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POLYNOMIAL COLLOCATION FOR HANDLING AN
INACCURATELY KNOWN MEASUREMENT CONFIGURATION IN

ELECTRICAL IMPEDANCE TOMOGRAPHY∗

N. HYVÖNEN† , V. KAARNIOJA† , L. MUSTONEN† , AND S. STABOULIS‡

Abstract. The objective of electrical impedance tomography is to reconstruct the internal con-
ductivity of a physical body based on measurements of current and potential at a finite number
of electrodes attached to its boundary. Although the conductivity is the quantity of main interest
in impedance tomography, a real-world measurement configuration includes other unknown param-
eters as well: The information on the contact resistances, electrode positions, and body shape is
almost always incomplete. In this work, the dependence of the electrode measurements on all afore-
mentioned model properties is parametrized via polynomial collocation. The availability of such a
parametrization enables efficient simultaneous reconstruction of the conductivity and other unknowns
by a Newton-type output least squares algorithm, which is demonstrated by two-dimensional numer-
ical experiments based on both noisy simulated data and experimental data from two water tanks.

Key words. electrical impedance tomography, polynomial collocation, uncertainty quantifica-
tion, Bayesian inversion, inaccurate measurement model, complete electrode model
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1. Introduction. The objective of electrical impedance tomography (EIT) is to
reconstruct the conductivity/admittivity inside a physical body from boundary mea-
surements of electric current and electromagnetic potential. EIT can be applied to,
e.g., medical imaging, process tomography, and nondestructive testing of materials
[6, 9, 42]. The most accurate way to model the measurements of EIT is employing
the complete electrode model (CEM), which takes into account the electrode shapes
and contact resistances/impedances caused by resistive layers at electrode-object in-
terfaces [10, 41].

When EIT is used in practice, the conductivity is typically not the only unknown.
In particular, the electrode positions, the contact resistances, and the shape of the
imaged object are also subject to uncertainties. For example, in a medical applica-
tion the body shape and the contact resistances obviously depend on the patient, and
one cannot assume precise information on the positioning of the electrodes. As it
is well known that even slight mismodelling usually ruins the reconstruction of the
conductivity in absolute EIT imaging [5, 8, 28], not being able to account for such
inaccuracies considerably hampers establishing EIT as a practical imaging modality.
Since the contact resistances and the electrode locations can be (stably) estimated at
the same time as the conductivity reconstruction is formed by a Newton-type algo-
rithm [12, 43], the most challenging of the aforementioned three sources of uncertainty
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POLYNOMIAL COLLOCATION IN EIT 203

is arguably the inaccurately known object shape. In the following, we present a brief
survey of the previously introduced methods for recovering from uncertainties in the
exterior boundary shape in EIT; for a more comprehensive discussion, see [33].

Difference imaging is the simplest technique for handling uncertainties in the
measurement set-up of EIT [4]: Electrode measurements are performed at two time
instants (or angular frequencies [2]), and the corresponding change in the conductivity
(or admittivity) is reconstructed. The main idea is that the modelling errors partly
cancel out when the difference data are formed, assuming there are no alterations
in the boundary shape in between the two measurements, e.g., due to the breathing
cycle of a patient. On the negative side, difference imaging is highly approximative,
as the theoretical grounds for its functionality rely on a linearization of the forward
model. In addition, difference data are not always available.

The first generic algorithm capable of coping with an unknown object boundary
in absolute EIT imaging was introduced in two spatial dimensions by Kolehmainen,
Lassas, and Ola [26, 27]. Allowing an oversimplification, their approach is based on
compensating for the mismodelled geometry by reconstructing a (slightly) anisotropic
conductivity. An obvious weakness of the ideas in [26, 27] is the difficulty in generaliz-
ing the corresponding numerical algorithm to three dimensions. The so-called approx-
imation error methodology [24] was successfully applied to EIT with an inaccurately
known boundary shape in [32, 33]: The error caused by the uncertainties in the model
geometry (and other nuisance parameters) is represented as an auxiliary measurement
noise process whose second order statistics are approximated via simulations based
on the prior probability models for the conductivity and the boundary shape. Subse-
quently, a reconstruction of the conductivity is formed within the Bayesian paradigm.
The most straightforward approach to dealing with an inexactly known body shape
in EIT was introduced in [13, 14], where the Fréchet derivative of the solution to
the CEM with respect to the exterior boundary shape was employed in a regularized
Newton-type output least squares algorithm that simultaneously reconstructs the con-
ductivity, the contact resistances, the electrode positions, and the exterior boundary
of the imaged object. The main weakness of the algorithm in [13, 14] lies with the
numerical instability in the computation of the needed shape derivatives, which ne-
cessitates the use of relatively dense finite element (FE) meshes and thus slows down
the computations to a certain extent.

This work tackles absolute EIT imaging with an unknown object shape by means
of (stochastic) polynomial collocation. The conductivity, the contact resistances, the
electrode positions, and the boundary shape are parametrized by a finite number,
say a thousand, of parameters supported in a bounded interval; in the framework
of stochastic collocation [3], these parameters would be interpreted as uniformly dis-
tributed random variables. The forward problem of the CEM is then treated as a
parametric elliptic boundary value problem whose solution depends not only on the
current feed and the spatial variable but also on the high-dimensional parameter vec-
tor. This forward problem is solved by a (stochastic) collocation finite element method
(cFEM) [3]: The standard CEM problem is first solved with a finite element method
(FEM) for the conductivities and measurement settings defined by an appropriate
sparse grid of collocation points in the parameter hypercube, and subsequently the
dependence of the forward solution on the parameters is generalized to the whole
hypercube via collocation by tensor products of Legendre polynomials. In particular,
such a procedure gives an approximate parametrization of the electrode potentials
with respect to (the parameters defining) the conductivity, the contact resistances,
the electrode positions, and the object shape, which makes it possible to reconstruct
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204 HYVÖNEN, KAARNIOJA, MUSTONEN, AND STABOULIS

these unknowns, e.g., by Tikhonov regularization or via Bayesian inference. Indeed,
the described approach results in a functional reconstruction algorithm that is tested
with both simulated and experimental data in a two-dimensional setting. See [19] for
a closely related algorithm as well as related theory in inverse obstacle scattering.

