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Summary 

Incorrect developmental programming of the female reproductive tract can lead to compromised 

reproductive fitness later in life. It has been suggested that exposure to endocrine disrupting chemicals 

(EDCs) in utero can disrupt ovarian programming in humans, which is supported by several animal studies. 

However, it remains unclear which specific processes during development are affected, and if there are 

particular sensitive developmental windows. Most of the etiological evidence derives from rodent studies, 

whereas cause-effect relationships in humans are extremely difficult to obtain, not least due to the fact that 

there is a significant lag time between exposure during fetal life and disease symptoms in adulthood. 

Furthermore, humans are typically exposed to chemicals at a much lower dose than those of experimental 

studies, but exposed to a large number of different chemicals. This may lead to combination or mixture 

effects, where chemicals present at doses that would not cause effects on their own, can add up and cause an 

effect. The aim of the PhD project was to identify early biomarkers and sensitive windows for late life effects 

on the ovary after chemical exposure to mixtures of EDCs during early development.  

A comprehensive literature review was synthesized to obtain an overview over current knowledge on the 

effects environmental chemicals can have on the developing ovary. This work identified four potentially 

sensitive windows of reproductive programming in females; i) primordial germ cell migration and gonadal 

sex determination, ii) meiosis, iii) follicle assembly, and iv) early folliculogenesis. For the experimental 

work, which aimed at identifying potential early biomarkers for late life diseases, two general approaches 

were adopted; a targeted approach looking at specific endpoints and a selection of effect biomarkers, and a 

more open-ended screening approach looking for potentially novel biomarkers. In the targeted approach, 

endpoints known to be important for reproductive function and ovary health were investigated at the 

molecular and morphological levels in neonatal, pre-pubertal and adult rat ovaries exposed to mixtures of 

EDCs during development. In the screening approach, a proteomics screen was performed to investigate 

differentially expressed proteins in the rat ovary after developmental exposure to mixtures of EDCs.  

In the initial targeted approach, rat dams were exposed to a mixture of phthalates, pesticides, UV-filters, 

bisphenol A, butyl-paraben, as well as the mild analgesic paracetamol (PM). The compounds were tested all 

together (Totalmix) or in subgroups with anti-androgenic (AAmix) or estrogenic (Emix) properties. PM was 

tested separately. Reproductive endpoints were investigated in offspring at pre-puberty (PD22) and 

adulthood (approx. 1 year of age). In pre-pubertal animals a significant reduction in primordial follicle 

numbers was seen after AAmix and PM exposure, whereas in the 1 year old animals reduced ovary weights 

were seen in Totalmix-, AAmix-, and PM-groups. Finally, animals in the Totalmix group showed a higher 

incidence rate of irregular estrous cycles than control animals.  
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The reduction in primordial follicles after AAmix exposure was suspected to be caused by interruption to 

follicle assembly. Thus, a small pilot study, exposing explanted neonatal ovaries to AAmix, submixtures 

(pesticide mix (PEmix), phthtalate mix (PHmix)), and mono(2-ethylhexyl)phthalate (MEHP), was conducted. 

No significant effects were seen on gene expression, but histological evaluation showed that primordial 

follicles were reduced in the PEmix exposed ovaries.  

For the proteomics screening study, a shotgun proteomics approach was performed on PD17 ovaries from 

offspring corresponding to those of the initial targeted study. Protein extracts were analyzed by LC-MS/MS, 

and evaluation of the data for potential effect biomarkers showed that three proteins, Trimethyllysine 

dioxygenase (TMLH), Keratin, type II cytoskeletal 8 (KRT8), and anti-Müllerian hormone (AMH) were 

dysregulated in all exposure groups. Also, ingenuity pathway analysis revealed canonical pathways known to 

be involved in ovary function, such as mTOR and HIPPO signaling, to be affected in all exposure groups.   

In conclusion, the studies conducted for this PhD revealed that follicle count in pre-pubertal rats can 

potentially be used as a marker for early life affected ovary development caused by EDC mixture exposure, 

leading to reproductive senescence later in life. Furthermore, three proteins were identified as possible 

biomarkers for effects on the developing ovary, and potentially for late life adverse effects.  
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Dansk Resumé 

Forringet reproduktiv evne i det voksne liv kan opstå på grund af fejlagtig programmering i udviklingen af 

de kvindelige reproduktive organer. Det er blevet foreslået at eksponering til hormonforstyrrende kemikalier 

in utero kan forstyrre æggestokkenes udvikling i mennesker, hvilket understøttes af adskillige studier i dyr. 

Det er stadig uklart, hvilke specifikke processer i udviklingen er påvirket og om der findes særligt følsomme 

stadier. De fleste ætiologiske beviser hentes fra studier i gnavere, mens årsag-effekt sammenhænge i 

mennesker er ekstremt svære at opnå, ikke mindst på grund af den betydelige forsinkelse mellem 

eksponering i fosterstadiet og symptomer på sygdomme i voksenlivet. Desuden er mennesker typisk 

eksponeret for meget lavere doser af kemikalier, end de doser der anvendes i eksperimentelle studier, men er 

til gengæld eksponeret for et stort antal forskellige kemikalier. Dette kan føre til kombinations- eller 

blandingseffekter, hvor kemikalier til stede i doser der ikke fører til effekter alene, i samspillet med andre 

kemikalier tilsammen fører til en effekt. Formålet med dette PhD projekt var at identificere biomarkører og 

følsomme stadier i den tidlige udvikling, hvor æggestokkene kan blive påvirket af eksponering til 

hormonforstyrrende kemikalier, hvilket kan give skadelige effekter senere i livet.  

Et omfattende litteraturstudie blev gennemført for at få overblik over den nuværende viden om 

miljøkemikaliers effekter på æggestokke under udvikling. Studiet identificerede fire potentielle følsomme 

stadier i den reproduktive programmering i kvinder; i) migrationen af primordiale kønsceller og gonadernes 

kønsbestemmelse, ii) meiose, iii) follikeldannelse og iv) tidlig follikeludvikling. Det eksperimentelle arbejde 

til denne PhD havde til formål at identificere potentielle tidlige biomarkører for sygdomme senere i livet og 

to tilgange blev brugt; en målrettet tilgang, hvor specifikke effektmål og et udvalg af effektmarkører blev 

undersøgt og en mere åben screeningtilgang, hvor potentielle nye biomarkører blev undersøgt. I den 

målrettede tilgang blev effektmål, som er vigtige for reproduktiv funktionalitet og æggestokkenes sundhed 

undersøgt. Disse blev undersøgt på molekylært og morfologisk plan i neonatale, præpubertære og voksne 

rotters æggestokke efter eksponering til blandinger af hormonforstyrrende kemikalier under udviklingen. I 

screeningtilgangen blev en screening af proteomet udført, for at undersøge forskelligt udtrykte proteiner i 

rotternes æggestokke efter eksponering til blandinger af hormonforstyrrende kemikalier under udviklingen. 

I den målrettede tilgang blev hunrotter eksponeret for en blanding af phthalater, pesticider, UV-filtre, 

bisfenol A, butyl-paraben og det milde smertestillende præparat paracetamol (PM). Kemikalierne blev 

undersøgt sammen (Totalmix) eller i undergrupper med antiandrogene (AAmix) eller østrogene (Emix) 

egenskaber. PM blev undersøgt separat. Reproduktive effektmål blev undersøgt i præpubertært afkom 

(PD22) og som voksne (ca. 1 år gamle). I præpubertære dyr sås en signifikant reduktion i antallet af 

primordiale follikler efter eksponering til AAmix og PM mens der sås reduceret vægt af æggestokke i de 1 år 

gamle dyr, perinatalt eksponeret til Totalmix, AAmix og PM. Dyrene eksponeret for Totalmix havde 

desuden en større forekomst af uregelmæssig østrus cyklus end kontroller. 



 

 

iv 
 

Reduktion af primordiale follikler efter AAmix eksponering blev mistænkt for at være forskyldt af 

forstyrrelse af follikeldannelse. Derfor blev et lille pilotstudie udført, hvor eksplanterede neonatale 

æggestokke blev eksponeret for AAmix og undergrupper af blandinger (pesticidblanding (PEmix), 

phthalateblanding (PHmix) og Mono(2-ethylhexyl)phthalate (MEHP)). Ingen signifikante effekter blev 

fundet på genekspression mens histologiske undersøgelser viste at antallet af primordiale follikler var 

reduceret i æggestokkene eksponeret for PEmix.  

I screeningtilgangen blev shotgun proteomics anvendt på PD17 æggestokke fra afkom tilsvarende dem i den 

målrettede tilgang. Proteinekstrakter blev analyseret med LC-MS/MS og evaluering af data med henblik på 

at identificere potentielle biomarkører viste, at tre proteiner, Trimethyllysine dioxygenase (TMLH), Keratin, 

type II cytoskeletal 8 (KRT8) og anti-Müllerian hormone (AMH) var fejlreguleret i alle eksponerede 

grupper. Ingenuity pathway analysis viste at grundlæggende proteinsammenhænge, kendt for at være 

involveret i æggestokkenes funktion, såsom mTOR og HIPPO signallering, var påvirket i alle eksponerede 

grupper.   

Som konklusion viste eksperimenterne udført i denne PhD, at antal follikler i præpubertære rotter potentielt 

kan anvendes som biomarkør for tidlig overgangsalder forårsaget af eksponering til en blanding af 

hormonforstyrrende kemikalier. Desuden blev tre proteiner identificeret som mulige biomarkører for effekter 

på æggestokke under udvikling og potentielt for effekter senere i livet.  
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Chapter 1: Prelude & Overview 

 

1.1 Female Reproductive Health and Endocrine Disrupting Chemicals 

Over the last few decades, an increase in several female reproductive problems such as premature delivery, 

pre-eclampsia, gestational diabetes, and precocious puberty has been observed. In addition the number of 

women reporting difficulties conceiving and maintaining pregnancy has increased, especially among those 

below 25 years of age (Woodruff 2011; Woodruff et al. 2010). As these changes have occurred over a 

relatively short period of time, genetic adaptation can be excluded as the driving force, leaving epigenetic 

changes, environmental factors or sociological forces more likely. In many parts of the world, postponement 

of planned pregnancies is becoming more common amongst women, which can have major consequences for 

both their fertility and ability to complete pregnancy (Aitken 2013). Also environmental factors, including 

endocrine disrupting chemicals (EDCs), have been proposed to contribute (Diamanti-Kandarakis et al. 2009; 

Woodruff and Walker 2008; Woodruff et al. 2008). It remains uncertain, however, to what degree 

environmental chemicals can affect female reproductive health and if so, by what modes or mechanisms. It is 

this knowledge gap that formed the basis for this PhD project.  

Several pathologies that present in adulthood are believed to originate from incorrect developmental 

programming during early embryogenesis through fetal morphogenesis and prenatal life. For instance, the 

impact of fetal environment on later life cardiovascular disease was presented many years ago (Barker et al. 

1989, 1993); a concept which since has been applied to numerous late life disease manifestations, including 

compromised female reproductive fitness, collectively phrased as the ovarian dysgenesis syndrome (ODS) 

(Buck Louis et al. 2011). 

EDCs have been proposed to contribute to ODS in humans (Buck Louis et al. 2011; Fowler et al. 2012), 

which is supported by animal studies showing that both pre- and perinatal exposures to EDCs can result in 

disrupted ovary-related functions later in life (Chao et al. 2012; Fernández et al. 2010; Gao et al. 2015; 

Rodríguez et al. 2010; Susiarjo et al. 2007; Wang et al. 2014; Zhang et al. 2013). Unfortunately, study 

guidelines for examination of reproductive toxicity in developmentally exposed offspring only include 

investigations in early adulthood and not later in life (OECD 2001, 2011). Therefore, effects on the 

reproductive system that occur with ageing may be overlooked. There are two ways of addressing this 

shortcoming. One is to extend the study guidelines to also include examination of aged animals, at a great 

additional cost. Another is to pinpoint sensitive biomarkers that can be detected early on, but predict late life 

effects, which would be the most cost-effective approach.  
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Biomarkers are widely used to diagnose different types of human cancers, including breast cancer (Couch et 

al. 2014; Dai et al. 2016), prostate cancer (Gaudreau et al. 2016), testis cancer (Rajpert-De Meyts et al. 

2015), and ovary cancer (Bottoni and Scatena 2015; Couch et al. 2014). In relation to female reproduction, 

biomarkers such as AMH (Broer et al. 2014), FSH and inhibin B (Roudebush et al. 2008) are used for 

evaluation of female reproductive status. Finding an early biomarker(s) that can be used in young individuals 

to predict later life effects on reproductive endpoints would be of great interest, both in terms of animal 

experiments used for regulation of chemicals and for clinical use. Search for such an early biomarker(s) was 

also a key motivation for this PhD project.  

Mixture effects are another important aspect that needs to be considered with respect to potential adverse 

effects of chemical exposure. In everyday life, humans are simultaneously exposed to a large number of 

different chemicals with endocrine disrupting properties (Svingen and Vinggaard 2016). Individually the 

human exposure levels to each chemical may not be of concern, but in vitro studies as well as in vivo studies 

(Kortenkamp 2014) have shown that single chemicals at doses not causing effects individually can add up to 

cause an overall effect, usually referred to as a combination, or mixture effect. Presently, when evaluating 

toxicity of chemicals, the general requirement is to assess one chemical at a time, which means that 

conventional risk assessment potentially underestimates the human hazard from low-dose exposures 

(Kortenkamp 2014; Svingen and Vinggaard 2016). Thus, there is a need for evaluating the toxicity of 

mixtures rather than single compounds (Backhaus et al. 2010; Hass et al. 2007; Kortenkamp 2007), a last 

point that was addressed during the PhD project. 

 

1.2 Aim and Hypotheses 

The overall aim was to identify sensitive processes and early biomarkers for late life effects on the female 

reproductive system after chemical mixture exposure during development. Two specific hypotheses were 

formulated: 

1) Exposure to a mixture of EDCs during perinatal life will lead to adverse effects on reproductive 

endpoints in the adult female. These effects can be predicted in pre-pubertal rats by histological or 

molecular assessments.   

2) Differentially regulated proteins in the ovary of pre-pubertal rats exposed to a mixture of EDCs 

during perinatal life can function as biomarkers for disrupted ovary development, and potentially 

predict late life effects on female reproductive endpoints. 
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1.3 Methodology 

Experiments on intact animals and explanted ovaries were conducted. Ovaries were analyzed by histological 

and molecular methods. 

To address the hypotheses listed above, two general approaches were implemented:  

1) Targeted approach. Based on sensitive processes during ovary development, and previous studies 

investigating effects on the ovary following chemical exposure during development, morphological and 

molecular biomarkers were investigated (Chapter 3 and Chapter 5). 

 2) Screening approach. The ovarian proteome was analyzed for potential changes in expression levels of 

peptides that could serve as useful biomarkers of late life effects (Chapter 4). 

 

1.4 Organization of this Thesis 

The preceding section (Chapter 1) has introduced the topic of the PhD project and laid out the overall scope 

of the thesis. In the following sections, up-to-date literature reviews and specific research projects will be 

presented. Chapter 2 is an extensive literature review on the topic of developmental exposure to chemicals 

during sensitive time windows of ovarian development, and how this potentially causes late life effects. This 

chapter thus gives a general background for the overarching theme of the thesis: female reproduction and 

chemical exposure. Chapter 3 presents an initial study focusing on potential late life effects on the female 

reproductive system caused by exposure to EDC mixtures, including both young and aging rats and different 

combinations of chemicals. Chapter 4 presents an ovarian proteomics screen used to detect potentially novel 

biomarkers from pre-pubertal rats exposed to the same EDC mixtures as in Chapter 3. In Chapter 5 an organ 

culture approach using fetal and neonatal ovaries was used to further investigate the anti-androgen mixture, 

which showed most effects in the initial study (Chapter 3), aiming to elucidate some of the molecular 

mechanisms driving the overall effects. Finally, in Chapter 6, a short overview of the results from Chapters 

2-5 and discussion are given, including general and future perspectives in relation to the combined results. 
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ABSTRACT 

The development of properly functioning ovaries is essential for a woman’s reproductive health.  Early 

disruption to ovarian programming can have long-lasting consequences, potentially manifesting as disease 

much later during adulthood. A growing body of evidence suggests that early life exposure to environmental 

chemicals can cause a range of late-life disorders, encompassed  within the ovarian dysgenesis syndrome 

hypothesis. Here we describe four specific sensitive time windows where the ovary is particularly sensitive 

to disruption by exogenous insults: including gonadal sex determination, meiotic division, follicle assembly, 

and the first wave of follicular recruitment. To date, most evidence points towards the germ cell lineage 

being the most vulnerable, particularly meiotic division and follicle assembly. But the somatic cell lineages 

can also be affected by chemicals and pharmaceuticals, for instance bisphenols or mild analgesics. This 

review summarizes current knowledge pertaining to environmental chemicals and their potential 

contributions towards the ovarian dysgenesis syndrome, and further highlights knowledge gaps that need to 

be addressed to better safeguard female reproductive health.   
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Fig. 1 Ovarian dysgenesis syndrome (ODS) 

hypothesis. ODS is based on the underpinning 

concept that early disruption of ovarian structure or 

function caused by either genetic or environmental 

factors, leads to impairment of reproductive function 

later in life. Several processes during development 

are sensitive to perturbation; primordial germ cell 

proliferation, gonadal sex differentiation, meiosis, 

follicle assembly, and early folliculogenesis are all 

processes shown to be disrupted after chemical 

exposure. 

