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Abstract 
In this paper a smeared crack modelling approach is used to simulate corrosion-induced damage in 

reinforced concrete. The presented modelling approach utilizes a thermal analogy to mimic the 

expansive nature of solid corrosion products, while taking into account the penetration of corrosion 

products into the surrounding concrete, non-uniform precipitation of corrosion products, and creep. 

To demonstrate the applicability of the presented modelling approach, numerical predictions in 

terms of corrosion-induced deformations as well as formation and propagation of micro- and 

macrocracks were compared to experimental data obtained by digital image correlation and 

published in the literature. Excellent agreements between experimentally observed and numerically 

predicted crack patterns at the micro and macro scale indicate the capability of the modelling 

approach to accurately capture corrosion-induced damage phenomena in reinforced concrete. 

Moreover, good agreements were also found between experimental and numerical data for 

corrosion-induced deformations along the circumference of the reinforcement.  

 

Keywords: Concrete cracking, Smeared crack modelling approach, FEM, Corrosion  
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1 Introduction 
Along with globalisation, increase in population, and streamlining of transportation the demand for 

new infrastructures and, in general, the demand for sustainability of structures is expanding and, 

thereby, having a great effect on socio-economics. Understanding of structural performance as well 

as material behaviour is, therefore, of great importance and research within these fields has grown 

during the last decades (Andrade et al. 1993; Cabrera 1996; Molina et al. 1993; Alonso et al. 1998; 

Noghabai 1999; Solgaard et al. 2013; Michel et al. 2013).  

A leading deterioration mechanism, in reinforced concrete structures, is corrosion (Rendell et al. 

2002), which may cause debonding/delamination in the concrete/reinforcement interface, cracking 

in cover layer, and decrease in durability due to corrosion of steel. Several studies have focused on 

modelling corrosion-induced damage leading to a variety of modelling approaches, e.g. finite 

element (FE) based (Biondini and Vergani 2012; Solgaard 2013) and analytical (Bazant 1979; Liu 

and Weyers 1998; Chernin et al. 2010; Bohner E. 2010). Recent studies (Pease et al. 2012; Michel 

et al. 2013) have shown that corrosion products precipitate non-uniformly (even under accelerated 

conditions applying direct current) and penetrate into the surrounding concrete, which may have an 

influence on state-of-the-art FE modelling approaches dealing with corrosion-induced concrete 

damage. 

Within this paper a FE modelling approach based on a discrete crack modelling that includes the 

penetration of corrosion products into the surrounding concrete (Michel et al. 2013) is further 

developed. The development includes the formulation of corrosion-induced concrete damage within 

a smeared crack modelling approach, which takes into account the penetration of corrosion products 

into the available pore space surrounding the reinforcement, non-uniform precipitation of corrosion 

products, and creep. The developed smeared crack modelling approach was then used to investigate 

the influence of the penetration of corrosion products into the surrounding concrete and the elastic 

modulus of corrosion products on corrosion-induced concrete damage. Finally, numerical results of 

the smeared crack modelling approach, i.e. modelled crack patterns, deformations near the 

concrete/reinforcement interface, and surface crack width, were compared to experimental 

observations obtained from accelerated corrosion experiments and data provided in the literature. 

2 Introduction to corrosion-induced crack modelling 
Once corrosion is initiated, electrochemical half-cell reactions are taking place along the 

reinforcement surface. The ionic reaction products of those half-cell reactions may further react and 

form solid corrosion products in the vicinity of the reinforcement. The type of corrosion products 

formed depends on the thermodynamic conditions present in the vicinity of the reinforcement 

(Küter et al. 2008). Apart from solid corrosion products, soluble iron-chloride complexes (also 

referred to as green rust) may form in an oxygen-deprived environment in which chlorides are 

present (Küter et al. 2008; Koleva et al. 2006). Such soluble iron-chloride complexes may not 

necessarily form in the vicinity of the reinforcement surface, as shown e.g. in Küter et al. (2008). 

However, independent of the type of iron oxides formed as a result of active corrosion, iron oxides 

occupy a larger volume than the initial iron that is consumed during the corrosion reaction; see e.g. 

Alonso et al. (1998). The increased volume of corrosion products causes tensile stresses in the 
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surrounding concrete and may lead to concrete cracking, spalling, or delamination, if the tensile 

capacity of the concrete is exceeded. 

To model the expansive nature of corrosion products, a thermal analogy may be used as shown in 

Fig. 1. To mimic the increased volume of corrosion products, a ‘fictitious’ thermal load is applied to 

the corroded reinforcement section. Basic geometrical considerations and finite element method 

load application are illustrated in Fig. 1. The thickness of the corroded reinforcement section, X(t), 

may be determined using Faraday’s law, which describes the reduction in reinforcement radius due 

to corrosion:  

𝑋(𝑡) =  
𝑀𝑖𝑐𝑜𝑟𝑟∆𝑡

𝑧𝐹𝜌
  (1) 

M is the molar mass of the metal [g/mol], icorr the corrosion current density [A/mm2], ∆t the 

duration of current application [s], z the anodic reaction valence [-], F Faraday’s constant [96485 

As/mol] and ρ the density of the metal [g/mm3]. 

