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ABSTRACT: The biomolecule is among the most important building blocks of biological
systems, and a full understanding of its function forms the scaffold for describing the
mechanisms of higher order structures as organelles and cells. Force is a fundamental
regulatory mechanism of biomolecular interactions driving many cellular processes. The
forces on a molecular scale are exactly in the range that can be manipulated and probed
with single molecule force spectroscopy. The natural environment of a biomolecule is
inside a living cell, hence, this is the most relevant environment for probing their function.
In vivo studies are, however, challenged by the complexity of the cell. In this review, we
start with presenting relevant theoretical tools for analyzing single molecule data obtained
in intracellular environments followed by a description of state-of-the art visualization
techniques. The most commonly used force spectroscopy techniques, namely optical
tweezers, magnetic tweezers, and atomic force microscopy, are described in detail, and
their strength and limitations related to in vivo experiments are discussed. Finally, recent
exciting discoveries within the field of in vivo manipulation and dynamics of single
molecule and organelles are reviewed.
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1. INTRODUCTION

To understand the basics of life, it is essential to study the
construction and function of single molecules. Action—reaction
mechanisms at the single molecule level provide information
that can be up-scaled to explain functional properties of
organelles, the entire cell, and even of the whole organism.
Also, as many diseases originate from failure at the single
molecule level, for instance by the malfunction of a misfolded
protein, a deeper understanding of action—reaction mecha-
nisms might help deciphering the origin of the disease. Despite
the great knowledge obtained from in vitro experiments on
dynamics of single molecules, it has become evident that to
fully uncover their behavior, single molecules must also be
studied under natural conditions, as their function often is
highly regulated by their local environment. Hence, to increase
the biological relevance of single molecule manipulation and
force probing, the experimental stage must be brought inside
the living cells.

1.1. The Cell

The living cell is a highly complex organism with numerous
regulatory pathways and action—reaction mechanisms that are
strictly coordinated (Figure 1). First of all, the cell is
surrounded by a cell wall that protects the cytoplasm from
the exterior. In the cell wall, there are certain transmembrane
proteins and receptors constituting channels and transport
systems which allow for controlled passage across the cell
membrane. Inside the cell the cytoskeleton is responsible for
mechanical tasks, for instance for maintaining cell shape, for
transportation, for the dynamics related to cell division, and for
cell movement. The cytoskeleton consists of a variety of
biopolymers of which the most abundant are microtubule,
actin, and spectrin. Typical locations of these cytoskeletal
elements are illustrated in Figure 1. The most common mean of
transport inside the cell is probably diffusion; however, it is not
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Figure 1. Illustration of the content of the highly crowded cytoplasm of a normal living cell. Force spectroscopy and manipulation have been used to
investigate the mechanical and dynamic properties of, for example, membrane components and proteins, molecular motors, assembly of the
cytoskeleton, cell division, DNA transcription machinery, cell adhesion, and signaling pathways.
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Figure 2. (A) Illustrations of how information on single molecule behavior can predict ensemble behavior, however, that the opposite is not true.
(B) The fundamental behavior of a channel that can be either closed or open, allowing charges to pass, cannot be deciphered by ensemble
measurements. (C) The fluorescence signal from a mix of fluorophores emitting blue and yellow light, respectively, will appear green if observed on
an ensemble level. (D) The stepping nature of the DNA replicating machinery (polymerases and ribosomes) is hidden in ensemble measurements
that typically evaluate protein production when replication efficiency is studied.

very effective for larger objects in the crowded cytoplasm. A understood. The opposite is, however, not true as the dynamics
more effective mode of transportation is by means of molecular of individual molecules are hidden in ensemble experiments.
motors (e.g, kinesin and dynein), which move their cargo in a This is illustrated in the following relevant examples sketched in
processive manner along microtubules. The nucleus contains Figure 2: consider a membrane channel through which charges
the DNA, which is transcribed by the polymerase in the making can pass in a selective manner (Figure 2B). The channel is
of mRNA (see Figure 1). mRNA is transported out of the either open or closed and hence allows a current of either 0 or 1
nucleus where the ribosomes, located in the endoplasmic (arbitrary units, AU) to pass through the channel. If the
reticulum, translate the information stored in the mRNA into channel is closed exactly half of the time, the average current
proteins. These above-mentioned cellular parts and processes through the channel will be 0.5 (AU). Without other evidence,
have been highlighted here as their mechanical properties and this readout could indicate that the channel is always halfway

dynamics are some of the most common action points studied

e ' ‘ open. This conclusion is obviously wrong as the channel is
using single molecule manipulation and force spectroscopy.

never half-open, it is either fully closed or fully open. The only

1.2. Single Molecule versus Ensemble Measurements way to uncover the correct function of the channel is to observe
A good hallmark of high-quality single molecule experimenta- the current through a single channel over a certain timespan. A
tion is if the behavior obtained on the single molecule level on second example, illustrated in Figure 2C, is the observation of
average is the same as in ensemble measurements. In other fluorescence from a mixture of two fluorophores emitting blue
words, one can deduce the ensemble properties from single and yellow light, respectively. An ensemble observation of the
molecule measurements provided that collective effects are also light emitted will show green light. However, by picking up

4344 DOI: 10.1021/acs.chemrev.6b00638
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light from each fluorophore individually, one would observe
emitted light from two distinct populations. The third relevant
example, illustrated in Figure 2D, regards the process of protein
synthesis. The information stored in DNA is transcribed into
mRNA by the polymerase, which moves along the DNA in a
steplike fashion with a step size of 3.4 A."> The mRNA is then
translated into a nascent protein by the ribosome, which also
moves in a steplike fashion with a step-size of 1 codon.”
Measuring the production rate of proteins in cells by, for
example, Western blotting, returns a continuous process that
will not bear any traces of the steplike motion of the two
molecular motors involved. In contrast, measuring the
mechanical function of the polymerase and the ribosome
using, for example, optical tweezers, returns the kinetic
properties (i.e., stepsize and velocity) of these motors that
are hidden in the ensemble measurements.

1.3. Technological Breakthroughs

A window to the dynamics of the smallest entities of the living
world appeared with the evolution of novel techniques capable
of monitoring or even influencing single molecules and
organelles inside living cells. The first report on manipulation
of single molecules was published in 1969, where Nicklas &
Koch investigated the role of tension on the reorientation of
mal-oriented chromosomes by direct micropipette manipu-
lation of chromosomes inside a living cell.* Soon after this
pioneering study, Arthur Ashkin demonstrated in the early
1970’s that micron-sized particles could be stably trapped by
the radiation pressure from two counter propagating laser
beams.” This work paved the way for optical manipulation of
atoms and living organisms, and during the next decade optical
tweezers were significantly refined. Optical trapping of
individual living micro-organisms such as yeast and Escherichia
coli was demonstrated in 1987.° Here, the micro-organisms
were shown to tolerate trapping by a near-infrared laser, and
they even appeared physiologically healthy as they proliferated
while in the optical trap.” Optical tweezers can not only
spatially restrict trapped objects but also perform force and
distance measurements in regimes relevant for single molecule
movement, namely in the pico-Newton and nanometer
regimes. This was demonstrated in 1990 when Ashkin and
co-workers performed the first quantitative measurements of
the force generated by a microtubulus-associated molecular
motor inside the giant amoeba Reticulomyxa, which was found
to be 2.6 pico-Newtons.® Optical tweezers are probably the
technique which has found the most widespread use for
quantifying forces generated by molecular motors both in vitro
and in vivo. This is aided by the fact that optical tweezers are
the only nanotool capable of operating inside a living cell or a
living organism without perforating the cellular membrane and
without the need for inserting artificial handles.

The atomic force microscope (AFM) was invented in the
1980’s.” In contrast to the scanning tunneling microscope, the
AFM has the advantage with respect to handling living
specimen that it does not require a conductive sample and it
does not require a vacuum. An AFM can be operated in an
aqueous environment, in a physiological relevant temperature
range, and it is capable of measuring forces and distances of
high relevance for the molecular and cellular level. The AFM is
probably the single molecule technique that has found the
largest commercial market, also for its capabilities to scan and
image surfaces with molecular resolution. In particular, AFMs
have proven extremely useful for probing and mapping out cell
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surface receptors, thereby assessing their function and binding
kinetics."’

Magnetic tweezers resemble optical tweezers, however,
utilize a magnetic field to generate forces instead of an optical
field.'""* Magnetic tweezers can relatively easily rotate a
magnetizable particle attached to a probed molecule and also
manipulate a large number of particles in parallel within a
sample. Because of magnetic tweezers’ ability to induce a
controlled tension through rotation of a handle, they have been
particularly useful for obtaining information on the physical
properties of DNA and on the dynamics of DNA associating
enzymes.'”

In parallel with the emergence of single molecule
manipulation techniques came development and refinement
of microscopy. In the 1980’s, the group of Gelles demonstrated
how the position of beads attached to single molecules could be
determined with a resolution down to tens of nanometers by
the use of clever image analysis.'> With the development of
super-resolution imaging modalities, for instance STED
(stimulated emission depletion),'*"> STORM (stochastic
optical reconstruction microscopy),'® and PALM (photo-
activated localization microscopy),'” Abbe’s criterion for the
smallest distinguishable distance between two objects was
bypassed, and the window to the single molecule world became
even wider. Besides direct tracking of the dynamics of objects
inside living organisms, these imaging modalities can often
readily be combined with single molecule force spectroscopy
techniques, thereby allowing visualization simultaneously with
manipulation.

1.4. Why Go in Vivo

The in vitro setting has several advantages (e.g., the influence of
a single parameter can often be isolated), and the experiments
and their interpretation are typically less complex than in vivo.
Hence, many spectacular discoveries of the function and
dynamics of single molecules such as kinesin,'® polymerase, '’
and the ribosome’® obtained in vitro have been published.
However, results obtained in vitro often face critique from the
life science community because the investigated molecules are
in an artificial environment instead of in their natural one.
Therefore, to fully uncover and understand the natural
functions of single molecules, they must be studied while in
their natural environments as well. One example of a molecule
whose properties appear to vary from in vitro to in vivo is the
ribosome; while overall translation rates of 1 codons/second or
less were reported from in vitro single molecule experiments,”
the in vivo rates were observed to be between 4.2 and 21.6
codons/second dependent on sequence.”’ Another example is
myosin, where the velocity of the motor in vivo was found to be
faster (710 + 50 nm/s) than in vitro (500 + 30 nm/s), and
myosin was also found to stay on the track significantly longer
in vivo than in vitro.” These observations appear somewhat
counterintuitive considering the crowded nature of the
cytoplasm, and they definitely show that there are important
mechanisms at play in vivo which are not reproduced in vitro.
These interesting “hidden in vivo mechanisms” have been
termed “the Dark Matter of Biology” in a recent review by J.
Ross”* comparing the hidden players inside living cells with the
dark matter in gravitational physics.

There are, however, many challenges related to in vivo
manipulation and in vivo measurements involving single
molecules and organelles.23 First, the molecule should remain
in its natural environment, and efforts should be made to label

DOI: 10.1021/acs.chemrev.6b00638
Chem. Rev. 2017, 117, 43424375


http://dx.doi.org/10.1021/acs.chemrev.6b00638

Chemical Reviews

or handle only the molecule of interest and only one such
molecule. Second, the living cell or whole organism must be
kept viable. To keep the cell(s) viable, it is necessary to control
e.g,, the temperature of the sample chamber and possibly the
atmosphere too. Also, the techniques should preferably be
noninvasive, which none of the above-mentioned techniques
truly are, even the microscopy techniques involve photons
which interact with the sample. However, the techniques
focused on in this review can be operated in a nearly
noninvasive manner and thereby reliably probe the system.
This review first provides a description of theoretical tools
useful for analyzing single molecule dynamics and an overview
of the most well-established models relevant for in vivo
dynamics. This is followed by two experimental sections
outlining the state-of-the-art with respect to single molecule
visualization and manipulation covering the most promising
and widely used techniques. Then we present the exciting and
most recent results on in vivo dynamics obtained through
visualization and manipulation of single molecules and
organelles inside a living cell, also with a focus on the collective
effects. The review ends with an outlook on future possibilities.

2. THEORY ON DYNAMICS INSIDE LIVING CELLS

A colloidal particle in water experiences random collisions with
the vicinal water molecules. While on average these collisions
are isotropic and thus balance out, on sufficiently short time
scales, a colloidal particle performs a zigzagging path. This type
of motion is called Brownian motion and was reported already
by Jan Ingenhousz in 1785,** and Robert Brown in 1828.%°
Mathematically, Brownian motion is described by the same
laws as the random motion of individual molecules such as
sugar molecules in a cup of tea or individual proteins in a dilute
aqueous solution. In these cases, the squared width of the
distance traveled by the observed particle scales linearly with
time. Modern experiments on biological systems have, however,
shown clear deviations from the laws of Brownian motion,
where instead, the motion is described by a power law or more
complex mathematical expressions, capturing the live biological
processes.

2.1. Single Particle Tracking

There exist several experimental techniques to measure the
motion of microscopic particles inside the cytoplasm of living
cells or within cellular membranes. Diffusion of fluorescently
labeled molecules can, for example, be determined by methods
such as fluorescence correlation spectroscopy (FCS),*
fluorescence recovery after photo bleachin% (ERAP),” or
Forster resonant energy transfer (FRET). ® While these
methods have many advantages and can measure the motion
of quite small and mobile tracers, they have the intrinsic
disadvantage that the quantity they report is not the particle
position but averages over the position in terms of correlation
functions. The signatures of these generally provide less precise
information than the full particle trajectory.

As an alternative to these ensemble-based methods, the
trajectory r(t) of a particle can be directly measured using
single particle tracking by light-based microscopy modalilties,
detailed in section 3, that provide direct information on the
particle’s spatiotemporal behavior. Tracer particles such as
artificial beads of typical size >0.5 ym or endogenous granules
of several hundred nanometers in size can be directly recorded
by digital cameras mounted on modern microscopes. Smaller
particles can be observed by fluorescent tagging for hundreds of
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seconds at millisecond time resolution and at spatial accuracy
down to some tens of nanometers. Within the relatively large
volume of eukaryotic cells, molecules down to the size of single
and dimeric green fluorescent proteins (GFPs) can now be
successfully tracked™ as well as single lipid molecules in lipid
membranes.’” Apart from imaging by means of cameras, the
motion of a tracer can also be directly obtained through (weak)
optical trapping which provides better temporal and spatial
resolution of the trajectory, cf. section 4.

Single particle tracking (of larger objects) in fact has a long
tradition. In 1828, Robert Brown reported the erratic motion of
small granules of 1/4000th to 1/5000th of an inch extracted
from larger pollen grains as well as of milled stones from the
Sphinx.” Since then, more systematic single particle tracking
methods were developed by Louis Georges Gouy’' and, most
notably, by Jean Perrin in his seminal studies to determine the
Avogadro number from measured diffusion coefficients.”
Modern single particle tracking combined with new evaluation
methods for single particle traces was originally conceived by
Ivar Nordlund at the University of Uppsala.”> Combining a
moving photographic plate with a clock pendulum triggered
stroboscopic “central shutter”, he managed to produce time
series of small mercury droplets of 10 to 1S s in length (see
Figure 3).

