15a but does not increase 

the alkali resistance of the structural polymer backbone. 

Towards the development of a stable alkaline ion-solvating polymer electrolyte a new 

polybenzimidazole derivative, poly(2,2´-(m-mesitylene)-5,5´-bibenzimidazole) (mes-PBI), is used 

in the present work. Steric hindrance is used as design strategy to enhance the hydrolytic stability 

of the polymer backbone.7f, 20 Ternary mes-PBI/KOH/H2O electrolyte systems are prepared and 

extensively characterized with respect to composition, physicochemical properties and chemical 

stability in aqueous KOH with concentrations ranging from 0-50 wt%. Furthermore, the 

membranes are tested as electrolytes in an advanced alkaline water electrolyzer using porous 3-

dimensional electrodes completely free from noble metals, showing polarization characteristics 

comparable to that of commercially available separators and good performance stability.  

 

2 Results and discussion 

2.1 Membrane preparation and characterization 

Mes-PBI was prepared by a modified literature polymerization method,20a in which the 

polymerization of 2,4,6-trimethylisophthalic acid and 3,3´-diaminobenzidine in poly(phosphoric 



acid) was conducted under reduced pressure (Scheme 1) followed by a purification to remove 

small molecule impurities. Strong and flexible membranes of mes-PBI were obtained by drop-

casting on glass dishes from DMSO. 

 

 

Scheme 1 Polycondensation of 3,3´-diaminobenzidine and 2,4,6-trimethylisophthalic acid to 

produce mes-PBI. 

 

As shown in Scheme 2, a dynamic equilibrium between the pristine form of mes-PBI (left) and the 

deprotonated ionic form (right) is developed when submerged in aqueous KOH. The position of 

the equilibrium depends on the concentration of the aqueous bulk KOH solution and shifts to the 

right when the concentration is increased, which also complicates the determination of the KOH 

content of the membrane matrix because part of the weight gain is due to the exchange of protons 

with potassium.17b, 18  

 

 

Scheme 2 Deprotonation of mes-PBI forming the corresponding potassium polybenzimidazolide 

repeat unit. 

 



The gravimetrically determined compositions of the mes-PBI membranes after equilibration in 0-

50 wt% aqueous KOH are summarized in Figure 2a. The water uptake of the pristine mes-PBI 

membrane corresponded to about 3.4 molecules of water per polymer repeat unit, which is similar 

to that of m-PBI.21 The water uptake of mes-PBI increased with increasing KOH concentration 

and peaked in 25 wt% KOH, forming a ternary system composed of about 30 wt% water, 11 wt% 

KOH and 59 wt% mes-PBI. Taking the molar mass of the polymer repeat unit as 350 g mol-1, it 

corresponds to about 10.2 water molecules and 1.2 KOH ion pairs per polymer repeat unit (Table 

1). For comparison, the water uptake of m-PBI peaks when equilibrated in 15 wt% KOH, where it 

forms a mechanically robust polymer matrix with a polymer fraction of less than half of the total 

weight.17b As also observed for m-PBI, going towards higher KOH concentrations of the bulk 

solution resulted in increased KOH content and decreased water content within the mes-PBI 

matrix. Interestingly, the internal KOH concentrations of the mes-PBI membranes as calculated 

based on the weight of KOH relative to the combined mass of KOH and water were similar or 

slightly higher than the KOH concentration of the bulk solutions throughout the whole 

concentration range. 

 



 

 

Figure 2 Composition with respect to the total weight (a) and dimensional changes relative to 

the dry mes-PBI membrane (b) of mes-PBI after equilibration in aqueous KOH with 

concentrations ranging from 0-50 wt% (black). The corresponding data for m-PBI are shown for 

comparison (gray).17b 

 

Table 1 Normalized water and KOH contents with respect to the polymer repeat unit (mes-PBIRU) 

and corresponding water to KOH mole ratios. 

Bulk solution Polymer phase 

[KOH] (wt%) H2O / KOH H2O / mes-PBIRU
a KOH / mes-PBIRU

a H2O / KOH [KOH] 

(wt%) 

0 - 3.4 - - 0 

5 60.2 4.8 0.1 49.7 5.9 

10 28.5 6.1 0.3 23.7 11.6 

15 17.9 7.8 0.7 11.4 21.1 



20 12.7 9.2 0.8 12.1 20.5 

25 9.5 10.2 1.2 8.6 26.5 

35 5.0 9.0 2.2 4.1 43.3 

50 3.2 7.1 2.5 2.8 52.3 

a The molar mass of the polymer repeat unit was taken as 350 g mol-1. 

