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ABSTRACT 

The chemical interaction between plants and bacteria in the root zone can lead to soil 

decontamination. Bacteria which degrade PAHs have been isolated from the rhizospheres of 

plant species with varied biological traits, however, it is not known what phytochemicals 

promote contaminant degradation. One monocot and two dicotyledon plants were grown in 

PAH-contaminated soil from a manufactured gas plant (MGP) site. A phytotoxicity assay 

confirmed greater soil decontamination in rhizospheres when compared to bulk soil controls. 

Bacteria were isolated from plant roots (rhizobacteria) and selected for growth on anthracene and 

chrysene on PAH-amended plates. Rhizosphere isolates metabolized 3- and 4-ring PAHs and 

PAH catabolic intermediates in liquid incubations. Aromatic root exudate compounds, namely 

flavonoids and simple phenols, were also substrates for isolated rhizobacteria. In particular, the 
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phenolic compounds -- morin, caffeic acid, and protocatechuic acid -- appear to be linked to 

bacterial degradation of 3- and 4- ring PAHs in the rhizosphere. 

Keywords 

rhizosphere, polycyclic aromatic hydrocarbons, flavonoids, siderophores 
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INTRODUCTION 

Pollution of soil with toxic aromatic hydrocarbons is widespread and often due to historic 

waste disposal methods at petroleum-based industrial sites. Polycyclic aromatic hydrocarbons 

(PAHs) are a class of these compounds which impact human health through interactions with 

DNA that lead to mutations and cancer (Alkio, Tabuchi et al. 2005). The toxicity of PAHs, the 

quantity of polluted sites, and the expense in remediating coal tar residues has necessitated the 

development of cost-effective treatment options. 

Rhizodegradation is emerging as a potential remediation technology for organic 

pollutants in soil. This form of phytoremediation utilizes the natural interaction of plants and 

rhizosphere bacteria to decontaminate the surrounding soil. For example, elevated degradation of 

phenanthrene was seen for rhizosphere soils planted with slender oat (Avena barbata) when 

compared to bulk soil controls (Harvey, Campanella et al. 2002). However, it has yet to be 

determined if rhizodegradation can be a widespread technology option used regularly by 

treatment industries. In order to improve the extent of removal, it may be necessary to stimulate 

bacterial degradation through chemical interaction with host plants. The purpose of this study 

was to evaluate certain compounds that are exuded from plant roots as potential chemical 

stimulants in rhizodegradation systems. 

The resilience of the rhizosphere to chemical disturbance has been attributed to the 

biochemical interaction of plants and soil microorganisms (Lynch 2002). Plants exude specific 

compounds to influence microbial population composition and activity in the rhizosphere. For 

instance, root exudates ward off pathogens (Lynch 1990) and establish soil chemical balance 
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through feedback loops with beneficial rhizobacteria (Whipps 1990). Evidence suggests that 

plants exude aromatic compounds that resemble catabolic intermediates to stimulate 

biodegradation of toxic aromatic contaminants (Donnelly, Hegde et al. 1994; Walton, Hoylman 

et al. 1994; Fletcher and Hegde 1995; Siciliano 1998). Examples of these exudate compounds are 

flavonoids and simple phenols. Bacterial degradation of the contaminant then leads to lower 

phytotoxic conditions and restores chemical balance in the root zone. 

Iron nutrition in the rhizosphere may impact PAH degradation because aerobic bacterial 

growth on hydrocarbons requires higher iron concentrations (Daane, Harjono et al. 2001). In 

addition, efficient sequestration of iron can be an important factor in plant-bacteria interaction 

and root colonization (de Weger, van Arendonk et al. 1988). Dicotyledon plants exude phenolic 

compounds, which are similar to flavonoids and simple phenols, to scavenge iron from the soil 

environment. Microorganisms and monocotyledon plants synthesize siderophores to acquire 

insoluble iron from the soil. Bacterial species that scavenge iron through siderophore production 

are prevalent in plant root environments (Meyer, Geoffroy et al. 2002; Bultreys, Gheysen et al. 

2003). In this study, siderophore production by PAH-degrading root isolates is assessed to see if 

this may be another factor in rhizodegradation. 

The reaction of plants to PAH contamination and the influence on rhizosphere microbes 

can impact the choice of a host plant for a rhizodegradation system. A variety of plants remediate 

petroleum hydrocarbon pollution in soil including hybrid poplar, cattail, and rice (Adams, 

Carroll et al. 2000; Farrell, Frick et al. 2000). Grasses and legumes have been the predominant 

type of plants used in rhizodegradation studies (Frick, Farrell et al. 1999; Farrell, Frick et al. 
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2000). Factors such as the size of the root system and plant-soil chemical interaction can impact 

the extent of contaminant removal (Adams, Carroll et al. 2000). 