The thickness of the free expanding corrosion products can be expressed as (see e.g. Fig. 5): 

∆𝑅0 =  𝑅2 − 𝑅0 (2) 

Based on this, a ‘fictitious’ thermal load is applied to the corroded reinforcement section accounting 

for the expansion of corrosion products: 

Δ𝑅0= 𝑋(𝑡)𝜂𝑙𝑖𝑛 =  (R
0
 -  R1)𝜂𝑙𝑖𝑛 (3) 

where ηlin is the linear expansion coefficient [-] depending on the type of corrosion products formed 

and described by a ‘fictitious’ thermal expansion coefficient, α [K-1], and a corresponding 

temperature increment, ΔT [K]. Assuming a constant coefficient of thermal expansion, α, the 

applied temperature increment, ΔT, represents then the type of solid corrosion product. Assuming 

further isotropic material properties of the corrosion products, the linear expansion coefficient may 

be obtained as one third of the volume expansion coefficient: 

ηlin = α ΔT (4) 

3 Discrete Crack Modelling Approach 
The foundation for the smeared crack modelling approach developed in this study is a FE based 

modelling approach in which corrosion-induced concrete damage is simulated by means of a 

discrete crack modelling approach (Michel et al. 2010; Solgaard 2013; Pease et al. 2012; Michel et 

al. 2013). 

In general, five distinct regions (concrete, reinforcement, corrosion layer, and a cracking and 

debonding domain) form the modelled system, which simulates corrosion-induced cracking. In the 

model, uniform corrosion was assumed along the length and along the circumference of the 

reinforcement, for which a 2D plain strain formulation may be used. Cracking of the cementitious 

matrix was considered along a predefined crack path including delamination at the 

concrete/reinforcement interface, the former was modelled according to mode-I fracture and the 

latter was modelled according to mixed-mode (combined modes I and II) fracture. The initial model 
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further assumed corrosion products form exclusively at the concrete/reinforcement interface. The 

penetration of corrosion products, non-uniform precipitation of corrosion products, and creep were 

not accounted for in the initial modelling approach presented in (Michel et al. 2010; Solgaard 2013). 

The implementation of these reinforcement corrosion related phenomena within a smeared crack 

modelling approach, are outline in the following sections. 

4 Smeared Crack Modelling Approach 
To overcome the limitations of the discrete crack modelling approach, in particular, the predefined 

crack path and direction of a single corrosion-induced crack, the model was further developed 

within a smeared crack modelling approach. However, the formulation of smeared crack approaches 

in terms of continuous stress-strain relations (for a discontinuous phenomenon such as a corrosion-

induced crack) is associated with drawbacks when dealing with time-dependent problems such as 

reinforcement corrosion. As, the nucleation of one or more corrosion-induced cracks leads to a 

deterioration of the current stiffness and strength of the concrete domain, subsequent stress and 

strain distribution depend on the stress and strain history (referred to as history dependency in the 

present paper). 

In this study, the commercial finite element program TNO DIANA was used to simulate crack 

initiation and propagation using a smeared crack modelling approach. Within the model a multi-

directional fixed cracking (MDFC) model was used, which can be combined with time dependent 

material models, such as e.g. creep. The MDFC model describes cracking using properties 

regarding tension cut-off, shear retention, and tension softening. In the present study linear tension 

cut-off was chosen viz. cracking occurs when the major principal tensile stress is larger than the 

minimum of either tensile strength or a ratio between the tensile and compressive strength. 

Following the previously developed discrete cracking approach, the shear modulus after cracking 

was kept constant during simulation and multi-linear softening relations (adopted from Skocek 

(2010)) are used to describe tension softening. A standard Newton-Raphson method with an energy 

convergence criterion was used to obtain a solution of the nonlinear problem. 

The implementation of penetration of corrosion products into the available pore space of the 

cementitious matrix surrounding the reinforcement, non-uniform precipitation of corrosion products, 

and creep within the smeared crack modelling approach is provided in the following sections. 

4.1 Penetration and non-uniform precipitation of corrosion products and creep 

Results of several experimental investigations described in the literature e.g. (Liu & Weyers 1998; 

Val et al. 2009; Michel et al. 2011; Pease et al. 2012) indicate both the penetration of corrosion 

products into the surrounding concrete and non-uniform precipitation of the corrosion products. The 

penetration of corrosion products into the available pore space of the cementitious matrix 

surrounding the reinforcement can be attributed to the porous nature of concrete, which allows 

precipitation of corrosion products to a certain degree without inducing tensile stresses in the 

concrete. Based on these observations (Michel et al. 2011), penetration and non-uniform 

precipitation of corrosion products and the effect of creep was implemented in a FE based discrete 
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cracking modelling approach e.g. (Pease et al. 2012; Michel et al. 2013; Thybo et al. 2013), which 

can be adapted for smeared crack modelling approach.  