 

In contrast to the anisotropic swelling behavior of m-PBI in aqueous KOH as repeatedly reported 

at concentrations higher than about 10 wt%,12d, 17 mes-PBI showed gradually increasing geometric 

surface area and thickness when the KOH concentration was increased from 0 to 35 wt% (Figure 

2b). The volume swelling after equilibration in pure water and 35 wt% aqueous KOH was about 

14 and 61%, respectively. Further increasing the concentration of the bulk solution resulted in 

significantly reduced water content of the membranes and therefore decreased volume swelling, 

as also observed for perfluorosulfonic acid membranes in aqueous KOH.22  

Like for m-PBI, the FTIR spectrum of the water-equilibrated membrane based on mes-PBI 

shows several strong absorption bands in the 1240-1550 cm-1 region, assigned to different 

vibration modes of the benzimidazole groups (Figure 3a).23 The intensity of the absorption bands 

at 1540 and 1405 cm-1 was found to decrease with increasing KOH concentration and the bands 

were not visible after equilibration in aqueous KOH with concentrations higher than 20 wt%. 

Instead, new absorption bands at 1600, 1378, 1345, 1245 and 1130 cm-1 were developed when the 

KOH concentration increased, as the acid-base equilibrium in Scheme 2 shifts towards the 

poly(2,2´-(m-mesitylene)-5,5´-bibenzimidazolide) form of the polymer. 

The 1H NMR spectra of pristine mes-PBI (bottom) and of dried mes-PBI after equilibration 

in 50 wt% KOH (top) are shown in Figure 3b. The peak assignments of pristine mes-PBI can be 



found elsewhere.20a After equilibration in aqueous KOH, the 1H NMR spectrum was poorly 

resolved due to low solubility in DMSO-d6. However, the disappearance of the –NH signal at 12.7 

ppm supports ionization of the polymer.  

The XRD of mes-PBI that had been equilibrated in pure water showed a broad amorphous 

peak at 2θ = 10-30° (Figure 3c), likely composed of two convoluted peaks with peak maxima at 

2θ about 16° and 23°. As previously discussed by Kumbharkar et al.24 this is often seen for 

polybenzimidazole derivatives with bulky side chains due to the co-existence of different chain 

packing arrangements. For mes-PBI equilibrated in pure water the peak with a maximum at about 

2θ = 16.1° correspond to a d-spacing of 5.50 Å as calculated from the Bragg equation. Although 

the intensity of the amorphous peaks decreased significantly due to swelling when the 

concentration of the bulk solution reached 15 wt%,17b the position of the peak at about 2θ = 16° 

did not change to a significant extent. The amorphous peak maximum at 2θ = 23°, on the other 

hand, shifted towards higher angles when the KOH concentration of the bulk solution increased. 

At the same time the d-spacing decreased with increasing KOH concentration from 3.92 to 2.70 Å 

in 0 and 50 wt.%, respectively (Figure 3d). This is likely due to the increasing KOH content within 

the mes-PBI matrix, resulting in strengthened electrostatic interactions. This effect has also been 

observed for m-PBI in aqueous KOH at high concentrations and eventually resulted in 

crystallization of the polymer matrix.12d, 17b, 25 The d-spacing of mes-PBI equilibrated in water was 

significantly higher than that of m-PBI (3.54 Å),17b likely due to the bulky structure giving a less 

efficient chain packing arrangements.24 

 



  

 
 

Figure 3 (a) FTIR spectra of mes-PBI equilibrated in aqueous KOH of concentrations ranging 

from 0- 50 wt%; (b) 1H NMR spectra of mes-PBI in the pristine form (bottom) and in the 

potassium salt form (top); (c) XRD of mes-PBI equilibrated in aqueous KOH of concentrations 

ranging from 0- 50 wt% and (d) the corresponding amorphous peak maxima of the second peak 

and d-spacings.    

 

2.2 Electrochemical behavior 



The through plane ion conductivity of mes-PBI was recorded as a function of KOH concentration 

at 20-80 °C, as shown in Figure 4a. In 5 wt% KOH the conductivity increased from 8 to 33 mS 

cm-1 when the temperature was increased from 20 to 80 °C. Enhanced conductivity in the low 

concentration regime is a major advantage, indicating that the electrolyzer can be operated at 

significantly reduced electrolyte concentrations than normally used. It would, in turn, result in a 

significant relief on the system and the auxiliary units, such as pumps, gas separators, and valves. 

