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Abstract We describe a principle to determine which features of an object
will be easy to reconstruct from limited X-ray CT data and which will be
difficult. The principle depends on the geometry of the data set, and it applies
to any limited data set. We also describe a characterization of Frikel and the
author explaining artifacts that can be added to limited angle reconstructions,
and we provide an easy-to-implement method to decrease them. These ideas
are justified using microlocal analysis, deep mathematics that involves Fourier
theory. Reconstructions from simulated and real limited data are given to
illustrate our ideas.

Keywords X-ray Tomography ¨ Limited Data ¨ Artifacts ¨ Microlocal
Analysis

1 Introduction

In this article, we introduce a mathematical principle that allows researchers
to predict which object features will be visible and which will be invisible in
reconstructions from limited X-ray tomographic data. The principle depends
only on the geometry of the data set. We provide a second principle, depending
on the data set and features of the object, that specifies when added streak
artifacts can be created.
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These principles will allow researchers to distinguish limitations of their
algorithms from limitations in the data itself, and they suggest different data
acquisition geometries depending on what type of features and shapes re-
searchers want to image.

X-ray computed tomography (CT) is an effective modality to find the den-
sities of objects, and it has revolutionized diagnostic radiology and nonde-
structive evaluation. Typically, the object to be imaged is placed in a scanner
and X-rays are taken over fairly uniformly distributed lines passing through all
parts of the object. Such data are called complete tomographic data. Because
the internal structure of an object is precisely shown in its CT reconstruc-
tion, radiologists can non-invasively detect tumors in the body, and engineers
can assess the magnitude and nature of defects in industrial objects. However,
there are cases in which a complete data set is not efficient to use or even pos-
sible to acquire. The data acquired in such cases are called limited tomographic
data.

Tomography with limited data is more challenging than with complete data
for several reasons. First, the standard tomographic algorithms [35,36] do not
apply without alteration because they require complete data. This alteration
often adds artifacts to the reconstruction, as we will discuss in Sections 3, 5
and Remark 2. Furthermore, depending on the problem, it might be impossible
to precisely determine the features of the object from limited data. Even when
the object is uniquely determined by the data, reconstruction can be unstable
and very sensitive to noise.

In §2, we describe the basic ideas and the first of our principles. In §3
we apply this to limited angle CT and give the second principle. In §4 we
apply this to the exterior problem. Next, in §5 we describe a simple method to
suppress the added artifacts that can occur in limited data problems. Finally,
in §6 we provide a basic description of microlocal analysis, the mathematics
behind our ideas.

The microlocal analysis we use is based on [18,22,23] and the principle
for visible and invisible singularities is based on our analysis in [42]. The
description of added artifacts is from [14]. Related theoretical work is in [2,11,
17,16,21,39] and other references which will be given in the sections.

2 The Basics

We now introduce notation then describe our first principle. The X-ray trans-
form integrates over lines, and we use the parallel beam parameterization for
lines. For ϕ P r´π, πs and p P R

Lpϕ, pq “
 

x P R2
ˇ

ˇx ¨ θ “ p
(

where θ “ θpϕq :“ pcospϕq, sinpϕqq (1)

is the line perpendicular to θpϕq and through the point pθpϕq. Because
x ¨ θpϕq “ ´

`

x ¨ θpϕ` πq
˘

, each line can be parameterized in two ways:

Lpϕ, pq “ Lpϕ` π,´pq. (2)
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φ 
p L(φ ,p)

Fig. 1: The line Lpϕ, pq.