Compared to the previous methods for recovering from uncertainties in the geo-
metric specifications of the measurement set-up in EIT, on a general level the intro-
duced algorithm most closely resembles the approximation error technique employed
in [32, 33]: Both require heavy off-line computations that can be performed prior
to the measurements (to simulate the statistics of the approximation error process
or to parametrize the dependence on the unknowns via polynomial collocation), but
both also allow a fast on-line reconstruction phase once the measurements become
available. For completeness, it should be mentioned that [17, 23] used a stochastic
Galerkin FEM (cf., e.g., [38]) as a building block of a Bayesian reconstruction al-
gorithm for EIT under the assumption that the electrode positions and the object
shape are known. However, it seems difficult to apply a stochastic Galerkin FEM
to handling uncertainties in the measurement configuration of EIT; see, e.g., [19] for
similar conclusions.

This text is organized as follows. Section 2 recalls the CEM and presents its
parametric extension, while section 3 describes how cFEM can be applied to the CEM.
The actual implementation of the reconstruction algorithm is discussed in section 4
and applied to both simulated and experimental data in section 5. Finally, conclusions
are drawn in section 6.

2. Complete electrode model and its parametric extension. This sec-
tion introduces an extension of the CEM, allowing the use of parameter-dependent
conductivities, contact resistances, electrode positions, and boundary shapes. For a
justification of the standard CEM, see [10, 41]. We work in two spatial dimensions
and with M ∈ N \ {1} electrodes of the same known width, but the generalization to
three dimensions and/or to the case of electrodes with unknown shapes is conceptually
straightforward.

2.1. Parametrization of the measurement set-up. Let N = Nσ +Nγ +2M
denote the number of parameters living in the hypercube

Υ = Υσ ×Υγ ×ΥE ×Υz = [−1/2, 1/2]N .

We decompose y = (yσ, yγ , yE , yz) ∈ Υ, where the subvectors yσ ∈ Υσ ⊂ RNσ , yγ ∈
Υγ ⊂ RNγ , yE ∈ ΥE ⊂ RM , and yz ∈ Υz ⊂ RM correspond to the parametrizations
of the conductivity field, the boundary curve, the electrode positions, and the contact
resistances, respectively.

Let us first introduce a parametrization for the boundary curve, that is, a con-
tinuous map

(2.1) Υγ 3 yγ 7→ γ( · , yγ) ∈ C0,1
L

(
R;R2

)
,

where, for every yγ ∈ Υγ , γ( · , yγ) : [0, L) → R2 defines a bounded, closed, non-self-
intersecting, Lipschitz curve parametrized in the counterclockwise direction. Here
and in what follows, the subscript L > 0 indicates that the elements of the considered
function space are L-periodic. The domain enclosed by

Γ(yγ) :=
{
γ(φ, yγ) | φ ∈ [0, L)
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POLYNOMIAL COLLOCATION IN EIT 205

is denoted D(yγ). We assume there exists a natural bi-Lipschitz homeomorphism

(2.2) Φ( · , yγ) : D(yγ)→ D(0)

for all yγ ∈ Υγ . In our numerical tests, D(0) is an origin-centered open disk, and the
domains D(yγ), yγ ∈ Υγ , are star-shaped with respect to the origin, meaning that
one can define the mappings Φ( · , yγ) by suitably scaling the distance to the origin;
see section 4 for details.

Given a parametrization for the domain boundary, the position of an electrode
is determined by a curve parameter corresponding to its starting point. To be more
precise, after introducing a suitable mapping

ΥE 3 yE 7→ θ(yE) ∈ [0, L)M ,

the electrodes are parametrized by the set-valued functions,

(2.3) Υγ ×ΥE 3 (yγ , yE) 7→ Em(yγ , yE) ⊂ Γ(yγ), m = 1, . . . ,M,

where

Em(yγ , yE) :=
{
γ(φ, yγ) ∈ Γ(yγ) | 0 < dist

(
γ(θm(yE), yγ), γ(φ, yγ)

)
< ω

}
with dist(x, z) denoting the distance between the points x, z ∈ Γ(yγ) along Γ(yγ) in
the counterclockwise direction and ω being the known width of the electrodes. The
mapping θ : ΥE → [0, L)M is assumed to be continuous, when L is identified with 0
on the image side, and to satisfy the condition

(2.4) min
j 6=k

min
yE∈ΥE

min
yγ∈Υγ

dist
(
γ(θj(yE), yγ), γ(θk(yE), yγ)

)
> ω,

which guarantees that the electrodes do not overlap or change their order. (In our
numerical tests, the parametrization is slightly simpler, as the mth starting parameter
θm depends only on the corresponding component of yE .)

The conductivity field is parametrized by first introducing the dependence on yσ
in the “unperturbed” reference domain D(0) with the help of a continuous mapping

Υσ 3 yσ 7→ σ0( · , yσ) ∈ L∞+ (D(0)) := {κ ∈ L∞(D(0)) | ess inf κ > 0},

and then defining the actual domain-dependent parametrization via

(2.5) Υσ ×Υγ 3 (yσ, yγ) 7→ σ( · , yσ, yγ) := σ0

(
Φ( · , yγ), yσ

)
∈ L∞+ (D(yγ)).

Finally, the contact resistances z ∈ RM+ are parametrized simply by a continuous map

(2.6) Υz 3 yz 7→ z(yz) ∈ RM+ ,

where, in fact, zm, m = 1, . . . ,M , depends only on the corresponding component
of yz.

In what follows, we often write γy = γ( · , yγ), Γy = Γ(yγ), Dy = D(yγ),
Φy = Φ( · , yγ), Eym = Em(yγ , yE), σy = σ( · , yσ, yγ), and zy = z(yz) to simplify
the notation.
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206 HYVÖNEN, KAARNIOJA, MUSTONEN, AND STABOULIS

2.2. Parameter-dependent CEM. Assume that the parametrizations (2.1),
(2.3), (2.5), and (2.6) are given, denote by RM� the mean-free subspace of RM , and
let I ∈ RM� define the net current feeds through the electrodes. According to the
CEM [10], for a fixed parameter vector y ∈ Υ, the electromagnetic potential uy inside
Dy and the potentials Uy ∈ RM on the electrodes satisfy the elliptic boundary value
problem

∇ ·
(
σy∇uy

)
= 0 in Dy,

∂uy

∂ν
= 0 on Γy \ Ey,

uy + zymσ
y ∂u

y

∂ν
= Uym on Eym, m = 1, . . . ,M,∫

Eym

σy
∂uy

∂ν
dS = Im, m = 1, . . . ,M,

(2.7)

where ν = ν(x) denotes the exterior unit normal of Γy and Ey = ∪Mm=1E
y
m. It follows

immediately from the material in [41] and the properties of the parametrizations intro-
duced in section 2.1 that (2.7) has a unique solution (uy, Uy) ∈ (H1(Dy)⊕RM )/R =:
Hy for all y ∈ Υ. Moreover, one can write a relatively explicit y-independent estimate
for the Hy-norm of (uy, Uy), as revealed by the following analysis.