By increasing the KOH concentration to 20 wt% the ion conductivity peaked at 25 mS cm-1 at 20 

°C, but decreased to 11 mS cm-1 in 50 wt% KOH due to the reduced water content of the 

membrane. The conductivity increased with increasing temperature and reached 88 mS cm-1 in 25 

wt% KOH at 80 °C.  

The conductivity data were fitted to the Arrhenius equation (Equation 1 in logarithmic 

form), where σ is the ion conductivity, σ0 is the pre-exponential factor, Ea is the activation energy, 

T is the absolute temperature and R is the universal gas constant.  

 

ln (σ) = ln (σ0) – (Ea/RT)          (Eq. 1) 

 

The Arrhenius plots are shown in Figure S1 and the corresponding activation energies are 

summarized in Table S1 (supporting information). The activation energies for ion conduction of 

the aqueous KOH solutions were found to be in the range 8-15 kJ mol-1 and tended to increase 

slightly with increasing KOH concentration, in good agreement with the predicted data.26 The 

activation energy of ion conductivity for the mes-PBI membrane was in the range 15-20 kJ mol-1 

in 10-35 wt% KOH, which is slightly higher than for m-PBI16b and comparable to that of anion 

exchange membranes at intermediate to low water contents.27   



 

a) 

 

b)

 

c)

 

d) 

 

Figure 4 (a) Ion conductivity isotherms of aqueous KOH (open symbols) and of mes-PBI 

equilibrated in the corresponding KOH solutions (solid symbols); (b) Electrolysis polarization 

characteristics of mes-PBI at 80 °C at different KOH concentrations compared with 40 μm m-

PBI in 20 wt% KOH and 500 μm Zirfon in 30 wt% KOH; (c, d) Chronopotentiometric behavior 

at 200 mA cm-2 and evolution in polarization curves for a cell equipped with a mes-PBI 



membrane operating at 80 °C in 25 wt% KOH. Plain nickel foam without additional catalyst was 

used as electrodes in a zero-gap configuration. 

 

Electrolysis polarization characteristics of cells equipped with mes-PBI membranes at 80 °C are 

presented in Figure 4b. Polarization curves for cells equipped with m-PBI and Zirfon are shown 

for comparison. In 5 wt% KOH a modest current density of 22 mA cm-2 was reached at 2.5 V for 

the cell based on mes-PBI, due to the low conductivity of the membrane under those conditions. 

The cell performance in 5 wt% KOH was significantly lower than what can be achieved using 

Zirfon at low KOH concentrations (Figure S2). In 15 wt% KOH, the ion conductivity of mes-PBI 

at 80 °C is close to 60 mS cm-1, and a significant current could thus be obtained. At 2.5 V the cell 

was operated at about 650 mA cm-2. In 25 wt% KOH, which represents near-optimal condition 

based on conductivity data, the cell reached more than 1100 mA cm-2 at 2.5 V, and showed 

improved ohmic behavior over the cell equipped with Zirfon in 30 wt% KOH. The polarization 

behavior at lower temperatures are available in Figure S3-5. When considering the relative 

behavior of polarization characteristics at different concentrations against the measured 

conductivity data, it appears that there is a discrepancy for the measured low concentration 

conductivity. The relative difference in conductivity between 5 and 15 wt% KOH is about a factor 

of 2, but the difference in slope in the ohmic region is much larger. In the range 2.2-2.5 V the 

difference in slope is about a factor of 40. 

To further demonstrate the technical feasibility of the system, a cell was operated at 200 

mA cm-2 for 3 days. The chronopotentiometric behavior is presented in Figure 4c, and the 

evolution in polarization characteristics is shown in Figure 4d. During the three days of operation, 

the feed electrolyte was slightly colored by metallic corrosion products from exposed steel 



components. A clear electrode activation was observed over the course of the first day, likely due 

to anode activation by iron.28 The apparent severe metal-ion contamination of the liquid electrolyte 

clearly demonstrates an exceptional robustness of the system, but the long-term effects of metal 

ion contamination on the stability of the polymer remains to be evaluated. The electrolyte was 

levelled after first and second day, and the gap with missing data seen in Figure 4c around 50 hours 

is a result of a technical data logging issue. 

 

2.3 Chemical stability of mes-PBI 

To assess the chemical stability of mes-PBI in aqueous KOH, the membranes were kept in aqueous 

KOH with concentrations ranging from 0-50 wt% at 88 °C for 207 days. It should be remembered 

that the conductivity of mes-PBI peaks at concentrations well-below 50 wt% KOH at up to 80 °C. 