Let f be the density function of the object to be reconstructed. Using
Beer’s Law [35], the measured data from an X-ray CT scanner provides the
X-ray transform of f (assuming monochromatic X-rays):

Rfpϕ, pq “

ż

xPLpϕ,pq

fpxq ds

where ds is standard arc length measure. The complete data backprojection
operator of the function g “ gpϕ, pq is

R˚gpxq “

ż π

ϕ“´π

gpϕ, x ¨ θpϕqq dϕ. (3)

Since, for all ϕ, x P Lpϕ, x ¨ θpϕqq, R˚gpxq is the integral of g over all lines
through x. The filtered backprojection (FBP) reconstruction of a function f
from complete data is

f “
1

4π
R˚ΛRf where

Λgpϕ, pq “
1

2π

ż 8

τ“´8

ż 8

s“´8

eiτpp´sq |τ | gpϕ, sq ds dτ
(4)

In general, an approximation to Λ is used with a filter that has Fourier trans-
form an approximation to the function |τ | [35,36].

The features we consider are described by boundaries between parts of
objects, for example, between the heart and chest cavity in the body. Math-
ematically, we consider density functions f that are smooth except for jump
discontinuities along piecewise smooth curves–the boundaries of the organs
and bones in the body. We will call such functions piecewise smooth.

In fact, when one looks at an X-ray picture, such as the left picture in
Figure 2, the edges (boundaries) of the bones are the easiest features to see.
In the right picture of that figure, the disk “represents” the cross-section of a
bone and one sees that the data change the most (has infinite slope) at tangent
lines to the disk. This is what the eye interprets as a boundary.
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Fig. 2: Left: Chest X-ray (pictures.google.com) Right: graph of the Radon
transform of a disk over vertical lines. Note how boundaries are the most
prominent features in the left picture. In the right graph, the data are not
smooth (have infinite slope) at the tangent lines to the disk but the data are
smooth at other lines.

Recall that in limited data tomography, data over some lines are missing.
Furthermore, the features we want to reconstruct are boundaries of parts of
the body. The analysis in the last paragraph suggests that if a line in the data
set is tangent to a boundary, that part of the boundary should be easy to
reconstruct. It also suggests that, if there is no line in the data set tangent to
a boundary, that boundary will be difficult to reconstruct. This leads to the
following.

Principle 1 ([42]) (a) If a boundary of a feature of the body is tangent to a
line in a limited data set, then that boundary should be easy to reconstruct
from that limited data. Such boundaries are called visible boundaries (from
this limited data).

(b) If a boundary is not tangent to any line in a limited data set, then that
boundary should be difficult to reconstruct from the limited data. Such
boundaries are called invisible boundaries (from this limited data).

Principle 1 will be generalized and justified in §6.

3 Limited Angle CT

In this section, we apply this principle to limited angle tomography, and we
present another principle that will explain added artifacts.

Note that, by (2), each line is parameterized by pϕ, pq for some
ϕ P r´π{2, π{2s and p P R. In limited angle X-ray CT, the scanner cannot take
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data all around the object, and so the data are in some set pϕ, pq P r´α, αsˆR
where α ă π{2. This is a limited data set because any lines not parameterized
by angles in r´α, αs are not in the data set. Our arguments apply to arbitrary
limited angle data sets with ϕ P ra, bs with b´ a ă π by rotating the plane.

Much research has been done on limited angle CT, e.g., [5,31] including
analysis of artifacts and visible singularities [14,24,25,37,42] and algorithms
using this information [12]. Limited angle ROI CT (i.e., data for |ϕ| ă α and
|p| ă r for some r ą 0) is considered [29,46] and limited angle exterior CT
(data for |ϕ| ă α and |p| ą r for some r ą 0) is addressed in [43,45].

Let α P p0, π{2q and define the limited angle backprojection operator

R˚αgpxq “

ż α

ϕ“´α

gpϕ, x ¨ θpϕqq dϕ. (5)

Note that R˚α uses only limited angle data for angles ϕ P r´α, αs. A standard
reconstruction method is to replace R˚ in (4) by R˚α to get a reconstruction
operator suitable for limited angle data:

Lαf “
1

4π
R˚αΛRf (6)

where Λ is given by (4). Of course, Lα does not reconstruct f and we will see
what it does reconstruct in the next examples.