The variational formulation of (2.7) is to find (uy, Uy) ∈ Hy such that [41]

(2.8) By
(
(uy, Uy), (v, V )

)
= I · V for all (v, V ) ∈ Hy,

where the bilinear form By : Hy ×Hy → R is defined as

By
(
(w,W ), (v, V )

)
=

∫
Dy

σy∇w · ∇v dx+

M∑
m=1

1

zym

∫
Eym

(Wm − w)(Vm − v) dS.

Let us define

(2.9) ς− = min
yσ∈Υσ

ess inf σ0( · , yσ), ς+ = max
yσ∈Υσ

‖σ0( · , yσ)‖L∞(D(0))

and

(2.10) ζ− = min
m

min
yz∈Υz

zm(yz), ζ+ = max
m

max
yz∈Υz

zm(yz).

Furthermore, let Cy,tr > 0 be the norm of the trace operator

tr : v 7→ v|Γy , H1(Dy)→ L2(Γy),

and let Cy,P > 0 be the Poincaré–Wirtinger constant for Dy, that is, the smallest
constant such that

‖v − v̄‖H1(Dy) ≤ Cy,P ‖∇v‖L2(Dy) for all v ∈ H1(Dy),

where v̄ ∈ R denotes the mean of v over Dy. Finally, set

Ctr = sup
y∈Υ

Cy,tr, CP = sup
y∈Υ

Cy,P.

Note that the dependence of the trace norm on the corresponding domain is an active
research topic; see, e.g., [37] and the references therein. On the other hand, consult [7]
for a result that could be applied to the Poincaré–Wirtinger constant in our setting.
In the following, we simply assume that both Ctr and CP are finite.
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Theorem 2.1. The bilinear form By : Hy × Hy → R is uniformly bounded and
coercive; that is,

By
(
(w,W ), (v, V )

)
≤ max

{
ς+ +

2C2
tr

ζ−
,

2ω

ζ−

}
‖(w,W )‖Hy‖(v, V )‖Hy

and

By
(
(v, V ), (v, V )

)
≥
(

max

{
C2

P

ς−

(
1 +

2C2
tr

ω

)
,

2ζ+
ω

})−1

‖(v, V )‖2Hy

for all y ∈ Υ.

Proof. The result follows by keeping track of the constants in [21, Proof of
Lemma 2.5] and accounting for the slight difference between the H-norm employed
in [21] and the natural norm of Hy, i.e.,

‖(v, V )‖2Hy := inf
c∈R

(
‖v − c‖2H1(Dy) + |V − c1|2

)
,

where 1 = (1, . . . , 1) ∈ RM .

Corollary 2.2. The solution of (2.7) satisfies the uniform bound

(2.11) ‖(uy, Uy)‖Hy ≤ max

{
C2

P

ς−

(
1 +

2C2
tr

ω

)
,

2ζ+
ω

}
|I|

for all y ∈ Υ.

Proof. The claim is a direct consequence of the Lax–Milgram lemma.

For the convergence of (standard) FEM, it is essential to have control over the
behavior of the higher Sobolev norms of uy ∈ H1(Dy)/R. To this end, denote by
Cy,ε > 0 the norm of the zero continuation operator from H1/2−ε(Ey) to H1/2−ε(Γy),

0 < ε < 1, and by C̃y,ε > 0 the norm of the solution mapping

H1/2−ε(Γy) 3 fy 7→ vy ∈ H2−ε(Dy)/R,

corresponding to the Neumann problem

∇ · (σy∇vy) = 0 in Dy, σy
∂vy

∂ν
= fy on Γy.

Moreover, let Ĉy be the norm of the Neumann-to-Dirichlet map

L2
�(Γ

y) 3 fy 7→ vy|Γy ∈ H1(Γy)/R,

where L2
�(Γ

y) is the mean-free subspace of L2(Γy). Finally, set

Cε = sup
y∈Υ

Cy,ε, C̃ε = sup
y∈Υ

C̃y,ε, Ĉ = sup
y∈Υ

Ĉy.

It is once again assumed that the parametrization of our measurement setting is
regular enough to make these definitions unambiguous as well as Cε, C̃ε, and Ĉ finite
for the considered 0 < ε < 1 (cf. [1, 30]).

Corollary 2.3. Let C1 > 0 be the constant on the right-hand side of (2.11).
For any 0 < ε < 1, the first part of the solution to (2.7) satisfies the uniform bound

(2.12) ‖uy‖H2−ε(Dy)/R ≤
√

2CεC̃ε
ζ−

(
Ĉ

ζ−
+ 1

)
max{Ctr,

√
ω}C1|I|

for all y ∈ Υ.
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Proof. By definition,

‖uy‖H2−ε(Dy)/R ≤ C̃ε

∥∥∥∥σy ∂uy∂ν
∥∥∥∥
H1/2−ε(Γy)

≤ CεC̃ε

∥∥∥∥σy ∂uy∂ν
∥∥∥∥
H1(Ey)

,

where we also used the trivial embedding H1(Ey) ⊂ H1/2−ε(Ey) to deduce the second
inequality. Now the claim follows by carefully keeping track of the constants in [18,
Proof of Lemma 3.1] and [22, Proof of Lemma 2.1].

Observe that the constants appearing on the right-hand side of (2.12) are not
independent of each other: For example, the norm of the zero continuation Cε certainly
depends on ω > 0, and obviously Ĉ, C̃ε, and Ctr are intimately connected. Moreover,
the estimate (2.12) is not optimal; as an example, consult [11, 15] for more careful
analysis of the dependence on ζ−. Be that as it may, (2.12) arguably gives a general
idea of how the parametrization of the measurement configuration affects the bound
on the H2−ε(Dy)-norm of the interior potential.

Remark 2.4. Although the estimate on the H2−ε(Dy)-norm of the electromag-
netic potential (2.12) is connected to the accuracy of the numerical forward solution
at the chosen sparse grid points over Υ (cf. section 3), from the standpoint of efficient
polynomial collocation it would be more important to prove analytic dependence of
the solution pair (uy, Uy) on the parameter vector y ∈ Υ; see, e.g., [3]. However, such
investigations are left for future studies.