The three plant varieties in this study are agricultural crops which have benefits such as short 

growth periods and potential for use in large-scale phytoremediation applications. However, test 

plants used for treatment could not be food sources due to the potential for accumulation of toxic 

amounts of the pollutant. Wheat plants, which are members of the grass family (Poacea), have 

been shown to promote removal of naphthalene, a 2- ring PAH (Kuiper, Kravchenko.L.V. et al. 

2002). The fibrous root systems of grasses may penetrate to a depth of 3 m (Frick, Farrell et al. 

1999). In addition, microscopic root hairs which protrude from the main roots of these plants 

create a vast surface area for interaction with micro-inhabitants. 

PAHs are highly hydrophobic and adsorb strongly to the soil matrix. Mobilizing these 

compounds increases bioavailability which, in turn, enhances bacterial degradation (Liste and 

Alexander 2000). Zucchini and pumpkin plants (Cucurbitae) exude organic acids which 

withdraw hydrophobic organic pollutants in the soil (White and Kottler 2002; White, Mattina et 

al. 2003). Zucchini plants accumulate PAHs at surprising concentrations (Parrish, White et al. 

2006) given the unlikelihood of PAH translocation into the root interior. 

Rhizobacteria were isolated from the plant species grown in PAH-contaminated soil and 

selected for growth on anthracene and chrysene. PAH-utilizing isolates were then assayed for 

growth on aromatic exudates and production of siderophores to test chemical interactions which 

may promote degradation of PAHs by rhizobacteria. 

MATERIALS AND METHODS 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 6 

Plant growth conditions 

Wheat seeds were obtained from a laboratory at the University of Connecticut (Storrs, 

CT). Zucchini and pumpkin seeds were obtained from Seedway (Elizabethtown, PA). Latin 

names and cultivars for these plants are listed in Table 1. Seeds were disinfected by shaking in a 

3% HClO3 solution for 2 hours. Germination of seeds took place in sterile water agar plates (1 L 

water with 15 g agar, autoclaved). After radicles emerged, the seedlings were planted in the soil 

mixture. The soil mixture contained PAH-contaminated soil from a former manufactured gas 

plant site in Winsted, CT (MGP soil). The total PAH concentration in the MGP soil was 760 

ppm. The soil mixture contained 0% (control), 3%, or 30% (v/v) of the contaminated soil 

(referred to as 0-MGP, 3-MGP, and 30-MGP). Early trials showed that seedling survival rates at 

higher concentrations would not provide enough samples for adequate analysis. The rest of the 

soil mixture was comprised of a pristine soil and a small amount of sterile peat moss to elevate 

water retention. The pristine soil was obtained from the Connecticut Agricultural Experiment 

Station research farm in Cheshire, CT. Plants grew at room temperature (24C) for two months. 

A 16-hour photoperiod was supplied through four 40W Plant and Aquarium fluorescent bulbs 

(General Electric Company, Cleveland, OH). Plants were bottom-watered and misted daily with 

sterile water. Weekly fertilizations were supplied with 10 mL of sterile 10% Hoagland’s 

solution. The plants were harvested after two months growth in the potting media. Shoots were 

severed at the root-shoot interface using a sterile scalpel. 

Obtaining rhizosphere bacteria 
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Roots were carefully removed from potting media under sterile conditions. Except for large dry 

clumps, the majority of the soil adhering to the roots was included as part of the rhizosphere -- 

based on the common definition of the rhizosphere as a zone of physical and chemical 

interaction between the root and the surrounding soil. Roots were placed in 40 mL of 0.1 M 

potassium phosphate buffer (PPB) and sonicated using a sonic dismembrator wand for 30 

seconds at setting 4, which translates to 8-11 Watts depending on solution density. Sonicant was 

allowed to settle for 10 min so soil would separate out and the liquid phase was collected. 

Suspensions were spun down at 10000 x g for 20 min, the supernatant removed, and the pellet 

re-suspended in 1 mL of 0.1 M PPB. 