Example 1 Figure 3, gives a reconstruction using the limited angle FBP oper-
ator Lα (6) for angles between ´π{4 and π{4 (α “ π{4).

Fig. 3: Left: disk phantom, Right: Limited angle FBP reconstruction [14]
using data for angles ϕ P r´π{4, π{4s ( c© IOP Publishing. Reproduced by
permission of IOP Publishing. All rights reserved)

Figure 3 illustrates Principle 1. The lines in the data set are generally
vertical and the vertical boundaries are visible (i.e., well-reconstructed); some
line in the data set is tangent to each part of the boundary that is visible in the
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reconstruction. Furthermore, the invisible boundaries of the disk are tangent
to generally horizontal lines (line of slope between ´1 and `1), and these lines
are not in the data set.

Note that there are strong artifacts on four lines tangent to the circle: two
lines with ϕ “ ´π{4 (i.e., with slope `1) and two lines with ϕ “ π{4 (i.e.,
with slope ´1). This leads us to our second principle.

Principle 2 For the limited angle problem for ϕ P r´α, αs, artifacts can occur
on lines at the end of the data set–for ϕ “ ´α or ϕ “ `α. Artifact lines will
be tangent to the boundary of some feature in the object.

Principle 2 was proven in work with Frikel [14] and a refinement of this
principle is valid for many other tomographic problems [15,38].

Example 2 Now, we consider the limited angle reconstruction of a brain over
the same set of lines as Example 1 (α “ π{4).

FBP reconstruction: ε =0
°

Fig. 4: Left: Brain phantom [radiopedia.org]. Right: FBP reconstruction [14]
using limited angle data for angles ϕ P r´π{4, π{4s ( c© IOP Publishing. Re-
produced by permission of IOP Publishing. All rights reserved).

Principle 1 is illustrated in Figure 4 because the generally vertical bound-
aries are well-reconstructed, but horizontal boundaries are invisible. Principle
2 is illustrated by the strong artifact lines with slope ´1 or `1 (lines at the
ends of the data set) that are tangent to features of the brain.

Our examples and the principles show that, if the object has horizontal
boundaries, one should not use limited angle data for ϕ P r´α, αs. If pos-
sible, one could rotate the scanner so the limited data were, for example in
rπ{2´α, π{2`αs, but then one would miss vertical boundaries. Alternatively,
one might consider reconstruction methods that extend data in the range of
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the Radon transform [1,30] or ones that use a priori information if the object
is piecewise constant or otherwise sparse [9,13,29] or test algebraic reconstruc-
tion methods and regularization [20,32,34].

4 Exterior CT

In this section, we apply our principles to the exterior problem in X-ray CT.
In this case, the data are over lines Lpϕ, pq for ϕ P r´π, πs and for p ą r for
some fixed r ą 0. This describes the set of lines Lpϕ, pq that are outside the
disk of radius r centered at the origin. Standard reconstruction methods are
not usable for exterior data; for example, FBP or limited angle FBP requires
data Rfpϕ, sq for all s P R to evaluate ΛRf in (4).

Cormack [3] provided a reconstruction method for exterior data, but it was
unstable and he subsequently developed a different reconstruction method
using complete data [4]. Natterer [34] developed an exterior reconstruction
method using regularization. The reconstructions in this section are from the
author’s algorithms in [40,41,45].

To show the versatility of Principle 1, we use it for two different data sets
that are reconstructed with two different algorithms.

Example 3 This example illustrates Principle 1, but it also shows how limita-
tions in the algorithm can affect the reconstruction.

The author developed a singular value decomposition (SVD) reconstruc-
tion method for the exterior problem in [40] and tested it on a mathematical
phantom in [41]. The phantom in Figure 5 is similar to the one in [34] but
more difficult for the author’s algorithm than Natterer’s phantom.