 

 

 

INTRODUCTION 

A woman’s reproductive health and ability to have children impact directly on numerous aspects of her life, 

from personal well-being and socioeconomic standing, to morbidity and lifespan. It can further impact on 

society as a whole, affecting not only overall birth rates, but also represent a significant economic burden 

associated with the treatment of female reproductive disorders 
1
. A better understanding of the underlying 

mechanisms leading to impaired female reproductive health is thus increasingly important, both from an 

individual and a societal viewpoint.  

To a large degree, the biology of female reproductive health traces back to development of the ovaries during 

fetal life.  From these early stages of life the ovaries harbor and nurse the oocytes, and later on, also produce 

female sex hormones that control pubertal progression, menstrual cycling, and menopausal onset. These are 

all connected and sometimes sequential processes, such that disruption of fetal ovarian development can 

result in reproductive dysfunction much later in life.  

Disruption of normal ovarian development and function can result from various processes, ranging from 

genetic mutations to hormonal dysregulation. Exposure to endocrine disrupting compounds (EDCs) is 

increasingly associated with reproductive dysfunction. The WHO have defined an endocrine disruptor as: an 

exogenous substance or mixture that alters function(s) of the endocrine system and consequently causes 

adverse health effects in an intact organism, or its progeny, or (sub) populations” 
2,3

. More than 15 years ago 

it was suggested that fetal exposure to environmental chemicals can contribute to a rise in male reproductive 

disorders and decline in male fertility, now widely known as the testicular dysgenesis syndrome. A 

corresponding relationship between early ovarian dysgenesis (Box 1) and late reproductive disorders in 

females was recently developed and termed the 

ovarian dysgenesis syndrome (ODS) (Box 2). 

This is defined as early alterations in ovarian 

structure or function that cause impairment of 

reproductive parameters in adulthood 
4,5

 (Fig. 1).  
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A growing body of evidence supports the view that disruption of 

ovarian development early in life, including intrauterine exposure 

to EDCs, can manifest as ODS later in life. 
4,6,7

. Notably, because 

of the intrinsic difficulty in retrospectively obtaining exposure 

data for women presenting with reproductive disorders, studies 

reporting on clear associations between fetal EDC exposure and 

ODS are scarce. One well-known case exists, namely 

diethylstilbestrol (DES). DES is a synthestic estrogen that was 

used in the period between 1940 and 1970s to reduce the risk of 

complications associated with pregnancy. Unfortunately, fetal 

exposure to DES caused a rare form of vaginal cancers in girls 

and young women who had been exposed in utero 
8
. Later studies 

also showed associations between in utero exposure to DES and 

impaired late-life fecundity 
9
, earlier age at menopause 

10–12
, 

increased incidence of uterine fibroids 
13,14

, endometriosis 
15

, and 

reproductive site cancers 
16

. Besides DES, other in utero 

exposures have recently been associated with female reproductive 

health effects later in life. Examples include the associations 

between maternal smoking and reduced fecundity 
17

, 

perfluorooctanoic acid exposure with delayed menarche 
18

, and organochlorine pollutants such as 

dichlorodiphenyldichloroethylene and hexachlorobenzene with a reduced number of ovarian follicles 
19

.  

Also, increased serum levels of bisphenol A (BPA) have been associated with PCOS, although the possible 

mechnisms by which BPA contribute to the pathogenessis are poorly understood 
20

. In support of these 

associations in humans, animal studies have revealed comparable effects. For instance, developmental 

exposure to chemicals with estrogenic or anti-androgenic activity has been shown to reduce the follicle pool 

in rodents 
21–24

, and this can in turn lead to a shortened reproductive lifespan. This, extrapolated to the 

human, would not only affect a woman’s ability to have children, but would also carry an increased risk of 

associated diseases such as osteoporosis and cardiovascular disease 
25

. 

It is without question that disruption to fetal development can have dire consequences for postnatal life. In 

the case of late-onset female reproductive diseases such as subfertility, PCOS, or premature menopause, 

however, a causative link is difficult to establish since the initiating events occur much earlier than the 

adverse phenotypes are observed. It is particularly difficult to provide direct evidence for the ODS 

hypothesis in human subjects, but controlled animal experiments can be useful to clarify such relationships. 

For example, pre- and perinatal exposures to EDCs have been shown to result in disruption of endocrine-

Box 1 Ovarian dysgenesis  

Synonymous with gonadal dysgenesis, 

but specific for female reproduction and 

not including testicular conditions or 

gonadal dysgenesis where ovaries/testes 

fail to form altogether, such as streak 

gonads. Rather, ovarian dysgenesis refers 

to conditions where the ovaries are either 

underdeveloped or imperfectly formed, 

which compromises further reproductive 

development or function 

 
Box 2 The ovarian dysgenesis 

syndrome hypothesis 

The ovarian dysgenesis syndrome (ODS) 

hypothesis proposes a common origin for 

a group of related female reproductive 

diseases and disorders such as reduced 

fertility, polycystic ovarian syndrome, 

premature ovarian insufficiency, and 

reproductive site cancers. The potential 

causative events can be many, but it is 

proposed that ovarian development and 

function is disrupted by genetic or 

environmental factors, ultimately leading 

to late-life reproductive health issues.  
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sensitive tissues and organs in female offspring later in life 
21,23,24,26–29

, which largely phenocopy 

corresponding human disorders.  

This review synthesizes current knowledge on possible endocrine disrupter actions on the developing ovary, 

with particular focus on four potentially sensitive windows during ovarian development: gonadal sex 

differentiation, meiosis, follicular assembly, and early folliculogenesis (Fig. 2). To pinpoint these sensitive 

windows, we have limited this review to mainly include studies with short exposure periods during specific 

developmental phases, and we have therefore omitted a large number of studies using longer exposure 

periods such as the entire gestational and lactational period. Some animal studies on chemical exposures 

have used rather high doses compared to average human exposure levels, which will be highlighted where 

relevant, but it should be kept in mind that during sensitive developmental window, even short-term 

exposure can have irreversible consequences.  

 

 

Fig. 2 Germ cell development and chemical disruption in the mouse. A) Primordial germ cells proliferate until initiation 

of meiosis at 13.5 dpc. The common analgesic paracetamol is associated with reduced germ cell proliferation which can 

cause a reduction in the number of oocytes  in the adult ovaries. Gonadal sex differentiation is also sensitive to 

perturbation, and the pharmaceutical tamoxifen can disturb the balance between male and female factors expressed  in 

the XX gonad (future ovary). B) Meiotic progression is delayed following BPA or DEHP exposure, which may be 

explained by reduced expression of Stra8 mRNA (BPA, DEHP) and protein (DEHP). BPA may also antagonize ERβ, 

thereby leading to synaptic aberrations and increased levels of recombination. Furthermore, paracetamol can delay 

meiotic progression. C) Follicle assembly is critical for establishing the primordial follicle pool. BPA, DEHP and 

parabens can all interfere with this process, possibly by disrupting apoptotic signaling pathways. D) The first wave of 

follicular recruitment is initiated immediately after the primordial follicle pool has been established and BPA, DEHP, or 

the DEHP-metabolite MEHP, can accelerate the rate of follicular recruitment.  
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EARLY GONADAL DEVELOPMENT  

The primordial germ cells originate far from the testes or ovaries and thus have to migrate through the 

developing fetus before taking up residence in the primitive gonadal structures
30

. At this time of development 

the gonadal ridges are still bipotential until gonadal sex determination pushes the XY or XX gonads down a 

male or female trajectory culminating in the differentiation of either testes or ovaries, respectively. This 

occurs during the first trimester in humans, and about halfway through gestation in rats and mice 
31

. The 

divergence in development between the two sexes is triggered by the expression of the Y chromosome-

specific gene Sry in XY gonadal ridges 
32

. In the absence of a Y chromosome, or more specifically Sry, the 

XX gonadal ridges differentiate into ovaries. The early differentiation of testes and ovaries are chiefly under 

genetic control and involves several antagonizing morphogenetic pathways, as extensively reviewed by 

others 
31,33–35

. Nevertheless, a potential vulnerability of this process towards exogenous perturbation has been 

suggested 
36

.  

Studies investigating potential effects of chemicals on primordial germ cells and gonadal sex differentiation 

are scarce, but some exist (Table 1). In a recent study 
37

, intrauterine exposure to the pharmaceutical 

paracetamol (also known as acetaminophen. See Box 3) from 7 days post coitum (dpc) was shown to reduce 

the number of germ cells in female mouse fetuses as early as 13.5 dpc, likely caused by perturbed 

proliferation of the primordial germ cells (Fig. 2A). In mice exposed from 7 dpc until birth, the effects 

persisted into adulthood where the ovarian follicle reserves and total number of follicles were significantly 

reduced, finally resulting in subfertility in ten months old animals 
37

. By exposing mouse embryonic stem 

cells, the same study showed an apparent decrease in mitotic activity, which could point towards a 

mechanism by which paracetamol can limit oocyte numbers at birth. Of further interest is that fetal germ 

cells express Cyclooxygenase 2 (COX2) and Prostaglandin E2 (PGE2) receptor 
38,39

, both of which are 

targets of paracetamol. In fact, Dean and co-workers 
39

 showed that intrauterine exposure of rats to 

paracetamol can delay meiotic entry of germ cells in the developing ovaries. However, exactly how 

paracetamol interfere with the germ cells, either directly at the 

molecular level, or indirectly by affecting supporting somatic 

cells, remains largely unknown 
40

. Appropriate mechanistic 

studies are therefore important avenues to pursue in future 

studies.  

A recent study showed that exposure to the ER-modulating 

pharmaceutical Tamoxifen at 10.5 dpc caused disruption of 

gonadal sex differentiation by inducing ectopic upregulation of 

Sox9, and down regulation of Foxl2 in the XX gonads at 13.5 

Box 3 Tyleonol, paracetamol and 

acetaminophen 

Acetaminophen and paracetamol are 

essentially the same, mild analgesic and 

antipyretic drug, but distributed under 

different names in North America and the 

rest of the world, respectively. They are 

both generic names of the main active 

ingredient in the original brand drug 

Tylenol, which derives from N-acetyl-

para-aminophenol. Panadol is another 

brand name. 

.  
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dpc 
41

. Sox9 is the key factor transactivated by SRY in the XY gonadal ridges and is both necessary and 

sufficient to ensure proper testis differentiation 
31

. One way in which SOX9 ensures testis differentiation, 

apart from transactivating pro-testis genes, is by also suppressing pro-ovary factors such as Foxl2 within the 

pre-Sertoli cell population 
42,43

. Disrupting the balance between these opposing factors can lead to sex-

reversal phenotypes, and also cause reprogramming of the cell types in adulthood 
44–47

. Such sexual 

reprogramming of the gonadal supporting cells will adversely affect the germ cell population, ultimately 

leading to infertility. Notably, FOXL2 mutations in humans cause premature ovarian insufficiency 
48

, 

emphasizing the importance of this protein in female reproduction. Interestingly, in adult mice the repressive 

activity of FOXL2 towards Sox9 expression is synergistically increased in the presence of ERα 
46

 and 

Esr1/Esr2 double knock-out mice display a phenotype similar to that of Foxl2 mutations 
49

. This implies an 

important role of estrogen receptors in sustaining the integrity of the ovary during fetal life, since they are 

expressed in the human (ESR2 only) and rodent fetal ovary 
50,51

. Whether or not the mechanism of action 

causing the effects seen by Yu and co-workers 
41

 was due to interference with estrogen receptors, however, 

remains unanswered.  

 

Table 1 Effects of exposure to chemicals during primordial germ cell mitosis and gonadal sex differentiation.  

Species Exposure Effects of Exposure Reference  

Mouse (C57BL/6JBom) Paracetamol (50 or 159 
mg/kg/day) by gavage, 7 
dpc-birth, killed at 7 weeks 

↓ primordial follicles, ↓ growing follicles (primary 
and secondary), ↔ preantral, antral or atretic antral 
fol licles, ↓ total follicles, ↓ fertility at 6 and 10 
months (only 50mg/kg/day tested) 

37 

Paracetamol (50 
mg/kg/day) by gavage, 7-

13.5 dpc 

↓ Mvh expression (indicating reduction in germ cell 
numbers) 

Paracetamol (100 µM) in 

ovary cul ture 12.5-15.5 
dpc 

↔ Mvh, Stra8, Scp3, Oct4, Sox2, Nanog (indicating no 

effect on germ cell numbers, meiotic entry nor 
expression of pluripotency markers) 

Nanog GFP reporter 
mouse embryonic stem 
cel ls (C57/BL6 mouse) 

Paracetamol (50, 100, or 
150 µM) to low passage 
s tem cells for 72h 

↓ tota l number of cells (indicating inhibited 
prol iferation) 

Mouse (ICR) Tamoxifen (1 mg/kg bw) 
i .p., 10.5 and 13.5 dpc 

pups   

↑ Pdgra in XX gonads (ectopical expression), ↑ Sox9 
(gene and protein) in XX gonads, ↓ Foxl2 (gene and 

protein) in XX gonads  

41 

Tamoxifen (0.1 or 1.0 µM) 
to ovary cul ture 13.5-16.5 
dpc 

↑ Pdgfra and Fgf9 in XX gonad, ↓ 17B-estradiol and 
progesterone, ↑ testosterone, ↓ 
estradiol/testosterone ratio 

Embryonic stem cells 
(ICR mice) 

BPA (50µM), to 
embryonic stem cells  

↓Sox9, Fgf9 ↑Foxl2, Wnt4 52 
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Interestingly, the industrial chemical BPA, widely reported to possess estrogenic and other endocrine 

disrupting properties, has also been shown to down-regulate the testis-promoting genes Sox9 and Fgf9, and 

upregulate the ovary-promoting genes Wnt4 and Foxl2 in mouse embryonic stem cells during differentiation 

through embryoid body formation 
52

. This could suggest that BPA exposure favors ovary differentiation, but 

as these findings were seen in vitro, it remains to be seen whether it can directly affect gonadal development 

in vivo and at human relevant dose levels.  

As paracetamol and tamoxifen are pharmaceuticals, humans may be exposed to high doses over short periods 

throughout life, and it is not unlikely that pregnant women may be exposed to paracetamol in doses 

comparable to those affecting gonad development in mice 
37

. Tamoxifen use (for breast cancer treatment) is 

not recommended during pregnancy due to risk of congenital malformations, but in the context of explaining 

risk factors for ovarian dysgenesis, it here serves as a model compound having an estrogen receptor 

modulating mode of action. Nevertheless, it appears that early chemical exposure can result in adverse 

effects on the future oocyte reservoir and reproductive lifespan, a worrying scenario that warrants far more 

attention than it presently receives.  

 

MEIOSIS  

 Meiotic division is unique to the germ cells and occurs at different developmental stages in males and 

females. In males, meiosis is initiated at puberty and continues throughout adulthood, whereas in females 

meiosis is initiated during fetal life, but arrested in prophase I until puberty 
53

. In female mice, meiosis is 

initiated at 13.5 dpc through the action of retinoic acid 
54,55

. This triggers a chain of events whereby the germ 

cells are primed for oogenesis by entering the first phase of meiosis 
56

. Disruption of germ cells at this stage 

can have long-lasting consequences for reproductive health parameters, for instance by reducing the number 

of oocytes through defective recombination 
57

, loss of oocytes due to lack of REC8 –  an important 

component of the Cohesin complex 
58

; or oocyte loss and creation of aneuploid gametes due to disturbance 

of the synaptonemal complex protein SYCP3 expression 
59

. There are indications that EDCs can interfere 

with some of these processes (Table 2), for instance by  interfering with estrogenic activity 
28

, which in turn 

can have adverse consequences for the quality and quantity of germ cells in the adult female, ultimately 

affecting fertility and reproductive lifespan. 

 

Chemical exposure affects meiotic progression 

 Little more than a decade ago, members of the Hunt laboratory at Washington State University noted a 

spontaneous increase in meiotic spindle misalignments and an increased rate of aneuploidy in control female 
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mice; that is, the expected normal rate was inexplicably increased. After much effort in tracking down the 

source of this abnormal phenotype in what should be healthy control animals, it was discovered that 

damaged cages and water bottles were leaching BPA 
60

. This finding spurred on additional investigations and 

there are now data suggesting that BPA can disturb meiotic division in both mice and monkeys 
28,61

. It is 

thought that this effect is caused by BPA antagonizing estrogen receptor-beta (ERβ), since ERβ knock-out 

mice display virtually identical defects as BPA-exposed mice 
28

 (Fig. 2B). It is pertinent that the human fetal 

ovary only expresses ER, not ER 
62

. 

BPA exposure has also been associated with a delay in prophase I at 17.5 dpc in mice, which could be 

explained by a reduced expression of Stra8, possibly due to increased methylation 
63

. Subtle changes in other 

genes involved in meiosis have also been seen after in vivo exposure to a low dose of BPA 
64

, which warrants 

further investigations. 

There are also some indications that the phthalate DEHP can affect meiotic progression. For instance, Zhang 

et al 
65

 showed delayed meiotic progression at 17.5 dpc in mouse fetuses exposed to DEHP in utero. This 

likely relates to delayed initiation of meiosis, since the mice displayed significantly reduced expression of 

STRA8 at 13.5 dpc, both at the mRNA and protein levels (Fig. 2B).  