The test in 50 wt% KOH (which is close to a saturated solution) is carried out as an accelerated 

test to obtain information about fundamental degradation routes. Sampling was carried out after 2, 

14, 28, 59, 99, 149 and 207 days and the mass relative to the initial mass was recorded after 

extensive washing with water, as shown in Figure 5a. As also observed for m-PBI membranes in 

a similar test,18 the data from the initial samplings were scattered which may be due to partial 

oxidation of the polymer or due to wash-out of remaining impurities after the initial washing 

procedure. Partial oxidation of the polymer during the long-term experiment will also increase the 

hydrophilicity of the material so that water is bound more strongly, which in turn would affect the 

residual water content after drying. In contrast to the m-PBI membrane, which spontaneously 

disintegrated after about 100 days in 50 wt% KOH at 88 °C, the mes-PBI remained visually intact 

after 207 days (see inset photograph in Figure 5a). This sample showed significantly higher weight 

loss relative to the samples treated in KOH of lower concentrations, indicating that soluble low 



molecular weight degradation products were formed. It should, however, be remarked that the 

measurements were carried out on a single series of samples due to limited availability of mes-

PBI. We are thus lacking a sufficient amount of data to discuss statistical variations, and the results 

should thus be understood in a more qualitative rather than quantitative way. 

The FTIR spectra of mes-PBI after treatment in 0-10 wt% KOH at 88 °C for 207 days were 

practically identical with that of the reference material (Figure 5b), indicating limited structural 

changes of the polymer. The weak absorption band around 1660 cm-1 after treatment in 25-50 wt% 

KOH likely originates from stretching vibrations of carbonyl groups formed as degradation 

products from hydrolysis of the polymer backbone. Such a degradation mechanism would produce 

an equal amount of free diamine groups with an absorption band at around 1400-1500 cm-1,15a 

overlapping with the strong characteristic band assigned to in-plane ring vibration of the 

benzimidazole groups.29 Such diamines are, however,  known to be highly unstable under 

oxidative conditions30 and are likely decomposed as they are formed. Although the shape of the 

peaks in the aromatic region of the 1H NMR spectra (Figure 5c) of mes-PBI slightly changed after 

treatment in 0-50 wt% KOH at 88 °C for 207, the peak positions were preserved. 

The thermogravimetric curves of mes-PBI after 207 days in 0, 5, 10, 25 and 50 wt% 

aqueous KOH at 88 °C are shown in Figure 5d. Like m-PBI,18 the thermo-oxidative degradation 

of mes-PBI occurred in 2 steps with onset temperatures at about 509 and 629 for the pristine 

reference materials (Table 2). No significant changes of the thermo-oxidative stability were 

observed for the mes-PBI membranes after treatment in 0-10 wt% KOH at 88 °C for 207 days. For 

the membranes treated in 25 wt% KOH the onset temperatures were lowered to 452 and 586 °C. 

After treatment in 50 wt% KOH at 88 °C for 207 days the onset temperatures were further lowered, 

showing two distinct onsets at 356 and 543 °C at about 88 and 74% remaining mass, respectively.   



 

 

 

 

 

Figure 5 Mass relative to initial mass for mes-PBI after aging in 0, 5, 10, 25 and 50 wt% KOH at 

88 °C for up to 207 days, where the inset shows a photograph of the mes-PBI membrane after 

aging in 50 wt% KOH at 88 °C for 207 days (a). FTIR spectra (b), 1H NMR spectra (c) and TGA 

data (d) of washed and dried mes-PBI after aging in 0, 5, 10, 25 and 50 wt% aqueous KOH at 88 

°C for 207 days. The water and solvent residual signals in the 1H NMR spectra are indicated with 

* and +, respectively. 

 



Table 2 Onset temperatures of thermo-oxidative decomposition for mes-PBI after aging in 0, 5, 

10, 25 and 50 wt% aqueous KOH at 88 °C for 207 days. Taken as the intersections of the tangents 

following the major slopes of the curves.   

 Ref 0% 5% 10% 25% 50% 

Onset 1 / °C 509 497 498 502 452 356 

Onset 2 / °C 629 643 647 632 586 543 

 

The SEC traces of mes-PBI after aging at 88 °C in 0-50 wt% KOH for 207 days are shown in 

Figure 6a. The shape and position of the peak in the SEC of mes-PBI that had been kept in KOH 

with concentrations up to 10 wt% were nearly identical to that of the reference material, indicating 

minor changes of the molecular weight. At higher KOH concentrations, the retention time 

increased accompanied by peak broadening, clearly indicating reduced molecular weight and 

enlarged molecular weight distribution. For comparison, m-PBI showed a significant peak 

broadening and shift to higher retention times after treatment in 10 wt% KOH at 88 °C for 200 

days,18 which indicate that mes-PBI shows better stability than m-PBI in the lower KOH 

concentration range.  