Fig. 5: Left: phantom. Right: reconstruction using the algorithm in [41] and
with slightly less than 1% noise. The region being reconstructed is the annu-
lus between radius r “ 1 and r “ 1.5 ( c© IOP Publishing. Reproduced by
permission of IOP Publishing. All rights reserved).
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In [16], we justify Principle 1 for reconstruction methods based on backpro-
jection, but it is valid more generally. Reconstruction of invisible boundaries
is highly ill-posed since the forward operator, R, smooths them out in the lim-
ited data (see Theorem 1 part (b) and Remark 1). Although the reconstruction
method used on this phantom does not use backprojection, the reconstruction
in Figure 5 is consistent with Principle 1: the boundaries tangent to lines in
the data set–the inside and outside boundaries of the small disks–are better
reconstructed than the “side” boundaries–ones that are not tangent to any
lines in the data set.

Even if visible boundaries should always be reconstructed better than in-
visible ones, the algorithm itself determines how they are reconstructed. Com-
paring the reconstruction of the disk in Figure 3 using limited angle FBP with
the reconstruction using the SVD in Figure 5, one sees that the visible singu-
larities are much sharper in the limited angle FBP reconstruction. However,
the invisible boundaries are not at all visible in that reconstruction, but they
are visible, if rather fuzzy, in the reconstruction in Figure 5.

Some effects are not directly related to the principles but to the algorithm
itself. In Figure 5, the inner boundaries in the disks at 6 o’clock and 7:30
o’clock which are visible are sharp but slightly distorted. The noise added to
the data causes the slight splotches in the light annulus outside the little disks.
These are both effects of the algorithm (which uses polar Fourier series) and
the general ill-posedness of the exterior problem and not a direct consequence
of the principles.

Example 4 In this example, we evaluate the reconstruction of real data of
a large, solid-filled cylindrical vessel with crack simulations. The region to be
reconstructed is the outer annulus of this object, with radius between r “ 34.75
and r “ 36.75 cm. Furthermore, because of a data acquisition problem, limited
angle exterior data were given; data were over lines Lpϕ, pq for ϕ P r0, 3π{4s
and p P r34.75, 36.75s. The object was designed to simulate a large rocket and
was done in a project with Perceptics, Inc.

Fig. 6: Reconstruction using the algorithm in [45] of a large, solid-filled cylin-
drical vessel with crack simulations. The limited angle exterior data are for
angles ϕ P r0, 3π{4s and p P r34.7536.75s cm. The picture is a quarter of
the annulus graphed in polar coordinates pr, ϕq (where Cartesian coordinate
x “ pr cospϕq, r sinpϕqq). Angles ϕ P r0, π{2s are along the horizontal axis and
radius r P r34.75, 36.75s on the vertical axis, with the inside at the bottom
and the outside at the top. The outer boundary of the object is the dark curve
near the top of the reconstruction. The scale in r is magnified so the cracks
are easier to see.
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X-rays cannot penetrate the central core of large objects such as rocket
bodies, and only data in the outer annulus is usable. The author developed
an improved version of his SVD algorithm in [43] that gives better reconstruc-
tions than the original ones in [41]. Subsequently, he developed a local exterior
reconstruction algorithm in [45] that is based on Lambda Tomography–a type
of filtered back projection [7,8,50] but adapted for limited angle exterior data
(see also [33] for another outlook). This algorithm gave slightly clearer recon-
structions.

The defects in the object are all along arcs that are tangent to lines in the
exterior data set so, by Principle 1, they are easy to reconstruct from exterior
data.

These last two examples and Principle 1 show that exterior tomography is
good for detecting boundaries that are generally along a circular arc (roughly
centered at the center of the object) since such boundaries are tangent to lines
in the exterior data set. Many potential defects in rocket shells are on such
arcs, such as cracks or separations between stages of the rocket. Therefore,
exterior CT can be useful for the NDE of rockets shells.

Exterior CT might not be as effective if the features or cracks were gener-
ally going from the inside of the annulus out since they would have invisible
boundaries as they are not tangent to lines in the exterior data set.

