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Abstract. Flagellates are unicellular microswimmers that propel themselves using

one or several beating flagella. We consider a hydrodynamic model of flagellates and

explore the effect of flagellar arrangement and beat pattern on swimming kinematics

and near-cell flow. The model is based on the analytical solution by Oseen for the

low Reynolds number flow due to a point force outside a no-slip sphere. The no-slip

sphere represents the cell and the point force a single flagellum. By superposition we

are able to model a freely swimming flagellate with several flagella. For biflagellates

with left-right symmetric flagellar arrangements we determine the swimming velocity,

and we show that transversal forces due to the periodic movements of the flagella can

promote swimming. For a model flagellate with both a longitudinal and a transversal

flagellum we determine radius and pitch of the helical swimming trajectory. We find

that the longitudinal flagellum is responsible for the average translational motion

whereas the transversal flagellum governs the rotational motion. Finally, we show

that the transversal flagellum can lead to strong feeding currents to localized capture

sites on the cell surface.

PACS numbers: 47.15.G- Low-Reynolds-number (creeping) flows, 47.63.Gd Swimming

microorganisms
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1. Introduction

Unicellular plankton play an essential role in aquatic ecosystems and their survival

functions depend crucially on their flow environment and the flows that they generate

[Guasto et al., 2012, Pécseli et al., 2014]. The flow fields due to freely swimming

plankton contain information on the extent of flow disturbances that attract flow

sensing predators, feeding currents that enhance prey capture and nutrient uptake,

and the power at which energy is dissipated in the water [Guasto et al., 2012,

Kiørboe, 2016]. Many unicellular organisms use flagella (actuated filaments) to

swim [Gibbons, 1981, Fenchel, 1986]. The bacterium Escherichia coli and the algae

Chlamydomonas reinhardtii have been investigated extensively as representatives of

flagellated microswimmers [Berg, 2008, Goldstein, 2015, Lauga, 2016]. However, those

two model organisms do not represent the diversity of flagellar arrangements and beat

patterns of the large group of flagellated microswimmers in the aquatic environment

[Lighthill, 1976, Sleigh, 1981, Inouye and Hori, 1991].

In this article we present a hydrodynamic model of eukaryotic flagellates with focus

on swimming kinematics and near-cell flows (figure 1). It is largely unknown, what the

flagellar characteristics are optimized for and which strategies and functions they reflect.

Our model has the potential to address these questions. The Reynolds number that gives

the ratio between inertial and viscous forces is much less than unity for microswimmers

[Purcell, 1977]. Flagellate hydrodynamics is therefore governed by the time-independent

Stokes equation and the equation of continuity for incompressible flows

∇p = µ∇2v , (1)

∇ · v = 0 , (2)

where p is the pressure, v the flow velocity, and µ the dynamic viscosity. Both analytical

and numerical models have been developed to study such creeping flows.

Point force models based on the Stokeslet, i.e., the fundamental Green’s function

solution of the creeping flow due to a single point force, are able to represent the far

field around different microswimmers [Lauga and Powers, 2009, Drescher et al., 2010,

Drescher et al., 2011, Pak and Lauga, 2016]. A neutrally buoyant microswimmer

experiences negligible net force and torque. The most basic point force model of freely

swimming microorganisms is thus the stresslet that models two counteracting forces that

act on the water and are related to the thrust due to the swimming appendages and the

drag on the body, respectively [Lauga and Powers, 2009]. The stresslet represents the

far field around E. coli [Drescher et al., 2011]. A model consisting of three point forces

has successfully been used for biflagellates with two left-right symmetric flagella, and

it represents well the main flow patterns around C. reinhardtii [Drescher et al., 2010].

With this model the far field decay of flow disturbances has been studied and equatorial

force arrangements were shown to be the most “quiet”, i.e., leading to the least flow

disturbances [Kiørboe et al., 2014, Andersen et al., 2015].

