
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Oct 23, 2019

A Hierarchical Algorithm for Integrated Scheduling and Control With Applications to
Power Systems

Sokoler, Leo Emil; Dinesen, Peter Juhler; Jørgensen, John Bagterp

Published in:
IEEE Transactions on Control Systems Technology

Link to article, DOI:
10.1109/TCST.2016.2565382

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Sokoler, L. E., Dinesen, P. J., & Jørgensen, J. B. (2016). A Hierarchical Algorithm for Integrated Scheduling and
Control With Applications to Power Systems. IEEE Transactions on Control Systems Technology, 25(2), 590-
599. https://doi.org/10.1109/TCST.2016.2565382

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/84004465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/TCST.2016.2565382
https://orbit.dtu.dk/en/publications/a-hierarchical-algorithm-for-integrated-scheduling-and-control-with-applications-to-power-systems(6fca65e8-6f75-4982-8c99-99d0768829c3).html
https://doi.org/10.1109/TCST.2016.2565382


SUBMITTED TO IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, APRIL 25, 2016 1

A Hierarchical Algorithm for Integrated Scheduling
and Control with Applications to Power Systems

Leo Emil Sokoler, Peter Juhler Dinesen, John Bagterp Jørgensen

Abstract—The contribution of this paper is a hierarchical algo-
rithm for integrated scheduling and control via model predictive
control (MPC) of hybrid systems. The controlled system is a
linear system composed of continuous control, state, and output
variables. Binary variables occur as scheduling decisions in the
optimal control problem (OCP). The scheduling decisions are
made on a slow time-scale compared to the system dynamics. This
gives rise to a temporal separation of the scheduling and control
variables in the OCP. Accordingly, the proposed hierarchical
algorithm consists of two optimization levels. The upper level
(scheduling level) solves a mixed-integer linear program (MILP)
with a low frequency. The lower level (control level) solves a
linear program (LP) with a high frequency. The main advantage
of the proposed approach is that it requires online solution of
an LP rather than an MILP. Simulations based on a power
portfolio case study show that the hierarchical algorithm reduces
the computation to solve the OCP by several orders of magnitude.
The improvement in computation time is achieved without a
significant increase in the overall cost of operation.

Index Terms—Model Predictive Control, Mixed-Integer Linear
Programming, Production Scheduling, Hybrid Power Systems.

I. INTRODUCTION

Model predictive control (MPC) has become one of the most
popular industrial control strategies [1]–[5]. The basic idea of
MPC is to optimize the predicted behavior of a process model
over a finite horizon. At each sampling instant, the current
state is estimated based on measurements, and an optimal
control problem (OCP) is formed and solved. The solution
of the OCP provides a sequence of inputs. Only the first input
in this sequence is applied to the controlled system, and the
procedure is repeated at the following sampling instant. In
this way, a closed-loop input trajectory is synthesized using
feedback by solving a sequence of open-loop OCPs.

Control of hybrid systems is an emerging application area
for MPC. Examples are traction control [6], control of re-
frigeration systems [7]–[9], control of co-generating power
plants [10], water treatment control [11], and supply-chain
management [12]. The main limitation of MPC for hybrid
systems is that it requires solution of a computationally
challenging OCP in real-time [13]–[17]. References [18]–[20]
establish important properties for MPC of hybrid systems, such
as closed-loop stability. Fault detection and state estimation in
hybrid systems are described in [21].

Hybrid systems are often represented as mixed logical
dynamical (MLD) systems [13], [22]–[26]. MLD systems are

The authors are affiliated with the Department of Applied Mathematics and
Computer Science, Technical University of Denmark, DK-2800 Kgs. Lyngby,
Denmark (corresponding author e-mail: jbjo@dtu.dk).

L. E. Sokoler is also affiliated with DONG Energy, DK-2830 Virum,
Denmark.

composed of continuous and binary inputs, states, outputs and
auxiliary variables. The OCP that arises in MPC of MLD
systems is a mixed-integer linear program (MILP) or a mixed-
integer quadratic program (MIQP). Computationally tractable
MPC schemes require algorithms that can solve the OCP
in real-time. Efficient algorithms for MPC of MLD systems
have been proposed in [13]–[17]. Reference [16] develops
a structure-exploiting gradient projection algorithm for the
subproblems that occur in a branch-and-bound algorithm for
the OCP. References [13]–[15], [27] express the OCP as a
multi-parametric MILP, which is solved off-line. The main
issue with this explicit approach is that the computation time
can grow exponentially with the problem size (horizon length,
number of states, and number of inputs). Explicit methods
are therefore usually limited to small-dimensional problems.
Larger problems have been solved efficiently using convex re-
laxation techniques [28], [29], and Lagrangian decomposition
[30], [31]. The performance of these methods is very problem-
dependent.