4.1.1 Penetration of corrosion products 

With the help of x-ray attenuation and digital image correlation measurements (Michel et al. 2011; 

Pease et al. 2012) were able to directly observe the penetration of corrosion products into the 

cementitious matrix surrounding the reinforcement reducing the effect of corrosion-induced 

expansion and, thereby, delaying the stress formation and initiation of cracking. Based on these 

observations, a conceptual approach to account for the penetration of corrosion products into the 

available pore space of cementitious material surrounding reinforcement was developed and 

presented in Michel et al. (2013). It is assumed that a corrosion accommodating region (CAR) 

around the reinforcement exists, initially denoted CAR0, which delays stress formation while filling 

with corrosion products. Once this initial CAR0 is filled with corrosion products, tensile stresses in 

the surrounding cementitious material increase and potentially lead to the formation of microcracks. 

These microcracks allow solid corrosion products to penetrate additional pore spaces and further 

delay corrosion-induced stresses. At some point a maximum size of the CAR, denoted as CARMAX, is 

reached. No corrosion products can penetrate the matrix of the cementitious material beyond that 

point and all additionally formed corrosion products will introduce tensile stresses and potentially 

lead to the formation of a macrocrack. 

The relationship between CAR, CAR0, and CARMAX was described in  Michel et al. (2013): 

𝐶𝐴𝑅 = 𝐶𝐴𝑅0 + (𝐶𝐴𝑅𝑀𝐴𝑋 − 𝐶𝐴𝑅0)𝜅 (5) 

𝜅  is a dimensionless coefficient describing the change in connectivity of accessible pore space 

inside the CAR [-] and is assumed to vary between 0 and 1 according to: 

𝜅 = 0 𝑖𝑓 𝑉𝑐𝑝 ≤ 𝑉𝑐𝑝,𝑚𝑖𝑛 

(6) 𝜅 =
𝑉𝑐𝑝 − 𝑉𝑐𝑝,𝑚𝑖𝑛

(𝑉𝑐𝑝,𝑚𝑎𝑥 − 𝑉𝑐𝑝,𝑚𝑖𝑛)
𝑓𝑝1

 𝑖𝑓 𝑉𝑐𝑝,𝑚𝑖𝑛 < 𝑉𝑐𝑝 ≤ 𝑉𝑐𝑝,𝑚𝑎𝑥 

𝜅 = 1 𝑖𝑓 𝑉𝑐𝑝 > 𝑉𝑐𝑝,𝑚𝑎𝑥 

where Vcp is the expanded volume of corrosion products [mm3], Vcp,min is the minimum volume of 

corrosion products [mm3] (Eq. 7) and Vcp,max the maximum volume of corrosion products that can 

be accommodated in the CAR [mm3] (Eq. 8), and fp1 a fitting parameter set to 1 [-].  

The values of t in Eq. 7 and 8 are based on experimental observations from x-ray described in 

( Pease et al. 2012). 

𝑉𝑐𝑝,𝑚𝑖𝑛 = 3𝛥𝑇𝜋𝑙𝐴 (𝑅2 − (𝑅 − 𝑋(𝑡 = 1.5))
2

) (7) 

𝑉𝑐𝑝,𝑚𝑎𝑥 = 3𝛥𝑇𝜋𝑙𝐴 (𝑅2 − (𝑅 − 𝑋(𝑡 = 5))
2

) (8) 

(Pease et al. 2012) introduced an adjusted temperature increment, ∆𝑇𝐶𝐴𝑅,  instead of ΔT (see Eq. 4) 

to account for the penetration of corrosion products.  
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∆𝑇𝐶𝐴𝑅 = 𝜆𝐶𝐴𝑅𝛥𝑇 (9) 

𝜆𝐶𝐴𝑅 describes the partial penetration of corrosion products [-] into the accessible (pore) space of 

the cementitious matrix and is defined as follows: 

λCAR = (
𝑉𝑐𝑝

𝑉𝐶𝐴𝑅

)
𝑛

 𝑖𝑓 Vcp < VCAR 

(10) 

λCAR = 1 𝑖𝑓 Vcp ≥ VCAR 

where n is an empirical parameter discussed in (Pease et al. 2012) [-] and VCAR the volume of the 

CAR [mm3]. The volume of the CAR is depending on the porosity and accessible volume of the 

concrete matrix: 

𝑉𝐶𝐴𝑅 = 𝜑𝑉𝐶𝑀  (11) 

where φ is the capillary porosity of the concrete material [-],𝑉𝐶𝑀 the accessible volume of concrete 

[mm3] depending on the size of CAR, see Eq. 5, the radius of the reinforcement, R [mm], and the 

length of the reinforcement which is corroding, lA [mm]. 