Selecting PAH-degrading bacteria 

Rhizosphere suspensions were vortexed to mix and 50 μL aliquots withdrawn and spread 

on mineral salts minimal media (MSMM) plates prepared with noble agar. The plates were 

sprayed with one of two PAH/solvent substrate solutions: 500 mg/L anthracene in hexanes and 

500 mg/L chrysene in hexanes. Sprays of the substrate solutions were applied to the plates using 

glass aspirator bottles (20-30 sprays). The hexanes immediately evaporated off leaving a uniform 

coating of either anthracene or chrysene on the selection plates. These plates were allowed to 

incubate for 30 days at room temperature (24C). Bacteria were selected based on the formation 

of clearing zones of the PAHs around the colonies (See Figure 2). Colonies were located using a 

microscope at 10x magnification and spread on 0.1 R2A plates amended with 100 mg/L 

cyclohexamide and incubated at 30C for 2 days. Single colonies were then purified by T-
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streaking on a second 0.1 R2A plate. Purified isolates were grown in liquid 0.1 R2A media for 2 

days at 30C and stored in 60% (v/v) glycerol at -80C. 

Soil phytotoxicity test after plant harvest 

A phytotoxicity assay was used to determine if conditions in the contaminated soil were 

improved by the plants after the growth period. This method estimates the acute toxicity of solid 

hazardous wastes in a 120-hour static test. Lactuca sativa var. Tango was used as the test 

species. The number of seeds that germinate in the soil is the measurement of phytotoxicity. The 

assay was performed for rhizospheres at the 30-MGP level and a non-planted control (bulk soil). 

After root harvest, 25 g of the soil mixture was placed in a Petri dish and 40 lettuce seeds were 

evenly distributed on the soil surface. Another 20 g of the same soil was then lightly spread over 

the seeds. 10 mL of sterilized reverse osmosis (RO) water was applied with a pipette to provide 

adequate moisture during germination. The Petri dish was closed and sealed with parafilm. The 

Petri dishes were incubated in the dark at room temperature for 2 days and then moved into the 

light at room temperature for 3 days. The lighting supplied was from natural sunlight through 

windows and fluorescent lights used to light the room. After 5 days of incubation the number of 

lettuce sprouts protruding above the soil surface was counted. 

Growth of PAH-utilizing bacteria on substrates in liquid incubations 

Bacteria isolated and purified from PAH selection plates were assayed for growth on 

additional PAHs, PAH catabolic intermediates, aromatic root exudates, and two major plant 

hormones. These compounds are supplied as the only carbon and energy source during the initial 

incubation period. Microplates were amended with anthracene, chrysene, fluoranthene, 
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phenanthrene, and pyrene. An aliquot of 40 uL PAH stock solution (500 mg/L in hexanes) was 

added to the test wells and the hexanes allowed to evaporate off leaving a layer of PAH on the 

microwell bottom. Next, 150 µL of mineral salts minimal media (MSMM) was then added to the 

wells (pH = 7). 

Compounds which were adequately soluble in water, such as salicylate, were prepared 

directly in MSMM (133.33 mg/L) and 150 µL of this solution was added to the microwells. 

Control wells contained either 150 µL of MSMM with the inoculum but no substrate or 200 µL 

of MSMM with a substrate but no inoculum. Aliquots of 50 µL cell suspensions were then added 

to the appropriate wells in the substrate-amended microplates. Addition of the inoculum resulted 

in a final concentration of each test compound of 100 mg/L for all compounds tested. 

Microplates were then covered and placed in clean plastic bags with 3 mL sterile RO water to 

maintain moisture content throughout the incubation period. After 3 weeks, 10 µL of WST-1 

tetrazolium salt dye (Roche, Cat. # 1644807) was added to all wells in each microplate with a 

multichannel pipetter. Tetrazolium salts like WST-1 are reduced to a colored formazan only by 

metabolically active cells, meaning this assay detects viable cells exclusively. An additional 

carbon source was then added to the microplates (50 µL). This additional carbon source 

consisted of a filter-sterilized solution of 16.6 mM glucose, 16.6 mM succinate, and 16.6 mM 

pyruvate in 40 mM Tris buffer at a pH of 6.5. Absorbance readings were then taken after twelve 

hours with a microplate reader. Absorbance was measured at 450 nm for the formazan product 

and 630 nm for cell optical density. Abs630 was then subtracted from Abs450 (ΔAbs). Adjusted 

readings were then calculated as ΔAbs.(Test wells) -- ΔAbs.(Controls). Positive metabolism of 

test compounds due to formazan formation was then assigned to the normalized values greater 
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than 0.5, leading to a reading in the test wells that is 1.5 times greater than that of the 

corresponding controls. Control wells without any inoculum but added substrate were included 

as a sterility control. 