In this paper, we address a special case of MPC of MLD
systems where decisions are made on two time scales. Binary
scheduling decisions are made on a slow time-scale, while
continuous control decisions are made on a fast time-scale.
The novelty of this paper, is a hierarchical algorithm for
solution of the OCP that occurs for this special case. The
algorithm consists of an upper optimization level, which we
refer to as the scheduling optimization level, and a lower
optimization level, which we refer to as the control opti-
mization level. The scheduling optimization level solves an
MILP with a low frequency. The control optimization level
solves a linear program (LP) with a high frequency. Binary
decisions, made by the upper optimization level, are fixed in
the lower optimization level. In the hierarchical algorithm,
the time critical computation is solution of an LP. Without
hierarchical decomposition of the MPC scheme, the time
critical computation is solution of an MILP.

The main assumption of the proposed approach is that the
binary decisions are made on a slow time-scale compared to
the system dynamics. The application of the decomposition
algorithm is therefore limited to solve OCPs that satisfy this
assumption. However, such systems are ubiquitous in inte-
grated scheduling and control [32]–[36]. Reference [37] shows
that a range of production management problems related to
control of chemical processes, e.g. batch operations, blending
operations, and supply-chain optimization, fits well into the
proposed framework. Motion planning problems in robotics
are another application area that involves decisions on two
time scales (geometric path planning and real-time feedback
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control) [38], [39]. The hierarchical separation of the schedul-
ing layer and the control layer is similar to the separation
of the optimization layer (RTO) and the control layer (MPC)
commonly used in the chemical process industries [40]–[43].
The main difference is that the scheduling problem is a
dynamic optimization problem involving both continuous and
discrete variables, while the RTO is a steady-state optimization
problem involving continuous variables only.

This work is motivated by the application of economic MPC
(EMPC) to integrated scheduling and control in power system
operations [35], [44]. In EMPC, the OCP objective function
is directly related to the cost of operation [45]. For this
reason, we focus on OCPs with a linear cost function rather
than a conventional setpoint-based quadratic cost function.
The proposed approach generalizes to OCPs with a quadratic
cost function as well. As an illustrative example, we consider
a power portfolio case study. The case study involves unit
commitment and economic dispatch of a collection of power
generators. An MPC scheme is employed for cost-efficient
control of the power generators. The MPC scheme integrates
production scheduling and balance control [46]. On/off deci-
sions occur as binary variables in the OCP. Direct solution
of the OCP is therefore intractable in real-time. Simulations
show that the proposed hierarchical algorithm reduces the
computation time to solve the OCP by several orders of
magnitude. The improvement in computation time is achieved
without a significant increase in the overall cost of operation.
The algorithm also establishes a formal relationship between
the OCP and the well known unit commitment (UC) problem
[34], [47], [48], which has not previously been described in
the literature. Related problems where a similar approach can
be applied are e.g. control of co-generation power plants [10],
[23], control of wind-farms for power optimization [49], and
utility systems in the chemical process industries [34], [35],
[50].

A. Paper Organization

This paper is organized as follows. Section II defines the
OCP for integrated scheduling and control. Section III presents
the hierarchical algorithm for efficient solution of the OCP.
Section IV introduces the power portfolio problem. Section V
provides simulations and results, and Section VI concludes the
paper.

II. PROBLEM DEFINITION

We consider continuous-time linear state space models in
the form

ẋ(t) = Acx(t) +Bcu(t) + Ecd(t), (1a)
z(t) = Czx(t) + Fzd(t). (1b)

The state-space matrices are denoted (Ac, Bc, Ec, Cz, Fz), the
control variable is denoted u(t) : R 7→ Rnu , the system state
is denoted x(t) : R 7→ Rnx , the disturbance is denoted d(t) :
R 7→ Rnd , and the output is denoted z(t) : R 7→ Rnz . MPC
is applied to control the system (1). The prediction horizon is
T = [t0, tf ].

A. Optimal Control Problem

This section defines the OCP for integrated scheduling
and control. The OCP includes binary scheduling variables
and continuous control variables. We partition the prediction
horizon, T , into L equidistant subintervals Tl = [τl, τl+1],
l = 0, 1, . . . , L − 1, such that T = T0 ∪ T1 ∪ · · · ∪ TL−1.
The length of each subinterval is ∆τ = (tf − t0)/L. τ0 = t0
and τL = tf . Let L = {0, 1, . . . , L} denote the set of indices
associated with time instants τ0, τ1, . . . , τL. A vector of binary
scheduling variables, bl ∈ {0, 1}q , is associated with each time
step, τl.