𝑉𝐶𝑀 = 𝜋𝑙𝐴((𝑅 + 𝐶𝐴𝑅)2 − 𝑅2) (12) 

4.1.2 Non-uniform precipitation of corrosion products 

Among others, (Michel et al. 2012; Pease et al. 2012; Pease et al. 2012) observed that the 

precipitation of corrosion products was non-uniform along the circumference of the reinforcement 

although an impressed current was used to enhance the corrosion process. To account for the non-

uniform precipitation of corrosion products within a discrete crack modelling approach, a corrosion 

current density vector, icorr, was introduced in Thybo et al. (2013). By varying the corrosion current 

density along the circumference of the reinforcement, see Fig. 1, different degrees of reinforcement 

corrosion were generated i.e. the reduction in reinforcement radius (as well as the partial penetration 

coefficient (Eq. 10) and the adjusted temperature increment (Eq. 9) depend on both time and 

location. Introducing icorr Eq. 1, 3, and 4 are replaced by Eq. 13, 14, and 15, respectively. A detailed 

explanation of the non-uniform precipitation of corrosion products is presented  in Gebreyouhannes 

and Maekawa (2016) where the variation is explained as the result of the variation in the diffusion 

properties in the surrounding concrete resulting in a varying penetration of corrosion products into 

the concrete along the interface and thus resulting in varying stresses, deformations and 

consequently varying conditions for the corrosion process. 

X(t)=R0 -  R1 =
M  icorr Δt

(z F ρ)
 (13) 

𝜂𝑙𝑖𝑛(𝑹𝟎 − 𝑅1) = 𝑹𝟐 − 𝑹𝟎 (14) 

𝜂𝑙𝑖𝑛 = 𝛼 ΔT (15) 
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4.1.3 Creep 

To account for creep within the FE based smeared crack modelling approach, an effective modulus 

of elasticity for concrete was used according to Eurocode (2008), see Eq. 16. The implementation of 

creep was based on the assumption that the models concerning creep in larger volumes of concrete 

are also applicable for the volume size considered in the present study. 

𝐸𝑐,𝑒𝑓𝑓 =
𝐸𝑐

1 + 𝜑(𝑡𝑎𝑔𝑒 , 𝑡0)
 (16) 

Where Ec,eff  is the effective modulus of elasticity [MPa], Ec the tangent modulus of elasticity [MPa], 

φ(tage,t0) the  creep coefficient [-], tage the age of the concrete [days] and t0 the time at loading [days]. 

4.2 Convergence of mesh 

To investigate the impact of number of elements in the concrete domain and the number of 

corroding steel elements along the circumference of the reinforcement on corrosion-induced crack 

widths, a convergence analysis was carried out. Fig. 2 illustrates a plot of the mesh highlighting the 

concrete, steel, and corroding steel domain. Three nodded triangular plane stress elements were 

used to discretize both the concrete and steel domain, while four-nodded quadrilateral plane stress 

elements where used to discretize the corroding steel domain. A zoom of the corroding steel domain 

is illustrated underlining that the corroding steel domain consists of several elements in the radial 

direction. The number of elements in radial direction depends on the number of ‘time steps’ 

selected during the simulation (see section 4.3).  

For the convergence analysis the number of elements within the concrete domain was varied 

between approximately 4000 and 49000 elements. Results of the analysis for a thickness of the 

corroding steel domain of 0.035 mm are presented in Fig. 3 and have been normalised with respect 

to the results for 49082 elements. A maximum deviation of approximately 2 % is observed when 

increasing the number of elements from around 30000 to 49082. Thus, it was concluded that 

approximately 30000 elements in the concrete domain are sufficient to model corrosion-induced 

cracking and it is actually possible to reduce the number of elements to optimize computational 

time without compromising accuracy of the simulations significantly. For the convergence analysis 

of the number of elements along the circumference of the reinforcement, 24, 36, 48, 148, and 192 

elements were chosen to discretize the corroding steel domain. Results of the analysis are illustrated 

in Fig. 4 for a thickness of the corroding steel domain of 0.035 mm and were normalised with 

respect to the results for 192 elements. It is seen that between 48 and 192 elements a deviation of 

less than 2% is observed. Therefore, it was concluded that 48 elements along the circumference of 

the reinforcement are sufficient for modelling corrosion-induced cracking without compromising 

accuracy. The influence of number of corroding steel elements in radial direction and the effect of 

number of elements in the steel domain was not investigated.  

4.3 History dependency 

In the following the ‘history dependency’ of the developed smeared crack modelling approach was 

investigated comparing initiation time and surface crack widths varying the number of intermediate 

‘load steps’. In the following the number of intermediate ‘load steps’ is referred to as ‘time steps’. 

The applied number of ‘time steps’ for the various simulations, is schematized in Table 4.1, along 
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with results of surface crack width, which are also visualised in Fig. 5. The input parameters for the 

various simulations are given in Table 4.2. 