2.2. Mean Squared Displacement
In his work from 1908, Perrin used the theory of Brownian
motion developed by Einstein®* and von Smoluchowski® to

analyze the particle motion in terms of the mean squared
displacement (MSD)

¢ iy 3 o>
Zettin 7,487 Sek.——»

Figure 3. (Top) Motion of small mercury droplets during
sedimentation measured by Ivar Nordlund with his moving photo-
graphic plate technique.>® The jittery Brownian motion of the droplets
on top of the deterministic sedimentation is distinct. (Bottom) Plot of
the purely diffusive motion (x*(t)) — (x(t))* spanning some 15 s.
Reproduced with permission from ref 33. Copyright 1914 Akademi-
sche Verlagsgesellschaft Geest & Portig.
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(1) = f P2(1)P(x, t) dV = Kt M
where the diffusion coefficient K; is of physical dimension
length®/ time. As indicated in equation 1, the MSD is
constructed from the spatial average denoted by angular
brackets of the squared particle position, weighted by the
probability density function P(rt) to find the particle at
position r at time t. As this quantity can only be obtained by
measuring an ensemble of tracer particles, it is called the
ensemble averaged MSD.***” In contrast to Perrin’s approach,
Nordlund quantified his measurements based on the
information provided by individual trajectories and determined
the time-averaged MSD. In modern single particle tracking
literature, the time averaged MSD, denoted by an overline, is
typically evaluated as*®*’

A /OT_A (r(t + A) — r(t))* dt

1

2
W=7 @
where T is the length of the measured trajectory and A is called
the lag time. In the calculation of equation 2, the information
on the entire time series r(t) is used for any lag time. For a
random walk process, defined in detail in section 2.3.1, the
number of discrete spatial dislocations, hereafter referred to as
“jumps”, within the time period A, is given by the ratio A/z,
where 7 is the typical time for a single jump. The expression in
the integral in equation 2 is then just given by (5x*)A/z, where
(6x*) is the variance of the jump lengths of this random walk
process. The final result is

8 (A) = KA ()
where K; = (6x?)/[27] in the standard random walk sense.’’
For an ergodic system in the sense of Boltzmann, the time
average of an observable should converge to the corresponding

ensemble average at sufficiently long observation times T:***
lim 6%(A) = (r’(A
T1—I>I:o (A) = (r*(4)) (4)

The laws of equation 1 and equation 3 thus demonstrate the
ergodic nature of Brownian motion.

In actual analysis of data, results are often smoothened by
averaging equation 2 over a number N of single trajectories i,
producing the mean time averaged MSD

) =Ly
<()>_§§ s)

In Figure 4, the ensemble averaged MSD of a simulated
Brownian motion is shown together with the corresponding
time averaged MSD from both individual trajectories (50000
steps) and an ensemble of trajectories (1000 time averaged
MSDs). Figure 4 demonstrates that even for relatively long
trajectories, the time-averaged MSD shows quite disparate
behavior. However, the mean time averaged MSD, averaged
over a sufficient number of individual trajectories, becomes
indistinguishable from the ensemble averaged MSD.

57(2)

2.3. Anomalous Diffusion

Measurements of the trajectories of tracer particles in living
cells reveal a different picture than the behavior shown in
Figure 4. In living cells, anomalous diffusion of the form:

(r(t)) =~ K t* (6)
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Figure 4. MSDs from simulated Brownian motion. The red line
represents the ensemble averaged MSD from 1000 independent
particles, showing some local variations around the linear law (r(t)) ~

t. The thin black lines represent time averaged MSD 5*(A) for
individual trajectories of 50000 steps each, exhibiting quite
pronounced deviations from the linear behavior. The thick black line

represents <52(A)> averaged over 1000 individual trajectories. The

shaded red interval is the variance calculated from 1000 individual
53 (A).

is frequently observed.>’™*° In this case, the diffusion
coefficient, K,, is of physical dimension Iengthz/ time”. The
anomalous diffusion exponent, @, measures the degree to which
the particle motion deviates from Brownian motion where a =
1. One distinguishes subdiffusion with 0 < a < 1 from super-
diffusion with @ > 1.*° Passive motion in living cells is typically
subdiffusive, while superdiftusive motion occurs in the presence
of active processes such as transport by molecular motors. As
an example, in Figure S the ensemble averaged MSD is shown
for granules performing anomalous diffusion inside living
HUVEC cells.”" A fit to the trajectories returns an exponent of
a = 0.75, meaning the granules show subdiffusive motion,
probably due to the crowding in the cytoplasm of the cells.

-1

(") @v)

10° 10" 102 10°

time t (ms)

Figure S. Ensemble-averaged MSD for anomalous diffusion. Blue,
purple, and green traces are granule trajectories from inside a living
cell. The color code represents the location of the granules, blue is in
the nucleus, purple in the cytoplasm close to the nucleus, and green is
at the cell’s periphery. The red trace is an average of all trajectories and
has artificially been shifted downward. The dotted lines represent a fit
with a slope of a = 0.75. Reproduced with permission from ref 41.
Copyright 2012 Springer.

DOI: 10.1021/acs.chemrev.6b00638
Chem. Rev. 2017, 117, 43424375


http://dx.doi.org/10.1021/acs.chemrev.6b00638

Chemical Reviews

In reality, anomalous diffusion defined by the power-law
form of the MSD in equation 6 does not uniquely define the
underlying mechanism causing it. In fact, there are many
different scenarios leading to equation 6. Figure 6 shows a

A. 30
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Figure 6. (A) Three trajectories of a two-dimensional Brownian
motion. The trajectories of a subdiffusive CTRW would have looked
similar, as the only difference is in the stopping times between
individual jumps. (B) Comparison of the one-dimensional trajectories
x(t) for different diffusion processes. The upper panel shows a
subdiffusive CTRW with @ = 0.6. Increasingly long trapping events
occur, corresponding to the horizontal lines in x(t). The middle panel
shows a Brownian motion (BM), and the bottom panel an FBM with
a = 0.6.

comparison of the behavior of Brownian motion with the two
most widespread anomalous diffusion processes, continuous
time random walks (CTRWs) and fractional Brownian motion
(FBM).

2.3.1. Random Walks and Brownian Motion. The
concept of random walks was originally introduced by Karl
Pearson in his quest of modeling the mosquito infestation of
newly created clearings in rain forests.”” In his terms, imagine a
drunkard trying to find home in a city built of square blocks.
Each time he reaches an intersection, due to lack of memory he
makes a random choice among the four possible directions for
the next intersection. More abstract, imagine a particle moving
on a lattice of spacing a in d spatial dimensions. During each
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time step 7, the particle moves randomly in any of the 2d
directions (see two and one-dimensional trajectories in Figure
6, panels A and B, middle panel, respectively). For this process,
it is straightforward to show that in the limit of many jumps,
corresponding to times t >> 7, the probability density function
P(r,t) to find the particle at position r at time ¢ is given by a
Gaussian distribution

r

1 2
(4nK;t)"? eXP(_ 4K1t) @)

as originally derived by Einstein.”* The diffusion coefficient K,
= a*/[2dr] is now composed of a and 7. It is easy to show that
the MSD of the process follows equation 1, and the process
itself is governed by the diffusion equation (Fick’s second
law).*** An important step in this derivation is the long time
limit of many jumps. In this limit, mathematically speaking, the
central limit theorem enforces the rapid convergence to the
Gaussian law (7).

2.3.2. Continuous Time Random Walks. CRTWs were
originally conceived by Montroll and Weiss, and then
generalized by Montroll, Scher, and Shlesinger.”™ In a
CTRW, the random walker at each jump chooses a random
jump distance r from a probability density A(r), symmetric or
asymmetric, whereas in between any two jumps, the random
walker becomes trapped for a random waiting time 7 drawn
from a probability density w(z). Here, we concentrate on
subdiffusive CTRWs for which the variance (Jr) is finite, for
example, it could equal the square of the fixed lattice spacing a.
Notably, when a CTRW has a finite characteristic waiting time,
(r), it can be shown that for many jumps, the waiting time
distribution renormalizes to that of a constant, fixed waiting
time 7*,"® that is the case of the Brownian motion. However,
when the mean waitin§ time (7) diverges, the process becomes
Scher and Montroll formulated the

P(r, t) =

subdiffusive,®”#0#4
subdiffusive CTRW with a power-law waiting time density y(7)
~ (7%)%/7"*® where 0 < a < 1. The resulting trajectory x(t)
shows frequent jumps interspersed with pausing times of ever
increasing durations. An example of a one-dimensional CTRW
trajectory is displayed in Figure 6B, upper panel. Indeed, single
particle tracking experiments have demonstrated the existence
of power-law waiting time distributions with 0 < a < 1 for
plastic microbeads in cross-linked actin meshes,”" for function-
alized microbeads moving along complementary functionalized
surfaces,”” and for the motion of potassium channels in the
membrane of living human kidney cells.”

Ideal trajectories from simulations as the one in Figure 6B,
upper panel, clearly show the stalling of the particle over certain
periods in time as horizontal plateaus. In realistic systems,
additional noise from the environment will at least partially
preclude such clear immobilization events. To account for such
additional noise, so-called noisy CTRW processes can be
studied with respect to both their ensemble and time-averaged
behavior.>*

2.3.3. Viscoelastic Anomalous Diffusion and the
Fractional Langevin Equation. A very different scenario
from the jump-like processes of the CTRW family is the
following: consider a long model polymer chain consisting of
beads with a given mass connected by harmonic springs of
given stiffnesses. The beads experience a viscous drag as well as
a random Brownian force due to the thermal environment.
Imagine one bead is being pushed slightly away from its
position. It will then experience a hierarchy of restoring forces
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from its nearest neighbors, the next nearest neighbors, and so
on. Each push in one direction is thus necessarily followed by a
push in the opposite direction, an effect called antipersistence.”
Thus, the motion of a single bead in the chain follows a regular
Brownian motion but is coupled to the motion of all its peers.
Consequently, the effective motion of this bead is governed by
a generalized Langevin equation,SG_62 and the associated MSD
is subdiffusive (r*(t)) ~ K * with 0 < ar < 1.

The motion of particles in a viscoelastic environment is
naturally described by such a generalized Langevin equa-
tion.°”®" For instance, it has been identified to govern the
motion of various submicron tracer particles in living cells and
complex liquids™ ™" or for the motion of lipid and protein
molecules in simple lipid bilayer systems.”*””" In the
overdamped limit, the generalized Langevin equation motion
is equivalent to fractional Brownian motion (FBM), exempli-
fied by the trace in Figure 6B, lower panel. For this process, the
associated MSD is again of the form of equation 6.”
Generalized Langevin equation motion and FBM are
mathematically quite intricate processes. In literature, they are
therefore often modeled in terms of a diffusion equation with a
time-dependent diffusion coefficient of the form K(t) ~ t*~%
However, we stress that this is a completely different process
called scaled Brownian motion,”””* and as long as the system is
kept at a fixed temperature, we do not expect scaled Brownian
motion to be a good description for the motion observed in a
viscoelastic environment.

Further details about anomalous diffusion processes may be
found in the reviews in refs 37, 39, 74, and 75.

2.4. Nonergodic Diffusion and Aging

2.4.1. Nonergodic Dynamics. As should be apparent from
the above examples for anomalous diffusion, they show
different faces. The common denominator of all processes is
the ensemble averaged MSD, equation 1, however, the
information on the ensemble averaged MSD is not sufficient
to fully characterize the underlying physical process.’”™’ At
longer times, the motion of larger tracers in the cellular
cytoplasm, tracers in artificially crowded systems, and the
motion of lipids in simple bilayer membranes most often
display the characteristics of viscoelastic systems and ergodic
processes, equation 43776778 However, there exist several
reports of systems in which ergodicity is broken whereby
equation 4 is violated.*>*” Typically, while the ensemble-
averaged MSD still features the power law form of equation 1,
the time-averaged MSD in such nonergodic cases follows a
linear dependence of lag time "7

VIR A

2 ~ —
(@) = Koz ®)
Examples of such nonergodic behavior are the motion of lipid
granules in yeast cells on short time scales”* and the motion of
insulin lipids in MIN6 cells.** Similar ergodicity breaking is
reported in the studies of diffusing proteins in the plasma
membrane of living cells.””®' To make things even more
complicated, the motion observed in refs 53 and 81 is
composed of both ergodic and nonergodic motion, leading to
power-law forms of both (r(t)) and (§*(A)), which, however,
have different scaling exponents. In all these cases, the analysis
of the measured time series requires special care as the linear
lag time dependence in equation 8 does not necessarily imply
normal diffusion and the value of the time-averaged MSD from
individual particle traces may significantly vary at a given lag
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time.”**””’ Figure 7 shows the time-averaged MSD of the
tracked granules shown in Figure 5.*' Notably, on short time

10"

10°
Lag time A (ms)

10

Figure 7. Time-averaged MSD for 10 different granule trajectories
from inside a living cell (from same data set shown in Figure S). The
black lines represent guiding lines with a slope of a = 1 (full), & = 0.7§
(dashed/dotted line), and a = 0.2 (dashed line). The color coding
represents the location of the granule: blue, in nucleus; purple, in
cytoplasm close to the nucleus; and green, at the cell’s periphery.
Reproduced with permission from ref 41. Copyright 2012 Springer.

scales, the time-averaged MSD trajectories are consistent with a
value of a = 1 that differs from that of the ensemble averaged
MSD (a = 0.75; Figure S). This implies that the process is
nonergodic for short time lags. The dashed line with scaling
exponent o = 0.2 at long lag times reflects the confinement of

the particle due to the finite size of the cell and the laser trap
37,64

used to monitor the motion.
2.4.2. Aging. Another unusual phenomenon, that is often
coupled with the violation of ergodicity, is referred to as
aging.’>*’ Aging indicates the nonstationarity of a process, for
instance that the effective mobility of an observed particle
decreases as a function of time.**”’* Aging can also appear in
results where the measurements were started some (aging)
time after the initial preparation of the system.””~** Aging may
additionally induce a population splitting of particles into
immobile and mobile fractions.*”** Aging has been observed in
biological experiments, such as for the motion of protein
channels in human cell walls>**" and of insulin granules in the
cytoplasm of cells."” With the use of molecular dynamics
simulations, it has recently been shown that aging effects can
span as much as 13 decades in time for the internal dynamics of
single protein molecules.”> Figure 8 shows experimental
measurements from potassium channels in the plasma
membrane, exhibiting aging dynamics for different lag times.

2.5. Analyzing Anomalous Diffusion

2.5.1. Mean-Squared Displacements and Higher-
Order Moments. The MSD corresponds to the second
moment of the particle displacement. Additional information
can be gained from higher-order moments. The non-
Gaussianity parameter G provides a sensitive measure for the
type of diffusion process under consideration. G involves
higher-order moments and is defined in terms of the
experimentally relevant time-averaged MSD as™
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Figure 8. Time-averaged MSD for the motion of potassium channels
in plasma membranes plotted as a function of measurement time at
given lag times A = 111, 222, 333, and 444 ms. The time dependence
shows that the process ages. The straight dashed lines represent fits
with slope @ — 1 = —0.10, while the particle motion is represented

with a CTRW. Reproduced with permission from ref 53. Copyright
2011 National Academy of Sciences.
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Here, d is the spatial dimension, and the fourth time-averaged
moment is defined similarly to the time-averaged MSD
equation 2 (ie., the power of the integrand is 4 instead of 2).
For Brownian motion G = 0, whereas it deviates from zero for
progressively non-Brownian diffusion.