However, point force models completely disregard the presence of the cell, which is
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Figure 1. Flagellates with different flagellar arrangements and beat patterns. (a)-(d)

Microscope images of freely swimming individuals. (e)-(h) Model descriptions with

vectors (orange) indicating the flagellar forces on the water. (a) and (e): Prymnesium

parvum, a left-right symmetric biflagellate (haptophyte) with a haptonema at the

front. (b) and (f): Heterosigma akashiwo with a longitudinal (puller) flagellum and a

transversal flagellum. (c) and (g): Tetraselmis sp. with two pairs of flagella that beat

in anti-phase. (d) and (h): Pyramimonas octopus with eight flagella. The microscope

images are shown by courtesy of Lasse Tor Nielsen.

essential for the study of swimming kinematics and near-cell flows. One model that can

be used for such studies is the squirmer model of ciliates covered with cilia that create

a net flow close to the cell surface [Lighthill, 1952, Blake, 1971, Pak and Lauga, 2016].

However, other types of models that take the hydrodynamic interaction between flagella

and cell into account are needed to describe swimming kinematics and near-cell flows

in flagellates [Kurtuldu et al., 2013, Polotzek and Friedrich, 2013]. An analytical three-

sphere model has been used, e.g., to study flagellar synchronization and swimming

kinematics in biflagellates [Friedrich and Jülicher, 2012, Polotzek and Friedrich, 2013].

Another possible approach for representing near fields is to build on the solution derived

by Oseen for the flow due to a point force in proximity of a sphere with no-slip boundary

[Oseen, 1927, Pozrikidis, 1992]. This solution forms the basis of analytical models

that have been used to describe freely swimming copepods [Jiang et al., 2002] and to

investigate the swimming and feeding of uniflagellates [Higdon, 1979a, Higdon, 1979b,

Langlois et al., 2009]. Such a model for freely swimming biflagellates with two left-

right symmetric forces was also recently used to represent near-cell flows around

biflagellated haptophytes with focus on swimming and feeding [Dölger et al., 2017].

Also for computational fluid dynamics models of flagellated microswimmers a similar
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flow solution with regularized Stokeslets next to a sphere has been proven to be useful

[Wrobel et al., 2016].

We here establish a general analytical model of freely swimming flagellates, which

is based on the Oseen solution and has the potential to represent swimming kinematics

and near-cell flows. We present the basic building block giving the flow for an arbitrary

point force representing one flagellum of a freely swimming spherical cell. The flow field

of a flagellate propelled by several flagella can be obtained by linear flow superposition

of such basic flows. As illustrative examples we consider a flagellate with two left-right

symmetric forces that by construction swims on a straight path (figures 1(a) and 1(e))

and a flagellate propelled by two point forces that produce a helical trajectory (figures

1(b) and 1(f)). For the different cases we show how swimming characteristics and flow

properties depend on flagellar arrangement and beat pattern.

2. General model framework

The basic building block of the flagellate model is the flow around a freely translating

and rotating sphere propelled by a single point force (figure 2(a)). To establish the model

we build on the solution by Oseen for the creeping flow due to a point force F that is

acting on the water in proximity of a fixed no-slip sphere [Oseen, 1927, Pozrikidis, 1992].

The flow field can be written

vO,j (x) =
1

8πµ
Gjk(x,X)Fk , (3)

where the Green’s function Gjk depends on the field vector x and the point force location

X (Appendix A). The flow created by the point force results in a force K and a torque

L on the sphere that depend on the radial force component Fr = (F · X)X/R2, the

tangential force component Ft = F− Fr, and the force distance R = |X|, i.e.,

K =
1

2

[

3

R/a
− 1

(R/a)3

]

Fr +
1

4

[

3

R/a
+

1

(R/a)3

]

Ft , (4)

L =
1

(R/a)3
X× F , (5)

where a is the radius of the sphere [Pozrikidis, 1992, equations (3.3.26) and (3.3.27)].

Equations (4) and (5) can be derived using the Faxén relations and the Stokeslet flow

solution in an infinite domain without knowledge of the flow solution (3).