Table 4.1 Overview of time-to crack initiation and surface crack width after 20 days for varying numbers of ‘time steps’. 

No. of ‘time steps’ Time to crack initiation 

[days] 

Deviation of time at first 

given crack value 

[%] 

Deviation of surface crack width  

after 20 days 

[%] 

1  - - 29.1 
3  12* 20.0 5.4 
5  12* 20.0 5.1 
20  11* 10.0 2.5 
40  10.5 5.0 2.0 
80  10.25 2.5 1.0 
200  10 0 0 
*In Fig. 9 it is seen that the crack initiates earlier, however this is the first given value due to the low number of 

‘time steps’. 
 

Table 4.2 Input parameters for smeared crack modelling approach to investigate varying number of ‘time steps’. 

 Parameter Value Dimension 

Length L 23 mm 

Width W 100 mm 

Height H 100 mm 

Cover layer C 45 mm 

Reinforcement diameter D 10 mm 

Water-to-cement ratio w/c 0.5 - 

Concrete compressive strength fcm 45 MPa 

Tangent modulus of elasticity - concrete Ec 36.272 GPa 

Shear stiffness Gc 10 GPa 

Poisson ratio - concrete μc 0.2 - 

Modulus of elasticity - steel Es 210 GPa 

Poisson ratio - steel μs 0.3 - 

Modulus of elasticity - corrosion products Ecorr 2 GPa 

Poisson ratio - corrosion products μcorr 0.2 - 

Relative humidity RH 65 % 

Molar mass – steel MFe 55.845 g/mol 

Valence z 2 - 

Steel density ρsteel 7.86 g/cm3 

Faraday’s constant F 96485 A·s/mol 

Mean corrosion current density icorr_mean 0.0001 A/cm2 

Min. corrosion accommodating region  CAR0 0.14 mm 

Max. corrosion accommodating region CARMAX 0.28 mm 

Min. volume of corrosion products in CAR Vcp,min 7.15 mm3 

Max. volume of corrosion products in CAR Vcp,max 23.8 mm3 

Linear expansion coefficient ηlin 0.7 - 

Fictitious thermal expansion coefficient α 1 - 

 

From the results presented in Fig. 5 it can be seen that both surface crack width and time-to crack 

initiation depend on the number of ‘time steps’ (deformation history) in the smeared crack 

modelling approach. In general, it is observed that with decreasing number of ‘time steps’ 

insufficient and incorrect information on time-to crack initiation, crack width development over 

time, and final crack width are obtained. More realistic crack width development and final crack 

width are obtained with the modelling approach, when more than three ‘time steps’ are used. 

However, larger deviations with respect to the time-to crack initiation are still observed for an 

insufficient number of ‘time steps’. This relation is highlighted in Table 4.1, where it can be 

observed that the final surface crack width (surface crack width at 20 days) is less affected by the 
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number of ‘time steps’ compared to the time-to crack initiation. The results presented in Table 4.1 

indicate that the number of ‘time steps’ should be based on desired accuracy with respect to crack 

width development and time-to crack initiation. In order to minimise computational time and at the 

same time maintain an acceptable accuracy it was chosen to run simulations in the following with 

40 ‘time steps’. For this number of ‘time steps’, approximately 5% and 2 % deviation with respect 

to time-to crack and final surface crack width are expected, respectively (compared to 200 ‘time 

steps’). 

5 Comparison between experimental and numerical results 
To demonstrate the applicability of the developed FE based smeared crack modelling approach 

(including the penetration of solid corrosion products into the cementitious matrix, non-uniform 

precipitation of corrosion products, and creep) to predict corrosion-induced deformations and crack 

formation, numerical simulations were compared to two experimental studies: (1) results of digital 

image correlation (DIC) measurements presented in (Pease et al. 2012; Michel et al. 2013) and (2) 

experimental observations from Vu et al. (2005). In addition, results of the previously developed 

discrete crack modelling approach were also compared to predictions of the smeared crack 

modelling approach. 

5.1 Experimental investigations 

Pease et al. (2012) used digital image correlation (DIC) measurements to study the formation of 

corrosion products and corrosion-induced deformation in reinforced mortar specimens (w/c = 0.5) 

under accelerated corrosion conditions. Each specimen was 23 mm × 100 mm × 100 mm and a 

smooth 10 mm steel rod was placed in the centre as reinforcement. During the experiments, the 

specimens were placed in an acrylic pond containing tap water and a volumetric flask was used to 

maintain the water level at about 1 cm below the reinforcement. To enhance the reinforcement 

corrosion process, a DC regulator was used to impress a constant electrical current (100 μA/cm2) 

through the counter electrode (activated titanium mesh). Deformations were measured using DIC 

technique allowing for crack measurements on the specimen surface, see e.g. Pease et al. (2012).  