Another useful tool to analyze measured stochastic data are
different ratios of moments, such as (#*(t))/{r*(t))?* for the time
series r(f) or for the mean maximal excursions, r.(t).*
Figure 9 shows the moment ratios calculated from the mean
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Figure 9. Moment ratios of the mean maximal excursion for video-
tracked beads of various sizes in a micellar solution. The dotted line
represents the critical value distinguishing a subdiffusive CTRW
(above this value) from a subdiffusive FBM (below this value) motion.
The different colors represent different bead diameters as explained in
the legend. Reproduced with permission from ref 65. Copyright 2013
IOP Publishing Ltd.

maximal excursion of video tracked beads of various sizes
immersed in aqueous solutions of wormlike micelles.”” The
horizontal dotted line in Figure 9 represents a critical value that
can be used to distinguish CTRW processes (above) from FBM
(below), see ref 86 for detailed information. Hence, using this
analysis, it was determined clearly that the beads performed
FBM motion in the viscoelastic solution.
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2.5.2. Increment Velocity Correlation. A typical quantity
accessible from experimental data is the position increment
autocorrelation function, which is defined through

C(0) = 5 ([x(r + ©) = x(@Ix(e) = x(0)])

€ (10)
and can be used as a tool to distinguish between different
subdiffusion models.”” Figure 10 shows the shape of the
increment correlation function (eq 10) for CTRW and FBM
processes.”” For subdiffusive CTRW, C'“)(z) as a function of 7
simply decays to zero within the resolution €, as shown in the
top panel. As soon as the CTRW is confined (e.g, in a potential
well), the situation is quite different, as shown in the middle
panel. Due to reflections at the flanks of a potential well,
negative correlations emerge as the particle changes direction.
As is also shown in the same panel, the emerging form
resembles that of the overdamped behavior of FBM motion,
where the negative values reflect the antipersistence of the
motion.”” The bottom panel shows C)(z) of a FBM together
with experimental data of beads with various sizes recorded in a
wormlike micellar solution.

2.5.3. Information from the Amplitude Scatter. The
fluctuations of the time-averaged MSD from one trajectory to
another can be quantified in terms of the probability density
function ¢,(&) of the dimensionless quantity

E=6%A, T)/(6*(A, T)). In fact, p(&) is a reliable measure
to distinguish different anomalous diffusion processes from one
another, in particular, also for relatively short trajectories.””*”**
For a reproducible process, this distribution is very
concentrated, becoming more and more narrow for increasing
measurement time T. Deviations from this form are expected
for processes such as subdiftusive CTRWs but also for relatively
short trajectories. For example, for CTRW subdiffusion, the
distribution ¢»(£) becomes quite broad and highly skewed, with
a finite value at & = 0.””* This reflects the possibility that the
particle does not move at all during a finite observation period.

The centered variance EB = (£) — 1 of the distribution ¢ (&)
is called the ergodicity breaking 7parameter and differs from zero
for nonergodic processes.””’>*” In addition to all mentioned
methods, there exist many more for the characterization of
measured stochastic time series. These were recently
summarized in refs 37 and 90. To guarantee a faithful
interpretation of measured data, it is important to use several
complementary analysis methods.

2.6. Active Motion in Biological Processes

Our description of anomalous diffusion has so far mostly
concerned passive motion. However, several biological
processes are active (e.g, mediated by molecular motors),
converting biochemical energy into mechanical directed output.
The underlying molecular mechanisms for active motion are
discussed in a number of recent reviews (e.g., refs 91—94).
Here, we discuss a few examples of numerical simulations,
paralleled by experimental findings, with a focus on how to
analyze such data. When the recorded data stems from
observations of a larger cargo carried by a molecular motor,
the data series will typically indicate anomalous diffusion,”
including superdiffusion and directional persistence.”””” In
particular, superdiffusive traces in living cells have been
putatively associated with active motor motion.””*”” However,
sometimes directed motor motion can be masked and
comprised by cargo size, linker elasticity, and loading force,
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Figure 10. Increment correlation function for different processes. (A)
C'9(z) of a subdiffusive CTRW, showing that successive moves of the
particle are completely decorrelated.*” (B) When the same process is
confined by an external potential, Cl9(z) overshoots to negative
values. This behavior resembles that of the generalized Langevin
equation or FBM.*” Reproduced with permission from ref 87.
Copyright 2011 Royal Society of Chemistry. (C) Cl(z) of generalized
Langevin equation motion compared to data measured for microbeads
of different sizes in wormlike micellar solution.®® Reproduced with
permission from ref 65. Copyright 2013 IOP Publishing Ltd.

which m'ght cause the motion to appear as passive anomalous

diffusion.
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As with subdiffusive processes, a big challenge in active
motion is to find the correct descrigtion of the underlying
mechanism. For example, Chen et al."”’ used simple numerical
models and experimentally recorded trajectories of fluores-
cently labeled endosomes in live mammalian cells to determine
the parameter ranges for which the traces were better described
by truncated Lévy walks than by Brownian transport. Even
more authors have pointed to the need for development of new
tools based on nonequilibrium statistical physics, allowing for a
description of active processes in the framework of (passive)
diffusion.'”" Bruno et al.'"” suggested a model that was shown
useful for extracting step-sizes and dwell times from
experimental trajectories of myosin-V driven organelles in
living cells. As another example, Brunstein et al."”” proposed a
model that could determine distribution of velocities extracted
from traces of experimental observations of Myosin-V driven
melanosomes along microtubules in Xenopus laevis. Further-
more, several numerical models have been presented based on a
tug-of-war scenario (see molecular description of tug-of-war
mechanisms in section S) that can be tuned to display
multimodal velocity distributions similar to experimental
data.'%*7"% As these models attempt to describe the underlying
kinetics of the cargo transport, the important conclusion put
forward by Martinez et al.'”’ that the cargo velocity is not
directly indicative of the number of molecular motors involved
in an active transport is worth bearing in mind.

The problem in separating the underlying motion of the
motor complex from the thermal fluctuations of the cargo,
originating from a floppy linkage between the observed cargo
and the motor, were addressed in refs 95 and 108. In the latter,
an algorithm based on Bayesian statistics reliably parsed cargo
tracks into constant velocity segments given what was known
about the noise stemming from the linkage.'”® The algorithm
was applied to trajectories of lipid droplets along microtubules
in wild-type Drosophila embryos, showing with statistical
evidence that the tracked droplets separated into distinct
populations around two preferred velocities. In a similar study,
Gazzola et al.'” developed a stochastic model for molecular
motors stepping along microtubules including binding and
unbinding to the cargo with parameters extracted from
experimental observations of fluorescent adenovirus type 2 in
HeLa cells. The six parameters of the model were inferred from
the velocity and displacement distributions of segmented
trajectories. These findings led the authors to suggest that
bidirectional transport of human adenoviruses can be explained
without explicit motor coordination and enabled the prediction
of the number of motors active on the viral cargo during
microtubule-dependent motions as well as the number of
motor binding sites. In a more recent numerical model,"'° the
cargo transport from a system with two identical molecular
motors with floppy linkers to the cargo was investigated in
detail, in a parametrically simple model. Furthermore, it was
demonstrated that the model could be used to extract
parameters involved in cargo transport by two such motors
from experimental trajectories.

Ideally, comparison with experimental data should also
identify if the model is relevant for the particular trajectory. For
this purpose, Assmann et al.''" addressed how trajectories with
bidirectional character may be analyzed. Here, a series of
statistical tools useful for analyzing and characterizing cargo
trajectories were introduced, and it was demonstrated how the
statistical properties of observed cargo trajectories could
provide information on the motor proteins involved. Collective
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Table 1. Comparison of Different Light-Based Microscopy Techniques

bright field confocal multiphoton
dye staining any any
optical sectioning no yes yes
live-cell imaging yes, but staining will ~yes yes
compromise
viability
multicolor no, unless staining  yes challenging
and killing the cell
out-of-focus excitation  yes limited by ~ only very little
the
pinhole
temporal resolution ms-s ns-s ms-s
spatial resolution (x,y) > 250 nm > 180 nm > 300 nm
illumination wide field point point scanning
scanning

TIRF light sheet

super-resolution

any any only certain fluorophores

no yes yes

yes, but only < ~300 yes STED is more invasive than
nm from the glass PALM/STORM
surface

yes yes challenging

only very little only very little  only very little

ms ms ms-min

> 200 nm > 500 nm > 20 nm

evanescent field for STORM/
PALM, doughnut-shaped field
for STED

evanescent field

light sheet

action of molecular motors in a crowded environment was
addressed most recently in refs 112 and 113.

3. HOW TO DETECT DYNAMICS INSIDE LIVING CELLS

Despite great technological achievements, in vivo imaging in
combination with manipulation, in particular at the single
molecule level, is a complicated task due to the difficulties
related to the correct labeling of the relevant structures, the
limited number of photons emitted, and potential autofluor-
escence from the cytoplasm. Also, the structures of interest may
be so small that they are not distinguishable in normal optical
microscopy where the resolution is limited by the diffractive
nature of light.

The optical resolution limit was introduced by the physicist
Ernst Abbe in 1873 and describes the distance, d, at which two
pointlike objects are distinguishable in light microscopy:

A

" 2nsinf

(11)

Here, A is the wavelength of the light, n is the index of
refraction, 6 is the half angle defining the cone of light exiting
from the lens, and # sin 0 equals the numerical aperture (NA)
of the objective. Thus, if more objects, for example,
fluorescently labeled biomolecules, are within this distance
(typically ~250 nm) of each other, their individual positions
cannot be determined. Compared to the size of a cell, Abbe’s
diffraction limit is much smaller, but many cellular objects of
interest, and distances between such objects, are smaller than d.

The image recorded by optical microscopy from a
subdiffractive object is well-described by the point spread
function, which consists of a central intensity peak surrounded
by a series of higher-order diffraction patterns.''* The central
peak is known as the Airy disc and contains most of the photon
distribution. The full width half- maximum (fwhm) of the Airy
disc represents d from equation 11. With the development of
single-molecule localization algorithms'>'"> and super-resolu-
tion microscopy techniques'*~"”''® Abbe’s resolution limit has
been bypassed. However, the application of super-resolution
techniques is still somewhat limited due to technical and
experimental demands that are not trivial to combine with
single molecule manipulation, and also, so far only a limited
number of fluorescent labels can be used for each super
resolution technique.

Imaging of cells (in combination with force spectroscopy) is
therefore still mostly based on conventional fluorescence light
microscopy, as detailed in section 3.2. A variety of microscopy
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techniques offering different possibilities and trade-offs exist, as
outlined in Table 1. A high resolution is achieved by collecting
a sufficient number of photons from the emitting fluorophores.
However, the overall photon count poses a trade-off on
temporal resolution as more photons require longer measure-
ment times. More photons can also be harvested by increasing
excitation intensity, yet, this directly increases phototoxicity and
bleaching of the sample.

The molecules or organelles of interest are often not visible
without fluorescent labeling. Although some biomolecules
exhibit intrinsic fluorescent properties, they do not display as
good brightness as, for example, organic fluorophores,
fluorescent proteins, quantum dots, or gold nanoparticles
(AuNPs). The quality of a fluorophore is generally a product of
high absorption cross section and quantum yield, chemical and
fluorescent stability, high water solubility, and sufficient
fluorescent-lifetime to prevent blinking and delay bleaching.
Organic fluorophores come in basically any color in the visible
spectrum. Also, with typical sizes of 200—1000 Da, they are
much smaller than fluorescent proteins (20000—300000 Da),
quantum dots, and AuNPs, where the latter two consist of
hundred of thousands of heavy atoms. It is an advantage that
fluorophores are small because they impose less steric
hindrance. However, the process of labeling intracellular
biomolecules with synthetic organic fluorophores can be
challenging and is commonly done using antibody schemes.
To reach their target, the fluorophores must be internalized
through the highly nonpermeable cell membrane which can be
a stressful process for the cell.

The discovery of genetically encoded fluorescent proteins
that are either expressed alone or in fusion with other proteins
helps overcome some of these obstacles. The challenges related
to fluorescent proteins are instead that they have fairly low
photon output and are less stable compared to organic
fluorophores, quantum dots, and AuNPs. The selection of
spectral regions for excitation is also limited, in particular in the
red and near-infrared regime. This regime is of special interest
as biological tissue does not absorb near-infrared light as well as
visible light, hence, the penetration distance of near-infrared
light is longer, and the sample is not damaged as much as by
visible light.

Quantum dots are fluorescent semiconductor nanoparticles,
with emission spectra inversely related to particle size. They
usually consist of a CdSe or CdTe core surrounded by a ZnS
shell that prevents quenching by water and enables
conjugation.'’” Quantum dots have high extinction coefficients
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Figure 11. Ilustration of how an optical trap can be implemented in a confocal microscope. This setup is similar to the one described in 2006 in ref
127. The trapping laser beam (red) is guided into the optical path of the confocal lasers by a dichroic mirror allowing visible lasers to pass but
reflecting near infrared (NIR) light laser light. The signals from the confocal lasers are picked up by the AOBS and directed onto the photomultiplier
tubes. The signal from the trapping laser is picked up by a quadrant photodiode (QPD) located close to the back focal plane, which allows for
determining the 3D position of the trapped object. In this configuration, the confocal lasers and the optical trap can be steered independently (by the

tandem scanner and the telescope, respectively).

and quantum vyield, and they are extremely photostable
wherefore they are easily visualized and localized in the
cytoplasm of cells. Thus, quantum dots are attractive markers.
However, as quantified above, they are several orders of
magnitude larger than conventional fluorophores and impose
larger steric hindrance. Also, their toxicity is currently under
debate in literature.

Gold nanoparticles are not fluorescent; however, they reflect
light in a certain spectrum very efficiently and can thus be
detected (e.g,, through confocal microscopy operated in the
reflection mode). Gold nanoparticles, spheres, rods, or other
shapes are quite attractive markers as they never bleach and can
be conjugated through thiol chemistry to a number of
biomolecules.

3.1. Transmitted Light Microscopy

In bright field microscopy, the sample is often illuminated from
the top with a halogen lamp focused through a condenser
before the sample plane and the transmitted light is collected by
an objective. Kéhler illumination produces both an extremely
even illumination at the sample and excludes visualization of

the light source in the final image. The image contrast is a
consequence of absorption in the sample; the various specimen
appear darker the more light they absorb. In living cells, the
contrast is very low as most cellular material is transparent and
colorless. Hence, it can be difficult to detect smaller structures,
in particular, without staining. Unfortunately, staining often
requires killing and fixing the cells, thus excluding dynamic
investigations. Detection is commonly done with CCD or
CMOS cameras with time resolutions up to kHz rates.""*"'"”
Bright field microscopy has often been combined with
manipulation techniques. One example is with the use of
optical tweezers for force calibration and quantification of
viscoelastic properties of endogenous lipid granules inside the
cytoplasm of yeast cells'*”'*" or with magnetic tweezers using
internalized magnetic beads in living macrophage.”””> The
advantage of bright field microscopy is that it is simple to use
and easy to implement with force spectroscopy techniques. The
biggest disadvantage is that the contrast is rather low and
staining includes killing the sample. Furthermore, out-of-focus
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structures induce significant blur in the images that limits the
use for single molecule detection.