In the following, we systematically choose the ground level of potential by iden-
tifying (H1(Ω)⊕ RM )/R ' H1(Ω)⊕ RM� .

3. cFEM applied to the CEM. In this section we describe how the parameter-
dependent CEM forward problem is discretized in both spatial and parametric dimen-
sions. Let I ∈ RM×(M−1) denote a current matrix whose columns form an arbitrary
but fixed basis for the space of feasible net current feeds, that is, for RM� . The corre-
sponding numerical solutions Uy ∈ RM×(M−1) for the electrode potentials in problem
(2.7) (or in its variational formulation (2.8)) with a fixed y ∈ Υ can be computed by
using standard FE techniques; recall that y = (yσ, yγ , yE , yz) defines the conductivity,
the contact resistances, and the geometric set-up for the forward problem (2.7). We
continue to assume that the ground level of potential is chosen such that each column
of Uy has zero mean. It is straightforward to show that, due to the linear dependence
on the current pattern I in (2.8), the solutions Ũy corresponding to another current

matrix Ĩ satisfy Ũy = UyI†Ĩ, where (·)† denotes the Moore–Penrose pseudoinverse.
Thus, we pay no attention to choosing the current feeds in what follows.

By requiring the variational formulation (2.8) to hold for allM−1 current patterns
and for all FEM basis functions, we end up with a matrix equation

(3.1) Ayvy = F y,

where the stiffness matrix Ay depends on all parameters y ∈ Υ, and F y, having
M − 1 columns, depends only on the subvectors yγ and yE (through the meshing of
Dy). Ultimately, we are interested only in those Q := M(M − 1) elements of the
unknown matrix vy that define the electrode potentials Uy.

The aim of the cFEM is to construct an explicit parameter dependence into the
numerical solution. More precisely, we seek a polynomial mapping

Υ 3 y 7→ U(y) ∈ RQ
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so that U(y) ≈ Uy elementwise. For notational convenience, we actually consider U(y)
as a vector that is obtained by stacking the matrix columns on top of each other. We
write the numerical parametric solution in the form

(3.2) [U(y)]q =

P∑
p=1

Ûq,pLp(y), q = 1, . . . , Q,

where Ûq,p ∈ R and Lp are suitably scaled Legendre polynomials in N variables
(cf. [16]). It remains to choose the actual set of polynomials and also to determine

the coefficient matrix Û ∈ RQ×P .
We henceforth assume that the polynomial basis is normalized as∫

Υ

Lp(y)Lp′(y) dy = δp,p′ , p, p′ = 1, . . . , P,

where δp,p′ denotes the Kronecker symbol defined to be unity whenever its indices
coincide, and vanishing otherwise. Performing a discrete projection of the parametric
solution (3.2) onto the tensorized Legendre polynomial basis (Lp)

P
p=1 in Υ yields a

representation of the coefficients given by the integrals

Ûq,p =

∫
Υ

[U(y)]qLp(y) dy, q = 1, . . . , Q, p = 1, . . . , P,

which we approximate by a sparse grid quadrature based on nested Clenshaw–Curtis
rules. The sparse grid method was first introduced in [40], and comprehensive analyses
of its approximation properties were developed later in [35, 36, 44]. The application
of sparse grid quadratures to collocation methods was pioneered in the context of
parametric partial differential equations in such works as [3, 45]. In the following, we
give a brief overview of these techniques applied to the problem considered in this
paper.

The sparse grid method is based on extending a family of univariate quadrature
rules into the high-dimensional parametric region Υ ⊂ RN by considering a sparsity-
promoting linear combination of tensorized collections of univariate quadrature oper-
ators. The nested Clenshaw–Curtis rules in the interval [−1/2, 1/2] are based on the
sequence m(1) = 1 and m(n) = 2n−1 +1 for n > 1, which corresponds to the abscissae

y
(1)
1 = 0 and

y
(n)
k = −1

2
cos

(
(k − 1)π

m(n)− 1

)
, k = 1, . . . ,m(n), n ∈ N \ {1}.

The abscissae characterize a sequence of positive weights (w
(n)
k )

m(n)
k=1 that define the

Clenshaw–Curtis quadrature rules

Qnf =

m(n)∑
k=1

w
(n)
k f(y

(n)
k ) ≈

∫ 1/2

−1/2

f(y) dy,

which are exact for all polynomials of degree not more than m(n). The tensor products
of these quadrature operators are defined as

N⊗
k=1

Qαkf =

m(α1)∑
i1=1

· · ·
m(αN )∑
iN=1

w
(α1)
i1
· · ·w(αN )

iN
f(y

(α1)
i1

, . . . , y
(αN )
iN

),
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where αk ∈ N for 1 ≤ k ≤ N .
A particular case of sparse grid quadrature is the well-known Smolyak’s construc-

tion [44]. The N -dimensional Smolyak rule of order K ≥ 0 based on the nested
Clenshaw–Curtis rules is given by

QN,K =
∑

max{N,K+1}≤|α|≤N+K

(−1)N+K−|α|
(

N − 1

N +K − |α|

) N⊗
k=1

Qαk ,

where α = (α1, . . . , αN ) ∈ NN and |α| = α1 + · · ·+ αN . The function evaluations are
carried out in the sparse grid

ΘN,K =
⋃

|α|=N+K

Θα1
× · · · ×ΘαN ,

where Θn = {y(n)
k }

m(n)
k=1 . The sparse grid ΘN,K has the asymptotic cardinality

nN,K := #ΘN,K ∼
2K

K!
NK

as N tends to infinity for a fixed K [36]. By tabulating the collocation nodes

(y
(N,K)
k )

nN,K
k=1 in ΘN,K and their respective weights (w

(N,K)
k )

nN,K
k=1 , the Smolyak quadra-

ture rule can be rewritten as a cubature rule

QN,Kf =

nN,K∑
k=1

w
(N,K)
k f(y

(N,K)
k ).

The Smolyak rule generalizes the polynomial exactness of the underlying univariate
rules [35]. Let ΠN

K denote the space of all polynomials in N variables of total degree
at most K. Then

QN,Kf =

∫
Υ

f(y) dy

for all multivariate polynomials f such that

f ∈
∑

|α|=N+K

(Π1
m(α1) ⊗ · · · ⊗Π1

m(αN )).