For the DIC measurement technique, digital images were repeatedly captured at 10 minute intervals 

using a Nikon D3X 24.5 megapixel (6048×4032 pixel) camera body with a 60 mm focal length 

macro lens (AF-S Micro Nikkor 60mm f/2.8G ED). Prior to initiation of accelerated corrosion 

testing, three images were captured of the specimen surface, with a fourth image including a scale. 

The lens was placed 60 mm from the specimen surface, resulting in images with dimensions of 

approximately 31×41 mm2, with each pixel representing 7.8×7.8 μm2 of physical space (Pease et al. 

2012). 

Captured images were input into a commercially available software package (GOM 2009), which 

utilizes a previously applied stochastic speckle pattern to identify unique regions, called facets, on 

the specimen surface at each measurement time. The software tracks the movements of the facets 

and utilizes standard DIC techniques to compute deformations of the specimen surface. Additional 

information on the hardware used and the DIC technique is available in Pereira et al. (2011) and 

Pease et al. (2006), respectively Pease et al. (2012).  
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In addition, a trial test, to assess DIC measurement accuracy, was conducted by placing two mortar 

prisms side-by-side with flat faces touching each other. Prisms were fixed to a micrometer setup 

with 1 μm gradations with one prism stationary and the second moving with controlled distances. 

Two 2.5 mm extensiometers were used to provide comparative displacement measurements 

between the fixed and moving mortar prisms. The moving prism was translated by the micrometer 

setup to varying locations. At each location 3 digital images and 20 extensiometer measurements 

were recorded. A maximum difference of 0.29 μm was found for deformations from 0 to 26.2 μm 

comparing results of DIC measurement technique and extensiometer measurements Pease et al. 

(2012). 

 The accelerated corrosion test was stopped when the first macro-crack near the 

concrete/reinforcement interface was observed. For more information about preparation of the 

specimens, test setup, and measurement technique reference is made to Pease et al. (2012). 

To fit the experimental observations, a vector describing the non-uniform corrosion along the 

circumference of the reinforcement was defined. The non-uniform corrosion current density along 

the circumference of the reinforcement was estimated using the experimental deformations after 

three days of accelerated corrosion as a starting point. A comparison between measured 

deformations after three days of accelerated corrosion and applied corrosion current density along 

the circumference of the reinforcement is illustrated in Fig. 6. The average corrosion current density 

was 100 µA/cm2 and local variations may be attributed to factors such as reinforcement surface 

condition and moisture distribution around the reinforcement. In addition, the concrete tensile 

strength, fctm, was chosen to be 4.5 [MPa] and the non-physical modelling parameters fp1 and n 

were set to 2.2 and 1.8, respectively. An overview of the input parameters for the smeared crack 

modelling approach is given in Table 4.2. 

 

Similar to Pease et al. (2012), Vu et al. (2005) conducted accelerated corrosion tests to study the 

formation of corrosion-induced concrete cover cracks. Reinforced concrete slabs with w/c of 0.45, 

0.5, and 0.58 were submersed in 5% sodium chloride (NaCl) solution and tested under accelerated 

conditions applying a constant current density of 100 μA/cm2. Corrosion-induced cracks were 

measured using a combination of magnifying glass and displacement transducers. Testing was 

stopped when a crack width of 1.0 - 1.5 mm at the concrete surface was measured. More detailed 

information on specimen preparation, material properties, and experimental setup are provided in 

Vu et al. (2005). 

To simulated the experimental observations described in Vu et al. (2005), i.e. time-to crack 

initiation and surface crack width, input parameters for the model described in Table 5.1 were used. 

In addition, the concrete tensile strength compressive strength and volume expansion coefficient 

were set to 4.16 MPa, 43 MPa and 2,94, respectively, as provided in Vu et al. (2005). Furthermore, 

the non-physical modelling parameters fp1 and n were set to 2.2 and 1.8, respectively. Further, 

Poisson's ratio and elastic modulus of corrosion products were set to 0.2 and 2 GPa, respectively, as 

e.g. provided in (Solgaard et al. 2013, Caré 2008). 
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Table 5.1 Input parameters for smeared crack modelling approach comparing to experimental data from Vu et al. (2005).  

 Parameter Value Dimension 

Length L 1000 mm 

Width W 156 mm 

Height H 250 mm 

Cover layer C 50 mm 

Reinforcement diameter D 16 mm 

Water-to-cement ratio w/c 0.5 - 

Tangent modulus of elasticity - concrete Ec 36.272 GPa 

Shear stiffness Gc 10 GPa 

Poisson ratio - concrete μc 0.2 - 

Modulus of elasticity - steel Es 210 GPa 

Poisson ratio - steel μs 0.3 - 

Relative humidity RH 65 % 

Molar mass – steel MFe 55.845 g/mol 

Valence z 2 - 

Steel density ρsteel 7.86 g/cm3 

Faraday’s constant F 96485 A·s/mol 

Mean corrosion current density icorr_mean 0.0001 A/cm2 

Min. corrosion accommodating region  CAR0 0.14 mm 

Max. corrosion accommodating region CARMAX 0.22 mm 

Min. volume of corrosion products in CAR Vcp,min 2351 mm3 

Max. volume of corrosion products in CAR Vcp,max 705 mm3 

Fictitious thermal expansion coefficient α 1 - 

 