If the model flagellate is free to translate and rotate, the net force and torque on

it in the creeping flow are zero. We assume a rigid and frictionless connection between

the sphere and the point where the force is produced, so that the thrust force T = −F

is transferred directly to the cell (figure 2(a)). At equilibrium there is balance between

the thrust force T, the force K, and the drag D = −6πµaU due to the translational

motion of the sphere, and thus its velocity U is determined by

6 π µ aU = T+K

= f1(R/a)T+ f2(R/a)
(X ·T)X

R2
. (6)
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Figure 2. Flagellate model and swimming kinematics. (a) Basic building block with

one point force. Sphere (green), point force F acting on the fluid (orange), forces acting

on the organism (purple), i.e., the thrust force T, the force K due to the flow produced

by the point force, and the Stokes dragD = −6 π µ aU due to the translational motion

with velocity U (blue). The angular velocity Ω (light blue) is directed out of the plane

in the negative y-direction. (b) Helical trajectory with radius b and pitch h for a sphere

translating with velocity U and rotating with angular velocity Ω due to several point

forces.

Similarly there is balance between the torque X × T due to the thrust force T, the

torque L, and the resistive torque M = −8πµa3Ω on the sphere due to its rotational

motion, and thus the angular velocity Ω is determined by

8 π µ a3Ω = X×T+ L

= f3(R/a)X×T . (7)

The dimensionless coefficients f1, f2, and f3 depend only on the dimensionless force

distance R/a and they turn out to be

f1 = 1− 3

4R/a
− 1

4 (R/a)3
, (8)

f2 = − 3

4R/a
+

3

4 (R/a)3
, (9)

f3 = 1− 1

(R/a)3
. (10)

To model flagellates with several flagella or several thrust force locations per

flagellum, each flow solution representing one point force Fi at position Xi can be

calculated separately from equation (3) and superposed with the flow fields due to

the forces created by the other flagella to obtain the total flow vO =
∑

i vO,i. The

translational and the angular velocity can be obtained by superposition of the velocities

due to each flagellum, i.e., U =
∑

i Ui and Ω =
∑

i Ωi.
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Figure 3. Superposition of creeping flows to calculate the flow around a freely

swimming model flagellate. (a) Flow due to a point force (vector, orange) outside

a sphere. (b) Flow due to a translating sphere. (c) Flow due to a rotating sphere.

(d) Superposition of the flows shown in (a)-(c) resulting in the flow around the freely

swimming model flagellate. The colour maps show the normalized velocity magnitude

v/U∞ with the velocity scale U∞ = F/(6 π µ a).

To calculate the flow around the freely swimming model organism [Jiang et al., 2002],

the Oseen solution vO is superposed with the flow

vT =

[

3

4 r/a
+

1

4 (r/a)3

]

U +

[

3

4 r/a
− 3

4 (r/a)3

]

(x ·U) x

r2
(11)

due to translation with velocity U and the flow

vR =
1

(r/a)3
Ω× x (12)

due to rotation with angular velocity Ω [Stone and Duprat, 2016]. The complete

velocity field becomes

v = vO + vT + vR. (13)

Superposition of the three flow field contributions leads in general to a complex flow field

with both translational and rotational components near the cell and intense singular flow

in the vicinity of the point force (figure 3).

3. Straight, circular, and helical trajectories

The vectors U and Ω together determine the trajectory of the microswimmer. A model

flagellate propelled by a single constant point force swims in the symmetry plane spanned

by X and T. Formally, looking at the expressions (6) and (7) and using that X×T is

perpendicular to the plane spanned by X and T, we see that U is perpendicular to Ω.

The trajectory is thus in this case restricted to a circle, or a straight line when Ω = 0.

For a general model flagellate propelled by several constant point forces, U and

Ω are neither parallel nor perpendicular to each other and the swimming trajectory is

helical (figure 2(b)). The velocity U is constant in the co-rotating coordinate system
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with axes that follow the rotation of the microswimmer, and without loss of generality

we define ez = Ω/Ω and decompose U = U⊥ey + U‖ez with

U‖ = U · ez , (14)

U⊥ =
√

U2 − (U · ez)2 . (15)

The velocity U′ of the cell center in the stationary coordinate system with axes that are

fixed is calculated by rotating the velocity vector U around the z-axis as






Ux′

Uy′

Uz′






=







cos Ω t − sinΩ t 0

sinΩ t cos Ω t 0

0 0 1













0

U⊥

U‖






. (16)