Siderophore production assay 

The production of siderophores was assayed by adding bacterial cells to Chromo Azurol S (CAS) 

plates. CAS plates were prepared by de-ferrating casamino acids. First, 10 g casamino acids were 

dissolved in 100 mL sterile deionized water. Casamino acids solution was extracted with an 

equal volume of 3% 8-hydoxyquinoline in chloroform to remove iron. An equal volume of 

chloroform was then added to withdraw 8-hydroxyquinoline. CAS-HDTMA solution was 

prepared by adding 605 mg Chromo azurol S to 500 mL deionized water, adding 100 mL 1 mM 

FeCl3 in 10 mM HCl, and slowly pouring this mixture into hexadecyltrimethylammonium 

bromide (HDTMA) solution -- 729 mL HDTMA with 400 mL water. CAS agar, containing 750 

mL sterile deionized water, 6 g NaOH, 30.24 g of PIPES, 100 mL 10 x MM9, and 15 g agar, was 

then prepared and autoclaved. Next, 30 mL deferrated casamino acids, 10 mL of 20% glucose, 1 

ml of 1 M MgCl2, and 1 mL of 100 mM CaCl2 were then added to the sterile 900 mL CAS agar. 

To this solution, 100 mL of CAS-HDTMA solution was gently added and plates were poured. 

Cells were grown in 0.25 TSB and contacted with the CAS plates with an inoculation loop. 

Siderophore production of PAH-utilizing bacterial isolates was measured by observing the 

development of orange-yellow halos around colonies. 

RESULTS 
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The germination test results in Figure 1 confirmed that all plants decrease the toxicity of the 

MGP contamination over non-planted controls (bulk MGP). Single factor Analysis of Variance 

(ANOVA) was performed on the data and resulted in an F critical of 4.757. Comparison with 

variance values indicated that Wheat and Cucurbits samples were not statistically different 

(Variance = 5.333 and 14.333, respectively), but the Bulk MGP soil was (Variance = 1.963) 

indicating that the untreated Bulk MGP soil was more phytotoxic that the soil contacted with test 

plants. More seeds germinated for the cucurbits, indicating that these plants are better at reducing 

PAH contamination than wheat. 

Rhizosphere bacteria were obtained from harvested plant roots and colonies selected 

based on clearing zones of the PAHs (Fig. 2). PAH-metabolizing bacteria were isolated from the 

rhizospheres of all plant varieties at each MGP level. Isolates from the 3-MGP level were 

subjected to growth assays on 3- and 4- ring PAHs and PAH catabolic intermediates. The results 

from this tetrazolium salt assay (Table 2a) indicated that isolates grew on anthracene, chrysene, 

flouranthene, phenanthrene, and pyrene as sole carbon and energy source in liquid suspensions. 

Fluoranthene was metabolized the most of the PAHs tested, especially for isolates from wheat 

plants. These root-zone bacteria also grew on catabolic intermediate compounds, gentisate, 

protocatechate and salicylate. Practically all PAH-metabolizing isolates from test plants grew on 

protocatechuic acid, a common intermediate in the degradation pathway of 3- and 4-ring PAHs. 

Isolates of the cucurbits grew more readily on gentisate than those of wheat. Only a few wheat 

isolates grew on salicylate, an intermediate compound of naphthalene degradation. 
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PAH-metabolizing bacteria from the rhizosphere grew on aromatic exudates and plant 

hormones as a sole carbon and energy source (Table 2b). Isolates from the cucrubits grew more 

readily on the simple phenols, flavonoids, and gibberellic acid. Isolates from wheat grew more 

readily on IAA. In total, caffeic acid and morin were utilized the most, 98.6% and 96.0% 

respectively, for the root exudate compounds. 

Results from the Chromo Azurol S (CAS) plate assay show that all isolates from the 

uncontaminated 0% MGP rhizospheres produced siderophores (Table 3). Siderophore production 

reduced sharply as the level of MGP soil contamination increased. Isolates from the 30-MGP 

rhizospheres had the lowest percentage of siderophore production at 29.4%. Isolates from wheat 

plants show higher percentages of siderophore production than the isolates of the cucurbits. 

DISCUSSION 

To serve as a host plant in a rhizodegradation system, a plant species must be capable of growing 

in contaminated soil and supporting a bacterial population with activity towards the contaminant. 