3.2. Fluorescence Microscopy

Fluorescence microscopy is based on excitation of fluorophores
and detection of the emitted photons that have a red-shifted
wavelength compared to the excitation wavelength. Commonly,
the microscope is in an epifluorescent configuration where the
light is focused through the objective onto the sample, and the
emitted light is collected by the objective and passed onto the
detector. Different wavelengths for illumination or detection
can be separated by beam splitters, filters, or dichroic mirrors.
The simplest form of fluorescence microscopy is wide field.
Here, the entire sample is illuminated, typically with a xenon or
mercury lamp, in a near-cylindrical volume. As all fluorophores
are excited simultaneously, fluorescence from outside the focal
plane also contributes to the collected emission spectra, leading
to higher background and ultimately reducing single molecule
detection capabilities significantly.

3.2.1. TIRF. Total internal reflection fluorescence (TIRF)
microscopy can in principle be considered a wide field
technique as a relatively large lateral plane is illuminated;
however, only a small depth, typically up to ~200 nm from the
glass surface, is illuminated. In TIRF microscopy, the laser light
irradiates a glass interface at an angle larger than the critical
angle, thus leading to total internal reflection. This causes the
presence of an evanescent wave that decays exponentially into
the sample as a function of distance from the surface.
Therefore, only fluorophores that reside within ~200 nm
from the glass surface experience the evanescent wave and may
become excited. The restriction in illumination depth means
that out-of-focus emission is significantly reduced and single
molecules residing close to the surface can be more easily
individually visualized. Also phototoxicity and bleaching are
reduced, thus allowing longer imaging times. The main
drawback of TIRF with respect to in vivo imaging is that
only fluorophores located close to the glass surface can be
studied (e.g., one can study membrane proteins and receptors
in surface bound cells). TIRF microscopes have been combined
with optical traps; however, to our knowledge they have so far
only been reported for in vitro use."*>'**

3.2.2. Confocal Microscopy. Confocal microscopy is a
technique that has improved resolution and allows optical
sectioning compared to wide field fluorescence microscopy.
This is done by inserting a spatial pinhole in front of the
detector, thus detecting light from only a small volume.
Thereby, detection of emission from out-of-focus fluorophores
is eliminated spatially before the detector. By axially controlling
the focal plane, the sample can be imaged in different depths
allowing 3D image reconstruction, which is very attractive for
cell imaging. Spherical aberration, however, poses a significant
barrier to how deep into tissue one can image in practice.
Optimal cancellation of spherical aberration (e.g,, by changing
the index of refraction of the immersion media of the objective)
allows for visualization as deep as hundreds of microns into the
sample by simple confocal imaging.'**'

Confocal microscopes are typically equipped with a range of
excitation lasers, thus providing a wide choice of fluorescent
molecules with spectral properties spanning from UV to NIR
wavelengths. If the sample contains multiple fluorophores with
emission spectra that are well-separated, they can even be
imaged simultaneously using acousto-optical beam splitters and
rotating photomultiplier tubes. Some confocal microscopes can
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also be operated in reflection mode that allows for efficient
visualization of, for example, AuNPs. The resolution of confocal
microscopy is highly dependent on the size of the pinhole.
Normally, the pinhole is set to the size of the Airy disc.
Increasing the pinhole diameter allows more photons to be
collected but causes detection of out-of-focus emitting
fluorophores as the detection approaches a widefield
configuration. On the other hand, squeezing the pinhole
below the size of the Airy disc reduces the photon count. A
drawback of confocal microscopy is that acquisition speeds are
rather slow, as the entire sample volume must be raster-scanned
with the point illumination source. The speed can be increased
by scanning a smaller area and by scanning faster, however,
with a trade-off on the photon count. Point illumination is also
relatively phototoxic and may cause bleaching of fluorophores,
even those beyond the focal plane. More sensitive detectors
such as photomultiplier tubes or avalanche photodiodes can aid
in preventing long exposure times or high excitation intensities
and thereby decrease the amount of bleaching and photo-
toxicity.

As detailed in ref 127 and sketched in Figure 11, optical
tweezers can relatively easily be implemented in a confocal
microscope simply by guiding a trapping laser beam into the
path of the confocal lasers. One beneficial detail about the setup
sketched in Figure 11 is that the scanning confocal lasers can be
moved independently by the tandem scanner from the trapping
laser beam, which can be moved (in 3D) by the telescope. Also,
the signals from the confocal and the trap can be independently
picked up by the photomultiplier tubes and the quadrant
photodiode (QPD), respectively. High quality and user-friendly
optical tweezers implemented in a confocal microscope are now
also commercially available (e.g., the C-Trap from Lumicks).

3.2.3. Multiphoton Microscopy. Multiphoton microscopy
is somewhat similar to confocal microscopy in the sense that it
also uses scanning illumination light to create an image and
offers optical axial sectioning. The excitation scheme is,
however, different as multiphoton microscopy involves
excitation of fluorophores by the absorption of two or three
photons simultaneously. As the energy is inversely proportional
to the wavelength, two photons, each carrying half the energy
needed for excitation, can excite a fluorophore. Hence, one
usually uses near-infrared photons to excite fluorophores in the
visible regime. For live cell imaging, this has the benefit that
near-infrared photons can penetrate much deeper into
biological material than visible light. As two-photon excitation
is a nonlinear effect that requires simultaneous absorption of
two photons, excitation only occurs in a very limited focal
region, thus increasing the resolution. Often pulsed lasers are
implemented to achieve not only spatial but also temporal
focusing of the photon flux. Like in confocal microscopy, the
emission spectra from different fluorophores can be efficiently
separated by beam splitters and spectral filters and collected by
sensitive detectors such as photomultiplier tubes. As the
likelihood of simultaneous multiphoton absorption is fairly low
and often requires a higher flux of photons for efficient
emission, this technique is claimed to be relatively phototoxic
to a living specimen. One advantage, however, is that outside
the focal plane there is only a little photodamage.

3.2.4. Light-Sheet Microscopy. In light-sheet microscopy
a thin sheet of light is created through the sample and the
emitted fluorescence is detected by an objective oriented
perpendicular to the light sheet. The light sheet can, for
example, have a Gaussian, Bessel, or Airy beam profile, each
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with their specific advantages.'”® The Gaussian beam probably

gives the optimal resolution; however, the Airy beam based
light sheet provides nearly as good a resolution and has the
additional advantage that the field of view is significantly larger
than that provided by the other beam geometries. The Airy
beam based light sheet microscope has a lateral extension of
~300 um,"** and also, less intensity is needed for the Airy beam
light sheet compared to the other beam geometries, thus
minimizing phototoxicity. The whole sample can be imaged in
3D by moving the sample through the light sheet. The emitted
light can be collected in a wide-field fashion increasing the
acquisition speed greatly compared to point illumination
techniques. The phototoxicity is rather low for this type of
microscopy, but the real advantage is the reachable depth. The
combination of large penetration depth and little amount of
phototoxicity makes light sheet microscopy ideal for imaging
live organisms, and as an example, neuronal processes inside
the brains of living larval zebrafish have been monitored.'”
Light-sheet microscopy provides image contrast comparable to
TIRF, however, with a lower resolution, and can image up to
300 pm into the sample. Hence, whole living organisms can be
visualized, even repeatedly, without signs of damage.''* Most
often, the objects of interest are embedded in an agarose gel
while visualized by a light sheet microscope. Yang et al. recently
demonstrated that tobacco plant cells and living Spirobranchus
lamarcki larvae can also be held steady in an optical trap while
being visualized by light sheet microscopy, thus eliminating the
demand for the agarose matrix. -

3.2.5. Super-Resolution Microscopy. Over the past
decades, several new light-based microscopy techniques have
been developed to improve single molecule detection by
breaking or bypassing the optical resolution beyond the Abbe
limit. These new approaches are termed super-resolution
microscopy and were awarded the Nobel Prize in Chemistry
in 2014. Although super-resolution microscopy has not fully
been realized in combination with force spectroscopy in living
cells, here is a brief description of two of the major principal
approaches within this class of microscopy.

In stimulated emission depletion (STED) microscopy, super
resolution is achieved using patterned light that spatially
confines the emission signal to an area much smaller than the
classic point spread function.'*'> Two excitation lasers are
used; the first laser excites the fluorescent molecules from their
dark states, the second laser (the STED laser) is red-shifted and
kicks the electrons back into the ground state by stimulated
emission without fluorescence. The STED laser has a doughnut
shape, and only fluorophores in the zero intensity center emit.
One important issue is the timing of the two laser pulses, the
STED laser beam should arrive when the electron is in the
excited state. Also, the wavelength of the STED beam should be
in the tail of the emission spectrum of the dye without
overlapping the absorption spectrum. Two of the fluorophores
most often used for STED microscopy are Atto647N and
Atto65S; they are both excitable at 640 nm and optimally
depleted by 750 and 780 nm, respectively.

The width of the zero intensity center sets the resolution of
the image which can be improved by increasing the STED laser
intensity. In practice, producing a good-quality zero intensity
center of the STED laser requires extremely high laser
intensities that are associated with phototoxicity for living
cells. Also, acquisition is relatively time-consuming as the focal
spot must be scanned through the entire sample volume to
create the super resolution image. Furthermore, the choice of
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fluorescent molecules suitable is somewhat limited compared to
conventional fluorescent-based microscopy techniques. In vivo
STED has been used, for example, to investigate membrane
lipid interactions with the cytoskeleton of living cells."*" In vitro
STED, in a linear configuration, has proven useful in
combination with optical tweezers to investigate the dynamics
of proteins on densely covered DNA."*

Stochastic optical reconstruction microscopy (STORM) and
photo activated localization microscopy (PALM) are methods
in which the image is reconstructed from thousands of images
of spatially separated fluorescent molecules, which are excited
in a stochastic manner between each image.lé’17 The idea is that
the precise location of a single emitting fluorophore which is
separated spatially from other fluorophores can be determined
with a precision down to ~10 nm. The separation needs to be
large enough that the two point-spread-functions (PSFs) do
not overlap. Also, two molecules in close proximity can be
spatially distinguished if their emission spectra do not overlap
in time or in wavelength. In practice, the separation of identical
fluorophores with overlapping PSFs can be achieved by
stochastically activating a small subset of fluorophores in each
image, thus lowering the likelihood that neighboring fluorescent
molecules are emitting at the same time. Subsequently, the
fluorophores are deactivated or bleached, and a new subset of
fluorescent molecules stochastically activated. Thousands of
individual images containing well-separated point-spread
functions are then processed by fitting algorithms and their
centroids combined to a super-resolved map of the sample. The
localization accuracy of STORM/PALM is highly dependent
on the number of photons collected from each fluorophore.
More photons can be collected by increasing the excitation
laser intensity; however, this will inevitably increase photo-
toxicity and bleaching. The photon count can also be improved
by increasing acquisition time, but this is also a trade-off. The
fluorophores used must be photoswitchable or photoactivatable
and highly photostable to sustain multiple cycles of activation/
deactivation.

As of now, super-resolution microscopy is limited to rather
slow live cell processes and small imaging volumes. In the case
of STORM related methods, the imaging volume is equal to the
TIRF volume, hence, only within hundreds of nanometers from
the coverslip. Furthermore, both above-mentioned techniques
require fluorophores with special photochemical/physical
characteristics which is a limitation in comparison to other
microscopy techniques (e.g.,, confocal microscopy), where 3D
live cell imaging is possible with essentially any fluorescent
molecule and in multicolored combinations.

3.2.6. FRET. Forster resonance energy transfer (FRET) is
based on a nonradiative energy transfer from an excited donor
chromophore to a proximal acceptor chromophore that has a
red-shifted excitation spectrum compared to the donor. FRET
processes can be detected using any kind of fluorescence
microscopy (e.g., wide-field or confocal). FRET efficiency is
very sensitive to the distance between the FRET pairs, and the
intensity of the emitted spectrum is used as a measure for
distance between the fluorophores. FRET in living cells is
challenged because of cellular autofluorescence and intracellular
environmental factors such a pH and ion concentrations that
fluorophores can be highly sensitive to. FRET pairs have also
been used in molecular force spectroscopy where FRET
intensity changes were used to measure local forces involved in,

for example, cell adhesion and conformational changes."*
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Figure 12. Sketches of the tools most commonly used for manipulation of single molecules or organelles in cells. (A) A tip attached to a cantilever of
an atomic force microscope probes the adhesion of a surface receptor. The laser reflected off from the cantilever provides information about the
bending of the cantilever. (B) An optical trap consisting of a single tightly focused laser beam traps a lipid granule that is being carried by the
molecular motor dynein inside a living cell. (C) External magnets, forming magnetic tweezers, allow for the rotation of a magnetic probe attached to

DNA inside the nucleus of a live cell.

3.3. Force-Sensing Fluorophores

As an alternative to techniques that measure forces
mechanically, there exists fluorophores whose emission is
correlated with the force applied to them. These force-sensing
fluorophores, or fluorophore pairs, have their sensitivity in the
pico-Newton range which is a relevant range for studying
cellular processes. The emission of a fluorophore pair can vary
as the distance between them is changed by local tension (e.g,
if they are FRET pairs or if certain quenching/unquenching
strategies are employed). For example, Grashoff et al.
developed a vinculin-based tension sensor module that could
measure the forces during cell adhesion and migration as the
sensor module connects cell surface receptors to the actin
cytoskeleton.'** The module consisted of a nanospring inserted
between the head and tail domains of vinculin and a FRET pair
whose fluorescence decreased as the spring was stretched
separating the fluorophores. Iwai et al. used green fluorescent
proteins to detect strain between myosin II and F-actin in living
cells.'* Here, the module consisted of two green fluorescent
proteins (GFPs) that were inserted between two motor
domains of myosin II. In the absence of strain, the two GFPs
were in direct contact providing a monomeric emission
spectrum, whereas interactions with F-actin induced mechanical
conformational changes provided a distinguishable emission
spectrum. As a last example, Stabley et al. used a quenching-
based tension sensor module to probe the forces involved in
early stage receptor-mediated endocytosis.'*® The module was
designed such that fluorophores were attached to the targeted
ligand and linked via a polymer to a surface functionalized with
quencher molecules. Cellular forces exerted onto the ligand via
receptor—ligand interactions resulted in an extension of the
linker which removed the fluorophores from the quenchers and
increased the fluorescence intensity.

To use force-sensing molecules, many of the technical
requirements are similar to those of mechanical force
spectroscopy; the fluorescent molecule needs to be internalized
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without compromising the integrity of the cell, be stable inside
the cell, localize specifically at its target site, and support a
sufficient load. Importantly, the molecule into which the force
sensing module is inserted needs to retain its biological
function. Also, proper calibration of the probe’s force sensitivity
is necessary for reliable readouts. So far, many of these sensors
lack single molecule sensitivity, and improving the spatial and
temporal resolution is crucial; however, such improvements are
likely to be realized in the future and will pave the way for
exciting in vivo force measurements using force sensing
fluorophores.