Integration yields the trajectory s′(t) of the cell center in the stationary coordinate

system as

s′(t) =

∫

U′dt =
U⊥

Ω
(cosΩ t ex′ + sin Ω t ey′) + U‖ t ez′ , (17)

which describes a helical trajectory around the z′-axis (figure 2(b)). We can identify

the helix radius

b =
U⊥

Ω
(18)

and the pitch

h =
2 π U‖

Ω
. (19)

For constant U and Ω the orientation of the flagellate is constant with respect to the

locally defined Frenet-Serret basis for the helical trajectory such that some points on

the cell surface are always on the “outside” and some on the “inside” of the trajectory

[Crenshaw, 1993a].

4. Flagellate propelled by two left-right symmetric forces

As a special case we look at a left-right symmetric model flagellate propelled by two

constant point forces. This model can represent common biflagellates such as C.

reinhardtii and some species of haptophytes such as Prymnesium parvum (figures 1(a)

and 1(e)) [Dölger et al., 2017]. The two point forces F1 and F2 of equal magnitude F

are assumed to lie in the xz-plane with radial and angular force positions R and θ, and

force direction α (figure 4(a)).

Since the transversal force components towards and away from the symmetry axis

cancel due to the left-right symmetry, the swimming velocity will point along the

symmetry axis. Also, the torques due to the two point forces fully cancel each other

and thus the model microswimmer does not rotate. The thrust force T = 2F cosα ez

is proportional to the force components along the symmetry axis. As function of force
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x

z

F1

U

(a) (b)

Figure 4. Model and swimming velocity for a left-right symmetric biflagellate. (a)

Model microswimmer with fixed point forces F1 and F2 (orange) and translational

velocity U (blue). Radial and angular force positions R and θ, and force direction α.

(b) Normalized swimming velocity in the z-direction for the force distance R = 3 a as

function of the angular force position θ for backwards pointing forces, i.e., α = 0 (red

line, solid) and transversely directed forces with α = 90 deg (blue line, dashed) and

α = 270 deg (black line, dotted). The swimming velocity is maximal for equatorially

placed, backwards pointing forces.

position and orientation the swimming velocity can be calculated using equation (6) as

U

U∞
= cosα

[

1− 3 (1 + sin2 θ)

4R/a
− 1− 3 sin2 θ

4 (R/a)3

]

(20)

+
3

8
sinα sin 2 θ

[

1

R/a
− 1

(R/a)3

]

,

where

U∞ =
F

3 π µ a
. (21)

The highest swimming velocity U∞ is obtained when the forces are pointing backwards

(α = 0) and are placed far away from the cell. In this case the model reduces to that

of a towed sphere. With a fixed point force magnitude F and distance R, the fastest

swimming is obtained for an equatorial force arrangement with θ = 0 and α = 0 (figure

4(b)). The biflagellated haptophyte P. parvum has a cell radius of a = 3µm and an

average swimming speed of U = 30µms−1 [Dölger et al., 2017]. Using equation (20)

for forces with R = 8µm, θ = 0, and α = 0 we estimate that U = 0.7U∞, and using

equation (21) with µ = 1 · 10−3 Pa s we find that each flagellum of P. parvum exerts an

average force of F = 1pN on the water. A model swimmer with the above-mentioned

force configuration produces a flow field that compares well with the measured time-

averaged flow field around the biflagellate P. parvum [Dölger et al., 2017]. Our force

estimate is comparable to the estimated average force per flagellum of approximately 5

pN for the larger C. reinhardtii [Drescher et al., 2010, Goldstein, 2015].