There is strong evidence to suggest that the mild analgesics paracetamol and indomethacin can interfere with 

meiosis. Exposure of female rat fetuses to paracetamol (350 mg/kg/day) or indomethacin (0.8 mg/kg/day) 

resulted in a reduction in the number of germ cells at 21.5 dpc, likely caused by a delay in meiotic entry or 

progression, culminating in reduced ovary weight and fertility in adulthood 
39

. The idea that analgesics can 

have endocrine disrupting properties and potentially affect reproductive development of fetuses exposed via 

their mother has been around for the better part of two decades, but the focus has very much been on male 

development 
40

. The fact that the germ cells may be susceptible to perturbation by analgesics at human-

relevant doses, however, adds another level of concern for the often indiscriminate use of over-the-counter 

mild analgesics.      

Taken together, it appears clear that both industrial chemicals and pharmaceuticals can adversely affect early 

oocyte development in mammals, for instance by disrupting meiotic recombination and synapsis 
28,57

 or 

delaying meiotic progression 
65

, which ultimately will impact on the offspring’s reproductive capacity (Table 

2). Further studies aiming to decipher the human relevance of these findings are warranted, but at least the 

dose levels of BPA and DEHP affecting meiosis in mouse and monkey is low 
61,64,65

 and within the human 

exposure range 
66–68

. Effects from paracetamol are seen at much higher doses, but also here comparable to 

human exposure during short-term use. Interestingly, xenobiotics can also affect female reproductive 

parameters later during development, as will be discussed in the following.   
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Table 2 Effects of exposure to chemicals during meiosis. 

Species Exposure Effects of Exposure Reference 

Mouse (C57BL/6J) BPA (released 400ng/day pellet 
implant, GD 11.5-18.5, fetuses 
removed and killed at GD 18.5 

↔ progression through prophase, ↑ synaptic 
abnormalities (mainly incomplete synapsis and end-
to-end associations), ↑ MLH1 foci  counts (effects on 
recombination) 

28 

BPA (released 400ng/day) pellet 
implant, GD 11.5-term, pups 
fostered by untreated females, 
ki l led at 4-5 weeks of age 

↑ average number of chiasmata per cell (4 weeks), 
↑ frequency of univalents (4 weeks), ↑ hyperploid 
eggs , ↔ aneuploidy in embryos (from super-
ovulated 4-5 week old females mated with wild-type 
males) 

Rat (Wistar) Indomethacin (0.8 mg/kg/day) 
s .c., 15.5-18.5dpc, ki lled 15.5, 

16.5, 17.5, 18.5, and 21.5dpc. 25 
dpp and 90 dpp (adult) 

F1: ↓ germ cel l number, 21.5dpc, ↑ Stra8, Dmrt1, 
Lin28 (17.5 and 18.5dpc) indicating delay in meiotic 

entry ↓ ovary weight and fertility (adult) F2: 
↓ovary weight (25 dpp and adult), ↓ primordial 
fol licles and total follicles (25 dpp), ↑ serum AMH 

(adult)  

39 

Paracetamol (350mg/kg) by 
gavage, 13.5-21.5dpc, killed 15.5, 
16.5, 17.5, 18.5, and 21.5 dpc. 25 

dpp and 90dpp (adult) 

F1: ↓ germ cel l number, 21.5dpc, ↑ Stra8, Dmrt1, 
Lin28 (17.5 and 18.5 dpc) indicating delay in meiotic 
entry ↓ ovary weight and fertility (adult) F2: 

↓ovary weight (25 dpp and adult), ↓ primordial 
fol licles and antral follicles (25 dpp), ↑ serum AMH 
(adult)  

Mouse (various 
s tra ins and 

genotypes) 

BPA (intentional damage of 
water bottles comprised of BPA 

only) via water bottle 

↑ congression failure  60 

 

BPA (20, 40, 100 ng/g bw/day 
ora l , beginning at 20-22dpn 
lasting for 6-8 days 

↑ congression failure  

 

Rhesus macaques  BPA (400µg/kg bw/day) oral, 
GD50-100, fetus killed at GD100 

Due to technical problems a  meaningful analysis of 
MLH1 foci  was not possible, ↔ centromere 
associations (synaptic effects)  

61 

BPA (serum levels 2.2-3.3ng/mL) 
s i lastic tubing implant 
(continuous exposure), GD50-
100, fetus  removed and killed at 
GD100 

↑ MLH1 foci/cell (effects on recombination), ↑ 
centromere associations (synaptic effects) 

Mouse (CD-1)  
 
 

Mouse (C57BL/6J) 
 

BPA (0.02, 0.04, 0.08 mg/kg) 
ora l , 12.5-18.5 dpc, pups killed 
on 15.5, 17.5, and 19.5 dpc 

15.5-19.5dpc: delay in prophase I, 17.5dpc: ↓ Stra8, 
↑ methylation of Stra8 

63 

BPA (20ng/g bw/day)oral , 
ini tiated at 11dpc and fetuses 

removed and killed on 12, 12.5, 
13.5 and 14.5 dpc 

↑ genes a ffected from 12-14.5dpc (most changes 
on 14.5dpc: 2661 genes), subtle changes (less than 2 

fold for almost all transcripts), 30 genes were ↑↓ 
regulated at three successive time points, out of 
these 23 ↑ and 7↓ expression. 

64 

Mouse (CD-1) DEHP (40µg/kg/day) oral, 
0.5dpc-18.5dpc, fetuses 
removed and killed on 13.5 and 
17.5dpc 

↓ Stra8 expression (gene and protein, 13.5dpc) ↑ 
oocytes  in leptotene and zygotene phases, ↓ 
oocytes  in pachytene and diplotene phases 
(indicating delay in meiotic progression, 17.5dpc),   

65 
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FOLLICLE ASSEMBLY  

After colonizing the gonads during fetal life, female germ cells quickly arrange into germ cell cysts 
69

. 

Towards the end of gestation in mice, 2-3 days before birth, germ cell cysts within the medullary region of 

the ovary break down, resulting in a reduction in the number of oocytes and the beginning of primordial 

follicle formation 
70

. In contrast, germ cell cyst breakdown within the ovarian cortex initiates shortly after 

birth 
71

. Although the exact mechanisms involved are not known, somatic pre-granulosa cells contribute by 

intruding between closely associated germ cells, thereby establishing single cells surrounded by pre-

granulosa cells, called primordial follicles 
71

. Concurrently, a large proportion of the germ cells undergo 

programmed cell death, where both autophagy and apoptosis are involved 
72,73

. By 4 days post partum (dpp), 

approximately 1/3 of the original oocyte reserve remains 
70,71

. In rodents, follicle assembly continues until 6 

dpp, after which almost all the remaining oocytes are enclosed within primordial follicles 
71

.  

In humans the timing of primordial follicle assembly is very different from that of rodents, with follicle 

assembly occuring mid-gestation (Fig. 3). The processes involved – cyst breakdown, germ cell death and 

formation of primordial follicles – are similar 
74

, although less spatially organized. However, the initiating 

mechanisms might be different, especially considering the different environmental conditions that exist 

between fetal and postnatal life. By extension, these differences must be considered when extrapolating data 

from one species to another, as when evaluating studies on rodent exposure to environmental chemicals and 

potential effects on germ cell development.  

 

 

 

Fig. 3 Temporal comparison 

between human and mouse germ 

cell development. Germ cell 

development, from primordial germ 

cell migration to the gonadal 

anlagen during embryogenesis 

through to folliculogenesis in the 

developed ovaries, is comparable in 

mice and humans, but differs in 

terms of the developmental stage 

when the processes take place.  
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Chemical exposure affects follicle assembly 

The mechanisms controlling follicular assembly are not well understood. In mouse fetuses, however, high 

maternal levels of estradiol and progesterone have been suggested to inhibit follicular assembly, whereas a 

reduction in steroid hormone levels around the time of birth proposedly initiates the process 
75–77

. In non-

human primates, where follicle assembly occurs during gestation as in humans, the situation is opposite; 

reduction in estrogen levels inhibits follicle assembly 
78

. Furthermore, the human fetal ovary expresses 

steroidogenesis enzymes and steroid hormone receptors, especially ESR2 (ER), during the second trimester, 

which allows estrogenic, progestogenic and androgenic signaling to occur 
62,79

. This indicates an important 

role for estrogen in this process, but also highlights the potential susceptibility to disruption by estrogenic 

compounds interfering with normal estrogen signal transduction. Indeed, maternal cigarette smoking, which 

lowers adult fecundity, is associated both with increased estrogen in the human fetus and onset of early 

primordial follicle formation 
80

. Such effects of estrogen also suggests that EDCs can affect the germ cells 

differently depending on what species are exposed (Table 3). Nevertheless, in rats and mice  estrogens 

possibly delays initiation of follicular assembly, which is supported by several studies. For instance, 

subcutaneous exposure of neonatal mice to the phytoestrogen genistein inhibits cyst breakdown and disrupts 

primordial follicle assembly 
76

. Similar effects are seen after subcutaneous exposure of neonatal mice from 1-

5 dpp to the synthetic estrogens diethylstilbestrol (DES), ethinyl estradiol (EE), and BPA, which all inhibit 

cyst breakdown, increase the total number of oocytes, and increase the percentage of primordial follicles, 

when measured at 5 dpp 
81

. An opposite effect, reduction in primordial follicles at 8 dpp, was seen in a study 

by Rodríguez et al 
23

 where neonatal rat pups had been exposed to DES (0.2 and 20µg/kg) and BPA 

(20mg/kg) at 1, 3, 5, and 7 dpp. This suggests that mice and rats are affected differentley, supported by a 

study showing a reduced oocyte pool at 3 and 6 dpp in rat pups treated with estrogen between 0-2 dpp 
82

. 

Finally, in the hamster it seems that estrogen stimulates follicle assembly rather than oppose it as is the case 

in mice 
83

. 

 

Table 3 Effects of exposure to chemicals during follicle assembly. 

Species Exposure Effects of Exposure References 

Rat 
(Wistar) 

DES (0.2 and 20 µg/kg) s.c., 1, 3, 5, and 7 
dpp, ki lled on 8 dpp 

↓ primordial follicles, ↑ recruited follicles, ↑ MOFs 
(20mg/kg) 

23 

BPA (0.05 and 20 mg/kg) s.c., 1, 3, 5, and 7 
dpp, ki lled on 8 dpp 

↓ primordial follicles (20mg/kg), ↑ recruited follicles 
(20mg/kg), ↔ MOFs  

Mouse 
(FVB) 

BPA (0.5, 20, and 50 µg/kg/day) oral, 
11dpc-birth, pups killed on 4 dpp 

↑ germ cells in nests, ↓ primordial follicles (0.5 and 50 
µg/kg/day), ↔ primary follicles,  ↑ in anti-apoptotic 
factors  Bcl2 (50 µg/kg/day) and Bcl2l1 (20 and 50 

µg/kg/day), ↓ pro-apoptotic factors Bax (0.5, and 20 

µg/kg/day) and Bak1 (20 and 50 µg/kg/day)  
 

29 
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Table 3 continued 

Species Exposure Effects of Exposure References 

Rhesus 
macaques  

BPA (400µg/kg bw/day) oral, GD100-term, 
fetus  removed and killed at GD100 

↑ MOFs  61 

BPA (serum levels 2.2-3.3ng/mL) silastic 
tubing implant (continuous exposure), 
GD100-term, fetus removed and killed at 
GD100 

↔ MOFs, phenotype: ↑ small, unenclosed oocytes 
(possibly due to delayed meiosis)  

Mouse 

(CD-1)  

BPA (0.02, 0.04, 0.08 mg/kg) oral, 12.5-

18.5 dpc, pups killed 15.5, 17.5, and 19.5 
dpc ,and 3,5, and 7 dpp 

15.5-19.5dpc: delay in prophase I, 17.5dpc: ↓ 

expression of Stra8, ↑ methylation of Stra8, 3 dpp: ↑ 
oocytes  in cysts (0.08mg/kg), ↓ primordial follicles 
(0.08 mg/kg), ↑ oocytes/section (0.08mg/kg), 5 and 7 

dpp: ↔ oocytes  

63 

Mouse 

(CD-1) 

DEHP (40µg/kg/day) oral, 0.5dpc-18.5dpc, 

ki l led after birth 

Large regions of germ cells cysts, rare follicles, ↑ 

number of germ cells in ovarian cysts 

65 

Mouse 
(CD-1) 

Genistein (10-9 - 10-4 M) organ culture, 1-
7 dpp collected after 2, 3, 4, 5, 6, and 7 
days  of culture 

↓ s ingle oocytes (10-8 M and higher), ↔ tota l number 
of oocytes/section, ↑ unassembled follicles  

75 

Mouse 

(CD-1) 

Genistein (50mg/kg/day) s.c., 1-5 dpp, 

pups  killed on 2-6 dpp 

↑unassembled oocytes (4 dpp), ↓ primordial and 

primary follicles (4 dpp), ↓ s ingle oocytes (4,5, and 6 
dpp), ↑ (0.5%) intracellular bridges, ↑ total no of 

oocytes  ( 4 and 6 dpp), ↑ apoptosis (2 dpp), 
↓apoptosis (3 dpp) 

76 

Mouse 
(CD-1) 

DES (5mg/kg/day, 50mg/kg/day) s.c. on 1-
4 dpp, pups killed on 3 and 5 dpp 

3 dpp (only 50mg/kg/day tested): ↓ apoptosis, 5 dpp: 
↓ s ingle oocytes, ↑ oocytes/section (50mg/kg/day), ↑ 
primordial follicles (50mg/kg/day) 

81 

EE (5mg/kg/day, 50mg/kg/day) s.c. on 1-4 
dpp, pups killed on 3 and 5 dpp 

 3 dpp (only 50mg/kg/day tested): ↓ apoptosis, 5 dpp: 
↓ s ingle oocytes,  ↑ oocytes/section (50mg/kg/day), ↑ 
primordial follicles (50mg/kg/day) 

BPA (5mg/kg/day, 50mg/kg/day) s.c. on 1-
4 dpp, pups killed on 3 and 5 dpp 

3 dpp (only 50mg/kg/day tested): ↓ apoptosis, 5 dpp: 
↓ s ingle oocytes (50mg/kg/day),  ↑ oocytes/section, ↑ 

primordial follicles, ↓primary follicles (50mg/kg/day)  

Mouse 

(BalB/C) 

DEHP (2.5, 5, 10 µg/g bw/ day) i .p., 0-4 

dpp, ki lled on 5 dpp 

↓ primordial follicles, ↔ tota l oocyte number,  84 

 DEHP (25, 50, 100 µM) organ culture, 
16.5-3 dpp 

↓ primordial follicles, ↔ tota l oocyte number,  

 DEHP (50 µM) organ culture, 16.5-3 dpp ↓ s ingle oocytes 

 DMSO +  ICI 182,780 (10µM) organ 
cul ture, 16.5-3 dpp 

↔ single oocytes 

 DEHP (50 µM)+ICI 182,780 (1µM), DEHP 
(50 µM)+ICI 182,780 (10µM) organ 
cul ture, 16.5-3 dpp 

↑ s ingle oocytes compared to DEHP alone  

 DEHP (50 µM) organ culture, 16.5-1dpp ↓ Erα, Erβ, Pr, Jag1, Notch2, Hes1, Hey2 mRNA, ↓ ERβ, 
PR, JAG1, NOTHC2, HEY2 protein 

 DEHP (50µM) + ICI 182,780 (10µM), organ 
cul ture, 16.5dpc-1dpp 

↓ Jag1, Hes1, Hey2 mRNA 

Rat 

(Sprague-
Dawley) 

methyl -(MP), propyl -(PP), and butyl -

paraben (BP) (62.5, 250, 1000 mg/kg/day, 
E2 (40µg/kg/day) s .c. on 1-7 dpp, killed 8 
dpp 

↑ primordial follicles (E2, high-dose PP and BP), ↓ 

early primary (E2, high-dose PP and BP),  

85 
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Table 3 continued 

Species Exposure Effects of Exposure References 

Mouse 
(CD-1)  

BPA (10µM and 100 µM) organ culture on 
1-3 dpp, collected on day 3 

↑ oocytes in nests, ↓ primordial follicles, ↑ apoptotic 
cel ls (100 µM), ↑ gene expression of the pro -apoptotic 
Bax (100 µM), ↔ gene expression of the anti-apoptotic 

Bcl2 

86 

DEHP (10µM and 100µM) organ culture, 

1-3 dpp, collected on day 3 

↑ oocytes in nests, ↓ primordial follicles, ↑ apoptotic 

cel ls, ↑ gene expression of the  pro-apoptotic Bax (100 
µM), ↔ gene expression of the anti-apoptotic Bcl2 

Mouse 

(CD-1)  

BPA (0.44, 4.4, 22, and 44 µM) organ 

cul ture, 0-8 dpp, collected on day 1, 2, 4 
and 8 

1 dpp: ↔ expression of Bad, Bax and Bok, ↑ Bcl2 (4.4 

and 22µM) 2 dpp: ↔ oocytes, ↑ expression of  Bad (4.4 
and 44 µM), ↔ expression of Bax and Bok, 

↑expression of Bcl2 (22 and 44µM) and Bclxl  4 dpp: ↑ 
germ cel ls, ↓ primordial follicles, ↔ primary follicles, 
↔ total  oocyte count,  ↔ expression of Bad, Bax and 