5.2 Results and discussion 

The ability of the presented smeared crack modelling approach is discussed with respect to three 

criteria: 1) corrosion-induced deformations near the concrete/reinforcement interface, 2) corrosion-

induced crack patterns, and 3) time-to surface crack initiation and surface crack width. To quantify 

the ability of the model to simulate corrosion-induced deformations and cracks in the vicinity of the 

concrete/reinforcement interface, experimental results of digital image correlation measurements 

presented in Michel et al. (2013) were used. Numerical predictions of time-to surface crack 

initiation and surface crack width were compared to experimental data presented in Vu et al. (2005). 

Comparisons between experimentally observed corrosion-induced deformations along the 

circumference of the reinforcement and numerical predictions using the presented smeared crack 

modelling approach and the previously developed discrete crack modelling approach (Pease et al. 

2012; Thybo et al. 2013) are presented in Fig. 8. Numerical and experimental results are given after 

three, six, and nine days of accelerated corrosion in polar coordinates (see also Fig.7). As can be 

seen from the results presented in Fig. 7, excellent agreement (with respect to shape and magnitude) 

between experimentally observed and numerically predicted corrosion-induced deformations is 

found for six and nine days of accelerated corrosion. 

In addition, experimentally observed microcracks (by means of DIC) due to accelerated corrosion 

are illustrated in Fig. 8. DIC allows thereby for identification of cracks as zones with localized 

strain, i.e. areas in red and light blue in Fig. 8. Three corrosion-induced microcracks (with crack 

widths between approximately two and ten μm) and considerable damage along the circumference 

of the reinforcement can be identified in Fig. 8. The microcracks formed at the reinforcement, 

extend around 10 to 15 mm in the mortar, and propagated towards the surface over time. For 

comparison, the crack pattern obtained by the presented smeared crack modelling approach and 

previously developed discrete crack modelling approach is given in Fig. 10 and Fig. 9, respectively. 
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Similar crack pattern and corrosion-induced damage along the circumference of the reinforcement 

are obtained with the smeared crack modelling approach, while only one corrosion-induced crack is 

formed along the predefined crack path in the discrete crack modelling approach. Furthermore, 

extensive damage along the circumference of the reinforcement, in particular on the right side, and 

micro-cracking are observed in the smeared crack modelling approach (see Fig. 10), which is not 

captured by the discrete crack modelling approach (see Fig. 9). In particular, three microcracks, 

which formed at the reinforcement and propagate towards the surface, can be observed in Fig. 10. 

While the direction of the microcracks is not completely in agreement with the experimental 

observations, the extent of the microcracks is in good agreement with numerical predictions of the 

smeared crack modelling approach. However, it should be noted that results of the presented DIC 

measurement technique only provide information on corrosion-induced deformations and cracking 

on the specimen surface, i.e. details on corrosion-induced deformations and cracking within the 

specimen cannot be obtained with DIC. For additional validation of the presented modelling 

approach (accelerated) corrosion test may be undertaken in e.g. a µ-CT allowing for the observation 

of corrosion-induced deformations and cracking within the specimen. 

 

Finally, Fig. 11 illustrates a comparison of experimentally observed corrosion-induced surface 

crack width (Vu et al. 2005) and numerical predictions with the presented smeared crack modelling 

approach (taking into account and neglecting the penetration of corrosion products into the 

surrounding concrete). It can be clearly seen from the presented results that the model is able to 

accurately capture the time-to crack initiation when the penetration of corrosion products into the 

surrounding concrete is taken into account. Larger deviations between experimental observations 

and numerical predictions with respect to the time-to crack initiation are found when the penetration 

of corrosion products into the surrounding concrete is neglected; please note the logarithmic time 

scale in Fig. 11. While the time-to crack initiation is accurately captured with the presented smeared 

crack modelling approach, some deviations are found between experimentally observed and 

numerically predicted surface crack opening. Those deviations maybe be explained due to lacking 

information on fracture mechanical properties, in particular, the softening behaviour of the concrete 

material, as only the tensile strength was provided in Vu et al. (2005). 