4. CELL AND SINGLE MOLECULE MANIPULATION

Most of the imaging techniques described in the preceding
section work well in combination with the remarkable in vivo
manipulation tools, which have been developed and refined
within the last ~30 years. In this section, the three most
commonly used techniques for in vivo single molecule and
single organelle manipulation are presented: the atomic force
microscope (AFM), optical tweezers, and magnetic tweezers
(sketched in Figure 12). The capability to perform quantitative
measurements of the forces at play during dynamic processes
inside living cells has gained much attention as the crucial role
of force for cellular development and behavior is becoming
more and more acknowledged in the literature."”” Selected
examples of exciting research performed with these techniques
are provided in section S of this review.

4.1. Challenge of Measuring Forces in Vivo

In vivo, it cannot be ignored that the individual molecules and
organelles are present in a matrix, be it the cytoplasm, the
membrane or the nucleus, and the physical properties of this
matrix, as well as the interaction between the matrix and the
individual molecules and organelles, are highly relevant to
uncover. Therefore, much effort has been put into determining
the material properties of the living cell, both by early magnetic
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Although the force exerted by these tools in theory can be
calculated directly, in a real experiment there are typically many
unknown parameters, for instance the material properties inside
the cell. Therefore, in order to make quantitative force
measurements, the techniques need to be calibrated. There
are several ways to perform such a calibration, but all three
techniques can be calibrated by observing the thermal
fluctuations of the manipulated objects (or of the AFM
cantilever) around an equilibrium position. To a first, and often
very good, approximation, the force F exerted by the
manipulation tool is Hookean (i.e., the restoring force scales
linearly with the distance from equilibrium, x). The force is
written as F = —kx, and the associated Hookean trapping
potential is harmonic. If the motion takes place in a purely
viscous fluid, the thermal fluctuations are well-described by
simple Brownian diffusion. Simple Brownian diffusion at
absolute temperature T in a harmonic trapping potential
would then result in the following relation between position
fluctuations and the spring constant, or trapping stiffness, &:

and by optical

2 o _ kgT

@) - (e = 2 )
Hence, by recording the handle’s positions, k can be
determined through calibration and finally the force acting on
a trapped particle can be found. However, the cell cytoplasm is
not a purely viscous fluid, and calibration of manipulation
techniques inside the cytoplasm is significantly more
cumbersome than in a viscous fluid.

4.2, Handles

Normally in force spectroscopy techniques, the investigated
biomolecule is attached to a handle through which the force is
applied and measured. Ideally, the handle should be attached in
a one-to-one ratio and in a way that does not interfere with the
biological system. Manipulation and force-sensing on the
surface of cells can readily be done using most techniques by,
for example, attaching the handle to cell surface receptors.
Probing intracellular biomolecules, however, necessitates bring-
ing the handle inside the cell which can be complicated or
highly invasive. For example, an AFM transduces force through
a tip that needs to be mechanically connected to the cantilever
and therefore cannot reach the inside of the cell without
penetrating the cell wall. In contrast, optical and magnetic
tweezers operate by exerting forces onto the handles by
externally applied fields which readily penetrate into the cell
with only little physiological damage provided the correct
choice of, for example, laser wavelength, power, and irradiation
time."*""'*> As detailed later, optical tweezers can manipulate
objects endogenously present inside living cells, but often, and
always for magnetic tweezers, there is a need to insert handles
into the living system of interest. Also, biocompatibility and
cytotoxicity of the handle are crucial concerns that should be
addressed when designing the experiment.

4.2.1. Internalizing Handles. Different strategies can be
employed for internalizing nonendogenous handles as, for
example, polystyrene, metallic, or magnetic particles. One
option is to take advantage of the cell's own pathway for
intracellular uptake of nutrients, signaling molecules, and
receptors. This pathway is known as the endocytotic pathway
and can facilitate the uptake of particles ranging in size from
nanometers to microns, corresponding well with the size range
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that can be trapped both by optical and magnetic tweezers. The
simplest way of triggering endocytotic uptake is by adding the
particles to the cell medium. When the particles come into
contact with the outer membrane, either by nonspecific
adhesion or receptor recognition, the plasma membrane
invaginates thus forming a lipid vesicle around the particles,
called an endosome. After internalization, particle-loaded
endosomes often enter the intracellular trafficking pathway
leading to fusion with lysosomes.'* These are essentially
degradative compartments with low pH and various enzymes
responsible for digesting the content. If the endocytosed
particles should be used as handles, one should either be aware
that they will reside inside a vesicle, or they must be released
from the endosomes or lysosomes. Also, endocytosed particles
will enter the endocytotic pathway, and if any other locations
should be probed, the particle must literally be dragged through
the crowded cell (by means of the tweezers) to the position of
interest. Some strategies for endosomal release are based on
conjugating the particles with cell-penetrating peptides'*'**
while others employ the heating capabilities of metallic
nanoparticles to melt and permeate the lipid membrane of
the endosomes.'**

As a rule of thumb, the rate of endocytosis is inversely related
to particle size and for most cell types effective uptake takes
place if the handles are smaller than ~100 nm."**"* For this
reason, the use of metallic nanoparticles and quantum dots as
handles is attractive as they are smaller while still easier to
stably trap and visualize. Care should be taken though if
metallic nanoparticles are used as they can heat their
surroundin;s substantially in the power regime used for optical
trapping.'*” In contrast, quantum dots and magnetic particles
do not heat significantly in electromagnetic fields."** Another
factor affecting the endocytotic efficiency is surface charge'*’
that can readily be adjusted by correct surface functionalization
by neutralizing molecules (see discussion in section 4.2.2).

Micropipetting is a delivery method that in Ii;)ringiple enables
delivery of particles anywhere in the cytosol. **'*’ Here, the
handles are injected by penetrating the cell wall with a fine-
tipped microcapillary (diameter of 0.2—0.5 ym) in femtoliters
volumes.'**'** The injection is conducted while visualizing the
cell in a microscope to guide the microcapillary insertion.
Although this technique offers control over the handle
distribution inside the cell, it includes penetrating the cell
wall which can have consequences for the cell viability.
Furthermore, a successful injection is highly dependent on
cell morphology, substrate adhesion, and the thickness/
mechanical properties of the cell wall. Another method to
deliver femtoliter volumes of particles to specific cells is by
encapsulating the particles in a vesicle, and through hot-
nanoparticle-mediated fusion deliver the particles to the cells of
interest.”'

Handles can also be inserted by electroporation that uses an
electric pulse to temporarily create pores in the cell wall. This
technique provides a fairly homogeneous distribution of the
handles inside the cell and is well-suited for delivering a large
amount of handles."** Photoporation is yet another technique
where the handles are optically injected. It uses a tightly
focused laser beam to create multiple submicron holes in the
cell wall through which the surrounding medium containing the
handles can enter the cell in volumes of femtoliters."*”
Endocytosis and electroporation enable delivery to many cells
simultaneously, whereas micropipetting, photoporation, and
hot nanoparticle mediated fusion enable delivery of handles to a
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specific cell in a controlled fashion. Another important
consideration is that, except for endocytosis, all techniques
are fairly invasive and require recovery of the cell wall as it
might otherwise be compromised.

4.2.2. Reducing Unspecific Bindings and Probe
Contamination. A huge challenge when conducting force
spectroscopy inside cells is that the handle is constantly
exposed to unspecific bindings and contaminations. For
example, the handle can be attached to multiple molecules
simultaneously, to multiple sites on the molecule of interest, or
to a molecule not of interest. The most common way to deal
with unspecific bindings is by using adhesion of inert molecules
that passivate the surface of the handle. Proteins such as bovine
serum albumin and a-casein are very efficient at suppressing
unspecific bindings, but also nonionic surfactants such as
polyethylene glycol (PEG) have been successfully used.
Reducing unspecific bindings is a key element in collecting
trustworthy data, but in most intracellular experiments, it will
be impossible to completely eliminate them. Often, the
measurements curve will bear signs of whether single or
multiple molecules were manipulated, but under all circum-
stances, intelligent and reliable control experiments are
absolutely crucial.

Ideally in force spectroscopy, the handle and the molecule of
interest are specifically attached. That is, the experiment is
designed such that the handle carries a characteristic signature
that the molecule recognizes and binds specifically to. This
strategy is often facilitated by means of conjugation schemes
such as receptor—ligand or antibody—antigen bindings, where
one component is attached on the handle and the other at a
specific location on the probed molecule. Specificity can be
increased by reducing the number of conjugates available on
the handle and on the probed molecule, thus increasing the
likelihood of one-to-one binding. Preferentially, the bonds
between the handle and the molecule should be strong enough
to support the highest force applied by the force spectroscopy
technique, or at least comparable to it. Popular bonds for
specific conjugations involving beads are the biotin—streptavi-
din bond, which has nearly the same strength as a covalent
bond, or the antibody—antigen pair, digoxigenin-antidigoxige-
nin. Proteins are often attached via histidines and reactive
cysteine residues.

4.3. Atomic Force Microscopy

The AFM was invented ~40 years ago.” Its principle of action is
similar to the scanning tunneling microscope (STM) in the
sense that both rely on a cantilever with a very sharp tip moving
above a surface of interest, approaching or possibly attaching to
a molecule of interest, as illustrated in Figure 12A. If the
cantilever tip firmly attaches to a molecule, the cantilever bends
slightly, and this bending can be measured by a laser reflected
off the back side of the cantilever. The AFM can be used for
scanning a surface but also as a force-transducer to directly
probe the elastic response or adhesional properties of a whole
cell stuck to a glass surface, or of a single molecule extracted
from a cell. The force-range that one may investigate with an
AFM is determined by the physical properties of the cantilever,
and much effort has been put into refining AFM for
investigations on cells.">

The AFM works well both in gaseous and aqueous
environments. The typical force-range is the pN to nN regime
and in vivo AFM has been used to study the deformability of
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cell surfaces,">*7°¢ adhesive forces between cells or surfaces
and cells,">” and also adhesion forces of single molecules."*®

For force spectroscopy with a cantilever based technique, like
AFM, the cantilever would a priori be positioned outside the
cell in the surrounding medium, which is commonly a viscous
liquid like an aqueous medium. Hence, the force calibration can
be based on thermal fluctuations in a normal viscous fluid as
alluded to in section 4.1. Therefore, force calibration is
relatively straightforward and not hampered by unknown
viscoelastic characteristics of the cell interior.

During the development of AFM functioning in biocompat-
ible aqueous environments, an alternative method relying on a
soft probe rather than a sharp tip at the edge of the cantilever
was also developed."””” This technique is known as the
biomembrane force probe (BFP) and works by having a
handle, a microscopic sphere, glued to a lipid vesicle held under
controlled tension by a micropipette. The BFP has a wide
force-range of 0.1—1000 pN, which is enabled by the versatility
in the choice of vesicle size, vesicle membrane composition, and
properties of the micropipette. One drawback of the BFP is that
the technique turned out to be somewhat inaccurate in force
determinations. Recently, a combination of single molecule
fluorescence detection and the BFP method was demon-
strated.'®

If either AFM or BFP is used to measure the rupture force of
a bond, then one should be aware that the measured force is
highly dependent on the loading rate (the increase of force per
unit time). The so-called Bell-Evans relation between the
loading rate, v, and the rupture force, F, is as follows: !

v =, exp| —
° kg T (13)

where x; is a length over which the force, F, is applied and v; is
a constant. From this expression, for example, the force at zero
loading rate can be extracted.

4.3.1. AFM Tips. In the AFM, force sensing is mediated by
a tip that is mechanically connected to the cantilever. For this
reason, AFM is not considered a contact-free technique. Hence,
AFM and related techniques mainly probe biological systems
on the outside of the cell by, for example, stretching bonds or
mapping out surfaces, as membrane penetration can be fatal for
the cell. The simplest way to probe a biological system using
AFM is by nonspecific attachment. However, as the cantilever is
often much larger than the probed molecule, it can be difficult
to distinguish whether it is attached (i) to the correct molecule,
(ii) at the correct location on the molecule, and (iii) to one or
multiple sites on the molecule. As discussed in the previous
subsection 4.2.2, nonspecific attachments can be suppressed by
passivating the tip with surface neutralizing proteins or
polymers. If the attachment is specific with conjugation
schemes such as streptavidin—biotin bonds, so-called molecular
handles, it is important to take their mechanical contribution
into account. A possible solution to address whether multiple
or unspecific molecules are attached to the tip is by using a
linker with a compliance signature that can confirm if the linker
was correctly attached.'®> For example, the probed molecule
can be linked with a DNA strand displaying a characteristic
overstretching transition at 65 pN.'®*

4.4, Optical Tweezers
In the simplest implementation, optical tweezers are formed by

tightly focusing a single laser beam with a Gaussian intensity
profile. The first publication demonstrating how radiation
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pressure from a continuous laser can be used to accelerate and
trap micron-sized particles was published as early as 1970 by
Arthur Ashkin, the father of optical tweezers.’ In later
investigations, Ashkin and co-workers proved optical trapping
to be extremely versatile, also for manipulating living cells
which appeared to stay viable in optical traps based on near-
infrared lasers.°® As detailed in section S, optical tweezers have
found widespread use for probing biological specimen, both in
vivo and in vitro, at the single molecule to whole cell level. With
a wise choice of wavelength in the near-infrared regime and
limited laser powers and exposure times, optical tweezers
appear to be nearly noninvasive.'*"'**

Even without focusing, light with a propagation direction, z,
and an intensity profile, I(x,y), narrowly centered around the z-
axis (x = 0, y = 0, z) will, through the interaction between the
electrically induced dipole and the electrical field from the light
beam, attract permanent or inducible dipoles. Hence, if a
particle is made of dielectric material with refractive index larger
than that of the surrounding medium then the particle will be
drawn toward the most intense part of the laser beam.

For most of the published in vitro applications of optical
tweezers, the dielectric material trapped would be a polystyrene
or a silica microsphere, but an entire cell is also a (complicated)
dielectric object and can similarly be optically manipulated. As
explained quantitatively below, an appropriate intensity profile
can create an attractive potential in the (x, y)-plane for the
dielectric material. In order to enable manipulation also in the
direction of propagation, here the z-axis, an intensity gradient in
the z-direction is required. Figure 12B shows an example of an
optical trap, formed by focusing a laser beam with a Gaussian
intensity profile in the axial direction. The optical trap is in this
example used to manipulate a cargo transported along
microtubules inside a living cell.

If the dielectric object is small compared to the wavelength of
the light, the induced dipole moment of the dielectric object, p,
can be considered a point dipole and is proportional to the
electric field, E, with which it interacts. The dipole, p, and the

interaction potential created by the optical trap, Vg)i;,r, are related
through the following expression:
p=aE; Vil = —l(p-E) - _Llap
S 2 (14)

where a is the polarizability of the object. The force acting on
the dipole is then given as

Egy = —VVg =

X o2

(13)
The polarizability, @, is related to the relative index of refraction
M = Nopject/ Mnediumy WheTe Myegiym and gy, are the refractive
indices of the medium and the object, respectively. The
polarizability is positive when m > 1, 0r et > Minediumy a0d a5 a
result, the force points in the direction of increasing light
intensity.