So far we have looked at models for steady microswimmers with constant point

forces that represent time-averaged flow fields. In reality the periodic shape change

of the beating flagella leads to periodically varying forces on the water [Purcell, 1977].
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F2(t)

U(t)

z

θt

Rt
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Rr
x
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Figure 5. Time-dependent model and normalized swimming velocity for a left-

right symmetric biflagellate. (a) Right half of model microswimmer with point force

F2(t) varying during the beat cycle. Forces for power and return strokes are placed

equatorially, i.e., θp = θr = 0 with radial positions Rp and Rr. The transversal

forces are placed symmetrically at ±θt with radial position Rt. (b) Average swimming

velocity in the z-direction due to power and return stroke as function of return stroke

distance Rr/a for Rp = 3 a and θp = 0. (c) Average swimming velocity in the z-

direction due to transversal strokes as function of transversal force distance Rt/a for

θt = θopt = 45 deg. The swimming velocity is highest for return strokes close to the

cell and transversal strokes with radial position Rt = Ropt =
√
3 a.

If the point forces simply rotate at fixed locations relative to the cell and the time-

average of each point force vanishes, there is no net propulsion. However, if the forces

additionally move on closed trajectories relative to the cell, the model organism can

swim due to the drag difference between different force positions. This mechanism

of force variation can model the breast-stroke beat of biflagellates with short flagella,

and has been shown to capture measured time-resolved near-cell flow fields around P.

parvum [Dölger et al., 2017]. Here we ask which periodic force variation leads to the

highest average swimming velocity, and what the effect is of the transversal forces.

As a schematic model we approximate the breast-stroke beat by four pairs of point

forces of constant magnitude F that each act during one fourth of the beat period (figure

5(a)). The optimal angular arrangement for the power stroke is according to equation

(20) at the equator at θp = 0. The further away from the cell the power stroke acts, the

faster the model organism swims. Thus we assume that the distance Rp of the power

stroke is set by the flagella length to a maximum feasible value. The return stroke is

assumed to be positioned at the equator as well with θr = 0. It will lead to propulsion in

the opposite direction to the power stroke. The velocity contribution due to the power

and the return stroke is then calculated as

Upr

U∞

=
1

8

[

3

Rr/a
− 3

Rp/a
+

1

(Rr/a)3
− 1

(Rp/a)3

]

, (22)

which is positive for Rr < Rp (figure 5(b)). Also the purely transversal forces can lead

to propulsion due to the force K when located below or above the equator, although

their direct thrust T1 + T2 = 0 vanishes. The transversal forces are assumed to be

symmetrically arranged at ±θt and at equal distance Rt. They both lead to swimming
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in the positive z-direction with the velocity contribution

Ut

U∞
=

3

8
sin 2 θt

[

1

Rt/a
− 1

(Rt/a)3

]

. (23)

For any force distance Rt the highest velocity can be obtained for transversal forces

located at the angular positions ±θopt = ±45 deg. The optimum distance of the

transversal forces is Ropt =
√
3 a (figure 5(c)), so that the maximum velocity that can

be obtained from the transversal forces is Ut(Ropt, θopt) = 0.14U∞. Correspondingly for

a combined power and return stroke in an equatorial arrangement with Rp = 3 a and

Rr = 1.1 a we find the swimming velocity Upr = 0.30U∞, and we conclude that the

transversal forces can contribute significantly to facilitate swimming in biflagellates.

5. Simple flagellate model with helical trajectory

With more than one constant point force a model flagellate generally swims with a

helical trajectory if the forces are not symmetrically arranged to create straight or

circular trajectories. Helical trajectories are common among flagellates [Fenchel, 2001,

Jennings, 1901, Jennings, 1904], and they are useful for helical klinotaxis, i.e., the

movement towards stimuli due to gradients (chemical, light, temperature, magnetic

field) [Crenshaw, 1993b, Crenshaw, 1996, Friedrich and Jülicher, 2009]. Here we study

a flagellate with a longitudinal flagellum that creates a typical puller arrangement with

a force F1 = −F1 ez at X1 = R ez, and a transversal flagellum that creates a force

tangentially to the surface of the sphere F2 = −F2 ey at X2 = R ex (figure 6(a)). The

flagellate Heterosigma akashiwo has a flagellar arrangement for which this model can

be applied (figures 1(b) and 1(f)). For simplicity we only explore the effect of the y-

component of the force due to the transversal flagellum, and we disregard possible force

components in other directions. Such components are most likely also created by the

transversal flagellum of H. akashiwo.