The OCP is defined as

min.
X(·),v(·),b

fR(X, v) + fZ(b), (2a)

s.t. ẋ(t) = Acx(t) +Bcu(t) + Ecd(t), t ∈ T, (2b)
z(t) = Czx(t) + Fzd(t), t ∈ T, (2c)
cR(X(t), v(t), t) ≤ 0, t ∈ T, (2d)
cZ(b) ≤ 0, (2e)
γ(v(t), b) = 0, t ∈ T. (2f)

The decision variables in (2) are the continuous-time functions
X(t) =

[
u(t)T x(t)T z(t)T

]T
: R 7→ Rnu+nx+nz and

v(t) : R 7→ Rq , and the vector of binary variables

b =
[
bT0 bT1 · · · bTL

]T
. (3)

In general, X(t) may also contain auxiliary continuous-time
functions. Constraints (2b) and (2c) are the state-space con-
straints. The initial state, x(0) = x0, is a fixed parameter.
Equation (2d) represents continuous-time constraints. These
constraints are related to the continuous control decisions for
the system (1). Equation (2e) represents discrete-time con-
straints. These constraints are related to the binary scheduling
decisions for the system (1). We assume that cR and cZ are
affine functions.

In the objective function (2a), fR(X, v) is the cost associated
with the continuous control decisions, and fZ(b) is the cost
associated with the binary scheduling decisions. We assume
that fR and fZ are linear functions. Moreover

fR(X, v) =

∫ tf

t0

gR(X(t), v(t), t)dt. (4)

Constraint (2f) couples the vector of binary variables, b, and
the continuous-time function v(t). The coupling function, γ,
is defined as

γ(v(t), b) =


v(t)− b0 if τ0 ≤ t ≤ τ1

...
v(t)− bL−1 if τL−1 ≤ t ≤ τL.

(5)

This means that any feasible solution of (2) satisfies

v(t) = bl, τl ≤ t ≤ τl+1,

for l ∈ L\{L}. The main purpose of the coupling function, γ,
is to decouple the binary and continuous variables in cR and
cZ, as well as in fR and fZ. Note that the system dynamics,
(2b), does not depend on the binary variables.
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Fig. 1. The two time scales associated with the OCP (7). The sampling time of
the continuous-time system, (1), is ∆t. The time between the binary decisions,
(3), is ∆τ . This paper addresses the case where ∆t is small compared to ∆τ .

B. Discretization

To solve (2), we discretize the optimization problem. The
sampling time is ∆t = ∆τ/K, for some positive integer K.
The discretization points are denoted t0, t1, . . . , tN . We let
N = {0, 1, . . . , N} denote the set of indices associated with
the discretization points. Note that

τl = tKl, l ∈ L. (6)

Fig. 1 illustrates the relation (6) for K = 2.
We consider the case where binary decisions are made on

a slow time-scale, compared to the system dynamics. This
means that ∆t is small compared to ∆τ , i.e. N � L. The
discrete-time formulation of (2) is

min.
X,v,b

f̃R(X, v) + fZ(b), (7a)

s.t. xk+1 = Axk +Buk + Edk, k ∈ N \ {N}, (7b)
zk = Czxk + Fzdk, k ∈ N \ {0}, (7c)
cR(Xk, vk, tk) ≤ 0, k ∈ N , (7d)
cZ(b) ≤ 0, (7e)
γ(vk, b) = 0, k ∈ N . (7f)

Constraints (7b) and (7c) are the discrete-time equivalents
of (2b) and (2c), respectively. The discrete-time state-space
matrices are denoted A, B, and E. uk ∈ Rnu is the control
variable, xk ∈ Rnx is the system state, dk ∈ Rnd is the
disturbance, and zk ∈ Rnz is the output. The initial state,
x0, is a fixed parameter. As in the continuous-time case, we
use Xk =

[
uTk xTk zTk

]T
for compact notation. This vector

may also contain additional auxiliary variables. In the objective
function (7a), we have defined

f̃R(X, v) =
∑

k∈N\{N}

gR(Xk, vk, tk)∆t,

which is an Euler approximation of the integral (4).

III. HIERARCHICAL ALGORITHM

Problem (7) is an MILP. Solving (7) in real-time is therefore
challenging, especially since N is large. To reduce the compu-
tation time to solve (7), we consider a hierarchical approach.
The idea is to decompose the solution of (7) into two separate
optimization levels. The upper optimization level (scheduling
level) is associated with the binary decisions that are made on
a slow time-scale, and the lower optimization level (control
level) is associated with the control decisions that are made
on a fast time-scale. Binary variables are fixed at the lower

optimization level. For this reason, the lower level optimization
problem can be expressed as an LP. We refer to the upper level
MILP as the UL-OCP, and to the lower level LP as the LL-
OCP. The UL-OCP is solved with a low frequency, and the
the LL-OCP is solved with a high frequency.