In particular, it can be shown that the rule is exact for all f ∈ ΠN
2K+1 whenever

K < 3N [36]. For K ≥ 3N , the related total degree space is different and we omit it.

The coefficients Ûq,p ∈ R that appear in the operator (3.2) can now be approxi-
mated by using the cubature rule

(3.3) Ûq,p ≈ QN,K([U( · )]qLp) =

nN,K∑
k=1

w
(N,K)
k [U(y

(N,K)
k )]qLp(y

(N,K)
k ),

where the needed nodal evaluations of U( · ) are replaced by those of the FEM solu-
tions U (·). The error accumulation of the collocated solution depends on the error
introduced in the numerical solution of the CEM for fixed realizations of the param-
eter y ∈ Υ, the truncation error that stems from the representation (3.2), and the
aliasing error caused by the cubature rule in (3.3).
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4. Implementation. As emphasized in, e.g., [23], an EIT inversion algorithm
based on stochastic or parametric FEM consists of two distinct parts. In the premea-
surement processing, the explicit parameter dependence (3.2) is constructed by using
cFEM. Unlike in [23], we do not assume that the geometry of the measurement setting
is known during the premeasurement processing, but instead include parameters for
the boundary curve and electrode positions in the cFEM problem.

In the postmeasurement processing, the parametric solution is fitted to the mea-
surement data with respect to the parameter vector y. This part is often treated as a
least squares minimization problem, which involves either a Tikhonov functional or a
maximum a posteriori (MAP) estimator in a Bayesian approach. Once a minimizing
vector y ∈ Υ is found, recovering the quantities of interests follows straightforwardly
by considering the mappings introduced in the premeasurement step.

4.1. Premeasurement processing. This subsection introduces one possible
set of concrete mappings that were abstractly given in section 2.1. That is, we consider
functions that map the parameter vectors yγ , yE , yσ, and yz to boundary curve,
electrode positions, conductivity field, and contact resistances, respectively. We will
frequently use the fact that the components of the parameter vectors lie in the interval
[−1/2, 1/2]. The mappings introduced here are certainly not the only feasible ones.

The boundary curve Γ(yγ) is represented as a perturbed circle, where the amount
of perturbation is determined by a linear combination of Nγ ≥ 3 quadratic B-splines
(cf., e.g., [20]). To this end, we choose L = 2π in (2.1) and write

γ(φ, yγ) =
(
r(φ, yγ), φ

)
in polar coordinates. We then choose the maximum radial perturbations

ρ− = min
φ∈[0,2π]

min
yγ∈Υγ

r(φ, yγ), ρ+ = max
φ∈[0,2π]

max
yγ∈Υγ

r(φ, yγ)

and set ρ0 = (ρ− + ρ+)/2. The radial coordinate for γ can now be written as

(4.1) r(φ, yγ) = ρ0 +

Nγ∑
i=1

(ρ+ − ρ−)[yγ ]iψi(φ),

where ψi ∈ C1
2π(R) are nonnegative and uniform quadratic B-splines that form a

partition of unity. The unperturbed case yγ = 0 corresponds to a circle with radius ρ0,
i.e., D(0) is a disk of radius ρ0. Each spline satisfies |supp(ψi)∩[0, 2π]| = 6π/Nγ . Thus,
the deformations are local, as illustrated in Figure 1. We define the homeomorphism
(2.2) as

(4.2) Φ
(
(r′, φ), yγ

)
=

(
ρ0

r(φ, yγ)
r′, φ

)
,

which holds whenever (r′, φ) ∈ D(yγ).
For all yE ∈ ΥE , we define the starting angles of the electrodes as

(4.3) θm(yE) = (m− 1)
2π

M
+ 2α[yE ]m, m = 1, . . . ,M.

Here, the offset parameter α ≥ 0 is sufficiently small so that the nonoverlapping
condition (2.4) is satisfied. (Actually, the existence of such α also requires that ρ−
be sufficiently large compared to ω. To be more precise, the combined width of the
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Fig. 1. The discretization of the conductivity in a disk (left) and in a domain that is obtained
by maximally perturbing 2 out of Nγ = 16 spline coefficients defining the boundary curve (right).
In these pictures Nσ = 960, ρ− = 0.8, and ρ+ = 1.2.

electrodes must always be less than the circumference of the boundary, i.e., 2πρ− >
Mω, but this is assumed to be true for the employed parametrization.) Because in
EIT the absolute orientation of the imaged object in space cannot be determined, we
can as well fix one of the starting angles and decrease the number of parameters by
one. For simplicity, however, we keep N as defined and fix the starting angle of the
first electrode by (re-)defining θ1(yE) = 0 for all yE ∈ ΥE .

We resort to a piecewise constant representation for the conductivity. Other
possible choices include Karhunen–Loève eigenfunctions corresponding to a (prior)
random field and suitable FEM basis functions. We partition the canonical domain
D(0) into Nσ pairwise disjoint subdomains that satisfy

Nσ⋃
i=1

χ−1
i (1) = D(0),

where χi is the indicator function of the ith subdomain. An example partitioning is
shown in Figure 1. For x ∈ D(0), the canonical conductivity σ0 is defined as

(4.4) σ0(x, yσ) =

Nσ∑
i=1

χi(x) exp

(
1

2
log(ς−ς+) + log

(
ς+
ς−

)
[yσ]i

)
for some given values 0 < ς− ≤ ς+. It is easy to see that (4.4) satisfies (2.9). The
domain-dependent parametrization of the conductivity follows from (2.5) and (4.2).
The contact resistances are defined according to

(4.5) zm(yz) = exp

(
1

2
log(ζ−ζ+) + log

(
ζ+
ζ−

)
[yz]m

)
, m = 1, . . . ,M,

which agrees with (2.10).
Typically, the number of parameters defining the conductivity field is much higher

than the number of boundary curve parameters. In Figure 1, for example, we have
chosen Nσ = 960, whereas Nγ = 16. On the other hand, the number of parameters
defining the contact resistances and electrode positions is directly determined by the
number of electrodes, which is usually quite low. Due to the structure of a typical
sparse collocation grid, the number of different computational domains and FE meshes
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is therefore moderate compared to the total number of collocation points. In fact,
most of the forward problems in our numerical examples are computed in the canonical
domain D(0) with equiangled electrodes and with contact resistances set to z(0).
These problems merely correspond to perturbing a few values in the stiffness matrix
Ay in (3.1).