The translational velocity is calculated with equation (6) as

6 π µ aU = f1 F2 ey + (f1 + f2)F1 ez (24)

and the angular velocity with equation (7) as

8 π µ a3Ω = f3RF2 ez . (25)

In the resulting helical trajectory the longitudinal force F1 will always be directed

parallel to the helix axis, while the transversal force F2 will always be positioned on

the outside of the helix. The velocity component U‖, see equation (14), due to the

longitudinal force F1 leads to forward motion

U‖ =
(f1 + f2)F1

6 π µ a
, (26)

while the component U⊥, see equation (15), due to the transversal force F2 leads to the

rotational motion in the helix

U⊥ =
f1 F2

6 π µ a
. (27)
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Figure 6. Model flagellate with helical trajectory. (a) Model microswimmer with

point forces F1 and F2 (orange) and angular velocity Ω (light blue). (b) and (c)

Helix radius b/a (dashed line, blue) and helix pitch h/a (solid line, red) as functions

of the force ratio F1/F2 for R = 2 a (b) and as functions of the force distance R/a

for F1 = F2 (c). The radius decreases for increasing force distance from a maximum

b = bmax = (2/3) a. The pitch increases linearly with the force ratio F1/F2 and has a

maximum at a force distance of R = Ropt ≈ 2.4 a.

Thus for a constant longitudinal force F1 leading to a constant average translational

velocity, the shape of the helical trajectory can be tuned by varying the magnitude of

the tangential force F2. The radius is independent of the force ratio F1/F2 and depends

only on the force distance. It is calculated with equation (18) as

b

a
=

1 +R/a+ 4 (R/a)2

3 [R/a+ (R/a)2 + (R/a)3]
. (28)

The pitch also depends on the force distance and it is proportional to the force ratio

F1/F2. It can be written using equation (19) as

h

a
= 4 π

−1 −R/a+ 2 (R/a)2

3 [R/a+ (R/a)2 + (R/a)3]

F1

F2

. (29)

The dependences of the pitch and the radius on the force distance R/a and the

force ratio F1/F2 show several characteristic features (figures 6(b) and 6(c)). The

radius decreases with force distance from its maximum value bmax = (2/3) a to zero

at large force distances, while the pitch first increases from zero to a maximum

hmax ≈ 1.5 (F1/F2) a for the force distance Ropt ≈ 2.4 a, and subsequently decreases as

(R/a)−1 for large R/a. A typical individual of H. akashiwo with a cell radius of a = 5µm

swims with U‖ = 50µms−1, U⊥ = 90µms−1, and Ω = 2 s−1 [Gurarie et al., 2011]. From

equations (18) and (19) we estimate b = 40µm and h = 160µm. The large radius

(b > (2/3) a) indicates that the transversal flagellum does not only produce a tangential

force in the y-direction but also a radial force in the x-direction that allows larger radii

of circular motion than in our simplified configuration.

The near-cell flow field can be used to find the optimal place for prey capture

on the cell where the clearance rate per unit surface area is highest (figure 7)
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Figure 7. Flow fields for model microswimmer with straight, circular, and helical

trajectories, respectively. (a)-(c) Laboratory frame of reference and (d)-(f) co-moving

frame of reference. (a) and (d) Purely longitudinal flagellum, (b) and (e) purely

transversal flagellum with the axis of rotation (dashed lines) indicated, and (c) and (f)

both a longitudinal and a transversal flagellum of equal force magnitude F1 = F2 = F .

Point forces (orange). The colour maps show the normalized out-of-plane component

vy/U∞ with velocity scale U∞ =
√
2F/(6 π µ a).