This study addressed the following question concerning the plant-bacteria interaction: What 

phytochemicals are likely to play a role in promoting PAH rhizodegradation? Assessing the 

metabolism of root exudates by rhizosphere bacteria may then indicate what plants-bacteria 

combinations and chemical conditions promote the highest level of PAH degradation. 

Bacterial isolates from the rhizospheres of plants grown in 3-MGP tested positive for growth on 

3- and 4- ring PAHs. The percentage of metabolism by isolates ranged from 30.6% to 69.4%. It 

appears that some of these rhizobacteria, which were selected on solid agar plates, cannot utilize 

3- and 4- ring PAHs in aqueous substrate incubations. The highest percentage of metabolism 
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occurred with fluoranthene suggesting that wheat rhizobacteria are more familiar with this 

compound. The ability of these bacteria to grow on these different hydrocarbons is not 

surprising. Single strains of bacteria (Mycobacterium sp.) have been shown to degrade a range of 

PAHs including phenanthrene and anthracene (Moody, Freeman et al. 2001), fluoranthene 

(Rehmann, Hertkorn et al. 2001), and pyrene (Kazunga and Aitken 2000). This catabolic ability 

is likely due to convergence in the respective catabolic pathways. For instance, pyrene 

degradation leads to the phenanthrene catabolic pathway (Ellis, Roe et al. 2006). 

Protocatechuic acid was metabolized almost universally by the rhizobacteria. Protocatechuate is 

a common intermediate compound in the degradation pathway for several 3- and 4- ring PAHs, 

such as phenanthrene (Ellis, Roe et al. 2006). Salicylic acid was barely utilized which is not 

expected as salicylic acid induces enzymes in the mineralization of naphthalene (Bosch, Moore 

et al. 1999). It is possible that these bacteria that were selected for growth on 3- and 4- ring 

PAHs do not metabolize naphthalene, a compound that has only two benzene rings. 

Rhizobacteria isolates show high rates for flavonoids and related phenolic exudates, 

suggesting that growth on PAHs and aromatic exudates is related. In a study of PCB-degrading 

bacteria, exposure to flavonoids encouraged the utilization of PCBs (Singer, Crowley et al. 

2003). Bacterial strains also grow on a wide variety of compounds including naringenin, 

catechin, coumarin, morin, quercetin, chrysin, and myricetin (Leigh, Fletcher et al. 2002). In this 

study, the compounds caffeic acid and morin were metabloized at high rates by the isolates, 

suggesting that these compounds promote PAH degradation by rhizobacteria. The chemical 

structure of caffeic acid is the most similar to protocatechuic acid (Figures 3a and 3b) for the 
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simple phenols tested. Additionally, fluoranthene, which was the most utilized PAH, would be 

similar in structure to the flavonoids upon hydroxylation and initial ring cleavage. A possible 

reason for the link between degradation of aromatic pollutants and exudate utilization is enzyme-

substrate specificity. For example, a modified biphenyl dioxygenase from Pseudomonas 

pseudoalcaligenes KF707 and Burkholderia cepacia LB400 transformed flavone and flavanone 

substrates (Chun, Ohnishi et al. 2003). 

The exact composition of root exudates for the plant species tested is not known. However, 

compounds similar to those used in this study have been found in the plant material of wheat and 

pumpkin plants and listed in a phytochemical database (zucchini not included in phytochemical 

database) (Duke). In general, the rhizobacteria from the cucurbits grew on the simple phenols 

and flavonoids more than isolates from wheat host plants. Considerably higher metabolism rates 

of GA3 was also shown for bacterial isolates from the cucurbits. Gibberellic acid (GA3) is a 

major plant hormone which, at low concentrations, promotes cell growth and elongation 

(Hartmann 2002). Conversely, greater utilization of IAA was shown for wheat isolates. Indole-3-

acetic acid (IAA) is another major plant hormone, classified as an auxin, which promotes root 

initiation and development (Hartmann 2002). It is surprising that such low utilization was seen 

for this auxin as bacteria which degrade IAA are known to be widely associated with plants 

(Leveau and Lindow 2005). 

Iron signaling mechanisms may play a significant role in plant-bacteria interactions in 

response to organic contaminants. For instance, Burkholderia species from the tomato 

rhizosphere produced hydroxamate-type siderophores, grew on phenol and benzene and 
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possessed aromatic oxgenase genes (Caballero-Mellado, Onofre-Lemus et al. 2007). The chromo 

azurol S (CAS) assay for siderophore production showed that all 0-MGP rhizobacteria isolates 

possessed this iron scavenging capability. The amount of siderophore producing isolates 

decreased significantly, however, as the PAH contamination increased. The decrease in 

siderophore production may suggest a change in the species of PAH-utilizing bacteria that were 

isolated at higher contamination levels and/or a change in the primary mode of iron acquisition. 