The computations in the premeasurement phase are easily parallelizable, and
there may also exist a lot of exploitable symmetries. For example, if the conductiv-
ity is discretized as in Figure 1, the number of electrodes is divisible by eight, and
the current matrix involves certain symmetries, then solving a forward problem cor-
responding to a conductivity node (i.e., a collocation node where only yσ contains
nonzero values) simultaneously solves several problems where both current feed and
the conductivity field are rotated. Only reordering of the resulting potential values is
required. Similar symmetries may arise, e.g., when the boundary curve is perturbed
but other components are fixed. Exploiting these symmetries is beyond the scope of
this article.

4.2. Postmeasurement processing. The aim of the postmeasurement pro-
cessing is to fit the parametric solution (3.2) to measurement data; once again, recall
that y ∈ Υ appearing in (3.2) parametrizes the conductivity, the contact resistances,
and the geometric set-up for (2.7). Let V ∈ RQ denote a vector of noisy potential
measurements corresponding to some known set of current feeds. As mentioned in
the beginning of section 3, the actual current values can be arbitrary as long as they
are known and they form a proper basis. Moreover, the linearity with respect to the
applied current pattern implies that uncertainties in the current feeds can be assumed
to be propagated to the measurement errors of potentials. In this paper, we tackle
the inverse problem of EIT by considering a nonlinear least squares problem of the
form

(4.6) min
y∈Υ

{
|U(y)− V|2 + λ2|R(y)|2

}
,

where λ ≥ 0 is a regularization parameter and R : RN → RN ′ is a differentiable
regularization operator for an arbitrary N ′ ∈ N. Notice that the connection between
a (local) minimizer of (4.6) and (regularized) solutions of the underlying undiscretized
inverse problem of EIT in the framework of the CEM is nontrivial to analyze; see,
e.g., [19, 39] for related considerations.

We refer the reader to [34] for discussion about nonlinear least squares algorithms.
In short, most algorithms are based on successive linearizations and require evaluating
both U(y) and R(y), as well as their Jacobian matrices for different values of y ∈ Υ.
The reconstructions in section 5 are obtained by using the lsqnonlin function in
MATLAB with a user-supplied Jacobian. It is shown in [31] that the cost of evaluating
U(y) and its Jacobian is O(QNk), where k is the largest polynomial (total) degree
in the chosen P -dimensional polynomial subspace. On the other hand, solving a
linearized least squares subproblem typically has a complexity of O(QN2), assuming
that N ′ . N .

As the regularization operator we use a block-diagonal matrix R ∈ RN×N con-
taining blocks Rσ ∈ RNσ×Nσ , Rγ ∈ RNγ×Nγ , RE ∈ RM×M , and Rz ∈ RM×M . The
conductivity block Rσ is defined via its inverse Cholesky factor; that is,

[R−T
σ R−1

σ ]i,j = κ2
σ exp

(
− |xi − xj |

2

2β2

)
+ εδi,j , i, j = 1, . . . , Nσ,
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where κσ, β, ε > 0 are free parameters to be specified by the operator of the algorithm
and xi ∈ D(0) is the polar mean of the ith subdomain of D(0), i.e., the point defined
by the mean values of the polar coordinates in that subdomain. Loosely speaking, this
corresponds to the assumption that the conductivity is a priori a log-normal random
field with variance-like parameter κ2

σ and correlation length β; the role of the small
parameter ε is just to guarantee the invertibility of the matrix. We could as well write
Rσ = Rσ(yγ) and compute the distances in perturbed domains, but this would cause
extra work with insignificant effect on the reconstruction.

The (Cholesky factors of the) regularization matrices Rγ , RE , and Rz are diago-
nal, i.e.,

Rγ = κ−1
γ I, RE = κ−1

E I, Rz = κ−1
z I,

where I denotes an identity matrix of the appropriate size and κγ , κE , κz > 0 are
regularization parameters. If (4.6) were considered as computation of a MAP estimate
within the Bayesian paradigm, the positive parameters κγ , κE , and κz would act
as the standard deviations of the (independent) zero-mean Gaussian priors for the
components of yγ , yE , and yz, respectively (cf., e.g., [25]). In particular, under the
Bayesian interpretation, the prior for the contact resistances is log-normal (cf. (4.5)),
and those for the electrode angles and the coefficients of the spline-like boundary
perturbations are Gaussian.

5. Numerical experiments. We demonstrate the feasibility of the proposed
method by numerical experiments in two spatial dimensions. First, the parametric
solution U(y) is constructed as explained in sections 3 and 4.1. The conductivity is
discretized with Nσ = 960 parameters as in Figure 1. For the boundary curve, we
choose Nγ = 16 splines, and the number of electrodes is M = 16. Thus, the total
number of parameters is N = 1008. By using the notation of section 4.1, we choose
the minimum and maximum radii as (ρ−, ρ+) = (15, 20). The width of the electrodes
is ω = 2, and the maximum offset for an electrode angle is α = 0.1 radians, i.e., 5.73
degrees.1 For the conductivity and the contact resistances we choose (ς−, ς+) = (0.1, 1)
and (ζ−, ζ+) = (0.05, 1), respectively. (In the tests based on experimental data, the
units of length, conductivity, and contact resistance are cm, mS/cm, and kΩ cm2,
respectively.)

The tensorized Legendre polynomial basis (Lp)
P
p=1 is chosen such that it spans

the space containing all bilinear, linear, and constant polynomials in N variables.
This results in P = (N2 +N)/2 + 1 = 508 537, and the complexity of evaluating U(y)
and its Jacobian matrix becomes O(QN2). The Smolyak rule of order K = 2 based on

the nested Clenshaw–Curtis rules is used in the computation of the coefficients Ûq,p.
This rule is exact for integrands in ΠN

5 , i.e., for all N -variate polynomials of total
degree at most 5, resulting in 2 034 145 collocation nodes in (3.3). The corresponding
CEM forward problems are solved by a standard FEM with about 2000 piecewise
linear basis functions and appropriate refinement of the employed meshes close to the
electrodes. Recall that these forward problems can be solved in parallel. With our
hardware (53GB RAM, Intel Xeon X5650 CPU) and nonoptimized MATLAB imple-
mentation, this premeasurement phase of forming (3.2) took a few hours. In what
follows, we employ the same parametric forward solution in all reconstructions, except
for the fixed-geometry reconstructions (see Figures 4 and 7), which for comparison

1The electrode configurations for the targets in Figures 2 and 5 are compatible with this assump-
tion on the angular offset (modulo rotation and/or translation of the domain), but those in Figure 6
are not, though the discrepancy is not huge.
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are computed by setting ρ− = ρ+ and α = 0 in the premeasurement phase.
As mentioned in section 4.2, the inverse problem is also solved with MATLAB.