A. Upper Level Optimal Control Problem (UL-OCP)

The UL-OCP is simply (7), where we replace the sampling
time, ∆t, with some ∆t̄ that satisfies

∆t ≤ ∆t̄ ≤ ∆τ,

with ∆τ/∆t̄ integer. We use bar notation to denote the
variables and the parameters associated with the UL-OCP.
In case ∆t̄ = ∆t, the UL-OCP coincides with (7). When
∆t̄ = ∆τ , the sampling time is the time between binary
decisions. By assumption, the system dynamics occurs at a
much faster time scale than ∆τ . Therefore, the state transition
matrix, Ā, resulting from a discretization with ∆t̄ = ∆τ ,
satisfies Ā ≈ 0. In addition

z̄k ≈ Cz(B̄ūk−1 + Ēd̄k−1) + Fz d̄k, k ∈ N . (8)

Consequently, the state variables x̄1, x̄2, . . . , x̄N̄ can be elim-
inated from the UL-OCP, for a sufficiently large ∆t̄.

B. Lower Level Optimal Control Problem (LL-OCP)

The LL-OCP is (7) with fixed binary variables, b = b̃. As the
binary variables are fixed, we do not include fZ(b̃) in the LL-
OCP objective function. Similarly, constraint (7e) is excluded
from the LL-OCP. The LL-OCP is

min.
X

∑
k∈Ñ\{Ñ}

gR(Xk, ṽk, tk)∆t, (9a)

s.t. xk+1 = Axk +Buk + Edk, k ∈ Ñ \ {Ñ}, (9b)

zk = Czxk + Fzdk, k ∈ Ñ \ {0}, (9c)

cR(Xk, ṽk, tk) ≤ 0, k ∈ Ñ , (9d)

where Ñ = {0, 1, . . . , Ñ}. The variables v1 = ṽ1, v2 =
ṽ2, . . . , vN = ṽN are fixed parameters in (9). These parameters
are determined by the coupling function (5), for fixed b = b̃.
Since the system dynamics occurs on a relatively fast time-
scale, Ñ may be chosen significantly smaller than N .

C. Algorithm

Consider the stochastic system

xk+1 = Axk +Buk + Edk +Gwk, (10a)
zk = Czxk + Fzdk, (10b)
yk = Cyxk + Fydk + vk, (10c)

where wk ∼ N(0, Rw) is the process noise, vk ∼ N(0, Rv) is
the measurement noise, and dk ∼ N(ďk, Rd) is an unknown
disturbance. We use bold letters to denote random variables.

Define Ik = {Ik−1, uk−1, dk−1, yk}, with I0 = y0. More-
over, introduce the conditional means x̂k+j|k = E [xk+j |Ik],
ŷk+j|k = E [yk+j |Ik], ẑk+j|k = E [zk+j |Ik], and the condi-
tional covariance matrix Pk+j|k = V [xk+j |Ik]. These values
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Algorithm 1 MPC of (10) via hierarchical solution of the OCP
k = 0, l = 0
for t = t0, t1, . . . ,∞ do
k ← k + 1
yk ← measure system output
x̂k|k ← estimate system state
{d̂k+j|k}j∈N ← update disturbance forecast
===== HIERARCHICAL ALGORITHM =====
if t = τl then

if Ibl = 1 then
// UPPER OPTIMIZATION LEVEL
{b̃l+j}j∈L ← solve UL-OCP (MILP).

end if
l← l + 1

end if
// LOWER OPTIMIZATION LEVEL
uk ← solve LL-OCP (LP)
==================================
apply uk to the system (10)

end for

are computed using the Kalman filter. The disturbance forecast
is denoted d̂k+j|k. We assume that a disturbance forecast is
generated by some external procedure.

In MPC, based on the separation and certainty equiva-
lence principle, uncertain parameters are replaced by their
conditional expectations. We use this approach to control the
stochastic system (10). The OCP solved at every sampling in-
stant, k = 0, 1, . . . ,∞, is (7), with x0 = x̂k|k, and dj = d̂k+j|k
for j ∈ N . Algorithm 1 is an MPC scheme for control of the
stochastic system (10), using the hierarchical algorithm for
solution of the OCP. The indicator variables Ib1, I

b
2, . . . , I

b
∞

trigger solution of the UL-OCP. The indicator variables can
be pre-defined or updated online, e.g. it is reasonable to
update the scheduling decisions if a significant change in
the disturbance forecast arises. The lower optimization level
requires that values for the binary variables are available within
its control horizon. Therefore, Ib0 = 1.