If the dielectric object is large compared to the wavelength of
the light, the object can no longer be considered a point dipole
and a ray-optics picture better describes the situation.
Conservation of momentum leads to the conclusion that the
object is attracted by the highest light intensity if ngpje >
Ninediuny a0d 3D trapping is possible with a single tightly focused
Gaussian beam.

Often the wavelength of the trapping laser beam is on the
same order as the dimension of the trapped object. In this case,
force calculations are not as straightforward as in the two
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regimes outlined above, but ref 164 devises how to calculate the
trapping forces in any regime. In practice, however, the force in
a real experiment is found by calibrating the optical trap as
described in section 4.4.2 below.

4.4.1. Handles for Optical Tweezers. The force that can
be exerted by an optical trap on a trapped object, the handle,
correlates with the size and polarizability of the particle. Figure
13 shows some of the most typical handles used for in vivo

Quantum dot

O

Ag nanoparticle

Polystyrene/silica

Au nanoparticle

Endogenous particle

Au rod (e.g., lipid granules)

Magnetic nanoparticle

O

Figure 13. Handles most commonly used for in vivo single molecule
manipulation techniques inside living cells. For optical tweezers there
exists a variety of handles from large micron-sized dielectric beads to
small metallic and semiconductor nanoparticles as well as naturally
occurring lipid granules and organelles. In contrast, magnetic tweezers
can only grap and manipulate magnetizable objects.

manipulation with optical tweezers. Dielectric particles like the
popular polystyrene and silica beads can be stably tra}?ed in
sizes ranging from ~200 nm to several microns, * and
polystyrene microscopic particles trapped at normal laser
powers typically heat less than a couple of degrees Celsius.'*
Metallic nanoparticles with diameters as small as 10 nm can be
trapped individually by a single laser beam,'**'®” even gold
nanorods, which align with the polarization of the trapping laser
beam.'®® One should, however, be aware that metallic
nanoparticles have a large absorption cross section, even in
the near-infrared, hence, these particles may heat substantially,
up to hundreds of degrees Celsius, while irradiated."*” This
heating of trapped metallic nanoparticles can, however, also be
used in an advantageous manner (e.g, for photothermal
treatment of cancer).'® In addition, metallic nanoparticles have
very high luminescence and no photobleaching, hence, they are
excellent for visualization. Metallic nanoparticles are commer-
cially available in a good quality in sizes ranging from 5—250
nm, and gold nanoparticles even offer easy surface
modifications by thiol-chemistry. One should be aware, though,
that silver nanoparticles can be cytotoxic due to their oxidative
nature'’’ and that the synthesis of gold nanorods involves high
concentrations of cytotoxic surfactants.

Another nanoparticle that can be used both as a force-
transducing handle for optical trapping and for visualization is a
quantum dot.'”"'”* Quantum dots typically have overall
diameters of 2—30 nm.'”"'”> Notably, their trapping strengths
do not simply correlate with size but are comparable to
trapping strengths reported for metallic nanoparticles."”"'”*
Because of their fluorescent properties, quantum dots are easily
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visualized and localized in the cytoplasm of cells, a task that can
be challenging with other nonfluorescent handles. In addition,
the trapping laser can act simultaneously as a source of two-
photon excitation for the quantum dot, hence a second
excitation source becomes unnecessary for visualization.'”"

What really separates optical tweezers from other force
spectroscopy techniques is the capability of trapping any object
that has an index of refraction mismatch compared to the
surrounding medium. Simply speaking, any structure that can
be distinguished in bright field microscopy can also be trapped.
Therefore, optical tweezers are capable of trapping endogenous
lipid granules and organelles."”*'”> These endogenous handles
are highly attractive for intracellular force spectroscopy because
they are a natural part of many cellular processes such as
transport by molecular motors'’* that thereby can be directly
studied with minimal perturbation of the system. Also the lipid
granules are excellent probes for studying microrheological
properties of the cytoplasm, as detailed in section S.

4.4.2. Quantitative in Vivo Force Measurements Using
Optical Tweezers. Several methods have been proposed in
literature to quantify forces inside living cells. The simplest
assumption is that the force exerted by an optical trap on a
handle inside a cell would be the same as the force exerted on a
handle of similar size, shape, and optical properties, in a viscous
liquid of similar refractive properties as the cell cyto-
plasm.'”*'7°7'7® This approach assumes that the cytoplasm
behaves as a purely viscous fluid and one should thus be able to
employ the same techniques for quantitative force calibration
that have become standard for calibration in simple fluids
within the optical tweezers community.'”~"**

It is, however, a fact that the cytoplasm of a living cell is not
purely viscous. For this reason, it is not completely correct to
use the same calibration methods as in a purely viscous fluid.
To quantify forces inside a living cell for which numerous
parameters are unknown, the optical trap needs to be calibrated
in situ. One method proposed for in situ calibration consists of
a combination of passive and active measurements, as detailed
below and in refs 120, 183, 184. A similar approach assumes a
typical and plausible model for the cytoplasm characteristics,'®’
however, by imposing a particular model for the viscoelastic
nature of the cytoplasm, fewer free parameters can be extracted
from the experimental data."®’

In the following, we detail the steps in the measurement
protocol for the active-passive calibration method suggested in
refs 120, 183, and 184, for which the experimental setup is
sketched in Figure 14. For the passive calibration measurement,
the positions visited during the thermal fluctuations of several
handles are recorded, Fourier-transformed, and the average
power spectrum, P(w), of the different measurements is
calculated.

The first active measurements, referred to as active force
calibration, drives the system by oscillating the sample stage
sinusoidally with respect to the laser with driving frequency @
and amplitude Ag. The positions of the stage, xg(t) = Ag sin(wt
+ ¢bs), and the handle, x,™ (t) = Ap sin(wt + ¢p), are recorded
simultaneously. The amplitude and phase of the handle’s
movement can be extracted from the recorded position by
fitting the relaxation spectrum R(w) to the Fourier transformed
experimental data:

Ap . .
sin A¢p — i cos A
a)AS( ¢ ®) 16)

R(w) =
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Figure 14. Sketch of an optical tweezers setup that enables calibration
and quantitative force measurements, also within a live cell The
calibration is based on (i) observation of thermally induced (passive)
fluctuations of the handle in the trap and (ii) observation of the
response of the handle when either the trap or the stage is oscillated at
fixed frequency and small amplitude.

Here A¢ stands for the phase difference and is given by
A¢ = ¢p - ¢5 (17)

To directly translate the voltage output of the QPD to SI
units, another step, direct positional calibration, is needed. A
conversion factor ff = %, relating the position (x) measured in

v
SI units (meters) to the position measured in volts, is
determined by separately recording the oscillations by a QPD
and by a CCD camera and comparing the amplitudes of the
movement from a sinusoidal fit to the experimental data.

To correctly determine the conversion factor f3, a pixel size
calibration has to be performed to relate pixel size of the CCD
camera to SI units. This is achieved by moving a bead, which is
stuck to the bottom of a sample chamber, in both lateral and
axial direction in predefined steps, while imaging with a CCD.
The movement in lateral and axial direction can either be
tracked by using software packages like “Video Spot Tracker”
or by turning the images into binary images, where the bead is
depicted as a white ring on black background. The position of
the center of the ring can be interpreted as the bead’s lateral
position, while the ring’s diameter can related to the axial
position.'*® By plotting the linear and axial displacement in
pixels as a function of displacement in nm, the effective pixel
size in nm per pixel can be extracted by a linear fit.

The last active measurement, phase correction calibration,
determines the time delay of the acquisition card used for
simultaneous readout of the QPD signal and the stage
positions. Determining the time delay is necessary, as it
otherwise causes systematic errors. When purchasing a data
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acquisition card, this fact should be taken into account and a
card with fast readout should be chosen. Since the QPD signal
is delayed compared to the sample stage position, the phase
difference given in equation 17 must be corrected for the delay:
AP = A — A¢™™. This delay calibration only needs to be
performed once for a given acquisition card. The time delay is
found by oscillating a stuck bead and tracking the position of
the bead by a QPD and simultaneously recording the stage
position. The phase difference, A¢*™, is determined by
extracting the phase of the movement by fitting the bead and
stage data with a sinusoidal function.

The trap stiffness, k, can be calculated by using the
information gained from the calibration steps. For example
when the experiment is performed with stage driving, k is given
by the following equation, for each value of the driving
frequencies @:

- kT 4

" Plw) @

sin A

’ (18)
When the trap stiffness k is found, the value can be used to
calculate the elastic modulus G(w), which characterizes the
viscoelastic properties of the cells’ cytoplasm:

Glw) = 2 R@)
6nr 1 — iwR(w) (19)
where r is the radius of the handle, which can be extracted from
CCD images.

When applying the active-passive calibration method, care
must be taken while choosing the oscillation amplitude and
frequency. Even though a larger amplitude will lead to a better
signal-to-noise ratio, the excursion of the handle must not
exceed the harmonic trapping potential of the optical tweezers
nor the linear regime of the QPD, in which the distance the
handle has moved is proportional to the voltage signal of the
QPD. Also, the oscillation amplitude should be small enough to
not interfere with the viscoelastic medium (ie, the cell
cytoplasm). Most importantly, the theory on which this
calibration method is built is only valid for small excursions,
which limits the amplitude size. Choosin; the amplitude to be
about half the width of the trap (kyT/k)"/?, will ensure that the
above-mentioned conditions are met.

The active—passive calibration method assumes that the
optically trapped handle is not affected by active processes.
That active processes do not contribute may be checked by
observing that the value of k returned by equation 18 is
constant and independent of the driving frequency. If k varies
with driving frequency (more than the experimental error) in a
certain frequency range then this is an indication that active
biological processes take place at those frequencies wherefore
these frequencies should be avoided. The frequency range
available when oscillating the stage is limited. To reach higher
frequencies, one can instead oscillate the optical trap, as also
indicated in Figure 14. Additionally, when oscillating the optical
trap, direct positional calibration can be omitted, as the
conversion factor f can be directly deducted from the
oscillation amplitude.

Further details of the calibration methods may be found in
refs 184 and 185, and a detailed step-by-step guide to the
active—passive calibration method can be found in ref 187.

4.5. Magnetic Tweezers

Magnetic tweezers rely on the interaction between a magnetic
field and a permanent magnet or a magnetized object and are
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capable of inducing torque on biological molecules attached to
the handle."®*~""" The force-range for magnetic tweezers are
on the order of tens of N to tens of pN. Similar to optical
tweezers, one may understand the functioning of the magnetic
tweezers as a result of a dipole-field interaction, in this case
between an object of magnetic dipole moment g and a
magnetic field, B. Here, the interaction can be described by the
interaction potential, diPT and the force Fﬂ’fPT ,

—VVj‘g,T

Vip = —nBj Fi, = (20)
For a permanent magnetic dipole, the force is simply
proportional to the gradient of the magnetic field whereas
for, for example, a paramagnetic bead which has a dipole
moment that depends on the magnetic field, the final
expression for the magnetic force is more involved. An
experiment where magnetic tweezers rotate double-stranded
DNA within the cell nucleus is illustrated in Figure 12C.

For magnetic tweezers acting in a normal viscous fluid, the
force is also typically determined from an analysis of Brownian
fluctuations of the magnetic handle, which is attached to the
molecule of interest (e.g., to a single DNA tether). Hence, it is
assumed that the recorded positions of the bead represent
positions that are distributed according to the potential energy
landscape created by the magnetic force acting on the handle
and the forces resulting from DNA’s linear and torsional
elasticity. For small extensions of the DNA, /, its linear elasticity
is well-described by a Hookean spring. Therefore, the
longitudinal and transverse fluctuations of the handle may be
characterized by effective trap stiffness’, kj, and k|, related by
the expressions

kyT kyT
2 2 B B
z — (Z = — = —
&) -t ky  OFy./0z
kyT kyT
(@) = = 2= =2
ky Fjﬁ,,TZ/l (21)

These spring constants can then be used to determine the force
and torque acting on the handle.

4.5.1. Handles for Magnetic Tweezers. Magnetic
tweezers require a handle which is either a permanent magnet
or a magnetizable object (see Figure 13). Since there do not
exist any cellular magnetic structures, in vivo application of
magnetic tweezers requires the internalization of a handle
which is typically done either by means of endocytosis or
microinjection. Superparamagnetic beads come in sizes ranging
from ~500 nm to S pm. They are normally composed of a
porous matrix sphere in which 10—20 nm magnetic nano-
particles (e.g, iron oxide nanoparticles) are embedded. The
sphere is typically enclosed in a polystyrene or silica shell to
protect the encapsulated magnetic nanoparticles and to provide
a surface for modifications. Cobalt and nickel are also highly
magnetic materials but are toxic and therefore not applicable for
live cell experiments.

4.6. Alternative Methods Holding Promise for Future in
Vivo Manipulation

In this section, we outline a couple of methods that have not
yet been demonstrated for in vivo manipulation of single
molecules or organelles, but which do hold promise for future
in vivo exploration.

4.6.1. Acoustic Force Spectroscopy. Acoustic manipu-
lation of entire cells is a well-founded technique'”* that has
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Figure 15. Ilustration of different types of molecular motor motion in the complex intracellular environment. (A) The cytoplasm is highly crowded
due to the presence of, for example, cytoskeletal elements, organelles such as the large nucleus, and proteins. (B) Different molecular motors
performing “tug-of-war”. In this model, different motors, possibly moving in opposite directions, are attached to the cargo and the observed motion
of the cargo is the sum of the action of all motors involved. (C) The presence of a road block on the track, for instance on a microtubules bundle, can

make transportation dynamics even more complex.

demonstrated its use for rapid sorting and storage of cells
suspended in an aqueous medium.'” Also, the ability to use an
acoustic force to perform quantitative high-throughput in vitro
single molecule force spectroscopy and manipulation has been
demonstrated."”* Acoustic manipulations of single molecules
within a cell have yet to be accomplished. However, if proper
handles can be introduced into the cell and if reliable methods
can be developed to calculate the acoustic forces inside living
cells, such manipulations could be realized. The acoustic
radiation force depends on the relative density and the relative
speed of sound between the object to manipulate and the
surrounding medium.'”®  For very small objects, acoustic

. . . L. 196
streaming forces dominate over the acoustic radiation force
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and could therefore be important for internalized, small
handles. The parameter dependence of the acoustic forces
indicate that handles made out of hard materials (metals, silica)
may be useful for acoustic manipulation also inside living cells.