Bok, ↑ Bcl2 (44µM), 8 dpp: ↑ germ cells (except 
0.44µM), ↓ primordial follicles (except 0.44µM), ↓ 
primary follicles (except 0.44µM), ↔ tota l oocyte 
count 

87 

Sheep 

(Texel) 

Sewage s ludge (2.25 metric tons of dry 

matter/ha) grazing, 0-80 dpc 

↔ ovarian mass, ↔ fol licular density (number/mm2), 

↓ healthy post-primordial transitory follicles, ↑ atretic 
post-primordial transitory follicles, ↑ follicles with 

intense nuclear s taining, ↓ atretic primordial follicles, 4 
di fferentially expressed transcripts 

88 

 Sewage s ludge (2.25 metric tons of dry 
matter/ha) grazing, 30-110 dpc 

↔ ovarian mass, ↔ fol licular density (number/mm2), 
↓ healthy post-primordial transitory follicles, ↑ atretic 
post-primordial transitory follicles, ↑ follicles with 
intense nuclear s taining, ↓ atretic primordial follicles, 
↓ healthy secondary follicles, 99 di fferentially 
expressed transcripts 

 Sewage s ludge (2.25 metric tons of dry 
matter/ha) grazing, 60-140 dpc 

↔ ovarian mass, ↔ fol licular density (number/mm2), 
↓ healthy post-primordial transitory follicles, ↑ atretic 
post-primordial transitory follicles, ↑ healthy 

primordial follicles, ↓ atretic primordial follicles, ↑ 
primary follicles, 120 differentially expressed transcripts 

  Sewage s ludge (2.25 metric tons of dry 
matter/ha) grazing, 0-140 dpc 

↔ ovarian mass, ↔ fol licular density (number/mm2), 
↓ healthy post-primordial transitory follicles, ↑ atretic 
post-primordial transitory follicles, ↓ atretic primordial 

fol licles, 33 differentially expressed transcripts 

 

Indirect exposure of fetuses to estrogenic chemicals via the pregnant dam also leads to effects in the 

offspring. Oral exposure of pregnant mice to 80 µg/kg BPA from 12.5 until 18.5 dpc resulted in increased 

percentage of oocytes in cysts, increase in total number of oocytes per section, and reduction in primordial 

follicle numbers at 3 dpp 
63

. Similar effects were found after orally exposing rat dams to 0.5, 20 and 50 

µg/kg/day BPA from 11 dpc until birth: increased number of oocytes in nests at all doses and decreased 

percentage of primordial follicles in the 0.5 and 50 µg/kg/day dose groups 
29

. In a preliminary study of 

rhesus monkeys, fetal exposure to BPA disrupted follicle assembly, as daily oral exposure was associated 

with an increase in the number of multi-oocyte follicles, an increase in small unenclosed oocytes in the 

medulla, and different sized oocytes in some of the growing follicles 
61

. 
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As suggested by the above-mentioned studies, BPA can affect the oocytes in different species. In mice, the 

effects on cyst breakdown and total number of oocytes are the same regardless of whether exposure occurs 

during fetal or neonatal periods. In contrast, the two different exposure periods have opposite effects on the 

number of primordial follicles formed.  Besides timing of exposure there can be other reasons for these 

diverging results, such as dose and the time at which the ovaries were examined, particularly since follicle 

assembly is a dynamic event and the distribution of oocytes/follicles may vary within a few days.  

The phthalate DEHP causes effects similar to those of BPA, such as an increase in the number of germ cell 

cysts, and a reduced number of follicles in new-born mice after oral exposure of the pregnant mother 
65,84

. 

Similarly, subcutaneous exposure to parabens neonatally (1-7 dpp) can affect follicle numbers, with 

increased numbers of primordial follicles, but decreased numbers of early primary follicles after exposure to 

propyl- and butylparaben 
85

. In that study it was hypothesized that this was due to inhibition of initial 

recruitment, but since exposure started at 1 dpp, incorrect follicle assembly cannot be excluded; specifically, 

a general delay in follicular progression may be suspected.  

Several in vitro culture studies using neonatal mouse ovaries have been conducted and typically show effects 

that resemble those observed after in vivo exposure, including increased number of germ cell cysts and 

effects on follicle numbers (Table 3). This was the case for genistein exposure from 1-7 dpp 
75

, BPA 

exposure from 0-3 dpp 
86

, BPA exposure from 0-8 dpp 
87

, DEHP exposure from 0-3 dpp 
86

, and DEHP 

exposure from 16.5 dpc-3 dpp 
84

. The notion that the timing of follicle assembly is a particularly sensitive 

window for exposure to xenobiotics is further supported by an extensive study in sheep.  By exposing 

pregnant ewes during early, mid, late or the whole gestation period to a mixture of environmental chemicals, 

including EDCs, disrupted fetal folliculogenesis was induced in all exposure groups, likely due to effects on 

follicle assembly. At the molecular level, however, the most pronounced changes to gene and protein 

expression was observed in fetuses having been exposed during mid-late gestation 
88

. 

Taken together, these studies support the view that EDCs can have an inherent capacity to disrupt follicle 

assembly, potentially affecting both the quantity and quality of follicles later in life (Table 3), although it 

remans unkown whether such effects occur at human relevant dose levels.  

 

Mechanisms affecting follicle assembly  

One mechanism that may help explain the observed effects on follicle assembly following exposure to 

xenobiotics is apoptosis. The reduction in total number of oocytes by programmed cell death is an integral 

part of normal ovary development 
89

. By disrupting this process, environmental chemicals can significantly 

impact on the subsequent ovarian function. Endogenous estrogen can reduce apoptosis in the adult ovary 
90

, 

and thus, it is easy to speculate that EDCs with estrogenic potential can prevent apoptosis at perinatal and 
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neonatal stages. Indeed,  a number of studies showing that subcutaneous exposure of neonatal mouse pups to 

genistein, DES, EE, and BPA, can all reduce the number of oocytes undergoing apoptosis 
76,81

. In addition, 

co-administration of an ER antagonist prevent the effects of DEHP exposure on follicle assembly 
84

. 

Furthermore, exposure to BPA from 11 dpc until birth increases expression of anti-apoptotic factors, but 

decreases expression of pro-apoptotic factors 
29

, results that are largely recapitulated when exposing 

explanted ovaries to BPA 
87

 (Fig. 2C).  

The opposite effect  ̶  increased numbers of apoptotic germ cells  ̶  has been seen in explanted ovary cultures 

exposed to BPA or DEHP for three days 
86

. However, increased rates of apoptosis could be due to 

cytotoxicity since the effective dose was more than double the dose used by Zhou et al 
87

. Reduced numbers 

of germ cells could also result from reduced proliferation, as has been observed in human fetal ovaries 

exposed to a bioactive component of cigarette smoke in vitro 
91

, or from a combination of disrupted 

apoptosis and proliferation. Further studies aimed at better delineating these processes in relation to 

xenobiotics would be of great interest.  

In rodents, meiotic progression is thought to be related to primordial follicle assembly. When oocytes in the 

neonatal ovaries reach the end of prophase I (diplotene stage), follicular assembly is initiated 
92

. Exposure to 

BPA seems to delay meiotic progression through prophase I, possibly reducing Stra8 expression, which then 

could help explain the observed reduction in number of assembled primordial follicles shortly after birth 
63

. It 

is difficult to pinpoint the mechanism underpinning the follicular phenotype based on reduction in Stra8 

expression alone, however, as this could indicate that: i) there are fewer oocytes overall, ii) fewer oocytes 

have entered meiosis or, iii) the majority of oocytes have already progressed through meiosis.  

 

EARLY FOLLICLE RECRUITMENT 

Exposure to xenobiotics such as BPA, paracetamol, or mixtures of environmental chemicals with anti-

androgenic potentials during both fetal and postnatal life can adversely affect the follicle reserve, and even 

folliculogenesis itself 
22,93,94

. However, because of the extensive differences in the developmental periods 

during which exposure to chemicals occurred in such studies, it is often difficult to deduce specific sensitive 

time windows. In this section we will focus on studies dealing with exposure occurring after follicle 

assembly and up to puberty (Table 4); in other words, during the first wave of folliculogenesis.  

As opposed to the developing human ovary where primordial follicles typically localize in the cortex, mouse 

primordial follicles are formed in both the medulla and the cortex. Immediately after formation, primordial 

follicles of the medulla are activated and constitute the first wave of follicles. This first wave dominates the 

ovary up until three months postpartum and appears to be involved in the onset of puberty, activation of the 
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hypothalamic-pituitary-gonadal axis, and influence fertility during young adulthood. After three months of 

age, the second wave of follicles is recruited from the cortical region, and serves as the oocyte pool for the 

reminder of the reproductive lifespan 
95

. 

 

Table 4 Exposure to chemicals during early folliculogenesis. 

Species Exposure Effects of Exposure References 

Mouse (CD-1) DEHP (20 and 40µg/kg bw) hypo 

dermal on 7-14 dpp, killed on 15 
dpp 

↓ primordial follicles, ↑ antral follicles 24 

DEHP (20 and 40µg/kg bw) hypo 

dermal on 5, 10, an 20 dpp, killed 
on 21 dpp 

↓ primordial follicles, ↑ secondary and antral 

fol licles,  

Mouse (CD-1) DEHP (0.54, 5.4, and 54 µM) ovary 
cul ture on 4-10 dpp, collected at 

10 dpp 

↔ germ cel ls, primordial follicles, or primary 
fol licles, ↔ PTEN and pAKT 

96 

MEHP (0.68, 6.8, 68 µM) ovary 
cul ture, on 4-10 dpp, collected on 
10 dpp 

↓ germ cells, ↔ primordial follicles, ↑ primary 
fol licles, ↓ PTEN positive cells/ovary (6.8, 68 
µM), ↓ PTEN pos itive primordial follicles, ↔ 

pAKT pos itive cells/ovary, ↑ pAKT positive 
primordial follicles 

Sheep BPA  (50µg/kg/day) s.c. on 1-14 
dpp, ki lled on 30 dpp 

↓ ovary weight, ↓ primordial follicles, ↑ 
trans itional and primary follicles, ↔ tota l 
number of follicles 

98 

 

 

Effects following postnatal EDC exposure  

DEHP and its main metabolite monoethylhexyl phthalate (MEHP) can stimulate follicle recruitment both in 

vivo and in vitro. A reduction in primordial follicle numbers, concomitant with an increase in secondary and 

antral follicle numbers, has been observed in 15 day old mice after exposure to DEHP from 7-14 dpp, as well 

as in 21 day old mice after single-day exposures at 5, 10, 15, or 20 dpp 
24

. As exposure was initiated when 

follicle assembly was completed, the reduction in primordial follicles may have been caused by increased 

recruitment of first-wave follicles. However, direct effects on the oocytes causing increased death and 

thereby fewer oocytes cannot be excluded, as the total numbers of oocytes were not reported. A stimulatory 

effect of DEHP on follicle assembly or recruitment is supported by the finding that exposure of cultured 

mouse ovaries to MEHP from 4-10 dpp decreased the percentage of oocytes not encapsulated in a follicle, 

and increased the percentage of primary follicles without affecting the percentage of primordial follicles 
96

. 

This stimulatory effect of DEHP/MEHP exposure may be caused by activation of the phosphatidylinositol 3-

kinase (PI3K) pathway.  
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In oocytes, PI3K is negatively regulated by phosphatase and tensin homolog deleted on chromosome 10 

(PTEN). In mice lacking PTEN, levels of pAKT are increased and the entire primordial follicle pool is 

activated, causing depletion of primordial follicles and resulting in premature ovarian failure 
97

. Interestingly, 

Hannon et al 
96

 found a reduced percentage of PTEN-positive oocytes and an increased percentage of pAKT-

positive oocytes in the MEHP-exposed ovary explants, indicating that the changes seen were indeed due to 

increased recruitment. It is surprising, however, that no effects were seen on the primordial follicle pool 

when the number of PTEN positive oocytes dropped. One explanation for this could be that an increased 

recruitment may not have reached the point of significantly influencing the number of primordial follicles at 

10 dpp. Indeed, the reduction in primordial follicle number was not seen until 15 and 21 dpp in the study by 

Zhang et al 
24

, and a longer culture period than that employed by Hannon et al 
96

 might induce the expected 

increase in primordial follicle numbers.  

BPA has also been investigated for its potential effects on early folliculogenesis. In sheep, follicle assembly 

is completed in utero. In a study by Rivera et al 
98

, where animals were exposed to BPA from 1-14 dpp, 30 

day old lambs displayed reduced ovary weight, fewer primordial follicles, more transitional and primary 

follicles, but a stable total number of oocytes. This indicates that recruitment of primordial follicles was 

increased 
98

. 

Taken together, these studies indicate that DEHP, as well as BPA, can intensify recruitment of follicles from 

the primordial follicle pool during early folliculogenesis (Fig. 2D). This can have significant consequences 

later in life, such as a shorter reproductive lifespan due to reduced number of primordial follicles, which is of 

major concern if observed at human exposure levels. There are only a few available studies investigating this 

specific time period, however, and more studies are needed to better understand the mechanisms behind the 

observed effects. 

 

EDCs AND WOMEN’S REPRODUCTIVE HEALTH  

Based on animal experiments, there is little doubt that exposure to EDCs can affect ovarian development and 

function. However, whether the same chemicals will cause similar effects in humans at doses relevant to 

real-life exposure, remains less clear. One of the main questions is whether EDCs can adversely affect 

human female fertility. Although controversial and sometimes disputed, there are studies indicating that over 

the past few decades, populations of industrialized countries all over the world have experienced a decline in 

total fertility rates, measured as live births per woman 
99

. This, of course, can at least partly be explained by 

changing attitudes towards family planning and contraceptives, as well as other social changes, but changes 

to the biochemical environment may also contribute. Currently, a still increasing chemical burden may 
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contribute towards the increase in women reporting to have difficulties conceiving and maintain pregnancy, 

as now described for women of all ages 
100,101

.  

Historical data show that chronological age is a determining factor for fertility, but of less importance for 

fertility until 35 years of age 
102,103

. Accelerated biological aging of the ovary before the age of 35 can 

therefore not be explained by chronological age alone, and knowledge attained during assisted reproductive 

techniques indicates that a combination of environmental and genetic factors may contribute to reduced 

quality of the oocyte pool with age 
104,105

. Chemicals such as p,p-DDT 
106

, fluorinated chemicals 
107

 and 

pesticides 
108

 have all been associated with decreased fecundability, measured as time to pregnancy. 

Furthermore, BPA and other EDCs have been associated with PCOS, one of the leading causes of 

subfertility
20

. 

An increase in prematurity, pre-eclampsia, gestational diabetes, and premature puberty has also been 

reported. This decline in reproductive health has occurred over a relatively short period of time, making 

genetic changes an unlikely explanation 
100,101

, whereas EDCs have been proposed as potential contributors 

101
.  

Another aspect not covered in detail herein, are cancers of the reproductive organs and tissues. A clear 

causation between early exposure to EDCs and gynecological cancers are lacking, but a recent meta-analysis 

concluded that infertile women are at greater risk of developing endometrial cancer than the general female 

population. In contrast, data concerning a potential higher risk of developing breast or ovarian cancer are 

conflicting 
109

. Interstingly, a very recent study showed an association between irregular menstrual cycling, 

in many cases caused by PCOS, and ovarian cancer 
110

.  Another class of cancers, malignant ovarian germ 

cell tumors (mOGCT), is of special interest in the light of EDC exposure, as they are believed to originate 

from fetal pluripotent germ cells 
111

. These cancers share much of their etiology with their male counterparts, 

testicular germ cell tumors (TGCT), which arise from genetic aberrations, but most likely also influenced by 

environmental factors during early developmental stages 
112

. In fact, patients with Disorders of Sex 

Development (DSD: congenital conditions where chromosomal, gonadal or anatomical sex is atypical 
113,114

) 

have an increased risk of developing GCTs, attesting to the importance of the somatic environment, and not 

only intrinsic factors, in the regulation of germ cell development 
115

. 

 

Human versus animal data  

BPA has been measured in several biomonitoring studies, including in the USA and Europe where median 

Bisphenol A exposure ranges between 0.03 and 0.04 µg/kg bw/day for adults. However, approximately 5% 

of the population is considered to be exposed to more than 0.15 µg/kg bw/day 
66–68

. As listed in Table 2 and 

3, several studies have shown BPA effects on ovary development at doses around 20 µg/kg bw/day, and in 
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some studies even in the ng/kg bw/day range. In human risk assessment, a 100-fold difference between no-

effect levels in animal studies and human exposure levels is generally required before the human exposure 

levels can be considered safe. With developmental effects on ovaries around, or below, 20 µg/kg bw/day, 

and therefore a no-effect level below this figure, the margin of safety could thus be below 100 for the most 

highly exposed persons.  

DEHP metabolites, such as MEHP, are typically used as proxy to retrospectively estimate actual DEHP 

exposure. Calculation of such estimates is complex, but show that humans are exposed to about 1.5 µg/kg 

bw/day of DEHP in Europe and 4 µg/kg bw/day in the USA. For around 5% of the population the levels 

exceed 4.4 or 34 µg/kg bw/day in Europe or the USA, respectively 
68,116

. Effects on ovary development have 

been observed following exposure to 20 and 40 µg/kg/day, indicating that the no-effect level is at least lower 

than 20 µg/kg/day (Tables 3 and 4).  Thus, a very low safety margin is currently in place for a large section 

of the population if these findings reflect true adverse changes in ovary development at low doses of DEHP, 

or possibly other phthalates as well. Such safety evaluations should be based on a larger evidence base, 

however, and preferably include studies examining several concentrations to allow for dose response 

calculations. 