There are several parameters in Algorithm 1 that can be
tuned to trade-off optimality and computation time. Increasing
the sampling time, ∆t̄, reduces the size of the UL-OCP.
Reducing the length of the prediction horizon, Ñ , reduces the
size of the LL-OCP. As an example, Ñ may be chosen just
large enough to ensure that the controller is stable [51]–[53].
We suggest to use a fairly long prediction horizon to achieve
stable and cost-efficient operation of the system.

IV. POWER PORTFOLIO PROBLEM

Electricity is bought and sold in electricity markets. A
majority of the energy is usually traded in a day-ahead energy
market. When the market is cleared, the power producers
receive a 24 hours-ahead reference profile specifying the
amount of electricity they have sold. Scheduling the generation
of available power generators is a challenging task for the
power producers, as it involves decisions across different time
scales and scheduling horizons. Hours-ahead to days-ahead
scheduling (scheduling level) is handled by solving an MILP

for unit commitment and economic dispatch of the power
generators. To account for imbalances between the power
production and the reference profile, a balance control layer
(control level) can be employed. The control level is important
to account for the inherent uncertainties associated with the
generation of renewable energy sources [44], [46]. We show
that the proposed approach facilities the integration of the
scheduling and the control level. This makes it possible to
trade-off computation time and optimality in a systematic way.

A collection of M power generators is controlled using the
proposed MPC scheme. The M power generators represent
a portfolio of generators that is operated by a single power
producer. The generators are modeled as transfer functions in
the form

Zi(s) = Gu,i(s)Ui(s), i ∈M, (11)

whereM = {1, 2, . . . ,M}. Ui(s) is the power production set-
point, and Zi(s) is the power production. We define D(s) to be
the aggregated power production from non-controllable gen-
erators, such as photovoltaic generators and non-controllable
wind turbines. The net power production is the sum

ZT (s) =
∑
i∈M

Zi(s) +D(s). (12)

We collect (11) and (12) into a single model in the form

Z(s) = Gu(s)U(s) +Gd(s)D(s), (13)

where U(s) = [U1(s)T , . . . , UM (s)T ]T is the control variable,
and Z(s) = [Z1(s)T , . . . , ZM (s)T , ZT (s)]T is the output.

Gu(s) = [blkdiag (Gu,1, . . . , Gu,M ); [Gu,1, . . . , Gu,M ]]

and Gd(s) = [0, . . . , 0, 1]T are the transfer functions. The
model (13) is realized in the continuous-time state-space form
(1). In the resulting model structure

Ac = blkdiag (Ac,1, Ac,2, . . . , Ac,M ),

Bc = blkdiag (Bc,1, Bc,2, . . . , Bc,M ),

Cz = [blkdiag (Cz,1, . . . , Cz,M ); [Cz,1, . . . , Cz,M ]],

Ec = 0, and Fz = [0, . . . , 0, 1]T . Moreover, x(t) is the system
state, u(t) = [u1(t)T , . . . , uM (t)T ]T is the vector of power
production setpoints, and z(t) = [z1(t)T , . . . , zM+1(t)T ]T is
the vector of power production outputs. This vector contains
the power production of each generator, as well as the total
power production, zM+1(t) = zT (t). Finally, d(t) is the power
production from non-controllable generators.

The power generators can be turned on and off in the time
instants t ∈ {τ0, τ1, . . . , τL}. Define the binary variables

bsi,l =

{
1 if generator i is running at time τl
0 otherwise,

i ∈ M and l ∈ L. Similarly, define bui,l to indicate if a
generator is turned on, and bdi,l to indicate if a generator is
turned off. In addition

vsi (t) = bsi,l, τl ≤ t ≤ τl+1, (14)
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for i ∈M and l ∈ L \ {L}. I.e. vsi (t) is a piecewise constant
representation of bsi,l. We define vui (t) and vdi (t) in the same
manner.

The cost of operation is defined as

ψ =

∫ tf

t0

(∑
i∈M

(pzi zi(t) + psiv
s
i (t)) + pρρ(t)

)
dt

+
∑
i∈M

∑
l∈L

(
pui b

u
i,l + pdi b

d
i,l

)
.

(15)

pzi is the marginal production price for power generator i,
psi is the fixed running cost for power generator i, pui is
the start-up cost for power generator i, and pdi is the shut-
down cost for power generator i. pρ is the marginal price
for power imbalances. Imbalance costs are imposed when
the power production deviates from a pre-defined reference
(e.g. the power demand or the power sold in the day-ahead
electricity market), denoted r(t). This is expressed as

r(t)− ρ(t) ≤ zM+1(t) ≤ r(t) + ρ(t), t ∈ T. (16)

To keep the notation simple, we use one single price, pρ,
for both positive and negative imbalances. Asymmetric prices
can represent a market situation where power is traded on an
electricity exchange.