We actually treat the problem (4.6) as an unconstrained minimization problem and
solve it by lsqnonlin with zero initial vector2 and the Levenberg-Marquardt option,
because this is simple and easily reproducible, and there is no reason to expect that
some other technique would result in a significantly more accurate localization of a
minimizer for (4.6). Apart from λ > 0, we use the same values for the free parameters
of the postmeasurement processing in all numerical tests, namely β = 4, ε = 10−4, and
κσ = κγ = κE = κz = 0.25 (cf. section 4.2). Making these parameters case-specific
would certainly improve the reconstructions to a certain extent, but it would also
conflict with our aim of demonstrating that a generic set of parameter values leads to
good reconstructions both with simulated data and for different experimental settings.
Recall that within the Bayesian paradigm, κσ, κγ , κE , and κz can be interpreted as
the prior standard deviations for the components of yσ, yγ , yE , and yz, respectively,
meaning that the sizes of the former indicate the amount of variation one expects in
the latter a priori. Combining this observation with the parametrizations (4.1) and
(4.3)–(4.5) indicates how much fluctuation is expected in the boundary curve, the
electrode positions, the pixel values of the conductivity, and the contact resistances,
respectively, prior to the measurements. Moreover, the choice of the correlation length
β > 0 is related to the anticipated characteristic length of conductivity variations
inside the imaged object.

Unless otherwise stated, the postmeasurement processing phase lasted only a few
seconds on a modern desktop computer.

5.1. Simulated data. Let us first consider simulated measurements. The con-
sidered artificial target conductivities and body shapes are shown in the left-hand
column of Figure 2. Neither of the two boundary curves can be exactly represented
by the parametrization (4.1) with Nγ = 16. For both phantoms, there are sixteen elec-
trodes of two units width distributed somewhat evenly along the respective boundary
curve. The corresponding contact resistances are similar random perturbations; see
Figure 3 for the details. The employed current patterns, i.e., the columns of I, are

(5.1) Im = e1 − em+1, m = 1, . . . ,M − 1,

with em denoting the mth Euclidean basis vector of RM . The electrode measure-
ments are simulated by first solving the necessary CEM forward problems by an FEM
with piecewise linear basis functions—on considerably denser meshes than the ones
employed for the inverse solver—to obtain the “exact” potential vector Uexct ∈ RQ.
Subsequently, the actual data are formed as

V = Uexct + η,

where the components of η ∈ RQ are independent realizations of a normally dis-
tributed random variable with zero mean and standard deviation

τ = 10−3 max
j,k=1,...,Q

∣∣Uexct
j − Uexct

k

∣∣,
which corresponds to 0.1% of noise. The reconstruction algorithm is then applied to V
with the regularization parameter λ = 2τ . If (4.6) is interpreted as the determination

2This initial guess corresponds to a disk of radius ρ0 = 17.5, equiangled electrodes, a homogeneous
conductivity σ ≡ √ς−ς+ ≈ 0.32, and contact resistances zm =

√
ζ−ζ+ ≈ 0.22, m = 1, . . . , 16.
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Fig. 2. Simulated data. Left: The target configurations. Right: The reconstructions together
with the target boundaries. The positioning of the reconstructions in comparison to the target bound-
aries is not defined by the algorithm but is chosen manually as a postprocessing step. (Color available
online.)

of a MAP estimate within the Bayesian paradigm, then λ plays the role of the stan-
dard deviation for the assumed zero-mean Gaussian noise process with independent
components (cf., e.g., [25]). In particular, we assume here twice as high a noise level
as what is actually contaminating the (simulated) measurements.

The resulting conductivity reconstructions are illustrated in the right-hand col-
umn of Figure 2. They demonstrate that the algorithm is capable of capturing the
qualitative behavior of the conductivity phantoms as well as the exterior boundary
shapes of the examined objects. The circumference of the top left object in Figure 2
is approximately 121, while the circumference of its reconstruction is only 111. The
corresponding values for the second object are 115 and 113, respectively. Thus, the
reconstructed circumferences are close to that of D(0), i.e., 2π · 17.5 ≈ 110.

The reconstructed contact resistances and electrode angles are compared with the
true ones in Figure 3; it is obvious that the algorithm does not estimate these quan-
tities accurately. The inaccuracy demonstrated by Figure 3 is probably mainly due
to the nontrivial interplay between the object shape, electrode angles, and contact
resistances: Some features of the data caused by the object shape may be less “ex-
pensive” to explain by varying the electrode angles and/or contact resistances under
the chosen regularization/prior model. Such behavior is most evident in the top right
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Fig. 3. Simulated data. Left: The reconstructed electrode angles (red circles) compared with
the true ones (blue asterisks). Right: The reconstructed contact resistances (red circles) compared
with the true ones (blue asterisks). The top row corresponds to the top row of Figure 2, and the
bottom row to the bottom row of Figure 2. (Color available online.)

image of Figure 3, where the too high values for the reconstructed contact resistances
arguably compensate for the too small size of the reconstructed object in the top right
image of Figure 2. It should also be noted that the orientation of the reconstruction
in space is intimately connected to the reconstructed electrode angles: All (random)
angle offsets for the target in the bottom left image of Figure 2 are negative, which
leads to a reconstruction that is slightly rotated in the clockwise direction. This elimi-
nates the systematic bias in the true electrode angles (in comparison to the parameter
value yE = 0) and results in reconstructed angle offsets that take both positive and
negative values.

To conclude this section, let us demonstrate what happens if the uncertainties
related to the measurement geometry are simply ignored. Figure 4 shows the recon-
structions of the target configurations in Figure 2 produced by our reconstruction
algorithm when the premeasurement phase is computed in a disk of radius ρ0 = 17.5
with equally spaced electrodes attached to its boundary. As illustrated by the ex-
tremely poor reconstructions of the conductivity in Figure 4, this naive approach is
intolerable, which is in line with the findings of [5, 8, 13, 14, 28]. Moreover, the
minimization algorithm converges slowly: As an example, the left image in Figure 4
required 121 function evaluations, whereas the top right image in Figure 2 was ob-
tained with only 12 function evaluations, although the same (lsqnonlin’s default)
stopping criterion was used.
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Fig. 4. Simulated data. The reconstructions of conductivity obtained by fixing the domain to
be a disk of radius ρ0 = 17.5 with equally spaced electrodes attached to its boundary. The left-hand
image corresponds to the target in the top row of Figure 2, and the right-hand image to that in the
bottom row of Figure 2. The color axes are those used in Figure 2, but the highest reconstructed
values are approximately 1.49 (left) and 4.17 (right). (Color available online.)