The use of paracetamol has become widespread and more than 50% of women are estimated to use 

paracetamol at least some time during pregnancy 
117

. In Denmark, everyday use during early pregnancy is 

seen for 0.2% of women, whereas 0.7% use paracetamol 1-2 times per week 
118

. Additionally, exposure to 

paracetamol is almost ubiquitous in many populations, even when no use is reported. In Germany 

paracetamol has been detected in persons who had neither recently consumed paracetamol nor been 

occupationally exposed to its precursor aniline, indicating that other unknown exposure sources exist. 

Similar exposure data was recently shown in a Danish study, where mothers and their children had similar 

paracetamol levels in their blood despite no obvious exposure source 
40

. So far, no clear associations between 

paracetamol exposure and human female reproductive health effects have been reported. It is, however, 

striking that the dose levels affecting ovary development in rats (50 mg/kg bw/day) are comparable to 

exposure levels of humans taking the maximal recommended dose of paracetamol, even when not correcting 

for differences in metabolism between rats and human 
37

.  

Development of the fetus differs in timing relative to the gestational period between species. In humans, 

follicle assembly takes place during fetal life, whereas it in the rat is occurs neonatally 
74

. Furthermore, since 

the first wave of folliculogenesis is initiated immediately after follicle assembly, this also differs between 

humans and rodents (Fig. 3). This ultimately means that for humans the most susceptible period for exposure 

with regards to these endpoints is the gestational period. What complicates the picture even further, is that 

humans are continuously exposed to a large number of chemicals at any given time 
119

, whereas controlled 

animal experiments typically involves the exposure of single chemicals during specific time windows. To 
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overcome this hurdle, a series of studies were conducted exposing sheep on pastures before and during 

pregnancy to a mixture of environmental chemicals 
88,120,121

. The studies focusing on female fetuses found 

that constant maternal exposure to a low-concentration mixture of chemicals can disrupt ovary development 

120
, and that exposure during mid and late gestation was most detrimental 

88
. It was also found that the pre-

conception period is important in relation to effect outcomes on the offspring 
121

. Finally, a change in 

exposure between the pre- and post-conception period seemed to have a greater impact on fetal ovary 

development than a continuous exposure 
121

.  

To date, studies on mixture effects have focused on male reproduction, where certain EDCs have been 

shown to contribute to the mixture effects 
122,123

. Comparable scenarios in females are likely, and mixture 

effects, mainly after exposure to phytoestrogens, have been shown 
124–126

. Low doses of chemicals with 

endocrine modes of action on the ovary – including DEHP, BPA and paracetamol – may, therefore, produce 

mixture effects at exposure levels considered safe for individual compounds. 

 

PERSPECTIVES AND CONCLUSION  

For decades, the prevailing view of mammalian sex differentiation has been that male fetuses are critically 

dependent upon sex hormones for masculinization, whereas female fetuses develop more independently of 

these. As a result, studies aimed at elucidating effects of EDCs on fetal development, including long lasting 

consequences manifesting in adulthood, has primarily focused on males. There are strong indications, 

however, that females are far from protected from the potential harm caused by exposure to EDCs, even in 

utero. With this review we have aimed to illuminate potential links between developmental exposure to 

EDCs and late-life reproductive health effects with focus on ovarian development and function. It is clear 

from our synthesis that there are many questions that remains to be answered, but we would like to highlight 

four general points that we believe warrants particular focus: 

 Early germ cell development and gonadal sex differentiation are processes not normally associated with 

subtle disruptions by xenobiotics. The pharmaceuticals paracetamol and tamoxifen, however, may 

interfere with these processes. Similarly, BPA may be capable of disturbing the molecular pathways 

governing the balance between the male and female cell fates in the testes and ovaries.  Therefore, since 

disrupted sex differentiation can have far-reaching consequences for the individual, this area of research 

requires a much stronger emphasis, and to date very few studies have been conducted focusing on this 

early period of development.  

 Meiosis is a process unique to the germ cells and correct progression is critical for the quality and 

quantity of germ cells in the adult female. The industrial chemicals BPA and DEHP, and the 

pharmaceuticals paracetamol and indomethacin have been shown to disturb meiosis. To enable 
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evaluation of a specific chemical for potential effects on meiosis elucidating the mechanism by which 

these chemicals act will be of great importance. 

 Among the four potentially sensitive developmental windows presented in this review, follicle assembly 

is the most thoroughly investigated. Several studies have reported effects of exposure to BPA and 

DEHP, or its metabolite MEHP, but the specific mechanisms by which these chemicals impact the 

process is not clear. Mechanistic knowledge is important for inter-species extrapolation, and we 

encourage further studies to investigate mechanisms potentially sensitive to EDCs, especially apoptosis, 

proliferation and cell cycle stages as stepping stones.  

 EDCs, including BPA and DEHP, may increase the size of the first follicle wave in the rodent postnatal 

period and may, ultimately, lead to earlier reproductive senescence. Studies investigating effects of 

exposure to other EDCs are therefore warranted.   

 

When viewed together, many reproductive disorders in girls and young women – ranging from precocious 

puberty to PCOS and ovarian cancers – may in many instances have shared etiologies. There is mounting 

evidence to suggest that these disorders often can be manifestations of incorrect programming during fetal 

life such that together they would comprise an ovarian dysgenesis syndrome (ODS) similar to that proposed 

for male reproductive disorders two decades ago with the testicular dysgenesis syndrome (TDS) hypothesis. 

Further effort into studying the underlying causes of female reproductive disorders coupled with more solid 

human epidemiological data is therefore needed, and will contribute significantly towards safeguarding 

female reproductive health into the future.  

To end; while results from animal studies can clarify relationships between early exposure and effects during 

adult life, associations from human epidemiological studies in this field are difficult to interpret due to the 

lag-time between developmental exposure and the appearance of adverse outcome in adulthood. Also, 

complex exposure patterns may distort the image, contributing with yet another layer of complexity. 

Nevertheless, an integrated evaluation of animal and human studies indicates that late-life female 

reproductive health can be compromised by environmental factors, including chemical exposures during the 

otherwise protected milieu of the womb. 
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ABSTRACT 

Exposure to endocrine disrupting compounds (EDCs) during development can have negative consequences 

later in life. In this study we investigated the effect of perinatal exposure to mixtures of human relevant 

EDCs on the female reproductive system. Rat dams were exposed to a mixture of phthalates, pesticides, UV-

filters, bisphenol A, butyl-paraben, as well as paracetamol. The compounds were tested together (Totalmix) 

or in subgroups with anti-androgenic (AAmix) or estrogenic (Emix) potentials. Paracetamol was tested 

separately. In pre-pubertal rats, a significant reduction in primordial follicle numbers was seen in AAmix and 

PM groups, and reduced plasma levels of prolactin was seen in AAmix. In one-year-old animals, the 

incidence of irregular estrous cycles was higher after Totalmix-exposure and reduced ovary weights were 

seen in Totalmix, AAmix, and PM groups. These findings resemble premature ovarian insufficiency in 

humans, and raises concern regarding potential effects of mixtures of EDCs on female reproductive function.  

 

 

Graphical abstract: 
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1. INTRODUCTION 

Exposure to endocrine disrupting compounds (EDCs) during development can have long-lasting 

consequences extending into adulthood, for instance compromised reproductive health (Isling et al. 2014; 

Schug et al. 2011). Numerous studies have investigated the link between early exposure to EDCs and late life 

effects on the male reproductive system, often referred to as the testicular dysgenesis syndrome (TDS) 

hypothesis, comprising a range of male disorders presumed to have a common developmental origin 

(Skakkebæk et al. 2001; Toppari et al. 2010). Studies addressing comparative questions in females, however, 

are far fewer. An ovarian dysgenesis syndrome (ODS) hypothesis has been proposed though. And as with 

males, pathologies presenting in adulthood; impaired placental function, early pregnancy loss, breast cancer, 

pubertal timing, and polycystic ovarian syndrome (PCOS), are suspected to share a common developmental 

origin (Buck Louis et al. 2011; Fowler et al. 2012).  

The generally accepted view, although challenged by a few studies (reviewed in Virant-Klun (2015)), is that 

females are born with a set number of follicles that depletes throughout their reproductive lifespan, 

inevitably leading to infertility. Disturbed establishment of the follicle pool during development may 

therefore be detrimental to fertility in the adult female (McGee and Hsueh 2000). Rodent studies have 

indicated that oocyte meiosis, ovarian folliculogenesis, fertility, and the onset of reproductive senescence can 

be altered by environmental contaminants, including EDCs (Ahn et al. 2012; Chao et al. 2012; Rodríguez et 

al. 2010; Shi et al. 2007; Susiarjo et al. 2007; Wang et al. 2014; Zhang et al. 2013). This has led to an 

increased level of concern regarding female reproductive health, particularly since reduced fecundity has 

been associated with EDCs in humans (Caserta et al. 2011).  

When evaluating toxicity of a chemical, the state-of-the-art has been to assess one chemical at a time. A 

more realistic scenario, however, is that humans are exposed to a mixture of different chemicals 

simultaneously. Thus, there is a need for evaluation of toxicity of mixtures rather than single compounds 

only (Backhaus et al. 2010; Hass et al. 2007; Kortenkamp 2007). The aim of this study was to address effects 

of perinatal exposure to mixtures of EDCs on female reproductive endpoints in a top-down approach starting 

from a human relevant mixture and subgroups of this mixture. Thirteen EDCs, including phthalates, 

pesticides, UV-filters, Bisphenol A, butylparaben, and the pharmaceutical drug paracetamol (PM) were 

tested in a mixture ratio based on high-end human exposure levels as previously described (Axelstad et al. 

2014; Christiansen et al. 2012). The tested phthalates are known to influence steroid synthesis (reviewed in 

Hannon and Flaws (2015)) and indications of altered ovarian development have been seen in rodent studies 

(Zhang et al. 2013, 2014b). The tested pesticides are known to act mainly as androgen receptor antagonists 

(Kjærstad et al. 2010; Orton et al. 2011) and the UV-filters, Bisphenol A and butylparaben are known 

estrogen receptor agonists (Rosenmai et al. 2014; Routledge et al. 1998; Schreurs et al. 2002), but the 

compounds may also act via other modes of action (Kjærstad et al. 2010; Rosenmai et al. 2014). PM is a 
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prostaglandin synthesis inhibitor with possible anti-androgenic modes of action (Kristensen et al. 2011). To 

evaluate whether effects of the Totalmix could be attributed to one or more components of the mixture, we 

also tested subgroups chemicals with anti-androgenic or estrogenic potentials, and PM alone (Table 1). The 

mixtures were administered in doses 100 to 450 times high-end human exposure levels, as these doses were 

predicted to affect anti-androgenic endpoints in male offspring, whereas the PM dose was corresponding to 

human exposure levels, see also (Axelstad et al. 2014).   

Effects of these EDC mixtures on early male reproductive development (Axelstad et al. 2014), and mammary 

gland development (Mandrup et al. 2015) have previously been published. In the current study we 

hypothesized that perinatal exposure to mixtures of EDCs adversely affects the ovary in young and senescent 

animals, and investigated the impact of perinatal EDC exposure on ovarian gene expression, number of 

follicles, pituitary hormone levels in plasma, sexual maturation, estrous cyclicity and ovarian histology in rat 

offspring. Together, the results from young and senescent animals indicated premature ovarian insufficiency 

after exposure to this human-relevant EDC mixture, and these effects were likely caused by the anti-

androgen mixture components and PM. 

 

2. MATERIALS AND METHODS 

2.1 Test compounds 

Test compounds were: di-n-butyl phthalate (DBP) (purity >99.0 %, CAS no. 84-74-2), di-(2-ethylhexyl) 

phthalate (DEHP) (purity >99.5 %, CAS no. 117-81-7), vinclozolin (purity >99.5 %, CAS no. 50471-44-8), 

prochloraz (purity >98.5 %, CAS no. 67747-09-5), procymidone (purity >99.5 %, CAS no. 32809-16-8), 

linuron (purity >99.0 %, CAS no. 330-55-2), epoxiconazole (purity >99.0 %, CAS no. 106325-08-8), octyl 

methoxycinnamate (OMC) (purity >98.0 %, CAS no. 5466-77-3), dichlorodiphenyl-dichloroethylene (p,p’-

DDE) (purity >98.5 %, CAS no.72-55-9); all purchased from VWR - Bie & Berntsen (Herlev, Denmark). 

And: 4-methyl-benzylidene camphor (4-MBC) (purity >98.0 %, CAS no. 36861-47-9), bisphenol A (BPA) 

(purity >99.5 %, CAS no. 80-05-7), butyl paraben (purity >99.0 %, CAS no. 94-26-8) and paracetamol (PM) 

(purity >99.0 %, CAS no. 103-90-2); all purchased from Sigma-Aldrich (Brøndby, Denmark). Corn oil was 

used as a control compound and as vehicle; purchased from VWR - Bie & Berntsen (Herlev, Denmark). 
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2.2 Mixtures 

The mixture compositions were based on high-end human exposure levels of 13 well-characterized 

endocrine disrupters, as previously described (Axelstad et al. 2014; Christiansen et al. 2012). Totalmix 

contained all 13 compounds; AAmix contained compounds with predominantly anti-androgenic modes of 

action; Emix contained compounds with predominantly estrogenic properties (Table 1). PM was included in 

the Totalmix, as well as tested on its own. Totalmix was given at 100-, 200- or 450-times human high-end 

exposure, the AAmix and Emix at 200- and 450-times human high-end exposure. PM was given at 350 

mg/kg, which corresponds to the dose given in the Totalmix450 (Table 1).  

 

Table 1 Mixture composition and dose for the tested mixtures in mg/kg per day. Design of the mixtures has previously 

been described (Axelstad et al. 2014; Christiansen et al. 2012). 

 
Mixture dose (mg/kg per day) 

Chemical 
Totalmix- 

100 
Tota lmix- 

200 
Tota lmix- 

450 
AAmix 

200 
AAmix 

450 
Emix 
200 

Emix 
450 

PM 

DBP 1 2 4.5 2 4.5 0 0 0 

DEHP 2 4 9 4 9 0 0 0 

Vinclozolin   0.9 1.8 4.05 1.8 4.05 0 0 0 

Prochloraz   1.4 2.8 6.3 2.8 6.3 0 0 0 

Procymidone   1.5 3 6.75 3 6.75 0 0 0 

Linuron      0.06 0.12 0.27 0.12 0.27 0 0 0 

Epoxiconazole 1 2 4.5 2 4.5 0 0 0 

p,p'-DDE   0.1 0.2 0.45 0.2 0.45 0 0 0 

4-MBC 6 12 27 0 0 12 27 0 

OMC 12 24 54 0 0 24 54 0 

Bisphenol A    0.15 0.30 0.675 0 0 0.30 0.675 0 

Butyl  paraben 6 12 27 0 0 12 27 0 

Paracetamol 80 160 360 0 0 0 0 360 

Sum (mg/kg per day) 112 224 504 16 36 48 109 360 

 

2.3 Animals and exposure  

A detailed design of the animal study can be found in Axelstad et al. (2014). In short, time-mated nulliparous 

Wistar rats (HanTac:WH, SPF, Taconic Europe, Ejby, Denmark) were supplied at gestation day (GD) 3 of 

pregnancy. The day vaginal plug was detected was designated as GD 1 and the expected day of delivery 

(GD23) was designated as pup day (PD) 1. The dams received vehicle (controls), or one of the eight 

mixtures (Table 1). Each dose group comprised 16-20 dams, with 14-20 viable litters obtained for each 

group. Rats were exposed by oral gavage from GD7-21, and again after birth from PD1-22. PM exposure 
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was from GD13-19 and PD14-22, both in mixtures and single dosing, to avoid possible effects on embryo 

implantation (Gupta et al. 1981) and problems during parturition. At PD22, 1-2 females per litter were 

weaned and kept until adulthood. One female pup per litter was killed at weaning (PD22) and one or two 

female pups per litter were killed at 13 months of age whilst in estrous or proestrous, evidenced by vaginal 

smears in the morning. Blood was collected for hormone analysis, and ovaries were weighed and prepared 

for histological examination and/or gene expression analysis. The study was performed under conditions 

approved by the Danish Animal Experiments Inspectorate (Council for Animal Experimentation) and by the 

in-house Animal Welfare Committee. 

2.4 In vivo measurements 

2.4.1 Anogenital distance and sexual maturation 

Anogenital distance (AGD) was measured, by the same technician, in all offspring. The technician was 

blinded with regard to exposure group. Measurements were performed using an ocular stereomicroscope 

with unit markings on the ocular. Onset of puberty was defined as day of vaginal opening (VO) and assessed 

daily from PD28 until VO was detected in all female offspring. Age and body weights were recorded on the 

day when VO was first observed.  

2.4.2 Estrous cyclicity 

Vaginal smears were taken daily between 8 and 10 a.m., for 21 consecutive days at 3 and 12 months of age. 