The power production setpoint for a generator is limited by
its capacity limits. This is modeled by the constraint

ziv
s
i (t) ≤ui(t) ≤ zivsi (t), i ∈M, t ∈ T. (17)

The lower and upper capacity limit for power generator i is zi
and zi, respectively. The setpoint for a generator not running
is zero. This is enforced by multiplying each of the capacity
limits in (17) by vsi (t). A constraint on the input-rate is defined
to avoid drastic setpoint changes

∂ui −Qvdi (t) ≤dui(t)
dt

≤ ∂ui +Qvui (t), (18)

i ∈ M, t ∈ T . The upper and lower input-rate limit for
generator i is ∂ui and ∂ui, respectively. The terms involving Q
relax the constraint (18) when a generator is turned on or off.
This is necessary to avoid infeasibility of the OCP, e.g. when
ui ≥ ∆ui for some i ∈M. The binary decision variables are
coupled by the constraints

bsi,l = bsi,l−1 + (bui,l − bdi,l), i ∈M, l ∈ L, (19a)

bui,l + bdi,l ≤ 1, i ∈M, l ∈ L. (19b)

These constraints model the start-up and shut-down logic. We
refer to [47] for a detailed description of the logical con-
straints in unit commitment and economic dispatch problems.
The OCP associated with the power portfolio problem is to
minimize (15) subject to the constraints (16)-(19).

A. Standard Form

The OCP associated with the power portfolio problem is
written in the standard form (7). The components of the binary
vector, (3), are

bl =
[
bs1,l bu1,l bd1,l . . . bsM,l buM,l bdM,l

]
,

for l ∈ L. We define the components of v accordingly. In the
objective function (2a)

fR(X, v) =

∫ tf

t0

(∑
i∈M

(pzi zi(t) + psiv
s
i (t)) + pρρ(t)

)
dt,

fZ(b) =
∑
i∈M

∑
l∈L

pui b
u
i,l + pdi b

d
i,l,

such that

gR(X(t), v(t), t) =
∑
i∈M

(pzi zi(t) + psiv
s
i (t)) + pρρ(t),

and X(t) =
[
u(t)T x(t)T z(t)T ρ(t)T

]T
. The function

associated with the constraint (2d) is

cR(X(t), v(t), t) =


c̄R(X(t), v(t), t)
c0R(X(t), v(t), t)

...
cNR (X(t), v(t), t)

 , (20)

where

c̄R(X(t), v(t), t) =

[
zM+1(t)− r(t)− ρ(t)
r(t)− zM+1(t)− ρ(t)

]
,

ciR(X(t), v(t), t) =


ui(t)− zivsi (t)
ziv

s
i (t)− ui(t)

dui(t)
dt −∆ui −Qvui (t)

∆ui −Qvdi (t)− dui(t)
dt

 , i ∈M.

cZ(b) is constructed by stacking the constraints (19). The
coupling constraint (2f) follows from the definition (5).

In the discretized OCP, (7), we use the backward-difference
approximation

dui(t)

dt
≈ ui,k − ui,k−1

∆t
, i ∈M, k ∈ N .

The constraints for the discretized OCP are expressed as in
(20) with

c̄R(Xk, vk, tk) =

[
zM+1,k − rk − ρk
rk − zM+1,k − ρk

]
,

ciR(Xk, vk, tk) =


ui,k − zi,kvsi,k
ziv

s
i,k − ui,k

ui,k−ui,k−1

∆t − ∂ui −Qvui,k
∂ui −Qvdi,k −

ui,k−ui,k−1

∆t

 , i ∈M.

The discretized OCP is an MILP. To get well-behaved closed-
loop solutions, the OCP objective function can be augmented
by `1- and `2-penalty terms on the input-rate [54]. For `2-
regularization, the OCP becomes an MIQP. It is straightfor-
ward to generalize the hierarchical algorithm to this case.

B. Relationship to the Unit Commitment Problem

The transfer function (11) maps the power production
setpoint for a generator to its actual power production. It is
reasonable to assume that the gain in this system is 1. This
means that

zi(t)→ ui(t), i ∈M, (21a)

zM+1(t)→
∑
i∈M

ui(t) + d(t), (21b)
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TABLE I
CASE STUDY GENERATOR PARAMETERS.