In 50 wt% aqueous KOH the peak retention time increased from 12.74 min for pristine 

mes-PBI to 13.09, 13.60, 13.74, 14.63 14.90 min after 14, 28, 99, 149 and 207 days, respectively, 

further illustrating the gradual decrease of the molecular weight (Figure 6b). The broadening of 

the peaks further indicates increased molecular weight distribution. The corresponding molecular 

weight data for all samples as calculated from the PMMA calibration are summarized in Table S2. 

While the chromatograms showed a clear trend, the molecular weight data obtained from the 

PMMA calibration was more scattered. This was due to small differences at low retention volumes, 



possibly due to polymer agglomeration. The calibration curve was not linear in this range, which 

implies that minor differences in retention volume can have a large impact on the calculated 

molecular weight. 

For the purpose of comparison, the SEC traces of m-PBI before and after aging in 50 wt% 

aqueous KOH for 200 days at 88 °C are shown in Figure 6c. The corresponding molecular weight 

data are summarized in Table 3. The initial molecular weight of m-PBI was significantly higher 

than that of mes-PBI, which complicates the direct quantitative comparison of the alkali-resistance 

of the two polybenzimidazole derivatives. Both polymers were significantly degraded during the 

aging test and after 200-207 days in 50 wt% KOH at 88 °C, the Mw of mes-PBI and m-PBI were 

about 30% and 26% relative to their initial Mw, respectively. 

 

 

Figure 6 SEC traces of mes-PBI after aging in 0-50 wt% aqueous KOH at 88 °C for 207 days (a) 

and of mes-PBI after aging in 50 wt% aqueous KOH at 88 °C for different durations (b). 

Comparison with m-PBI before and after aging in 50 wt% aqueous KOH at 88 °C for 200-207 

days (c). Eluent: DMAc + 0.25 wt% LiCl.  

 

Table 3 Molecular weight data from SEC (relative to PMMA standard) for mes-PBI and m-PBI 

after treatment in 0 and 50 wt% aqueous KOH at 88 °C for 207 and 200 days, respectively.  



 Mp × 10-3 / g mol-1 Mw × 10-3 / g mol-1 Mw / Mn 

Conditions mes-PBI m-PBI mes-PBI m-PBI mes-PBI m-

PBI 

Ref 197 362 191 399 2.26 3.25 

0% KOH, 88 °C, 207/200 days 189 315 149 315 3.16 4.08 

50% KOH, 88 °C, 207/200 

days 

43 98 57 102 3.36 2.36 

 

Comparing Mn, which represent the arithmetic mean molecular weight, is likely a better measure 

of relative stability since it contains information about the number of chain scission events. As a 

further step towards a direct comparison of the alkali resistance of mes-PBI and m-PBI, Mn after 

aging in 10 and 50 wt% aqueous KOH at 88 °C for durations up to 207 days was plotted relative 

to the initial Mn in Figure 7. The data for m-PBI were taken from our previous work and acquired 

using a mobile phase with higher LiCl, which may affect the SEC results since it affects the chain 

conformation of the polymer in solution.31 Although the data are slightly scattered, both polymers 

show similar Mn degradation behavior in 50 wt% aqueous KOH. In 10 wt% KOH, it appears as 

general trend that the relative Mn of mes-PBI is slightly higher than of m-PBI which supports that 

the chain scission rate is lower.  

 



 

Figure 7 Mn relative to initial Mn for mes-PBI and m-PBI18 at different durations of aging in 10 

and 50 wt% aqueous KOH at 88 °C. DMAc containing 0.25 and 0.50 wt% LiCl was used for 

mes-PBI and m-PBI, respectively. 

 

A degradation pathway of mes-PBI in aqueous KOH is postulated in Scheme 3. As no significant 

degradation was observed at concentrations up to 10 wt% KOH, the degradation is suggested to 

start from the polybenzimidazolide form of mes-PBI which predominates at KOH concentrations 

over 15 wt%. The first step (1) involves nucleophilic addition at the benzimidazolide C2 position. 

The rate of this step is likely strongly suppressed due to the formal negative charge at the 

benzimidazole ring. This is followed by ring opening as a result of decomposition of the addition 

product to form an amide linkage (2), in analogy with the hygrothermal degradation of m-PBI.32 

The amide is subsequently hydrolyzed (3) resulting in complete chain scission. 