A swab moistened in saline was inserted into the vaginal lumen and cells were transferred to a microscope 

glass slide to air dry. The smears were fixed in 96% ethanol and stained with Gill’s hematoxylin, Orange G6 

and eosin-azure 50 (VWR - Bie & Berntsen, Herlev, Denmark) according to the adapted Papanicolaou (PAP 

stain) procedure (Hubscher et al. 2005). The smears were mounted in Eukit (VWR - Bie & Berntsen, Herlev, 

Denmark) and examined by light microscopy under blinded conditions. Classification was done according to 

stages; estrous, metestrous, diestrous or proestrous, or transitions between stages (Goldman et al. 2007; 

OECD 2009).  

The animals were categorized as either being regularly cycling (cycles lasting four to five days) or 

irregularly cycling (cycles lasting less than four days or more than five days) (Cooper and Goldman 1999). 

Episodes of three to four consecutive days of vaginal estrous and/or four to five days of diestrous were 

considered extended (Goldman et al. 2007). 

2.5 Histological examination 

Ovaries from one female per litter, alternately left and right, were examined at PD22 as follows: control, 

Totalmix450, AAmix450, Emix450, and PM (n = 12-16) ovaries were fixed in formalin, processed for 

paraffin embedding, sectioned (5µm sections at 90µm intervals, all sections were counted) and stained with 
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hematoxylin and eosin (H&E). In all sections, primordial (oocyte surrounded by flat pre-granulosa cells), 

primary (oocyte surrounded by one layer of cuboidal granulosa cells), secondary (oocyte surrounded by two 

or more layers of granulosa cells and theca cells), tertiary (presence of antrum), and atretic follicles (presence 

of condensed, dark cells) were counted, provided a nucleolus was visible. 

At 13 months of age, histological evaluation was performed on one section per ovary (all groups), uterus and 

pituitary (control, Totalmix450, AAmix450, Emix450 and PM groups). The number of corpora lutea (CL) 

and the presence of follicular cysts (follicles devoid of oocytes, displaying a large antrum surrounded by 1-2 

layers of flattened granulosa cells and a thecal cell layer) and cyst-like structures (follicles devoid of oocytes, 

displaying a large antrum surrounded by a few layers of granulosa cells) were investigated. In uterus the 

number and appearance of endometrial glands was evaluated, and the presence of squamous metaplasia, 

endometrial cysts and endometrial stromal polyps was registered. Pituitary glands were examined with 

emphasis on the presence of nodular hyperplasia and adenoma in pars distalis (MacKenzie and Boorman 

1990). 

2.6 Plasma hormone levels  

On PD22, blood was collected in heparin-coated vials, centrifuged and plasma withdrawn. Plasma levels of 

adrenocorticotropic hormone (ACTH), brain-derived neurotrophic factor (BDNF), follicle stimulating 

hormone (FSH), growth hormone (GH), luteinizing hormone (LH), prolactin (PRL) and thyroid stimulating 

hormone (TSH) was measured using a Milliplex map Rat Pituitary Magnetic Bead Panel (Cat. No. 

RPTMAG-86K; Merck Life Science A/S, Hellerup, Denmark). The PM group was not included. Plasma 

levels of Inhibin A were measured by ELISA (Cat. No. CSB-E08239r, CUSABIO Biotech Co.) 

Measurements were conducted according to the manufacturer’s instructions.  

2.7 Gene expression 

For all nine dose groups (n = 9-10 per group), the alternate left and right ovary was excised from one female 

per litter at PD22 and stored in RNAlater (Qiagen, Hilden, Germany) at -80 ºC. Relative gene expression was 

analyzed by RT-qPCR as previously described (Svingen et al. 2015). In short, total RNA was isolated using 

RNeasy Mini Kit (Qiagen, Hilden, Germany) and quantified on a NanoDrop-1000 Spectrophotometer. RT-

qPCR reactions were run in duplicates on a 7900HT qPCR system (Applied Biosystems, Foster City, CA) in 

20 µl reactions including 3 µl diluted (1:20) cDNA and genespecific TaqMan assays (Life Technologies 

Europe BV, Naerum, Denmark: Amh (Rn01535314_g1), Bmp15 (Rn00572320_m1), Ddx4 

(Rn01489814_m1), Fshr (Rn01648507_m1), Fst (Rn00561225_m1), Lhr (Rn00564309_m1)). Intra-assay 

variability of technical replicates was <0.5 cycles. Data were analyzed by the comparative Ct-method 

normalized with the geometric mean of verified reference genes Rps18 (Rn01428913_gH) and Sdha 

(Rn00590475_m1) (Svingen et al. 2015). 
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2.8 Statistical analysis  

For all analyses, the alpha level was set at 0.05. Data from continuous endpoints were examined for normal 

distribution and homogeneity of variance and if required, logarithmic transformation was performed. For 

endpoints where ANOVA and Dunnett’s post-test were used, data were compared as follows: Control versus 

Totalmix, Control versus AAmix, Control versus Emix. PM was compared to control by use of Student’s t-

test. For non-normally distributed data Kruskal-Wallis and Dunn’s post-test or Mann-Whitney was used. 

Data from follicle count were investigated by t-test as only highest doses were used. Litter was used as an 

independent, random and nested factor when more than one pup from each litter was examined. 

 

AGD data were analyzed using pups’ birth weights as covariate and by the AGD-index, i.e. AGD divided by 

the cube root of body weight. Statistical analyses were adjusted using litter as an independent, random, and 

nested factor. Age and weight at sexual maturation was analyzed by ANOVA using body weight at PD22 as 

a covariate to compensate for size differences. Estrous cyclicity data were tested using logistic regression 

and tested for over-dispersion with Deviance and Pearson Goodness-of-Fit tests. Correction for over-

dispersion due to litter effects was used when appropriate.  

Organ weights were analyzed by ANOVA using body weight as a covariate. Histological data were 

evaluated using Fisher's Exact Test. Regression was used to investigate relationship between ovary weight 

and number of CL.  

The statistical software SAS (SAS Enterprise Guide 4.3), R (R Core Team 2013), and GraphPad Prism 5 

(GraphPad Software, San Diego California USA) were used for analysis.  

 

3. RESULTS 

3.1 Gene expression 

No significant changes in overall expression were observed for any of the somatic markers (Suppl. Fig. S1), 

suggesting that the overall ratio of cell-specific populations were relatively unchanged. A significant 

reduction in Ddx4 (p = 0.03) and trend to a reduction in Bmp15 (p = 0.07) transcript levels were observed in 

the PM-exposed group (Fig. 1A and B). As this suggested a smaller number of oocytes, manual counting of 

follicles was performed.  

3.2 Follicle count  

Primordial follicles were significantly reduced (78.2% of control values, p = 0.02) in rats exposed to 

AAmix450, and a tendency towards reduction was seen in the PM-exposed group (p = 0.06) (Fig. 1C). There 

were no statistically significant differences in number of recruited follicles (pool of primary, secondary and 



Chapter 3 

 

 

45 
 

tertiary) between groups .Visual evaluation of the  total number of follicles (total number in all sections 

counted), indicated a slight reduction in total number of follicles in AAmix450 and PM, but the differences 

were not statistically significant (Fig. 1C). When using percentage of follicles instead of absolute values, a 

significant reduction in primordial follicles was seen in groups exposed to AAmix450 (p = 0.005) and PM (p 

= 0.01) and there was a significant increase in secondary (p = 0.05) and tertiary (p = 0.04) follicles in the 

AAmix450 group (Fig. 1D). Furthermore, the number of recruited follicles (pool of primary, secondary and 

tertiary) was significantly increased in animals exposed to AAmix450 (p = 0.01) and PM (p = 0.02). 

3.3 Hormone levels 

There was a significant reduction (p = 0.01) in PRL levels after AAmix450 exposure, and visual evaluation 

of the data indicated a reduction also in the Totalmix450 and AAmix200 groups. However, these reductions 

were not statistically significant (p = 0.15 and p = 0.27, respectively) (Fig. 1E). No effects were seen on the 

levels of other pituitary hormones or inhibin A (Supplementary Figs. S2 and S3).  

3.4 AGD, sexual maturation and estrous cyclicity 

No significant differences between groups were observed for female AGD (Axelstad et al. 2014). Sexual 

maturation occurred significantly earlier in Totalmix200 (p = 0.0002), AAmix200 (p = 0.02) and Emix450 (p 

= 0.04) groups. Animals in Totalmix200 and AAmix200 groups had lower body weights at the day of VO (p 

= 0.01 and p = 0.02, respectively) (Fig. 2A and B). There were no effects on estrous cycle regularity at three 

months of age. At 12 months of age, overall analyses showed no effect on estrous cycle regularity, however 

pairwise comparison of control with each group showed significant effects in Totalmix100 (p = 0.041) and 

Totalmix200 (p = 0.048) (Fig. 2C). In a previous study on the same mixture (though only including 

Totalmix450) estrous cyclicity data was also collected at 12 months of age (Isling et al. 2014). As the power 

appeared low for estrous cyclicity, the control and Totalmix450 data from both studies were pooled, resulting 

in a significant difference between Totalmix450 and control (p = 0.02) (Fig. 2D). Irregular cycles were 

primarily characterized by longer than normal cycles with extended diestrous. Extended estrous and shorter 

than normal cycles were also observed, but to a lesser extent. 
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Figure 1 Results from PD 22. (A-B) A significant reduction in relative mRNA expression of Ddx4 and a slight, but not 

statistically significant reduction, in Bmp15 were seen in ovaries after PM treatment (n = 9-10 per group). C) Absolute 

follicle count showed significantly reduced numbers of primordial follicles in the AAmix450 group (n = 12-16 per 

group). D) Percentage of follicles (each animal’s total number of follicles set to a 100%) showed a significant reduction 

in primordial follicles after AAmix450 and PM exposure. AAmix450 exposure also caused an increase in secondary 

and tertiary follicles. E) Prolactin level in plasma was reduced after AAmix450 exposure (n = 9-10 per group). Data 

presented as mean ± SEM, (*p < 0.05, **p < 0.01) 
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Figure 2 A) Sexual maturation, measured as day of vaginal opening (VO), occurred significantly earlier in animals 

exposed to Totalmix200, AAmix200 and Emix450 (n = 26-36 per group, corresponding to 13-19 litters per group). B) 

Body weight at VO was significantly lower in animals exposed to Totalmix200 and AAmix200 (n = 26-36 per group, 

corresponding to 13-19 litters per group). C) The incidence of animals with irregular estrous cycles was increased in the 

Totalmix100 and Totalmix200 (n = 11-14 animals per group from separate litters) in adult females (12 months of age). 

D) The incidence of animals with irregular estrous cycles was higher in the Totalmix450 (n = 31) compared to control 

(n = 30) when data was pooled with a previous study (Isling et al., 2014) in adult females (12 months of age). Data 

presented as mean ± SEM, (*p < 0.05, **p < 0.01) 

 

3.5 Ovary weight and histology 

At 13 months of age, ovary weight was significantly reduced in all Totalmix groups, both AAmix groups and 

the PM group (Fig. 3A). All females were killed whilst in proestrous or estrous, therefore observed effects 

were not considered to be due to variability in estrous cycle stage. No relevant changes in ovary weights 

were seen at PD22 (data not shown).  

Histological examination at 13 months of age revealed a significant increase in incidences of rats presenting 

with complete absence of CL in AAmix200 (p = 0.033), AAmix450 (p = 0.039), and in PM (p = 0.028) 

groups (Fig. 3B). In addition, the mean number of CL was significantly reduced to 55% of control values in 

the Totalmix200 group (p = 0.04) and 54.7% of control values in the PM group (p = 0.011). The mean 

number of CL was also reduced in AAmix450, but did not reach statistical significance (p = 0.056) (Fig. 3C). 

The mean number of CL was positively correlated to ovary weight (r
2 
= 0.41, p < 0.0001) (Fig. 3D).  
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Figure 3 Effects on ovary weight and the presence of corpora lutea (CL) in 13 months-old animals. A) Mean ovary 

weight was reduced in animals exposed to Totalmix, AAmix and PM (n = 11-20). B) Complete absence of CL in 

animals exposed to AAmix and PM. C) Mean number of CL was significantly lower in Totalmix200 and PM (n = 11-

20). D) Regression analysis showed that the mean ovary weight was associated with the mean number of CL, 

independent of exposure (r
2 

= 0.41, slope significantly non-zero with p < 0.0001). Data presented as mean ± SEM, (*p < 

0.05) 

 

Follicular cysts and cyst-like structures were observed in all groups and are considered to be normal age-

related changes. The number of animals with cyst-like structures in ovaries was significantly increased in the 

AAmix450 and the PM groups, and the same was seen when pooling data for cysts and cyst-like structures 

(Table 2).  

3.6 Uterine and pituitary histology 

Squamous metaplasia was observed in 1-3 rats per group in Totalmix450, AAmix450, Emix450 and PM 

groups, but not in controls (Table 2). Pituitary nodular hyperplasia or adenoma in pars distalis was not 

different between dose groups (Table 2). Six out of eight rats with squamous metaplasia in uterus also had 

absence of CL or 1-3 small degenerated CL suggesting a common endocrine effect. Only 6 out of 23 females 

with pituitary nodular hyperplasia, adenoma or macroscopic tumor also had few or absent CL, and only two 

had squamous metaplasia suggesting no clear relationships between pituitary findings and reproductive 

organ effects.  
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Table 2 Summary of histopathological 

observations. Histological evaluation of 

ovaries from 13-month old rats exposed 

perinatally to mixtures of endocrine 

disrupting chemicals. Values are mean ± 

SD, or number of affected animals (% of 

affected rats). CL: corpora lutea. Asterisks 

indicate statistically significant difference 

from controls in a Fisher’s exact test:  

*p < 0.05, **p < 0.01, #p = 0.057. 
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4. DISCUSSION 

This study showed effects of human relevant mixtures of EDCs on both pre-pubertal and adult female rats; 

reduction in primordial follicles, irregular cycling, and premature absence of CL. These symptoms resemble 

premature ovarian insufficiency syndrome in humans (Cox and Liu 2014), causing concern that perinatal 

exposure to EDCs can reduce the reproductive lifespan of women. 

4.1 Early reproductive senescence  

In rodents, onset of irregular estrous cycles, and eventually cycling arrest, can be a sign of reproductive 

senescence, usually initiating between 9 and 12 months of age (Maffucci and Gore 2006). We observed an 

increase in irregular cycles at 12 months of age following prenatal exposure to Totalmix. As no effect was 

seen on estrous cyclicity at three months of age, this could indicate that exposed rats entered reproductive 

senescence prematurely compared to the control group. We also observed a reduction in ovary weight in 

Totalmix, AAmix and PM groups. This was supported by a significantly reduced mean number of CL in 

Totalmix200 and PM groups, and an increased incidence of complete absence of CL and cyst-like structures 

in rats exposed to AAmix and PM. This accelerated rate of age-related changes – as compared to background 

levels - is considered adverse and a sign of early aging in exposed groups. It is possible that examination of 

slightly younger animals would have resulted in fewer background findings and therefore a clearer picture of 

the chemically induced histological changes. Nevertheless, our findings indicate that the AAmix and PM 

groups, as well as the Totalmix group, displayed signs of early reproductive senescence compared to the 

control group, despite only slight effects were seen on estrous cyclicity in those dose groups. Reproductive 

senescence may also present as uterine changes. Squamous metaplasia of the uterus occurs spontaneously 

among aged rats, and can be induced by continued administration of estrogenic compounds (Gopinath 1992). 

Due to low incidence, it is not clear whether the observed squamous metaplasia was related to early 

reproductive senescence. Reprogramming of the hypothalamic–pituitary–ovarian axis at central level may be 

related to early reproductive senescence (Gore et al. 2011) and in a study by Ref. (Isling et al. 2014), rats 

exposed to AAmix450 and Totalmix450 showed increased incidence of pituitary tumors at 19 months of age. 

In our study the changes in uteri and ovaries did not appear correlated with pituitary nodular hyperplasia or 

adenoma, thus we hypothesize that the late effects may be caused by direct effects on the ovaries.  

4.2 Early versus delayed effects of anti-androgens in ovary  

Effects on aging animals are rarely examined and are not a part of OECD test guidelines for reproductive 

toxicity studies (OECD 2001, 2011). Chemical effects on early reproductive senescence may thus be 

overlooked. We wanted to investigate if follicular development was affected at an earlier time-point as early 

changes could be useful biomarkers of late life effects. On PD22 we saw reduced expression of the germ cell 

markers Ddx4 and Bmp15 in ovaries from animals exposed to PM. This could be due to an overall loss of 
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oocytes, thus follicles were manually counted. The number of primordial follicles was reduced in rats 

exposed to AAmix and PM. This is worrying as females are considered to be born with a limited number of 

oocytes, such that any reduction in the number of primordial follicles can have permanent effects on fertility 

by reducing the reproductive life span (Hoyer and Keating 2014). 

Interestingly, the reduction in primordial follicles was seen in animals exposed to anti-androgenic chemicals. 

It has become evident that androgens are important for ovarian function and follicular development (Lebbe 

and Woodruff 2013; Prizant et al. 2014). The androgen receptor (AR) knockout (KO) mouse (ARKO) has a 

phenotype resembling premature ovarian insufficiency with symptoms such as irregular estrous cycles, lack 

of CL and infertility (Sen and Hammes 2010; Shiina et al. 2006), effects similar to those observed in adult 

rats in our study. AR regulates downstream factors controlling folliculogenesis, and down-regulation in 

young individuals may cause impaired folliculogenesis at a later age (Shiina et al. 2006). It is therefore 

plausible that reduced AR signaling contributed to the observed late life effects on estrous cyclicity and 

number of CL. 