Parameter/Generator Gen. 1 Gen. 2 Gen. 3

κi [s] 20 25 40
pzi [EUR/MWh] 80 40 10
psi [EUR/h] 25 10 5
pui [EUR] 100 150 200
pdi [EUR] 0 0 0
(∂ui, ∂ui) [MW/s] (-0.2,0.2) (-0.1,0.1) (-0.05,0.05)
(zi, zi) [MW] (0.5,5) (2,10) (5,25)

for t→∞. Consider the approximation (8) for the UL-OCP.
Based on (21), we can further assume that

CzB̄ ≈ [blkdiag (I, . . . , I); [1, 1, 1]],

where we use that E = 0 and Fz = [0, . . . , 0, 1]T . Conse-
quently

z̄1,k

...
z̄M,k

z̄T,k

 =


ū1,k−1

...
ūM,k∑
i∈M ūi,k

+


0
...
0
d̄k

 , k ∈ N . (22)

Equation (22) is used to eliminate the power production
variables, z̄1, z̄2, . . . , z̄N̄ from the UL-OCP. In this way, the
UL-OCP can be expressed without state and output variables,
as well as without the state-space constraint (7b) and (7c).
The resulting optimization problem is a UC problem [34],
[47], [48]. I.e. for a sufficiently coarse temporal discretizaton,
the UL-OCP coincides with the UC problem. Hierarchical
decomposition of unit commitment and balance control is
widely adopted in power system operations [34], [48]. This
paper shows that the hierarchical approach can be interpreted
as an approximate way to solve the OCP (7). The approxi-
mation provides a computationally efficient scheme to obtain
suboptimal solutions of (7). This makes it possible to employ
MPC, based on (7), for integrated scheduling and control.

V. CASE STUDY

We consider an example of the power portfolio problem,
with M = 3 generators in the form

Gu,i(s) =
1

(1 + κis)
3 , i ∈M. (23)

Reference [55] validates the model (23) against actual mea-
surement data. Note that the gain in the system (23) is 1.
The controlled system is a stochastic system in the form
(10). The disturbance, dk, is the non-controllable wind power
production. For this case study, we do not consider process
noise nor measurement noise.

Table I lists case study parameters for each of the three
generators in convenient display units. Generator 1 has a small
time constant, i.e. the generator is fast. It has a high marginal
production price and a high fixed running cost. Moreover,
Generator 1 has a very limited capacity. In contrast to this,
Generator 3 is a slow low-cost generator with a large capacity.
Generator 2 is a medium-sized generator. The contrast between
generator agility and production price is a common situation in

Fig. 2. Case study power demand (reference, rk), wind power production
(disturbance, dk), and wind power forecasts (disturbance forecasts, d̂k|0 and
d̂k|900).

power systems where large thermal power plants often produce
a majority of the electricity, while the use of smaller gas
turbines is limited to critical peak periods.

The imbalance price, pρ, is 400 EUR/MWh. The time
between binary decisions is ∆τ = 900 s. This means that
the generators can be turned on or off every 15 minutes. The
length of the prediction horizon is tf = 3 hours. The sampling
time for the system dynamics is ∆t = 5 s, which is adequate
for dynamics in the time scale listed in Table I. As a result of
these parameter specifications, N = 2160, and L = 12. Unit
commitment is often performed with a prediction horizon of
more than 24 hours. We use a 3 hours-ahead horizon to be able
to solve the full size OCP (7) using a general-purpose solver in
a reasonable amount of time. Fig. 2 illustrates the case study
reference, rk, the wind power production, dk, the initial wind
power production forecast, d̂k|0, and an updated wind power
production forecast, d̂k|900. The wind power forecasts should
be interpreted as {d̂k|0}2160

k=0 and {d̂k|900}2160
k=0 , respectively.

Note that d̂k|900 = dk for k ≤ 900. For t > 75 min (k > 900),
the initial wind power forecast, d̂k|0, is not very accurate.
This suggests that the UL-OCP should be resolved when the
updated forecast, d̂k|900, becomes available at t = 75 min
(k = 900).

A. Known Disturbance

Assume that the disturbance, dk, is known over the entire
24-hour prediction horizon. Fig. 3 illustrates the open-loop
production plan obtained by direct solution of the OCP (7).
Fig. 3 (d) shows that the total power production follows the
reference well. Large imbalance costs are therefore avoided
when dk is known. The total cost of operation is EUR 2426.

The computation time to solve the OCP (7) is approximately
15 min using Gurobi. Direct solution of (7) is thus intractable
in real-time. To overcome this issue, (7) is solved using
Algorithm 1. We consider a situation with a fixed horizon
length, Ñ = 2160, in the LL-OCP, and varying sampling time,
∆t̄, in the UL-OCP. Average values are used for r̄k and d̄k
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(a) Power production level: Generator 1. (b) Power production level: Generator 2.