4.6.2. Optical Stretchers and Other Tools for Cell
Mechanics Investigations. Optical stretchers are composed
of two counterpropagating laser beams'””'”® and are
conveniently applied for investigations of whole cells that
have a liquid medium as their natural surrounding. For a soft
object of refractive index larger than the surrounding medium,
like a cell in an aqueous medium, the two counter-propagating
laser beams tend to stretch the cell along the direction of
propagation of the two lasers. As recently reviewed by Yang et

DOI: 10.1021/acs.chemrev.6b00638
Chem. Rev. 2017, 117, 43424375


http://dx.doi.org/10.1021/acs.chemrev.6b00638

Chemical Reviews

al,'” optical stretchers have become an interesting tool in
connection with investigations of mechanical properties of, for
example, cancer cells and stem cells. In connection with single
molecule investigations inside living cells, the benefit of the
optical stretcher setup would be that a single cell may be held
and controlled while in solution, and one could imagine
combining the optical stretcher with force-sensing fluorophore
modalities or with one of the single molecule tools for
manipulation discussed above. Although believed to be feasible,
to our knowledge, so far no single molecules inside cells have
been investigated in a cell held (maybe even stretched) by
optical stretchers.

Finally, embedding single cells in a biomimetic, soft matrix
with magnetic tracer particles allows for 3D force mapping.””’
This method is particularly relevant for cells for which the
natural environment are other surrounding cells or a specific
matrix. Also, this 3D force mapping method could in principle
be combined with single molecule fluorescence detection.

4.7. Comparisons

The single molecule manipulation methods described above
allow for quantitative force spectroscopy, either at the surface
of, or inside, a living cell. With the massive development the
research community has witnessed for single molecule force
spectroscopy in vitro, a similarly interesting future may be
expected for the investigations in vivo. One task still remaining
for the community, both in vitro and in vivo, however, is to
make cross-technique calibrations to ensure that the force
measured by, say, optical tweezers, is indeed the same as
returned by an AFM or by force-sensing fluorophore
modalities.

5. OBSERVED DYNAMICS OF ORGANELLES AND
SINGLE MOLECULES IN VIVO

Taking advantage of the overwhelming technical development
described in sections 3 and 4 with respect to manipulation and
detection, also inside living cells, there has been great progress
in uncovering the fundamental molecular processes as well as in
mapping out the landscape inside living cells and organisms. In
parallel with this, progress in theoretical understanding of the
dynamics of life processes, as described in section 2, helps us
understand the underlying mechanisms. In this section, recent
experimental progress regarding the dynamics inside living cells
is reviewed, starting with outlining our current understanding of
the matrix into which the molecules and organelles move,
namely the highly crowded cellular cytoplasm. After this, we
review recent results on the dynamics of molecules and
organelles inside living cells and organisms.

5.1. Exploring Movement in the Crowded Cytoplasm

The cytoplasm, as sketched in Figure 15A, is highly crowded,
and the density of organelles, biopolymers, and membraneous
structures is high. Also, the large nucleus poses a significant
obstacle for dynamics within the cytoplasm. Inside the cell,
diffusion is probably the most normal mode of transportation;
however, there exist many active and specific transport routes.
For instance, transport by molecular motors along microtubules
or transport across the nuclear membrane by specific channels.
The cytoplasm displays both viscous and elastic properties, and
these vary spatially in a highly inhomogeneous manner and may
depend on the crowdedness of, for example, cytoskeletal
elements.

5.1.1. External Objects As Tracers. When single particle
tracking methods based on enhanced video microscopy reached
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a sufficiently technical level, the interest of researchers quickly
focused on characterizing the complex cytoplasm. One of the
first reports on this was by Caspi et al.””" who let fibroblasts
engulf micron-sized polystyrene particles and then followed the
motion of these particles by video microscopy. They found that
the particles predominantly performed subdiffusion with a
scaling exponent of & & 0.75 at short times. This exponent is
consistent with observations in passive networks of semiflexible
biopolymers. The study by Caspi was followed by numerous
other studies using endocytosed video-tracked particles to
probe the cytoplasm. For instance Weiss et al. observed
subdiffusion of fluorescently labeled dextran probes of different
size in living HeLa cells, with o values ranging from 0.74 to
0.87.”°* As mentioned in section 4, cells also endocytose gold
nanoparticles in a certain size range, and these were found to
perform anomalous diffusion in both the cytoplasm and
nucleoplasm, with « 0.48—0.70, in HeLa, HepG2, and
THLE cells.””> These reported scaling exponents are
reasonable in agreement, despite the variety of cell types
probed. One should, however, be aware that experiments
relying on endocytosed particles have a limitation; they only
probe the endocytotic pathway. The dynamics of this pathway
have also been studied: endosomes loaded with magnetic
nanoparticles were shown to perform subdiffusion with a
0.40 in intact PC3 tumor cells, with @ ~ 0.49 in cells with
disrupted microtubules, and a = 0.56 with disrupted actin
filaments.”® The infectious pathway of single fluorescently
labeled adeno-associated viruses has been investigated, and
scaling e)gponents ranging between 0.5 < a < 09 were
reported.””*

5.1.2. Endogeneous Tracers. Most, maybe all, cells have
lipid reservoirs which are termed lipid granules and which
appear as 300—500 nm dark spots in bright field microscopy.
As these are optically much denser than the cell cytoplasm and
the nucleus, they can be used both as tracer particles in image-
based tracking and as handles for optical trapping. Lipid
granules are occasionally grabbed and moved by molecular
motors along their tracks and are therefore great handles for
studying the motion of kinesin and dynein inside living
cells,” 206 35 detailed below in the Molecular Motors
subsection.

Lipid granules have also been used as handles to probe the
viscoelastic properties of Iivin% cells. One of the first examples
of this was published in 2004, *' where naturally occurring lipid
granules were tracked inside living yeast cells using both video
tracking and optical tweezers. With appropriate detection
mechanisms, optical tweezers have a significantly better time
and temporal resolution than video-based tracking, and by
combining these techniques the viscoelastic properties of the
cytoplasm was probed at time scales ranging from 10 ys to 100
s. The cytoplasm was found to be subdiffusive at short time
scales with a scaling exponent of ~0.75, whereas different types
of anomalous diffusion was found at longer time scales,"*!
signifying the different biological processes taking place. Later,
the same model system showed that the viscoelastic properties
of the cytoplasm changed during the cell cycle®®” and that the
system even exhibited weak ergodicity breaking at the shortest
observed time scales.®* Recently, lipid granules have been
shown to behave quite differently in another model system,
namely the A. castellani amoeba. In this system, some granules
were observed to be superdiffusive with @ = 1.79 due to
cytoplasmic streaming, while treatment with the chemicals
latrunculin and nocadozole lowered the exponent to @ ~ 1.53
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and 1.60, respectively.””® If the amoeba was treated with
blebbistatin, the lipid granules were almost stalled with a
0.13.2%

5.1.3. Diffusion of Single Molecules. With appropriate
labeling, even the motion of individual molecules can be
tracked inside living cells. For instance, Golding and Cox
reported the subdiffusion of fluorescently tagged mRNA in E.
coli with @ = 0.77 and showed that this value does not
significantly change when the measurements are performed in
mutants lacking the cytoskeletal proteins MReB and FtsZ.
Moreover, they reported discontinuous motion with periods of
almost localized motion and fast jumps.”®” Observation in live
E. coli of RNA molecules with tandem hairpins bound by GFP
indicated a value @ = 0.71, which was unaffected by different
biological perturbations, as reported by Weber et al.”> Motion
of single molecules has also been investigated in eukaryotic
cells. One such example is the motion of different modifications
of HIV-1 integrase labeled with enhanced GFP molecules in
HeLa cells. These enzymes were shown to exhibit subdiftusion
with @ values ranging from 0.59 to 0.94.*"°

5.1.4. In Vitro Comparisons. Even though single
molecules in vitro lack their natural environment, it still
makes sense to study their diffusive properties in vitro as this
can help identify the essential components giving rise to the in
vivo observations. One must be aware though that in vitro there
is no metabolism, hence, the only energy present for driving the

~
~
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motion is typically thermal diffusion (unless, for example, ATP
is added to a sample containing ATP consuming enzymes).
One example of in vitro studies of protein diffusion was carried
out by Banks and Fradin who demonstrated that proteins
subdiffuse in crowded solutions of polymeric dextran. They
observed a values systematically varying from 1 in dilute
solution down to 0.75 at higher dextran concentrations.”"!
Later, Szymanski and Weiss reported anomalous diffusion of
fluorescently labeled aptoferritin in 20% (weight) solutions of
dextran with a consistent « value of ~0.8.%” Also, the diffusion
of larger tracer particles has been investigated in vitro.
Fluorescently coated microscopic particles were shown to
exhibit anomalous diffusion in lysozyme protein solutions with
a varying from one to 0.45 with increasing lysozyme
concentration.”'> Also, Jeon et al. proved anomalous diffusion
of submicron-sized polystyrene beads in micellar solution with
a values around the remarkably low value of 0.3.%°

5.2. Molecular Motors

Molecular motors are individual molecules which perform a
biased movement, most often in a linear or rotary fashion, while
consuming energy, and the dynamics of such molecular
machines have been observed and measured in vivo.*>*!¥*!*
Molecular motors have different processivety; that is, the
number of steps taken before the motor dissociates from its
trail differs from one motor to another and may also differ from
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in vivo to in vitro conditions. The motion of cargo carried by a
motor in a linear fashion will be superdiffusive. This has been
observed in a variety of living eukaryotic cells®*®"%!120120¢
represented by scaling exponents typically in the range of o =
1.3—1.5. Besides pure superdiffusion, intermittent Lévy walk-
like superdiffusion with a power law run length distribution has
been observed for molecular motors in mammalian epithelium
cells.'”

5.2.1. Kinesin and Dynein. Kinesin and dynein are the
molecular motors responsible for transport along microtubules.
Most kinesins move their cargo toward the plus end of
microtubules, whereas dynein moves in the opposite direction,
toward the minus end of microtubules (see Figure 15). They
are relatively processive motors taking hundreds of steps before
disengaging, and they often carry cargo, for instance lipid
granules, which is directly visible even in bright field
microscopy and can be directly manipulated by an optical
trap. For these reasons, kinesins and dyneins are among the
best-studied molecular motors, also in vivo.”'* Both in vitro and
in vivo, the step size of microtubule associating kinesins and
dyneins has been shown to be 8 nm, consistent with the size of
the tubulin monomer.

The first measurement of molecular transport along
microtubules mediated by kinesin and dynein was conducted
by Ashkin and co-workers who used optical tweezers to trap a
mitochondrion moving along microtubules inside a living giant
amoeba Reticulomyxa.” Here, the maximum force exerted by a
single motor was estimated to be ~4 pN. A few years later,
optical tweezers were used to observe retrograde transport of
vesicles along microtubules inside Drosophila embryos,”>*%°
that were interpreted as dynein movement. From the
measurements, the force needed for stalling an individual
dynein was estimated to be 1.1 pN.

Similarly, motion of kinesins were observed in Drosophila
using optical tweezers as measurement device and transported
lipid granules as tracers.”” The stall force was here found to be
~2.4 pN, which is significantly lower than the value measured
in vitro for single kinesin molecules, S—7 pN.ZOS’215 In addition,
the kinesins were observed to stay on the track for shorter
distances in vivo than in vitro and their velocities were also
lower than those measured in vitro.””

In a study by Kural et al,>'® it was suggested that multiple
kinesins or dyneins work together in organelle transport along
microtubules. They claimed that the motors do not work
against each other but act in a concerted fashion and manage to
produce speeds in vivo that are up to 10 times faster than in
vitro speeds. In recent years, it has become more and more
clear that the regulation and action of kinesins and dyneins in
vivo is anything but simple. Typically several dyneins and
kinesins are attached to the same cargo, and the dynamics are
regulated in a complex “tug-of-war” manner (illustrated in
Figure 15B), where dyneins pull the cargo toward the minus
end while kinesins simultaneously pull the cargo toward the
plus end.*'**'> Also, it appears that synergistic collaboration
between kinesins and dyneins is required for intracellular
bidirectional transport,”"” thus signifying complex regulation
mechanisms that are not yet fully understood. The engagement
of different motors on the same cargo may also assist
transportation across road-blocks as for example microtubule
intersections”'* (see road-blocking illustrated in Figure 15C).
Blehm et al. investigated the complex transport of lipid granules
inside living cells (Dictyostelium discoideun and AS49 cells) by
optically trapping the granules.”’® They found plus-end
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directed stall forces of 2—7 pN and minus-end directed stall
forces of 2—3 pN, which is higher than the stall force of a single
dynein. Hence, the authors concluded that for transport of lipid
granules along microtubules, dyneins are probably also engaged
during plus-end directed motion during which they pull in the
opposite direction of the kinesins. In the minus-end directed
motion, their results were consistent with several dyneins
pulling in concerto on the cargo. Typical traces and stall force
histograms from ref 215 are shown in Figure 16. In literature,
there are quite a large number of reports of stall forces of
kinesin and dynein in vivo, probably the largest force reported
is 60 pN.*'® This comes from an experiment where the stall
force was measured in an indirect manner by attaching a bead
from the outside to a membrane protein of a Chlamydomonas
flagella, that is anticipated to be moved by kinesins and dyneins.
A force of 60 pN would require at least 10 motors to
synchronize, which has not been reported in other studies. The
variety in stall forces probably reflects that the motors act in a
complex fashion but also calls for a critical evaluation of the
calibration procedures involved in the different measurements.
In vivo calibration of manipulation techniques, as reviewed in
section 4, is not trivial and still cross-calibrations between the
different modalities are called for.

To further complicate the picture, there exist “hand-over”
mechanisms between motors for transport across the entire
cell.””” For instance, the kinesin-II and OSM-3 motors (both
kinesin-2 types) have different functions but have recently been
shown to cooperate for efficient cargo import and transport
along cilia inside C. Elegans.””® Interestingly, the motors
distribute the work; kinesin-II which is slower and less
processive than OSM-3, functions as an import motor of
intraflagellar transport (IFT) trains through the ciliary base. At
the “handover-zone” OSM-3 replaces kinesin-II and functions
as a long-range transport motor that carries the IFT train to the
ciliary tip. In vitro kinesin-II generates runs of ~0.2 ym at a
speed of ~0.5 pm/s, whereas OSM-3 runs longer and faster
(~2 um at a speed of ~1.5 um/s). When the two motors
operate together in vivo, they move at an intermediate speed of
~0.7 pm/s. However, in this study it was shown that as the
OSM-3 takes over the cargo from kinesin-II, the speed
accelerated, thus overall making the transport more efficient.

5.2.2. Myosin. Myosin V is another example where there is
a discrepancy between in vitro and in vivo observations. In
vitro, myosin V was found to move significantly slower than
suggested by observations of organelles transported by myosin
V in vivo. To study the gap between these findings, single
myosin V molecules were labeled with quantum dots and
tracked inside living HeLa cells.”' The investigators did indeed
find a difference both in the velocities and in the processivity of
the motor: the in vitro velocity of a myosin V molecule was
(500 + 30) nm/s, whereas it was (710 + 50) nm/s in vivo.
Also, myosin V appeared to stay on track for longer in vivo, (2.2
+ 02) pm, than in vitro, (1.3 + 02) um. The longer
processivity in vivo may be explained by the fact that the escape
time in aqueous medium is much shorter than the binding time.
Hence, if the motor unbinds in water, chances are it will fall off
and disappear. In contrast, due to the more crowded
environment of the living cell (see Figure 15), the escape
time is longer and the myosin motor has a larger chance of
rebinding. The fact that the velocity inside the crowded
cytoplasm is higher than in the aqueous environment seems
counterintuitive and could be due to the lack of optimization of
the in vitro assay.”' The counterintuitive effect of macro-

DOI: 10.1021/acs.chemrev.6b00638
Chem. Rev. 2017, 117, 43424375


http://dx.doi.org/10.1021/acs.chemrev.6b00638

Chemical Reviews

molecular crowding on processes has also been reported in
Morelli et al.**"

Interestingly, myosins are often present on organelles which
are transported by kinesin and dynein, and their purpose in this
context is under debate.”'* It might be that myosins assist
organelle docking or pausing at the right location,”** or maybe
myosin allows for grabbing onto passing actin cables whereby
the transported organelle may switch from microtubule to
actin-based transportation.