 



 

Scheme 3 Postulated degradation pathway of mes-PBI in aqueous KOH. 

 

As previously reported,20 steric crowding above and under the benzimidazole plane effectively 

protects the benzimidazole C2 position from nucleophilic attack by hydroxide ions. When the 

KOH concentration is increased the equilibrium in Scheme 2 is shifted towards the 

benzimidazolide form of mes-PBI, which predominates at KOH concentrations higher than about 

15 wt%. The ionization of the polymer likely changes the dihedral angle between the 

benzimidazole group and the mesitylene groups, which in turn changes the effectiveness of the 

steric protection. This could eventually explain the apparent loss of stabilization in the high KOH 

concentration regime, but further studies are needed to clarify this.  

After the electrolysis test in 25 wt% KOH at 80 °C for 3 days, the cell was disassembled 

and the mes-PBI was characterized after extensive washing with water. As can be seen from the 



FTIR and 1H NMR spectra (Figure S7a-b), the mes-PBI membrane showed no signs of enhanced 

degradation. For comparison, m-PBI showed signs of oxidative degradation and polymer chain 

scission after 2 day of electrolysis operation under similar conditions.16b  

The results presented herein clearly demonstrate the technological feasibility of mes-PBI 

as a base material of alkaline ion-solvating membrane. Furthermore, the results from the chemical 

stability study in aqueous KOH indicate that mes-PBI show improved alkali-resistance compared 

to m-PBI at KOH concentrations up to at least 10 wt%. Higher degradation rates were recorded in 

the higher KOH concentration range, pointing at the importance of further structure optimization 

towards the development of new alkali-resistant polybenzimidazole derivatives for alkaline ion-

solvating membranes.  

 

3 Experimental 

3.1 Materials 

All reagents and solvents were reagent grade, purchased from Sigma Aldrich, and used without 

further purification, unless otherwise mentioned. Potassium carbonate and dimethylsulfoxide 

(DMSO) were purchased from ACP Chemicals Inc.. N,N-dimethylformamide (DMF), activated 

charcoal (G-60), and concentrated hydrochloric acid (~37% aq.) were purchased from Anachemia. 

2,4,6-trimethylisophthalic acid was synthesized according to literature.20a 3,3´-diaminobenzidine 

(98%) was purchased from Kindchem (Nanjing) Co., Ltd and purified according to literature.33 

Aqueous solutions of KOH with concentrations of 5, 10, 15, 20, 25, 35 and 50 wt% were prepared 

by dissolving KOH pellets (Sigma Aldrich, assay ≥85% KOH, ≤ 1% K2CO3) in demineralized 

water. Density measurements were carried out to determine the concentrations by comparison with 

data in the literature.34 The conductivity cell was calibrated using aqueous KCl conductance 



standards (Sigma Aldrich, 1.0 and 0.1 mol L-1). The nickel foam (thickness 1100 μm) was 

purchased from American Elements. Zirfon™ Pearl 500 UTP was supplied by Agfa. 

 

3.2 Polymer synthesis and membrane preparation 

The mes-PBI was synthesized using the following modified literature procedure.20a In a 3-neck 

round-bottom flask, with argon inlet, mechanical stirring rod, and stopper attached, was added 

2,4,6-trimethylisophthalic acid (4.8590 g, 23.3 mmol), 3,3´-diaminobenzidine (5.0015 g, 

23.3 mmol), and poly(phosphoric acid) (PPA, 156 g). The atmosphere in the flask was evacuated 

and re-filled with argon 5 times. During the following experimental steps, the container was then 

continuously evacuated using a vacuum pump (Welch DuoSeal 1400). The mixture was then 

heated to 70 °C and the mechanical stirring was started. After 30 min, the temperature was 

increased to 110 °C for an additional 30 min. The temperature was then slowly ramped up to 

150 °C over 4.5 h. The pressure was then returned to atmospheric pressure by refilling with argon. 

The dark brown viscous solution was poured into water (3 L), where it formed white fiber. The 

solid was washed twice with water and then stirred in water (3 L) with K2CO3 (solution pH≈10) 

for at least 48 h. The collected solid was washed twice with water and then dried for 2 h in air at 

105 °C. The fibers were ground to a fine powder (in liquid N2) and then stirred in water (2 L) with 

K2CO3 (7.5 g) for 1 h. The collected solid was washed with water and dried under vacuum at 

100 °C overnight, yielding 7.96 g (97.3%) of brown powder.  