5 Artifact Suppression

We now give a simple artifact suppression technique that applies to a broad
range of tomographic problems. The artifacts are caused by the sharp cutoff in
data at the end of the data set, as we discuss in Remark 2, and the solution is
to replace that with a soft cutoff by multiplying by a smooth cutoff function.
This is proven in [14] for limited angle CT and [15] in for a broad range of
tomographic modalities.

The technique will now be described for limited angle CT with data for
ϕ P r´α, αs. One chooses a function ψpϕq that is zero except on the open
interval p´α, αq, is equal to one on most of p´α, αq and has a smooth (C8)
transition between 0 and 1 near the endpoints ´α and α. Then, one uses the
artifact-compensated limited angle reconstruction operator

Lα,ψf “ R˚αΛ pψRfq .

In [14], we prove that this operator does not add artifacts and shows most of
the visible singularities described in Principle 1. Our proof shows that Lα,ψ
is a pseudodifferential operator [22] that is elliptic for most of the visible
singularities. In [24], non-smooth cutoffs are analyzed.

Figure 7 illustrates the effect of the artifact suppression. Streaks are clearly
evident in the middle reconstruction without artifact suppression. They are
decreased in the right-hand reconstruction which uses moderate artifact re-
duction. However, there is a slight loss of detail for visible boundaries that are
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FBP reconstruction: ε =0
°

FBP reconstruction: ε =20
°

Fig. 7: Left: Brain phantom. [radiopedia.org] Middle: FBP reconstruction
[14] without artifact reduction. Right: FBP reconstruction with moderate ar-
tifact reduction ( c© IOP Publishing. Reproduced by permission of IOP Pub-
lishing. All rights reserved)

tangent to lines near then ends of the data set (i.e., tangent to lines Lpϕ, pq
with ϕ close to ˘α) since the cutoff ψ de-emphasizes data for ϕ near ˘α.

To use this method on other tomographic data sets, one just chooses the
function ψ to be equal to one on most of the data set and smoothly transition
to zero at the boundary of the data set and be zero outside the data set.

In general, if one extends the data from a limited data set, one should
extend without sharp transitions or jumps at the end of the data set. Having
a sharp transition, such as a jump, at the boundary of the data set can create
extra artifacts in the reconstruction.

For the exterior problem, there can be added artifacts, but both recon-
struction methods used in §4 include smoothing steps that suppress them.

6 Basic Microlocal Analysis

We now provide the mathematical background to make our principles and
ideas rigorous and general.

Microlocal analysis [22,23,49] provides a precise characterization of singu-
larities of functions as well as a rigorous description of what operators, includ-
ing R, R˚, and R˚α do to those singularities. Basic discussions of microlocal
analysis in tomography are in [27,42] and microlocal analysis is used in more
general settings (e.g., [17]), seismics (e.g., [6]) radar (e.g., [26,48]) and X-ray
CT (e.g., [11,25,28,37]).

The fundamental idea is the wavefront set, a rigorous and general descrip-
tion of singularities. It is defined in terms for the Fourier transform on R2,

Ffpyq “ 1

2π

ż

xPR2

e´ix¨yfpxq, dx.

The inverse Fourier transform of an integrable function is continuous [47]. Us-
ing this and derivative rules for the Fourier transform, one can prove that, if
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Ff is rapidly decaying at infinity (decaying faster than any power of 1{ }y})
then f is C8 smooth. This is a global condition: global rapid decay of Ff
implies global smoothness of f . The wavefront set localizes and microlocal-
izes this connection between smoothness of f and rapid decay of its Fourier
transform.

Definition 1 Let f be a function on R2 and let x0 P R2 and ξ0 P R2z0. Then,
we say that f is smooth at x0 in direction ξ0 if there is a smooth function
φ P C8c pR2q such that φpx0q ‰ 0 and an open cone V containing ξ0 such that
given any N P N, there is a CN such that

|F pφfpyqq| ď CN p1` }y}q
´N for y P V.