Both AR antagonists and steroid synthesis inhibitors in the AAmix may have contributed to the observed 

effects on follicle numbers. Prenatal exposure to the AR antagonist vinclozolin reduced primordial follicle 

numbers in mice at 12 months of age, and a reduction in total number of oocytes was seen in explanted 

newborn rat ovaries, cultured and exposed to vinclozolin for ten days (Nilsson et al. 2012). Two studies on 

the steroidogenesis inhibitor DEHP and/or its metabolite MEHP have shown disruption of early 

folliculogenesis in explanted newborn mouse ovaries (Hannon et al. 2015; Zhang et al. 2014a). DEHP 

decreased the incidence of primordial follicles in ovaries of PND21 mice exposed during fetal life (Zhang et 

al. 2014b), and reduced the percentage of primordial follicles on PND15 and PND21 in mice following 

postnatal exposure (Zhang et al. 2013). Furthermore, an increase in secondary and antral follicles was 

registered by (Zhang et al. 2013, 2014b), a finding that agrees with the increased ratio of recruited versus 

non-recruited follicles in AAmix450 and PM groups. This indicates that in our study, increased 

folliculogenesis may have caused the reduction in primordial follicle numbers. However, slightly lower total 

follicle numbers were observed in AAmix450 and PM groups. Therefore it is unclear if the reduction was 

due to increased recruitment, if the follicle reserve initially was smaller, or a combination of both. 

Furthermore, both vinclozolin and DEHP have the potential to affect follicle numbers, but further studies are 

needed to evaluate whether the remainder of compounds in the AAmix also contributed to the observed 

effects.  

Unexpectedly, the reduction in primordial follicle numbers after AAmix and PM exposure was not seen in 

animals exposed to the Totalmix comprising AAmix, Emix and PM. Emix has been shown to have endocrine 

effects during prepuberty, as Emix exposure increased mammary outgrowth in PD22 females (Mandrup et al. 

2015). For other endpoints such as male anogenital distance and pre-pubertal male reproductive organ 
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weights, the effects in Totalmix groups reflected the effects of the AAmix (Axelstad et al. 2014). We 

therefore propose that endocrine effects of Emix exposure can modulate the effects of AAmix and PM on the 

developing ovary. 

Plasma levels of PRL were reduced in PD22 animals exposed to AAmix450. In young females, PRL is 

proposed to be involved in pubertal timing and reduced levels may cause delayed puberty (Picut et al. 2015). 

VO was not significantly affected in AAmix450, but visual evaluation indicated an earlier rather than 

delayed day of VO, which was also observed in AAmix200, Totalmix200 and Emix450, rendering PRL 

levels unlikely to be causative. 

4.3 Human relevance of mixed chemical exposure  

The EDCs included in this study were selected as to reflect a chemical exposure pattern relevant to humans 

(Axelstad et al. 2014; Christiansen et al. 2012). The doses were 100- to 450-times higher than estimated 

high-end human exposure levels and effects on estrous cyclicity and ovary weight were seen at all doses, 

suggesting that a standard regulatory safety margin of 100 is not present for highly exposed persons. PM was 

administered at a dose corresponding to the maximum recommended dose for humans (when taking into 

account the different kinetics of rats and humans). Such high exposure may seem unlikely to occur during 

the long time span modelled in the current study, but it is possible that PM exposure for a limited time 

period, during the most sensitive period of fetal reproductive development, can be sufficient to affect the 

reproductive function later in life. The observed reduction in primordial follicles, as well as irregular cycling 

and premature absence of CL resemble premature ovarian insufficiency syndrome in humans, a condition 

usually leading to premature menopause; before the age of 40 (Cox and Liu 2014). The cause for premature 

ovarian insufficiency is largely unknown (Cox and Liu 2014; Luisi et al. 2015), but EDCs have been 

suggested to be part of the etiology (Crain et al. 2008). This raises the concern that early life exposure to 

EDCs can compromise the reproductive lifespan of women. Such an effect, even if small, is problematic in 

today’s society where the age at childbirth is delayed (Aitken 2013). 

In summary, we investigated effects of perinatal exposure to human relevant mixtures of EDCs on female 

reproductive endpoints and found a reduced follicle pool in pre-pubertal animals after exposure to anti-

androgenic chemicals or PM. In adults, signs of early reproductive senescence were seen: effects on estrous 

cycle regularity and reduced ovary weight after Totalmix exposure, and reduction in CL and ovary weight 

after anti-androgen and PM exposure. Together, the effects resemble what in humans is categorized as 

premature ovarian insufficiency, a condition where EDCs have been proposed as part of the etiology. As the 

mixture composition investigated resembles high-end everyday exposure for humans, the results raise 

concern for the reproductive lifespan of children of exposed women. The applied top-down approach, 
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starting from a human relevant exposure scenario, is considered highly relevant for human health assessment 

and leads the way for targeted mechanistic studies of sub-mixtures and individual compounds. 
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ABSTRACT 

In the female, the ovaries have a central role both in relation to reproductive and somatic health: they contain 

the germ cells delivering genetic material to the next generation, and are a critical component in homeostasis 

affecting the whole body. The size of the follicle pool is set during development and disruptions can have 

severe consequences on the reproductive lifespan in the adult female. The aim of this study was to 

investigate the effects of exposure to mixtures of human relevant EDCs on the ovarian proteome, with the 

objective of identifying candidate biomarker(s) of interrupted ovary development. Rats were exposed to a 

“real-life” mixture of phthalates, pesticides, UV-filters, bisphenol A, butyl-paraben, as well as paracetamol 

during pregnancy and lactation. The compounds were tested together (Totalmix) or in subgroups with either 

anti-androgenic (AAmix) or estrogenic (Emix) activity. Paracetamol was tested separately. Shotgun 

proteomics was conducted on ovaries from pup day 17 offspring. Three proteins were down-regulated in all 

four exposure groups: Trimethyllysine dioxygenase (TMLH), Keratin, type II cytoskeletal 8 (KRT8), and 

anti Müllerian hormone (AMH). Nine of the exposure-affected canonical pathways were common to all 

exposure groups. Among these were mTOR and HIPPO signaling pathways, which are known to be 

important for ovary function. In summary, this study showed that exposure to mixtures of EDCs affect the 

pre-pubertal rat ovary proteome to various degrees, and revealed potentially novel biomarkers that were 

down-regulated in all exposure groups. Further studies are warranted to better characterize the involvement 

and potential diagnostic utility of these marker proteins.  
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1. INTRODUCTION 

In the female, the ovaries have a central role in reproductive and somatic health. They contain both germ 

cells and somatic cells required to fulfil the two main functions of the ovaries: production of oocytes and sex 

hormones, respectively. The generally accepted view is that the ovaries have a finite number of germ cells 

from birth, the oocyte pool, which is slowly depleted, inevitably leading to infertility and in some species, 

the menopause (Nelson et al. 2013).  

The size of the oocyte pool is defined during fetal life in humans and neonatal life in mice (Grive and 

Freiman, 2015) and a reduction in the oocyte pool can lead to a shorter reproductive lifespan (McGee and 

Hsueh, 2000; Monniaux et al. 2014). Several stages during female development are sensitive to 

environmental chemical exposure (Chapter 2), and disruptions to these processes can potentially affect future 

ovary function, as described in the ovarian dysgenesis syndrome (ODS) hypothesis (Buck Louis et al. 2011; 

Crain et al. 2008). 

ODS disorders such as polycystic ovarian syndrome (PCOS) and premature ovarian insufficiency (POI) are 

difficult to investigate because of the large time-gap between exposure during early development and 

phenotype manifestation much later in life. Such time gap may span over 30 years in humans. Likewise, the 

consequences for fertility following exposure to chemicals in aging animals are rarely investigated and not a 

part of the Organization for Economic Co-operation and Development (OECD) test guidelines for 

reproductive toxicity studies (OECD, 2011, 2001). Environmental chemicals contributing to ODS may 

therefore be overlooked when risk assessment is conducted. Early biomarkers of disrupted ovarian 

development after chemical exposure are, therefore, of great value to assess possible ovarian damage after 

chemical exposure. Recent advancements in proteomics approaches have enabled the identification and 

quantification of thousands of proteins, making the discovery of suitable protein biomarkers and/or 

proteomic fingerprints feasible (Huang et al. 2012; Lai and Chen, 2015). 

Today, toxicity evaluation of chemicals is usually performed on one chemical at a time. However, a more 

realistic scenario is that humans are exposed to complex mixtures of chemicals. In a previous study, we 

found that mixtures of EDCs with mainly anti-androgenic potentials and the pharmaceutical paracetamol 

alone, reduced the ovarian follicle pool in pre-pubertal rats exposed during fetal life and lactation (Johansson 

et al. 2016). In the present study we used the same top-down approach and chemicals, starting from a human 

relevant mixture and subgroups of this mixture as previously described (Axelstad et al. 2014; Christiansen et 

al. 2012), with the aim to investigate the potential effects of exposure on the ovary proteome and identify 

candidate protein biomarkers and disrupted pathways linking chemical exposures to ovarian phenotypes. 
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2. MATERIALS AND METHODS 

2.1 Chemicals 

Chemicals used were: di-n-butyl phthalate (DBP) (purity >99.0 %, CAS no. 84-74-2), di-(2-ethylhexyl) 

phthalate (DEHP) (purity >99.5 %, CAS no. 117-81-7), vinclozolin (purity >99.5 %, CAS no. 50471-44-8), 

prochloraz (purity >98.5 %, CAS no. 67747-09-5), procymidone (purity >99.5 %, CAS no. 32809-16-8), 

linuron (purity >99.0 %, CAS no. 330-55-2), epoxiconazole (purity >99.0 %, CAS no. 106325-08-8), octyl 

methoxycinnamate (OMC) (purity >98.0 %, CAS no. 5466-77-3), dichlorodiphenyl-dichloroethylene (p,p’-

DDE) (purity >98.5 %, CAS no.72-55-9); all purchased from VWR - Bie & Berntsen (Herlev, Denmark). 4-

methyl-benzylidene camphor (4-MBC) (purity >98.0 %, CAS no. 36861-47-9), bisphenol A (BPA) (purity 

>99.5 %, CAS no. 80-05-7), butyl paraben (purity >99.0 %, CAS no. 94-26-8) and paracetamol (PM) (purity 

>99.0 %, CAS no. 103-90-2) were all purchased from Sigma-Aldrich (Brøndby, Denmark). Corn oil was 

used as a control compound and as vehicle; purchased from VWR - Bie & Berntsen (Herlev, Denmark). 

 

Table 1 Mixture composition and dose for the tested mixtures in mg/kg per day. Design of the mixtures has previously 

been described (Axelstad et al. 2014, Christiansen et al. 2012). 

 

Mixture dose (mg/kg per day) 

Chemical 
Totalmix- 

450 
AAmix 

450 
Emix 
450 

PM 

DBP 4.5 4.5 0 0 

DEHP 9 9 0 0 

Vinclozolin 4.05 4.05 0 0 

Prochloraz 6.3 6.3 0 0 

Procymidone 6.75 6.75 0 0 

Linuron 0.27 0.27 0 0 

Epoxiconazole 4.5 4.5 0 0 

p,p'-DDE 0.45 0.45 0 0 

4-MBC 27 0 27 0 

OMC 54 0 54 0 

Bisphenol A 0.675 0 0.675 0 

Butyl  paraben 27 0 27 0 

Paracetamol 360 0 0 360 

 

2.2 Chemical Mixtures 

The composition of the mixtures was based on high-end human exposure levels as previously described 

(Axelstad et al. 2014; Christiansen et al. 2012). In short, the Totalmix contained all 13 compounds; the 

AAmix contained compounds considered to have predominantly anti-androgenic modes of action; the Emix 
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contained compounds considered to have predominantly estrogenic properties (Table 1). PM was included in 

the Totalmix, as well as tested on its own, but was not included in the AAmix or Emix. The mixtures were 

given at 450-times human high-end exposure and PM was given at 350 mg/kg, both in the Totalmix and in 

the single exposure (Table 1).  

2.3 Animals and exposure  

The animal study was as described in Axelstad et al. (2014). In brief, time-mated nulliparous Wistar rats 

(HanTac:WH, SPF, Taconic Europe, Ejby, Denmark) were used and the day vaginal plug was detected was 

designated as GD 1 and the expected day of delivery (GD23) was designated as pup day (PD) 1. The dams 

were supplied at gestation day (GD) 3 of pregnancy. Animals were exposed to vehicle (controls), or one of 

the eight mixtures (Table 1). Each dose group comprised 16-20 dams, and 14-20 viable litters were obtained 

for each group. Rats were exposed by oral gavage from GD7-21, and again after birth from PD1-22. 

Exposure to PM was from GD13-19 and PD14-22, both in mixtures and single dosing. This was to avoid 

effects on embryo implantation (Gupta et al. 1981) and problems during parturition. The study was 

performed under conditions approved by the Danish Animal Experiments Inspectorate (Council for Animal 

Experimentation) and by the in-house Animal Welfare Committee. 

2.4 Protein harvest and digestion 

On PD17 one female offspring from each litter was killed and alternately the right or left ovary was collected 

and snap frozen in liquid nitrogen. The samples were stored at -80ºC. Protein was extracted and prepared 

from 10 ovaries from each group using the AllPrep kit ((#80004; QIAGEN, Manchester, UK) according to 

the manufacturer’s instructions. Protein concentrations were quantified by a modified Lowry assay (Biorad 

Ltd., Hertfordshire, UK, cat.no. 500-0122) and from each sample 10 µg of protein extract was diluted to a 

total volume of 100 µl of 50 µM NH4HCO3. Proteins were digested in solution according to the PRIME-XS 

protocol (http://www.primexs.eu/protocols/Public-Documents/04---Protocols/PRIME-XS-Protocol-NPC-In-

Solution-Digestion.pdf/). Briefly, proteins were reduced in 2 mM dithiothreitol for 25 min at 60°C and S-

alkylated in 4 mM iodoacetamide for 30 min at 25°C in the dark, then digested by sequencing-grade 

modified trypsin (Promega) at a 1:50 ratio of trypsin:protein overnight at 37°C. The reaction was stopped by 

freezing at -80°C. Samples were dried by vacuum centrifugation (SpeedVac Plus SC110A, Savant) and 

dissolved in 50 µL 0.1% trifluoroacetic acid. Peptides were desalted using ZipTip C18 stage tips (Merck 

Millipore) according to the manufacturer’s instructions. The eluate from the ZipTip was dried by  SpeedVac 

and dissolved in 10 µL 2% acetonitrile/0.1% formic acid. One half (5 µL) of the peptide solution was 

analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), equivalent to 2.5 µg peptides 

assuming the ZipTip binding capacity was saturated. The LC-MS system comprised a Thermo Scientific 

Dionex UltiMate 3000 RSLC nano LC configured for pre-concentration onto a nano column, coupled to a Q 
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Exactive Plus hybrid quadrupole-Orbitrap mass spectrometer fitted with an EASY-Spray nano-ESI source 

(Thermo Scientific). Peptide samples were injected onto a C18 PepMap 100 pre-column (300 µm i.d. x 5 

mm) in loading pump solvent (2% acetonitrile, 0.1% formic acid) at a flow rate of 10 µL/min for 5 min. The 

pre-column was then reverse-flushed to the analytical column (PepMap RSLC C18; 50 µm i.d. x 15 cm)* at 

0.3 µL/min using the nano pump. Peptides were separated using a gradient of acetonitrile* while MS/MS 

data were acquired by the Q Exactive in data-dependent mode (Top10 method)*. 

* For 1 hour runs using the 15 cm column the LC and MS details were as follows: 

Nano pump solvent A: 0.1% formic acid (in UHQ water) 

Nano pump solvent B: 80% acetonitrile, 0.1% formic acid (in UHQ water) 

LC gradient: 3-10% solvent B in 5 min, 10-40% solvent B in 30 min, 40-80% solvent B in 5 min, hold at 

80% solvent B for 8 min, 80-3% solvent B in 1 min, hold at 3% solvent B for 15 min. 

Parameters for the full scan/data-dependent MS2 (Top10) method were: 

Full scan range 375-1750 m/z; resolution 70,000; AGC target 3e6; maximum IT 50 ms. 

MS2 scan resolution 17,500; AGC target 5e4; maximum IT 100 ms; loop count 10; isolation window 1.6 

m/z; NCE 26; underfill ratio 4%; charge states 2-5 included; peptide match preferred; exclude isotopes on; 

dynamic exclusion 40 s.  

2.5 Analyses of LC-MS/MS output 

All RAW files were simultaneously processed by MaxQuant (v 1.5.3.8) and searched against the UniProtKB 

FASTA database for Rattus Norvegicus (downloaded from www.UniProt.org 29-03-2016). MaxQuant 

parameters were set to default except label free quant: minimum ration count =1, and match between runs.  

2.6 Statistical analyses 

Data were handled in Microsoft Excel and analyzed in R (v3.31). Proteins were filtered to include only those 

with MaxLFQ-normalised intensity in at least 75% of the samples. After filtering, MaxLFQ-normalised 

protein intensities were log2 transformed. Missing values were imputed using the missForest package in R. 