To remove small molecule impurities, the solid was further purified by boiling in DMF 

(200 mL) for 30 min, cooled to room temperature, and decanted. The solid was then boiled in 

DMSO (200 mL) for 30 min. While hot, the mixture was poured into water (3 L). The solid was 

collected, stirred in water overnight, and dried under vacuum at 80 °C. The solid was heated in a 



mixture of DMSO (135 mL) and aqueous KOH (4.3 g KOH in 13.5 mL H2O) at 70 °C for 20 h. 

The dark red solution was decanted into a beaker and, while vigorously stirring, acidified with 

concentrated aqueous hydrochloric acid (15.5 mL). The mixture was poured into water (3 L), and 

additional concentrated aqueous hydrochloric acid was added (5 mL). After stirring for two hours, 

K2CO3 was added until pH≈10. After 30 min of stirring, the solid was collected, washed with 

water, stirred for at least 48 h in pH≈10 water (3 L water with K2CO3), collected, washed with 

water, and dried under vacuum at 80 °C to yield 6.54 g (80.0%) of purified mes-PBI as fluffy 

brown solid. The intrinsic viscosity [η] was 0.84 dL g-1, as calculated according to the single point 

method35 from viscosity data acquired at 25 °C using a RheoSense viscometer at a shear rate of 

5000 s-1 and a solid content of 0.3 g dL-1 in DMSO. 1H NMR (500 MHz, DMSO-d6, ppm) δ: 12.71 

(s, 2H), 8.08-7.46 (m, 6H), 7.24 (s, 1H), 2.17 (s, 6H), 1.92 (s, 3H). 

The membranes were cast in a leveled glass dish (filtered 2.3 wt% mes-PBI in DMSO 

solution) at 86 °C for at least 18 h. The membrane was peeled off from the glass, submerged in 

deionized water for at least 24 h, and air-dried to produce membranes with a thickness of 

approximately 60 μm. The same batch of polymer was used for the physicochemical 

characterization and stability study, while a second batch was prepared for the water electrolysis 

testing. 

 

3.3 Membrane characterization 

After equilibrating the membranes in aqueous KOH with concentrations of 0, 5, 10, 15, 25, 35 and 

50 wt% overnight at 88 °C, the compositions were determined gravimetrically by calculating the 

weight fractions of mes-PBI (Xmes-PBI), water (Xwater), and KOH equivalents (XKOH) as shown in 

Equation 2, 3 and 4, respectively. Here, m is the weight of the sampled membrane after careful 



blotting with tissue paper, mdry is the weight of the sampled membrane after drying at 110 °C for 

4 h and mdedoped is the weight of the sampled membrane after extensive washing in demineralized 

water until neutral pH followed by drying at 110 °C for 4 h. 

 

Xmes-PBI = mdedoped / m           (Eq. 2) 

Xwater = (m - mdry) / m          (Eq. 3) 

XKOH = (mdry – mdedoped) / m          (Eq. 4) 

 

The changes in surface area and thickness of the membranes were recorded to determine the 

swelling characteristics on the dry membrane basis. 

The chemical stability of the mes-PBI membranes was assessed by cutting the membranes 

in 35 square shaped pieces with an area of about 5.5 cm2 each. Before the dry weight and 

dimensions of the mes-PBI membrane samples were recorded, they were individually marked and 

dried at 110 °C for 4 h. The mes-PBI membrane samples were subsequently placed in sealed bottles 

made of polytetrafluoroethylene (PTFE, 5 bottles with 7 samples in each bottle). The bottles were 

filled with aqueous KOH (approximately 0.4 L) with concentrations of 0, 5, 10, 25 and 50 wt% 

and kept in an oven at 88 °C. Sampling was carried out after 2, 14, 28, 59, 99, 149 and 207 days. 

The weight relative to the initial mes-PBI weight for the sampled membranes is expressed as the 

weight of the washed and dried sampled membrane relative to its initial dry weight. 

The Fourier transform infrared (FTIR) spectra were recorded on a Perkin Elmer Spectrum 

Two in attenuated total reflectance (ATR) mode. The 1H nuclear magnetic resonance (1H NMR) 

spectra were recorded on a Bruker Ascend operating at 400 MHz. Deuterated dimethylsulfoxide 

(DMSO-d6) was used as solvent and the solvent residual signal at 2.50 ppm was used as reference. 