If f is not smooth at x0 in direction ξ0 then px0, ξ0q P WFpfq, the wavefront
set of f .

The cutoff function φ localizes f around x0, and the direction ξ0 “mi-
crolocalizes” by focusing on whether the localized Fourier transform F pφfq is
rapidly decaying in some open cone V containing ξ0.

Example 5 If the function f is equal to 1 inside a set Ω with smooth boundary
and equal to 0 outside, then WFpfq is the set of normals to the boundary of
Ω, as illustrated in Figure 8.

f is = 1 inside this set, 
       = 0 outside the set

bx

ξ

b
b

Normals to the boundary
(x, ξ) are in WF( f )

Fig. 8: Left: The set Ω. Right: WFpfq where f is the function equal to 1 on
Ω and zero elsewhere.

This is true more generally: if f is piecewise smooth, then WFpfq is the
set of normals to the boundary curves at the jump singularities of f .

For piecewise smooth functions, there is a direct correspondence between
wavefront set and tangent lines to the boundary curves. If f is such a function
then px0, ξ0q P WFpfq if x0 is a point on one of those boundary curves and ξ0
is normal to that boundary at x0. Let L0 be the tangent line to that boundary
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at x0. Since, ξ0 is normal to the boundary at x0, it is normal to the tangent
line L0. Thus px0, ξ0q P WFpfq exactly when the line through x0 perpendicular
to ξ0 is tangent to the boundary curve at x0.

Our next theorem helps justify Principle 1.

Theorem 1 (Microlocal Regularity Theorem for R [42]) Singularities
of f produce singularities of Rf . Let L0 “ Lpϕ0, p0q be a line in the plane. Let
x0 P L0 and let ξ0 be a normal vector to L0. Assume px0, ξ0q P WFpfq.

(a) The singularity of f at px0, ξ0q will cause a unique corresponding singu-
larity λ P WFpRfq, and that singularity will be at pϕ0, p0q.

(b) If L0 is not in a limited data set, then the singularities of f normal to L0

will not affect smoothness of the limited data (i.e., the part of WFpRfq
above the limited data set will be the same whether f has wavefront set
normal to L0 or not).

This theorem is true because R is a Fourier integral operator (e.g., [19,
44]) and these operators transform wavefront sets in precise ways [22]. The
singularity λ is explicitly given in [42].

Remark 1 We now use Theorem 1 to partially justify Principle 1 in general.
Let f be a function and assume px0, ξ0q P WFpfq. Let L0 be the line through x0
normal to ξ0. Choose ϕ0 and p0 such that L0 “ Lpϕ0, p0q. By Theorem 1 part
(a), there will be a unique singularity in WFpRfq caused by the singularity of
f at px0, ξ0q and it is at pϕ0, p0q. Therefore, if L0 is in a limited data set, this
singularity of f at px0, ξ0q will be visible in that limited data. However, if L0

is not in the data set, then, that singularity is not visible in the data and by
part (b), that singularity does not affect smoothness of the data Rf on that
limited data set.

This partially justifies Principle 1 by explaining how singularities of f affect
Rf on a limited data set. What is missing is the connection with the recon-
struction. That is provided for filtered back projection type reconstruction
methods in [16] using properties of the Fourier integral operator R˚.

By Theorem 1 part (b), singularities of f that are not normal to lines in
the data set have no effect on singularities of Rf on that limited data set.
By an argument in [10] starting with this observation, reconstruction of those
singularities is discontinuous in any range of Sobolev norms. This is one way
to say that recovery of the invisible boundaries in Principle 1 is, in general,
much more difficult than for visible boundaries. Also, the principle is reflected
in all our reconstructions.