5.2. Experimental data. We next apply our algorithm to four sets of experi-
mental data from two water tanks: a thorax-shaped tank with circumference 106 cm
and a deformable one with circumference 86 cm (cf. Figures 5 and 6). Both tanks
have M = 16 rectangular metallic electrodes of width 2 cm attached to their interior
lateral surface. In each experiment, the considered water tank contains vertically
homogeneous embedded cylinders of steel and/or plastic extending from the bottom
all the way through the water surface. The water level is controlled so that the
tanks are always filled with tap water up to the top of the electrodes, which are of
height 5 cm for the thorax-shaped tank and of height 7 cm for the deformable one.
The measurements were performed with low-frequency (1 kHz) alternating current us-
ing the Kuopio impedance tomography (KIT4) device [29]. The phase information of
the measurements is ignored, meaning that the amplitudes of electrode currents and
potentials are interpreted as real numbers.

As the measurement configurations are vertically homogeneous and no current
flows through the top or the bottom of the water layer, one can employ the two-
dimensional version of the CEM as the forward model. For a discussion on the con-
version of units between two and three spatial dimensions, see, e.g., [23]. In essence,
if the voltage measurements on the electrodes are multiplied or, alternatively, the
net currents are divided by the height of the tank, a two-dimensional inverse solver
automatically produces reconstructions in the proper three-dimensional units. We
take here the latter approach based on the (three-dimensional) current patterns (5.1);
prior to the scaling by the tank height, the unit of current is mA. The regularization
parameter is chosen as

λ = 2 · 10−3 max
j,k=1,...,Q

∣∣Vj − Vk∣∣
for both tanks. Loosely speaking, the Bayesian interpretation of this is that we expect
roughly 0.1 % of measurement noise as in the case of simulated data.

The conductivity reconstructions corresponding to the thorax-shaped tank are
presented in Figure 5. The two target configurations are shown in the left-hand
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Fig. 5. Experimental data from a thorax-shaped tank. Left: The target configurations. Right:
The reconstructions together with the target boundaries. The positioning of the reconstructions
in comparison to the target boundaries is not defined by the algorithm but is chosen manually
as a postprocessing step. The unit of conductivity is mS/cm. The images are not to scale; the
circumferences of the tank and the reconstructions are given in the text. (Color available online.)

column and the corresponding reconstructions on the right. In both cases, there are
two cylinders placed inside the tank: a metallic one with square cross-section and a
plastic one with round cross-section. For both targets, the reconstruction of the tank
boundary is accurate in shape but not in size, and the approximate positions of the
inclusions can also be deduced from the images in the right-hand column of Figure 5.
However, especially the insulating inclusions appear blurred in the reconstructions,
and there are also some oscillations in the estimated background conductivity level.
Both reconstructions have a circumference of about 112 cm.

The reconstructions corresponding to the deformable tank are presented in Fig-
ure 6, which is organized in the same way as Figure 5: The target configurations are
shown in the left-hand column and the associated reconstructions in the right-hand
column. The water tank has been bent into two different shapes. (This time the tar-
get boundaries are not shown in the right-hand column since the exact shapes of the
deformable tank are not known.) The corresponding conductivity phantoms consist
of two pieces of plastic with rectangular cross-sections and of one round steel cylinder
and a rectangular body of plastic, respectively. The reconstructions are not quite
as informative as for the thorax-shaped tank, which is in line with our experience
of expecting data from the deformable tank to be of lower quality. The shapes of
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220 HYVÖNEN, KAARNIOJA, MUSTONEN, AND STABOULIS

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Fig. 6. Experimental data from a deformable tank. Left: The target configurations. Right: The
reconstructions. The unit of conductivity is mS/cm. The images are not to scale; the circumferences
of the tank and the reconstructions are given in the text. (Color available online.)

the reproduced exterior boundaries are clearly less accurate, the inclusions appear
more blurred, and the variations in the background conductivity level are notable.
It seems that the algorithm tries to explain some of the data variations originating
from the inhomogeneities by deforming the object boundary. The reconstruction cir-
cumferences 116 cm (top) and 114 cm (bottom) are also quite far off the mark; our
hypothesis is that the algorithm compensates for the overestimation of the tank size
by downtuning the contact resistances (cf. the top right image of Figure 3). In any
case, the reconstructions in Figure 6 still carry useful information about the corre-
sponding targets. In particular, they are far better than those obtained by altogether
ignoring the incompleteness of the information on the measurement geometry and
computing the conductivity reconstruction in, e.g., a disk (cf. [14]): In Figure 7 we
present the reconstructions similar to those in Figure 4. Now the geometry is fixed to
a disk having the correct circumference of 86 cm and equiangled electrodes.

6. Conclusion. By employing cFEM, we have introduced a numerical algorithm
that is capable of producing reasonable reconstructions of the conductivity by EIT in
settings where the exterior boundary shape of the examined body is unknown. This
conclusion was verified by numerical tests based on both simulated and experimental
data. The algorithm consists of two stages: In the premeasurement processing, a poly-
nomial surrogate model is formed for the CEM. This is the computationally expensive
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Fig. 7. Reconstructions based on the data from a deformable tank and fixed geometry. The left
image corresponds to the top row of Figure 6 and the right image to the bottom row. The highest
reconstructed values are approximately 34.2 (left) and 14.6 (right). (Color available online.)

part of the proposed method, but fortunately it can be carried out off-line prior to any
actual measurements, assuming there is enough general-level information available on
the measurement set-up (the approximate size and conductivity level of the body, the
shape and number of the electrodes, etc.). The postmeasurement processing consists
of minimizing a sum of squares of multivariate polynomials, which does not demand a
lot of computation time—unless the polynomial order in the surrogate model is high.
Our numerical experiments were based on second-degree polynomials and approxi-
mately a thousand parameters, which resulted in postprocessing times of only a few
seconds.
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