5.3. Dynamics in the Membranes of Living Cells

Living cells are encapsulated in membranes. The cell membrane
is not merely an envelope for the cytoplasm, it actively
participates in maintaining the development and life of the cell.
Also, the membrane has a critical function in communication
with the extra-cellular environment. Here, we discuss both the
dynamics of the lipids within the membrane and the dynamics
of proteins located in the membranes, including the dynamics
of raftlike structures possibly containing both lipids and
proteins, as observed, for example, in epidermal cells in living
zebrafish embryos.”*® Certain proteins located on or in the
outer surface of the living cell are crucial for cell—cell and cell—
substrate adhesion, as also discussed here.

5.3.1. Dynamics of Membrane Lipid Molecules. In the
simplest case, a membrane consists of molecules of one type of
lipid compound and the dynamics depend both on the
temperature and on the observation time scale. At a
temperature above the phase transition temperature, the lipids
are in a liquid phase. At extremely short times (up to 10 ns),
the dynamics of lipids in this state are expected to exhibit
anomalous diffusion with @ ~ 0.65; and after ~10 ns, the
diffusion will be normal with an exponent of a = 1.°%0%2*%225
At temperatures below the phase transition temperature, the
lipids enter an ordered phase. Through simulations, Jeon et al.
showed that in this regime and at extremely short times (up to
10 ns) the lipids exhibited anomalous diffusion with an
exponent of @ & 0.16, wherafter it crossed over to a & 0.59,
which characterized motion up to the longest simulations times
of 10? nsec.”’

The situation becomes more complex when other molecules
(e.g., cholesterols) are embedded in the membrane. Simulations
have shown that the motion of a mixture of phospholipid
molecules and cholesterol in the liquid ordered phase is
subdiffusive with a scaling exponent of @ & 0.82, even for time
scales beyond 10 ns. If additional disorder is added, for instance
in the form of much bigger and significantly less mobile
membrane proteins, anomalous diffusion was shown to persist
beyond 10* nsec and both lipid and protein diffusion was non-
Gaussian and had a distinct distribution of mobilities.”””"
Membranes can include raftlike structures of lipids and
proteins, as illustrated in Figure 17. Munguira et al. reported
that diffusion properties of membranes are domain-dependent
such that Brownian motion, anomalous diffusion, and %lasslike
properties may coexist in a single membrane bilayer.*”

5.3.2. Dynamics of Membrane Proteins. Closely
connected to the dynamics of the membrane itself is the
dynamics of proteins embedded in the membrane (see Figure
17). The first single-molecule observation of lateral protein
movement in the membrane of living cells was carried out by
Edidin et al.**” Here, a gold nanoparticle was attached to the
protein complex of interest and dragged through the membrane
using optical tweezers. In the experiment, the distance the gold
nanoparticle could be dragged through the membrane without
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Figure 17. Hlustration of membrane-related dynamics (i.e., diffusive
motion of phospholipids) and the motion of membrane proteins
which perform anomalous diffusion, for example, because they are
tethered to cytoskeletal elements or confined.

escaping the trap was measured and designated as the “barrier-
free path”.”*” This experiment, along with notable experiments
from the Kusumi group,””® led to the hypothesis that the
cellular membrane is compartmentalized by cytoskeletal
elements connected to the membrane, and that proteins in
the membrane are typically “fenced” by such compartment
structures or tethered by the structures, as illustrated in Figure
17.

The prokaryotic membrane is significantly different from the
eukaryotic membrane. In addition to the innermost bilayer, the
prokaryotic cell wall also consists of a peptidoglycan layer and
an outer lipo-poly saccharide coat. The first experiments
demonstrating how a single membrane protein moves in the
membrane of a living prokaryotic cell was published in 2002.
Here, the Brownian motion of a single lambda receptor in the
cell wall of Escherichia coli was monitored by weak optical
tweezers using specifically attached polystyrene beads as
handles.”” This type of experiment had the advantage that
the protein dynamics were probed in the local natural
environment without dragging it through potential obstacles
that it normally might not pass. The motion of the lambda
receptor was shown to be diffusive, with a larger diffusion
constant than typically observed for protein motion in
eukaryotic membranes, meanwhile having an elastic response
due to cell wall tethering.””’ Interestingly, the motion was
shown to be strongly dependent on the bacterial metabo-
lism**’~**" (i, the motion contained an active component
which required a fully functional metabolism).

Particle tracking was applied for studying the motion of
individual DC-SIGN receptors, labeled with quantum dots, in
the membrane of Chinese hamster ovary cells.”’ Overall, these
receptors perform subdiffusion with a ~ 0.82—0.85, however,
with the observation that they also undergo changes of
diffusivity. In addition, the motion of the receptors exhibited
weak ergodicity breaking and aging, thus supporting the view of
the cell membrane as being highly dynamic and diverse.

By tracking individual potassium channels in the plasma
membrane of human kidney cells, it was demonstrated that
such channels exhibit anomalous diffusion at time scales up to
hundreds of seconds.” The channels exhibit both ergodic and
nonergodic behavior, with the nonergodic process being
regulated by transient binding to the actin cytoskeleton.
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Figure 18. AFM force measurements of the binding between the CD20 receptor expressed in the outer surface of lymphoma cancer cells and the
cancer drug Rituximab. (A) Illustrations of how an AFM cantilever coated with Rituximab approaches a cell and binds specifically to a CD20
receptor. Thereafter, the tip is retracted and the bond between CD20 and Rituximab is stretched and finally broken. (B) An example of force—
distance curves and rupture force histograms of measurements from a lymphoma cell expressing the CD20 receptor (left) and a control cell that does
not express the CD20 receptor (right). The bond breaks at the most negative point in the retraction curve (red), and it requires a higher force to
break specific CD20-rituximab bond than nonspecific attachment. (C) Semilogarithmic plot of Rituximab-CD20 rupture force as a function of
loading rate, the linear relation confirms the Bell-Evans model equation 13. B—C are reproduced with permission from ref 233. Copyright 2013

Wiley-Blackwell.

5.4. Adhesion

Cell—cell and cell—substrate adhesion has predominantly been
studied by AFM, as the forces involved are typically too large to
be probed by other manipulation techniques. AFM has the
additional advantage that it can also be used to scan surfaces.
Hence, within the same experiment, the surface of a cell can be
mapped out and force spectroscopy of selected regions can be
performed. For a recent overview of AFM, in particular in
relation to cell surface mapping and single molecule force
spectroscopy, see ref 232. Adhesion of living cells has been
studied on the single molecule level using AFMs. One example
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regards the marine mussel, whose survival is dependent on a
firm adhesion. The bond responsible for mussel adhesion, dopa,
was studied on a single molecule level using AFM revealing a
surprisingly strong, yet fully reversible noncovalent interac-
tion.">® AFM is particularly well-suited for studying molecular
and cellular binding forces, one example of this is an
investigation of the binding force between a single receptor
expressed in the outer cell wall of lymphoma cancer cells,
CD20/RORI1, and the cancer drug targeting this receptor,
rituximab.”>* Figure 18A shows a sketch of the experimental
setup for measuring adhesion between CD20 and rituximab,
and Figure 18B, left panel, shows typical force—distance graphs
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upon approach (black) and retraction (red) of a rituximab-
coated tip to or from a CD20 expressing cell. The dip in the
retraction graph signifies the breakage of the CD20-rituximab
bond, the breakage force can be read off directly as ~0.07 nN.
For comparison, the right panel of Figure 18B shows a similar
event from a cell that does not express CD20. The histograms
shown in Figure 18 demonstrate a significant difference
between the nonspecific bindings probed in the control cells
and the CD20-rituximab binding probed in the CD20
expressing cells. In the latter, there is, of course, a fraction of
nonspecific bonds probed. As explained in section 4.3, the
rupture force depends on the loading rate (how quickly the
cantilever is retracted). Figure 18C shows a plot of obtained
rupture forces as a function of the logarithm of the loading rate.
This relation is linear, as expected from the Bell-Evans model,
equation 13. The kind of investigations demonstrated in ref 233
can be used to probe whether cancer cells from a specific B-cell
lymphoma patient will bind well to the cancer drug, and hence,
paves the way for personalized cancer treatments.

5.5. Nerves

The development of the central nervous system is a delicate
process where differentiation of precursor stem cells results in
fully functional nerve cells, which must migrate and create long
axons and finer-branched dendrites. In the central nervous
system, glial cells exist alongside the neurons; these glial cells
may serve as a scaffold for the neurons. With the use of
scanning force microscopy, bulk rheology, and optical
stretchers, it was found that, compared to most other
eukaryotic cells, both neurons and glial cells are very soft.”**
Interestingly, glial cells are even softer than the neighboring
neurons and could serve as a protective cushioning or as a soft
substrate guiding neurite growth. In a recent publication, a
research collaboration”” made a beautiful experiment where
they used AFM-based sensing to investigate the mechanisms
behind axon growth in Xenopus embryos. The AFM cantilever
was placed inside the brain of the living embryo (underneath
the skin), and it was found that the axons grew toward the
tissue’s softer side. These results were reproduced in vitro in
the complete absence of chemical gradients. Also, by
immunocytochemical manipulation of a mechanically activated
cation channel, the authors proved that the sensing of substrate
stiffness is mediated by mechanosensitive ion channels.”*’

5.6. Chromosomes

Chromosomes exist in the nuclei of eukaryotic cells and freely
floating in prokaryotic cells’ cytoplasm. Eukaryotic chromo-
somes consist of tightly packaged DNA wrapped around
protein complexes, called nucleosomes, which regulate tran-
scription. Chromosomes are made from a complex of DNA,
protein, and RNA called chromatin which display several
organization levels spanning from the 2 nm diameter of the
DNA double helix to micrometer structures.”** The dynamics
of chromosomal loci has been investigated by fluorescent
labeling, and they have been shown to exhibit anomalous
subdiffusion with @ & 0.5.*° Another study returned a ~ 0.39,
and this relatively small exponent is attributed to the relaxation
of the Rouse modes of the DNA chain.®® Fluorescently labeled
telomeres, the extremities of individual chromosomes, were
shown to diffuse anomalously with @ & 0.32 in human U20S
cancer cells.”>**’

The mechanical properties of chromatin fibers, and how
these relate to chromosome orientation during the cell division
cycle, was investigated in vivo using glass microneedles as early
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as 1969," and in 1979 this pioneering work was followed by a
similar study using glass microneedles to force-manipulate
chromosomes inside living spermatocytes.””® They found that
chromosomes are individually anchored to the spindle by fibers
connecting the kinetochores to the spindle poles.”*®

In vitro, optical tweezer experiments have been useful for
mapping out the structure of chromatin fibers*” and for
increasing the understanding of the association between DNA
and nucleosomes.”****! In vivo, there still does not exist direct
quantitive measurements of the mechanical properties of
chromatin, although some aspects of mechanical stability can
be inferred from observing the thermal fluctuations.”**

5.7. Bacterial Flagella

Motile bacteria are often propelled by a flagella, a corkscrewlike
structure which is attached to a rotary motor driven by a
transmembrane proton gradient. In 1989 Block et al.*** showed
that optical tweezers were strong enough to overcome the
torque generated by the flagellar motor of a living bacterium
attached to a glass surface, and by using the tweezers, the
authors were able to determine the torsional compliance of two
different bacterial types.”*’ Also, optical tweezers have proven
useful for quantifying the run-tumble dynamics mediated by the
flagellar determined motion of E. coli’** and Vibrio
alginolyticus.”* In addition, the motion of the bacterial flagella
was used as a measure to investigate whether optical trapping of
individual E. coli at specific wavelen§ths and laser powers
influenced the viability of the bacteria.'*" These results, as well
as results monitoring the ability of different types of bacteria to
maintain a proton gradient across the cell wall during
trapping,'*” showed that bacteria can remain physiologically
fully competent while in an optical trap provided that the
correct wavelength (e.g,, 1064 nm) is used and that laser power
and irradiation period is kept relatively low.

6. SUMMARY AND OUTLOOK

The rapid and impressive progress within the development of
techniques capable of monitoring life processes down to the
single molecule level has led to fundamentally new insights into
the functioning of single molecules and organelles. Looking
back on the last couple of decades, it is, however, evident that
there has been significantly more progress in vitro than in vivo.
In vitro one can isolate the influence of a single or very few
parameters, thus making interpretation of the experiments
relatively easy. In vivo, the environment is exceedingly complex
and we might only be aware of a small fraction of the players
participating in a given life process.

The most widely used techniques for monitoring dynamics in
vivo are optical tweezers, magnetic tweezers, and AFMs, which
all have pros and cons in relation to in vivo experimentation.
The magnetic tweezers are probably the least invasive; however,
they require insertion of a magnetic probe as no naturally
occurring object can be magnetically manipulated. Usage of
AFM is beneficial for probing adhesion and properties of the
outer surface and proteins located therein. An AFM cannot,
however, reach inside the cell without penetrating the cell
membrane, a rather invasive event. Optical tweezers can be
nearly noninvasive and can reach and operate deep inside living
cells and whole organisms. It is possible, but not trivial, to
perform reliable force-calibration inside a living cell and thereby
perform absolute force measurements (e.g,, of the action of
molecular motors in vivo).
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In parallel with the experimental developments, the
theoretical understanding of the dynamical processes inside
living cells has made huge leaps forward. There now exists
relevant and successful models for describing various forms for
normal and anomalous diffusive processes inside living cells.
These models pinpoint the relevant and fundamental
parameters responsible for life dynamics and helps understand
and predict the processes.

Despite the challenges that exist for reliable probing of in
vivo dynamics, there has been significant progress over the past
decade, for instance in unraveling the complex interplay of
kinesins and dyneins during microtubules associated trans-
portation and in mapping out the viscoelastic landscape inside
living cells. The field of in vivo investigations at the single
molecule to whole cell level holds great potential for the future.
We foresee that within the near future, focus will also be
directed toward understanding the role of mechanics and
dynamics for lineage specification of stem cells and for
embryonic development. Through recent technological pro-
gress, it has now proven possible to manipulate inside whole
living organisms (e.gg., optical manipulation inside developing
zebrafish embryos”*® and AFM manipulation inside the brains
of developing larvae).”*> As stem cells have the potential to
develop into any specialized cell of the organism, they can be
considered “the holy grail” for regenerative medicine, and
understanding the molecular and mechanical mechanisms at
play during differentiation holds the key to understanding and
controlling this important process. On the basis of the
remarkable in vivo achievements described in this review,
there is hope that the future will bring new knowledge on the
dark matter of biology and on the basic mechanisms governing
life.
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