[Nielsen and Kiørboe, 2015]. The clearance rate, i.e., the volume flow rate into the

capture zone surrounding the cell should be calculated in the co-moving frame of

reference in which the cell is at rest. With only the longitudinal flagellum active,

the flagellate swims on a straight line and the model reduces to the previously

studied model of copepods and uniflagellates (figures 7(a)and 7(d)) [Jiang et al., 2002,

Langlois et al., 2009]. The flagellum enhances the flow velocities near the forward half

of the cell surface, and it thereby increases the clearance rate for direct capture on the

cell relative to the clearance rate for a towed sphere. The closer the point force is to

the cell, the larger is the enhancement of the clearance rate [Langlois et al., 2009]. The

transversal flagellum results in rotational flows with high velocities relative to the cell

surface, in particular in the region nearest to the point force (figures 7(e) and 7(f)).

However, the clearance rate in the region will presumably only be enhanced for the

microswimmer with helical trajectory due to prey depletion in the water around the

microswimmer with circular trajectory that retraces its path.
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6. Conclusions

We have described an analytical model framework based on the exact solution of the

creeping flow due to a point force next to a no-slip sphere, and we have illustrated how

the model can be used to predict swimming kinematics and near-cell flows of flagellates

with different flagellar arrangements and beat patterns. We believe that the model can

be useful as a basis for the investigation of swimming velocities, search strategies, flow

disturbances, feeding, and energy consumption. Thereby the model can contribute to

the trait-based approach to aquatic ecology by providing a framework to investigate the

flagellar arrangement as a key trait based on which optima and compromises between

essential functions can be explored.
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Appendix A. The flow due to a point force external to a sphere

Oseen’s solution [Oseen, 1927, pp. 108] and [Higdon, 1979b, equations (3) and (4)]

for the creeping flow due to a point force F next to a no-slip sphere with radius a is

represented by a Green’s function Gjk which depends on the field vector x with r = |x|,
and the positions X and X∗ = (a2/|X|2)X of the point force and the inverse point:

Gjk =
δjk

|x−X| +
(xj −Xj) (xk −Xk)

|x−X|3
− a

|X|
δjk

|x−X∗|

− a3

|X|3

(

xj −X∗
j

)

(xk −X∗
k)

|x−X∗|3
− |X|2 − a2

|X|

{

X∗
jX

∗
k

a3 |x−X∗|
− a

|X|2 |x−X∗|3
[

X∗
j (xk −X∗

k) +X∗
k

(

xj −X∗
j

)]

+
2X∗

jX
∗
k

a3
X∗

l (xl −X∗
l )

|x−X∗|3
}

−
(

r2 − a2
) ∂φk

∂xj

(A.1)

with

∂φk

∂xj

=
|X|2 − a2

2 |X|3

{

−3Xk

(

xj −X∗
j

)

a |x−X∗|3
+

aδjk

|x−X∗|3

−
3a

(

xj −X∗
j

)

(xk −X∗
k)

|x−X∗|5
−

2XkX
∗
j

a |x−X∗|3

+
6Xk

a |x−X∗|5
(

xj −X∗
j

)

(xl −X∗
l )X

∗
l

+
3a

|X∗|
X∗

k

(

xj −X∗
j

)

|x−X∗|2 +
(

xj −X∗
j

)

(xk −X∗
k) |X∗|2

|x−X∗|3 |X∗|
(

|X∗| |x−X∗|+ xlX
∗
l − |X∗|2

)
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+
3a

|X∗|
(|x−X∗| − |X∗|) |x−X∗|2 |X∗| δjk

|x−X∗|3 |X∗|
(

|X∗| |x−X∗|+ xlX
∗
l − |X∗|2

)

− 3a

|X∗|
|X∗|

(

xj −X∗
j

)

+ |x−X∗|X∗
j

|x−X∗|2 |X∗|
(

|X∗| |x−X∗|+ xlX
∗
l − |X∗|2

)2

×
(

X∗
k |x−X∗|2 − (xk −X∗

k) |X∗|2 + (xk − 2X∗
k) |x−X∗| |X∗|

)

− 3a

|X∗|
xjX

∗
k + r |X∗| δjk

r |X∗| (r |X∗|+ xlX
∗
l )

+
3a

|X∗|

(

|X∗|xj + rX∗
j

)

(|X∗|xk + rX∗
k)

r |X∗| (r |X∗|+ xlX∗
l )

2

}

. (A.2)
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noisy helical paths. Phys. Rev. Lett., 103:068102.
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