Indeed, iron availability can affect rhizosphere microbial community dynamics for plants grown 

under different iron conditions (Whipps 2001). 

In this study, PAH-utilizing bacteria grew on 3- and 4-ring PAHs, catabolic 

intermediates, aromatic exudates, and plant hormones as carbon substrates. Results also suggest 

a relation between the level of PAH contamination and the ability or mode of iron acquisition 

used by rhizobacteria. Growth on root exudates and siderophore production by PAH-

metabolizing bacteria appears to be marginally influenced by the host plant species. 

Additionally, the ability of rhizobacteria to grow PAHs and catabolic intermediates appears to be 

related to similarity in chemical structure to aromatic root exudates. In particular, high 

metabolism percentages for caffeic acid and morin suggest these compounds promote PAH 

degradation by bacteria in the plant root zone. 
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Table 1. Names and classification of plant species in this study. 

Common name Latin   Plant Monocotyledon / Dicotyledon 

 name Variety Family  

Wheat Triticum aestivum Cavalier Grass (Poacea) Monocotyledon 

Zucchini Cucurbita pepo Black Beauty Pumpkin (Cucurbitae) Dicotyledon 

Pumpkin Cucurbita pepo Howden Pumpkin (Cucurbitae) Dicotyledon 
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Table 2a and 2b. Growth of bacteria selected from anthracene and chrysene plates on a) 3-and 4-

ring PAHs and PAH catabolic intermediates and b) flavonoids, simple phenols, and plant 

hormones. Percentages of bacterial isolates which tested positive for compound utilization in the 

assay are listed (Wheat, n = 49; Cucurbits, n = 25). 

2a. 

Compound Wheat Cucurbits Weighted Avg. 

Anthracene 40.8 44.0 41.9 

Chrysene 30.6 48.0 36.5 

Fluoranthene 69.4 44.1 60.9 

Phenanthrene 46.9 48.0 47.3 

Pyrene 46.9 48.0 47.3 

Protocatechuate 98.0 100.0 98.7 

Gentisate 26.5 48.0 33.8 

Salicylate 4.1 0.0 2.7 

2b.      

Compound Wheat Cucurbits Weighted Avg.  

Caffeic Acid 98.0 100.0 98.6 

Cinnamic Acid 71.4 88.0 77.0 

Coumaric Acid 79.6 80.0 79.7 

Naringenin 53.1 80.0 62.2 

Quercetin 89.8 92.0 90.5 
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Morin 93.9 100.0 96.0 

Gibberellic Acid  32.7 56.0 40.5 

Indole-acetic Acid 22.5 8.0 17.6 
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Table 3. Production of siderophores by PAH-utilizing bacteria from plant rhizospheres. Values 

are percentages of bacterial colonies that showed pigment change in CAS plates due to iron 

chelation (Wheat, n = 40, Cucurbits, n = 40). 

Rhizosphere Wheat Cucurbits Average 

0-MGP 100 100 100 

3-MGP 80.3 72.5 76.4 

30-MGP 35.7 23.0 29.4 
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Figure 1. Phytotoxicity assay to measure soil decontamination. “30-MGP” samples were tested 

including non-plant controls (Bulk MGP) that weathered through the two month growth period. 

Single factor Analysis of Variance (ANOVA) was performed on the data and indicated that 

Wheat and Cucurbits samples were not statistically different (a), but the Bulk MGP soil was 

significantly different than both plant types (b). 
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Figure 2. Microscopic images of PAH selection plates (40x magnification). Colonies showing 

obvious clearing zones were selected and purified. The crystal rods in the photo are larger 

formations of the PAHs which are evidently more difficult for the bacteria to breakdown. 
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Figure 3a. Chemical structures for compounds in Table 2a. A: Anthracene, B: Chysene, C: 

Fluoranthene, D: Phenanthrene, E: Pyrene, F: Gentisic Acid, G: Protocatechuic Acid, H: 

Salicylic Acid. 
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Figure 3b. Chemical structures for compounds in Table 2b. A: Caffeic Acid, B: Cinnamic Acid, 

C: p-Coumaric Acid, D: Naringenin, E: Quercetin, F: Morin, G: Gibberellic Acid, H: Indole-

acetic Acid 