5.2.1 Influence of elastic modulus of corrosion products 

Deterioration models, such as the presented smeared crack modelling approach, developed to better 

understand corrosion-induced cracking processes in reinforced concrete, have highlighted a key 

parameter in the cracking process - namely, the elastic properties of reinforcement corrosion 

products (Molina et al. 1993, Solgaard 2013). Citing a lack of experimental observations (Molina et 

al. 1993) assumed water comprised the majority of corrosion products and therefore used water’s 

elastic properties (2 GPa elastic modulus, 0.5 Poisson’s ratio) to characterize the mechanical 

properties of corrosion products. Direct measurement of elastic properties of corrosion products is 

complicated due to the materials’ stratified lamina nature. However, recently works attempted to 

quantify properties of reinforcement corrosion products (Ouglova et al. 2006; Caré et al. 2008; 

Pease et al. 2012). Generally it was concluded that the elastic properties depend on the type and 

conditions under which corrosion products are formed e.g. degree of confinement, supply of oxygen, 
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etc. In Pease et al. (2012) a discrete crack modelling approach was used to compare experimental 

observations of crack widths near the concrete/reinforcement interface (obtained by means of digital 

image correlation) with numerical predictions. Within their studies, (Pease et al. 2012) found that 

elastic properties of the corrosion products between 2 and 20 GPa provided the best fit for the 

experimental data. Similar to Pease et al. (2012), the smeared crack modelling approach presented 

in this study was used to investigate the influence of the elastic properties of corrosion products on 

the time-to corrosion-induced cracking and development of surface cracks comparing numerical 

predictions and experimental observations from Vu et al. (2005), see Fig. 11. Elastic properties of 

corrosion products were thereby varied between 0.2 and 200 GPa.  

Fig. 12 illustrates numerical results of the smeared crack modelling approach and experimental 

results for varying elastic properties of the corrosion products. From the presented results in Fig. 12, 

it can be seen that the elastic properties of the corrosion products affect both time-to corrosion-

induced cracking and development of surface crack width. However, the impact on the time-to 

corrosion-induced cracking is lower than the influence on the development of the surface crack 

width, in particular for elastic properties in the range of 0.2 to 20 GPa. Significant changes in the 

time-to crack initiation and development of surface crack width are observed for elastic properties 

in the range of 200 GPa, in which case the smeared crack modelling approach considerably 

overestimates the experimental observations both with respect to time-to crack initiation and 

development of surface crack width.  

6 Summary and Conclusions 
In the present paper a finite element based smeared crack modelling approach was introduced to 

simulate corrosion-induced concrete damage. The presented modelling approach utilizes a thermal 

analogy to mimic the expansive nature of solid corrosion products and furthermore takes into 

account the penetration of corrosion products into the surrounding concrete, non-uniform 

precipitation of corrosion products, and creep. To demonstrate the applicability of the presented 

modelling approach, numerical predictions in terms of corrosion-induced deformations as well as 

formation and propagation of micro- and macrocracks were compared to experimental data obtained 

by digital image correlation and published in the literature. From the presented studies using the 

developed smeared crack modelling approach it may be concluded that: 

1 The time-to crack initiation depends on the number of ‘time steps’ (deformation history) in the 

smeared crack modelling approach. In general, it is observed that with decreasing number of 

‘time steps’ insufficient and incorrect information on time-to crack initiation, crack width 

development over time, and final crack width are obtained. Preliminary modelling results 

indicate that the chosen number of ‘time steps’ should be based on desired accuracy with 

respect to crack width development and time-to crack initiation. 

2 Excellent agreements between experimentally observed and numerically predicted crack 

patterns at the micro and macro scale indicate the capability of the modelling approach to 

accurately capture corrosion-induced damage phenomena in reinforced concrete. Moreover, 

good agreements were also found between experimental and numerical data for corrosion-
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induced deformations along the circumference of the reinforcement. In particular, the 

assumption of non-uniform corrosion around the circumference of the reinforcement let to a 

considerable improvement of numerical predictions concerning corrosion-induced deformations 

in comparison to previously presented modelling approaches. 

3 The penetration of corrosion products into the available pore space of the cementitious matrix 

surrounding the reinforcement has a considerable effect on the time-to crack initiation. While in 

the present study the effect was demonstrated for accelerated corrosion conditions, the influence 

is even more pronounced under natural corrosion conditions, where corrosion current densities 

in the range of approximately 0.1 to 1 µA/cm2 can be expected. It should be noted that in the 

present study homogeneous diffusion properties governing the penetration of corrosion products 

into the concrete were applied, while a more detailed study (Gebreyouhannes and Maekawa 

2016) applied inhomogeneous diffusion properties providing an underlying explanation for the 

varying precipitation of corrosion properties along the circumference of the reinforcement. 

4 The elastic properties of the corrosion products affect both time-to corrosion-induced cracking 

and development of surface crack width. However, the impact on the time-to corrosion-induced 

cracking is lower than the influence on the development of the surface crack width, in particular 

for elastic properties in the range of 0.2 to 20 GPa. Within the present study values for the 

elastic modulus of corrosion products between 2.0 and 20.0 GPa provided most accurate fits to 

experimental results both with respect to time-to crack initiation and development of surface 

crack width. 

Despite the good results found in the present study, future investigations should focus on improving 

modelling considerations regarding among others 3D analyses including non-uniform corrosion 

along the reinforcement as well as the inhomogeneous nature of concrete. 
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