X-ray diffraction (XRD) was carried out using a Rigaku MiniFlex 600 equipped with a Cu Kα X-

ray source (λ=1.5418 Å) in the range 5-50° 2θ at a scan speed of 5° 2θ per minute and a stepsize 

of 0.02° 2θ. For the FTIR and XRD measurement on mes-PBI equilibrated in aqueous KOH, the 

samples were prepared and kept in the corresponding aqueous KOH solutions and the 

spectra/diffractograms were recorded immediately after the samples were taken out and carefully 

blotted with tissue paper. The total exposure time to the ambient air during was about 3-5 and 10-

12 minutes for the FTIR and XRD measurements, respectively. Thermogravimetric data were 

acquired under air at a linear heating rate of 10 °C min-1, using a Netsch STA 409 PC. Size 

exclusion chromatography (SEC) was carried out on a Shimadzu HPLC Instrument, equipped with 

2 PolarSil columns (100 and 300 Å) from Polymer Standards Service (PSS) and a Shimadzu 

refractive index detector. The system was controlled via the LabSolutions GPC software, which 

was also used for the data processing and calculations. The mobile phase was composed of DMAc 

containing 0.25 wt% LiCl. The temperature of the columns was kept at 60 °C and the flow rate 

was 1 mL min-1. The peak average molecular weight Mp, number average molecular weight Mn, 

weight average molecular weight Mw and the polydispersity index PDI (Mw/Mn) were calculated 

based on a calibration using narrow molecular weight poly(methylmethacrylate) (PMMA) 

standards from PSS in the molecular weight range of 800–1,600,000 g mol-1. Scanning electron 

microscopy (SEM) was carried out on a Carl Zeiss EVO MA10 and the cross-section was prepared 

by ion-milling using a Hitachi E-3500.  

The ion conductivity of the aqueous KOH solutions and of mes-PBI in the corresponding 

solutions was measured by electrochemical impedance spectroscopy using a VersaStat 3 from 

Princeton Applied Research at 10 mV amplitude scanning the frequency range 1 MHz to 10 Hz, 

as described in more detail elsewhere.16b
  



The water electrolysis tests were performed in a circular lab cell with an active area of 11.6 

cm-2. Electrolyte of 5, 15 and 25 wt% aqueous KOH was actively circulated through both flow 

field chambers at 120 mL min-1. The membranes were equilibrated in the corresponding electrolyte 

for at least 3 days prior to cell assembly. Membrane thicknesses were in all cases 60-65 µm ± 14 

µm after equilibration in aqueous KOH. The electrodes were prepared from nickel foam pressed 

to a thickness of 210 µm and assembled together with mes-PBI membrane and PTFE gaskets, by 

carefully aligning the components. The cells were conditioned at 20 mA cm-2 (5 wt% KOH) or 50 

mA cm-2 (15 and 25 wt% KOH) for 15 minutes, after which polarization curves were recorded by 

potentiodynamic scans from 1.3 to 2.5 V at 2 mV s-1. First at room temperature, then at 40, 60 and 

80 °C, with 5 minutes in between for temperature stabilization. The temperature was controlled by 

heating elements in the end plates. A single cell was operated for 3 days in 25 wt% KOH. 

Following an initial characterization as described above, the current density was kept at 200 mA 

cm-2 at 80 °C for 3 periods of about 1 day. Between the segments, the electrolyte was levelled and 

polarization curves were recorded. Cell current-voltage control was managed by an Elektro 

Automatik EA-PS 3016-20 B unit through a LabVIEW interface. 5-10 data point averaging was 

applied to smooth selected polarization and durability data to increase readability/clarity. 

 

4 Conclusions 

Ternary electrolyte systems are obtained by equilibrating membranes of poly(2,2´-(m-mesitylene)-

5,5´-bibenzimidazole) (mes-PBI) in aqueous KOH to give apparent one-phase systems, where the 

composition strongly depends on the concentration of the bulk solution. In 25 wt% KOH the 

electrolyte uptake corresponds to about 10.2 H2O and 1.2 KOH equivalents per mes-PBI repeat 

unit, which supports ion conductivity up to 100 mS cm-1 at 80 °C. The polarization characteristics 



and performance stability of a noble-metal-free zero-gap alkaline water electrolyzer constructed 

around this electrolyte system demonstrate the technological feasibility of the approach. In contrast 

to m-PBI the membranes based on mes-PBI show no apparent degradation during 207 days at 88 

°C in aqueous KOH with concentrations up to 10 wt%. Gradual degradation occurred in the higher 

concentration regime, likely due to reduced steric protection of the benzimidazole C2 position of 

the potassium polybenzimidazolide form of mes-PBI. The results show that further structure 

optimization is needed towards improved steric protection of the base-polymer in the 

polybenzimidazolide form, as the stability of the membrane is key towards the development of a 

cost-efficient and durable advanced alkaline water electrolyzer. 
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