(c) Power production level: Generator 3. (d) Total power production.

Fig. 3. Open-loop simulation: Generator power production levels and total power production.

Fig. 4. Relative cost increase and computation time to solve the UL-OCP
with tf = 3 hours, as a function of the sampling time ∆t̄.

in the UL-OCP. For each value of ∆t̄, we record the cost of
operation over the entire simulation scenario, as well as the
time to solve the UL-OCP. Fig. 4 reports the simulation results.

For ∆t̄ = 5 s and ∆t̄ = 10 s, the hierarchical algorithm
obtains the same solution as Gurobi. This means that the cost
increase is 0%. As the sampling time increases, the computa-
tion time decreases and the cost of operation increases. In the
extreme case, ∆t̄ = 900 s, the relative cost increase compared
to direct solution of the OCP is 33%. For ∆t̄ = 60 s, the
cost increase is less than 1%, while the computation time is
reduced by two orders of magnitude. We conclude that the
binary decision variables, (3), can be determined efficiently by
solving the UL-OCP on a coarse temporal time-scale, without
a significant increase in the cost of operation.

The average computation time to solve the LL-OCP with
Ñ = N = 2160 is 3 s. This is critical, as the LL-OCP is
solved as part of the (high frequency) lower optimization level
in Algorithm 1. We therefore fix the sampling time to ∆t̄ = 30
s in the UL-OCP, and vary the horizon length Ñ in the LL-
OCP. Fig. 5 shows the average computation time to solve the
LL-OCP and the cost of operation, as a function of Ñ . For
small Ñ , the cost is significantly larger than for Ñ = 2160.
When Ñ = 64, the cost increase is less than 5%, and for
Ñ = 128 the cost increase is less than 1%. Compared to the
case where Ñ = N = 2160, the computation time to solve the
LL-OCP is reduced by one order of magnitude for Ñ = 64.
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Fig. 5. Relative cost increase and average computation time to solve the
LL-OCP with ∆t = 5 s, as a function of the prediction horizon Ñ .

Fig. 6. Closed-loop simulation: Total power production. In Case 1, the binary
scheduling variables are only updated at the beginning of the simulation. In
Case 2, the binary scheduling variables are also updated at time step k = 900
using the updated forecast d̂k|900.

For ∆t̄ = 60 s and Ñ = 128, the UL-OCP is solved in 2 s
and the LL-OCP is solved in 0.1 s. In comparison, the time
to solve the OCP (7) directly is approximately 15 min.

B. Unknown Disturbance

Consider the more realistic case where only forecasts of the
disturbance, dk, are available. Two closed-loop simulations are
performed. In the first simulation (Case 1), the UL-OCP is
solved one single time using the initial forecast, d̂k|0. In the
second simulation (Case 2), the UL-OCP is resolved at time
step k = 900 using the updated forecast, d̂k|900. The parameter
specifications for Algorithm 1 are ∆t̄ = 60 s and Ñ = 128.

We assume that a perfect disturbance forecast is available
in the LL-OCP. This means that dk is known 10 min ahead of
time for the LL-OCP. Fig. 6 shows the total power production
for Case 1 and for Case 2. In Case 1, significant deficits in the
total power production occur for t ≥ 75 min. This is because
two of the three generators are turned off for t ≥ 75 min, as a

result of the binary scheduling decisions made at time t = 0
min. As the binary variables are fixed in the LL-OCP, the
generators cannot be turned on. For Case 2, the power deficits
are avoided. Based on the updated forecast, d̂k|900, the UL-
OCP modifies the initial plan to have more generators turned
on for t ≥ 75 min. This reduces costs by 75% compared to
Case 1. In practice, the UL-OCP may be solved e.g. every 5
min using the most recent forecasts. It is important to note
that this is only possible using the hierarchical algorithm.

VI. CONCLUSIONS

In this paper, we have developed a hierarchical algorithm for
MPC of a subclass of hybrid systems. The algorithm decom-
poses the OCP into an upper level MILP and a lower level
LP. Binary scheduling variables are determined by solving
the upper level MILP, and continuous control variables are
determined by solving the lower level LP. The binary variables
occur as fixed parameters in the lower level LP. The proposed
approach reduces the most time-critical numerical operations
in solving the OCP to solution of the lower level LP and allows
frequent solution of the upper level MILP. The performance of
the hierarchical algorithm was tested using a power portfolio
case study. For this case study, the computation time to solve
the open-loop OCP using the hierarchical algorithm is in the
order of seconds. In comparison, the time to solve the OCP
directly using a state-of-the-art MILP solver is more than 15
minutes. The performance improvement in computation time
is achieved at the expense of less than a 1% increase in the
MILP objective function.
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