We now specialize to limited angle tomography for angles ϕ P r´α, αs
where α is chosen in p0, π{2q. Let px0, ξ0q P WFpfq. We say that px0, ξ0q is a
visible singularity of f (for Lα) if ξ0 is parallel θpϕq for some ϕ P p´α, αq–that
is ξ0 is normal to a line in the limited angle data set that goes through x0.
We say px0, ξ0q is an invisible singularity of f if ξ0 is not parallel θpϕq for any
ϕ P r´α, αs. The case ϕ “ ˘α is special; singularities parallel θp˘αq can be
added or masked.
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Theorem 2 (Microlocal Regularity Theorem for Lα) Let α P p0, π{2q
and let Lα be the limited angle FBP operator in (6). Let f be a function of
compact support and px0, ξ0q P WFpfq.

1. If px0, ξ0q is a visible singularity of f then px0, ξ0q P WFpLαfq.
2. If px0, ξ0q is an invisible singularity of f then px0, ξ0q R WFpLαfq.

Theorem 2 follows from [16, Corollary 4.1, equation (4.9)].
This theorem justifies the definition of visible and invisible singularity for

Lα. A visible singularity of f will be visible in the reconstruction Lαf , and
an invisible singularity of f will not be visible in the reconstruction. For Lα
and piecewise smooth functions, this theorem is equivalent to Principle 1 by
the correspondence between tangent lines to boundary curves and wavefront
set perpendicular to those curves.

Remark 2 We now justify Principle 2 for Lα. The limited angle backpro-
jection (5) can be written R˚αg “ R˚ pχgq where χpϕ, pq is equal to one if
ϕ P r´α, αs and zero otherwise. Now, pχΛRfq will be zero off of the limited
angle data set but, in general, nonzero on the data set. This can create an ex-
tra jump singularity in pχΛRfq, and this can help produce the extra artifacts
in Lαf “ R˚ pχΛRfq described in Principle 2. This is proven in generality in
[16, Theorem 5.4 and equation (5.10)].
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36. Natterer, F., Wübbeling, F.: Mathematical methods in image reconstruction. SIAM
Monographs on Mathematical Modeling and Computation. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA (2001)

37. Nguyen, L.V.: How strong are streak artifacts in limited angle computed tomography?
Inverse Problems 31(5), 055,003, 26 (2015)

38. Nguyen, L.V.: On artifacts in limited data spherical radon transform: flat observation
surfaces. SIAM J. Math. Anal. 47(4), 2984–3004 (2015). DOI 10.1137/140980740. URL
http://dx.doi.org/10.1137/140980740

39. Palamodov, V.: Reconstruction from Limited Data of Arc Means. J. Fourier Anal. Appl.
6, 25–42 (2000)

40. Quinto, E.T.: Singular value decompositions and inversion methods for the exterior
Radon transform and a spherical transform. J. Math. Anal. Appl. 95, 437–448 (1983)

41. Quinto, E.T.: Tomographic reconstructions from incomplete data–numerical inversion
of the exterior Radon transform. Inverse Problems 4, 867–876 (1988)

42. Quinto, E.T.: Singularities of the X-ray transform and limited data tomography in R2

and R3. SIAM J. Math. Anal. 24(5), 1215–1225 (1993)
43. Quinto, E.T.: Exterior and Limited Angle Tomography in Non-destructive Evaluation.

Inverse Problems 14, 339–353 (1998)
44. Quinto, E.T.: An introduction to X-ray tomography and Radon transforms. In: The

Radon transform, inverse problems, and tomography, pp. 1–23. Amer. Math. Soc., Prov-
idence, RI (2006)

45. Quinto, E.T.: Local Algorithms in Exterior Tomography. Journal of Computational
and Applied Mathematics 199, 141–148 (2007)

46. Quinto, E.T., Öktem, O.: Local tomography in electron microscopy. SIAM J. Appl.
Math. 68, 1282–1303 (2008)

47. Rudin, W.: Functional analysis. McGraw-Hill Book Co., New York (1973). McGraw-Hill
Series in Higher Mathematics

48. Stefanov, P., Uhlmann, G.: Is a curved flight path in SAR better than a straight one?
SIAM J. Appl. Math. 73(4), 1596–1612 (2013)
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