Latent variation was removed using the sva package in R. Comparisons were performed using empirical 

moderated Bayes test statistics using the limma package in R. P-values were adjusted using the limma-

adapted Benjamini-Hochbergh False Discovery Rate (FDR) approach. For each protein a z-score was 

calculated. The z-score is a measure of how many standard deviations (SD) below or above the population 

mean a raw score is, and ranges from -3 SD’s to +3 SD’s. 

  

http://www.uniprot.org/
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2.7 Pathway mapping  

Ingenuity Pathway Analysis (IPA) V9.0 (Ingenuity Systems, http://www.ingenuity.com) was used to assign 

affected proteins to Canonical Pathways (Bellingham et al. 2013; Filis et al. 2015). Pathway mapping was 

performed using a liberal FDR threshold cut-off of 20%. To explore relationship between proteins and 

pathways in different exposure groups, Venn diagrams were constructed on the free online website: 

http://bioinformatics.psb.ugent.be/webtools/Venn/ 

 

3. RESULTS  

3.1 Effects of exposure 

Table 2 shows differentially expressed proteins in the four exposure groups, relative to control goup, at 

various cut-off FDR levels. In terms of number of proteins affected, Emix exposure was associated with the 

greatest number of differentially expressed proteins regardless of FDR cut-off, followed by Totalmix, PM 

and AAmix. The AAmix showed least differentially expressed proteins, and those with differential 

expression had FDR values above 10% (Table 2). A complete list of affected proteins is available upon 

request.  

Table 2 Effects of exposure on the number of differentially regulated proteins at FDR adjusted p-values (5, 10, 20, and 

30%). ↑ indicates upregulated proteins and ↓ down regulated proteins. 

  5% 10% 20% 30% 

C vs Totalmix ↑18  ↓4 ↑38  ↓14 ↑193 ↓117 ↑331 ↓212 

C vs AAmix 0 0 ↑13   ↓8 ↑63   ↓42 

C vs Emix ↑211↓281 ↑324↓395 ↑460 ↓565 ↑580 ↓703 

C vs PM ↑2    ↓1 ↑8    ↓11 ↑49    ↓48 ↑99   ↓92 

 

Potential ovarian biomarkers of effect for each exposure regime were selected based on fold difference from 

control group expression levels, functional significance in the ovary, or if originating from blood (Table 3). 

Among these potential biomarkers three were down-regulated in all exposure groups; trimethyllysine 

dioxygenase (TMLH), Keratin, type II cytoskeletal 8 (KRT8), and anti Müllerian hormone (AMH). The 

protein calretinin (CALB2) was down regulated in Totalmix and AAmix, but upregulated in Emix. 3-oxo-5-

alpha-steroid 4-dehydrogenase 1 (G8JLS2, also called SRD5A1) was upregulated in Totalmix and Emix, 

Estradiol 17-beta-dehydrogenase 1 (DHB1) was upregulated in AAmix and Emix, and Fragile X mental 

retardation protein 1 homolog (A0A0G2JZV8) and protein Hbb-b1 (A0A0G2JTW9) were upregulated in 

AAmix and PM.  

http://bioinformatics.psb.ugent.be/webtools/Venn/
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Table 3 Potential biomarkers of effect for Totalmix, AAmix, Emix and PM groups. Proteins were chosen based on fold 

change, functional significance and blood provenance.  

  Fold change Protein Name Gene names Protein name (Full) 

Totalmix 

-3.93 CALB2 Calb2  Ca l retinin 

-2.53 KRT8 Krt8  Keratin, type II cytoskeletal 8 

-1.71 D3ZK97 H3f3c  His tone H3 

-1.71 AMH Amh  Anti  Mül lerian hormone 

-1.71 ADA Ada  Adenosine deaminase 

-1.66 D4A409 Lama1  Laminin, alpha 1 

-1.63 TMLH Tmlhe  Trimethyllysine dioxygenase, mitochondrial 

-1.60 H31 Hist1h31  His tone H3.1 

-1.48 Q59IV9 Esr2  Es trogen receptor 2 beta, isoform CRA_c 

-1.42 D3ZJ08 Hist2h3c2  His tone H3 

4.45 CAH3 Ca3  Carbonic anhydrase 3 

2.18 A0A0G2JSR8 Cyp17a1  Cytochrome P450, family 17, subfamily a , polypeptide 1 

1.92 A0A0G2K8Q1 Apoc3  Apol ipoprotein C-III 

1.75 A0A0G2JW12 C4a  Complement C4 

1.73 G8JLS2 Srd5a1  3-oxo-5-alpha-steroid 4-dehydrogenase 1 

1.63 M0RDM4 LOC680322  His tone H2A 

1.52 G3V679 Tfrc  Transferrin receptor protein 1 

1.51 DHB11 Hsd17b11  Es tradiol 17-beta-dehydrogenase 11 

1.43 H10 H1f0  His tone H1.0 

1.38 A0A0G2K151 Apoe  Apol ipoprotein E 

1.37 AL1A1 Aldh1a1  Retinal dehydrogenase 1 

AAmix 

-2.87 CALB2 Calb2  Ca l retinin 

-2.64 K2C8 Krt8  Keratin, type II cytoskeletal 8 

-1.90 TMLH Tmlhe  Trimethyllysine dioxygenase, mitochondrial 

-1.88 MIS Amh  Anti  Mül lerian hormone 

1.85 GRB2 Grb2  Growth factor receptor-bound protein 2 

1.63 A0A0G2JTW9 Hbb-b1  Protein Hbb-b1 

1.44 D3ZC01 Rbbp5  Protein Rbbp5 

1.33 A0A0G2JZV8 Fmr1  Fragile X mental retardation protein 1 homolog 

1.32 DHB1 Hsd17b1  Es tradiol 17-beta-dehydrogenase 1 

Emix 

-2.08 MIS Amh  Anti  Mül lerian hormone 

-2.08 NC2B Dr1  Protein Dr1 

-1.78 TMLH Tmlhe  Trimethyllysine dioxygenase, mitochondrial 

-1.76 HAT1 Hat1  His tone acetyltransferase type B catalytic subunit 

-1.76 K2C8 Krt8  Keratin, type II cytoskeletal 8 

-1.39 TRFE Tf  Serotransferrin 

-1.35 B1WBQ7 Msh2  DNA mismatch repair protein Msh2 

-1.32 F7EY92 Mbd3  Methyl -CpG binding domain protein 3 (Predicted), i soform CRA_c 

-1.30 STAR Star  Steroidogenic acute regulatory protein, mitochondrial 

-1.21 D4A0S1 Foxl2  Protein Foxl2 

1.72 F1MAN8 Lama5  Laminin, alpha 5, i soform CRA_a 

1.56 DHB1 Hsd17b1  Es tradiol 17-beta-dehydrogenase 1 

1.48 A0A0G2JWD2 Fxr1  Fragile X mental retardation syndrome-related protein 1 
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Table 3 continued 

  Fold change Protein Name Gene names Protein name (Full) 

Emix 
continued 

1.46 G8JLS2 Srd5a1  3-oxo-5-alpha-steroid 4-dehydrogenase 1 

1.41 G3V8D4 Apoc2  Apol ipoprotein C-II (Predicted) 

1.39 CALB2 Calb2  Ca l retinin 

1.20 A0A0G2JU18 Zp2  Zona pellucida glycoprotein 2, i soform CRA_a  

PM 

-2.01 K2C8 Krt8  Keratin, type II cytoskeletal 8 

-1.94 A0A0G2JSW3 Hbb  Hemoglobin subunit beta-1 

-1.80 TMLH Tmlhe  Trimethyllysine dioxygenase, mitochondrial 

-1.94 A0A0G2JSW3 Hbb  Hemoglobin subunit beta-1 

-1.50 MIS Amh  Anti  Mül lerian hormone 

1.75 Q1EG89 Pxn  Myocardial ischemic preconditioning associated protein 7 

1.68 H14 Hist1h1e  His tone H1.4 

1.58 A0A0G2JTW9 Hbb-b1  Protein Hbb-b1 

1.39 A0A0G2JZV8 Fmr1  Fragile X mental retardation protein 1 homolog 

 

3.2 Ingenuity Pathway Analysis (IPA) 

3.2.1 Canonical pathways 

IPA analysis identified 53 canonical pathways for Totalmix, 38 for AAmix, 138 for Emix, and 33 for PM 

using a cut off p < 0.05. Among these, all four exposure groups had nine affected canonical pathways in 

common (mTOR signaling, G2/M DNA damage checkpoint regulation, EIF2 signaling, 14-3-3 mediated 

signaling, protein kinase A signaling, ERK/MAPK signaling, HIPPO signaling, IGF-1 signaling, and 

Regulation of eIF4 and p70S6K signaling) (Figure 1). The pathways with highest ratios (percent of the 

proteins that are present in the pathway) and the pathways with highest z-score (absolute figures) for all 

exposure groups are presented in Figure 2 A-D. 

 

 

 

 

 

 

 

 

 

Figure 1 Venn diagram for canonical pathways. The 

exposed groups had 9 canonical pathways in common 

when all pathways with p < 0.05 were used for analysis.  
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Figure 2 Top 15 pathways (or less if 15 pathways were not identified) with highest ratios (percent proteins of the 

pathway present among the proteins inserted in the IPA) and the 15 pathways with highest z-score (absolute figures). A) 

Totalmix, B) AAmix, C) Emix, and D) PM. Grey: no pattern, blue: down-regulated, orange: up-regulated. The line 

shows the ratio of altered proteins by total pathway proteins.  
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Figure 2 continued 
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3.2.2 Upstream regulation 

For Totalmix, upstream regulation analysis showed 210 molecules with an activation z-score (suppl. 

material, available on request), and some interesting potential regulators emerged. The upstream regulator 

most strongly predicted to be activated was NFKBIA (z-score 2.7). Other activated proteins with a z-score 

above 1.5 were 17β-estradiol, FOXO1, PTEN, AR, dihydrotestosteone, and indomethacin. The most strongly 

upstream regulator predicted to be inhibited was sirolimus, also named rapamycin (z-score -2.8). Examples 

of other interesting upstream regulators predicted to be inhibited with a z-score less than -1.5 were 

tamoxifen, RICTOR, and ESR2. 

For AAmix, fewer molecules were seen in the upstream regulation analysis: 42 molecules had an activation 

z-score (suppl. material, available on request). Among these, the molecule most strongly predicted to be 

activated was RICTOR (activation z-score 2.2) and the one most strongly predicted to be inhibited was 

ERBB2 (activation z-score -2.0).  

Emix had 349 upstream regulators with an activation z-score (suppl. material, available on request). 

RICTOR was the molecule with largest activation z-score (5.0) and MYCN the regulator predicted to be 

most strongly inhibited (-4.3). Examples of interesting molecules with activation z-score above ± 1.5 are 

FSH and genistein.  

There were in all 18 regulators with activation z-scores in PM-exposed ovaries (suppl. material, available on 

request). The highest absolute numerical activation z-scores were found for miR-124-3p (and other miRNAs) 

and LY294002. 

 

4. DISCUSSION 

The results showed three potential biomarkers of effect, TMLH, KRT8 and AMH, which were down-

regulated in all exposure groups. Furthermore, the proteins CALB2, SRD5A1, DHB1, A0A0G2JZV8, and 

A0A0G2JTW9) were differentially expressed in more than one group. IPA analysis identified 9 pathways 

common to all exposure groups, among these the two ovary important pathways mTOR and Hippo signaling.  

4.1 Differentially expressed proteins and potential biomarkers  

In relation to identification of potential biomarker(s) of effect, three proteins were down regulated in all four 

exposure groups; TMLH, KRT8, and AMH. TMLH is the first catalytic enzyme in the carnitine biosynthesis 

pathway (Strijbis et al. 2010). Carnitine plays an essential role in the transfer of long-chain fatty acids into 

mitochondria where they are β-oxidized, and the plasma carnitine levels are age and sex dependent in both 
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rats and humans, suggesting that sex hormones may be involved in its regulation (Vaz and Wanders, 2002). 

Reduced levels of TMLH could indicate that the endogenous production of carnitine is reduced, which may 

then affect fatty acid oxidation. Significantly reduced carnitine levels have been found in women with PCOS, 

and may be associated with hyperandrogenism and/or insulin resistance (Fenkci et al. 2008). This is 

supported by a metabolomics study by Dong et al. (2015) who found reduced levels of carnitine in PCOS 

patients compared to controls. Interestingly, β-oxidation is important for oocyte developmental competence 

(Dunning and Robker, 2012), and addition of carnitine to cultured mouse follicles, from preantral to large 

antral stage, increase β-oxidation and improve maturity rates, fertilization rates and blastocyst development 

(Dunning et al. 2011). Carnitine supplementation in vivo has been shown to improve oocyte quality in a 

rodent model of ovarian aging (Miyamoto et al. 2010). Down-regulation of TMLH, therefore, has potential 

as a candidate biomarker of negative impact on ovary function, but further studies are needed, proposedly 

also involving measurement of plasma carnitine levels. Also, it should be kept in mind that de novo synthesis 

of carnitine only represents approximately 25% of total carnitine in mammals, whereas 75% comes from the 

diet (Rebouche, 1992) and that synthesis is primarily in the liver (Vaz and Wanders, 2002), implying that 

changes in ovarian production may be of less importance. 

KRT8 has several functions in the body (Moll et al. 2008) and in relation to reproductive endpoints, KRT8 

knockout mice show embryonic lethality between 12 and 13 dpc (Baribault et al. 1993), likely due to 

defective function of the placental barrier (Jaquemar et al. 2003). Interestingly, KRT8 is-upregulated in 

placentas from smokers (Huuskonen et al. 2016). KRT8 is expressed in the rat and mouse ovary during fetal 

life. Later, KRT8 is strongly expressed in primary follicles during the first two weeks after birth, whereas it 

is weak in growing follicles during the first week and disappears during the second week after birth (Appert 

et al. 1998; Fridmacher et al. 1992). A reduction in KRT8 on PD17 could therefore indicate a reduction in 

primary follicle numbers.  

A third protein down regulated in all exposure groups was AMH. AMH expression is initiated in the 

granulosa cells when primordial follicles are recruited to grow, with highest expression found in pre-antral 

and small antral follicles (Dewailly et al. 2014).  AMH participates in regulation of the follicle reserve by 

inhibiting recruitment of primordial follicles (Durlinger et al. 2002), and in AMH knockout mice, more pre-

antral and antral follicles are seen at the ages of 25 days and 4 months, and at 13 months the ovarian follicle 

pool is almost completely depleted (Durlinger et al. 1999). A corresponding situation is found in women, 

where AMH is reduced with advancing age reflecting the declining size of the primordial follicle pool. To 

date AMH is one of the most promising human biomarkers of ovarian reserve (Broer et al. 2014). In a 

previous study, littermates of the animals used herein were found to have reduced numbers of primordial 

follicles at PD22 after AAmix and PM exposure and at approximately 1 year of age, signs of early 

reproductive senescence were seen, especially in the Totalmix group (Johansson et al. 2016). This may point 
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to an early depletion of the ovarian folliclular reserves and is in line with the observed reduction in AMH at 

PD 17. The utility of AMH as a biomarker for ovarian effects of EDC exposure is therefore highly relevant. 

Calretinin (CALB2) was down regulated in Totalmix and AAmix, and up regulated in Emix.  In the adult 

human ovary, CALB2 is expressed in the germinal epithelium and in androgen excreting cells (Bertschy et 

al. 1998). CALB2 is a useful marker for diagnosing several types of tumours in the female reproductive 

organs (Portugal and Oliva, 2009). Thus the fact that CALB2 was down-regulated after both Totalmix and 

AAmix exposure, suggests that it may be a useful biomarker of anti-androgenic disruption. Furthermore, as 

the animals exposed to Totalmix and AAmix showed signs of reproductive senescence (Johansson et al. 

2016), CALB2 may be useful as an early marker of later life adverse ovarian effects.   

Two other proteins having potential as biomarkers for interrupted ovarian development after exposure to 

anti-androgens were A0A0G2JZV8 and A0A0G2JTW9, both upregulated in AAmix and PM. Furthermore, 

the protein SRD5A1, which converts testosterone to dihydrotestosterone, was upregulated in Totalmix and 

Emix. This indicates that the chemicals present in Emix may affect androgen synthesis, and increased level 

of SRD5A1 has been associated with PCOS (Vassiliadi et al. 2009). It would be of value to further 

investigate these proteins as potential biomarkers of effect.  

4.2 Subtle  effects on the ovarian proteome following AAmix and PM exposure  

Based on our previous study where we saw effects of exposure on primordial follicle numbers in AAmix and 

PM groups (Johansson et al. 2016), we expected to see more marked changes to protein expression in these 

two groups compared to the other mixture groups. Surprisingly, dysregulation of proteins was less 

pronounced in the AAmix group than the other exposure groups, with no significantly affected proteins at 

FDR correction levels of 5 and 10%. In the PM group, dysregulation of proteins was seen at a FDR 

correction level of 5%. However, much fewer proteins were affected than in the Totalmix or Emix groups. 

Notably, one of the drawbacks with shotgun proteomics is that only the most abundant proteins are 

quantified (Cayer et al. 2016). However, the most abundant proteins are not necessarily the most important 

with respect to the biological effects caused by chemical exposure. The lower numbers of affected proteins 

found in AAmix and PM compared to Totalmix and Emix merely implies that the most abundant proteins 

were less affected. It is therefore possible to miss potential biomarkers of effect. In this study we chose to use 

a non-conservative approach, emphasizing fold change and previously known physiological significance in 

female reproduction more than the FDR cut-off levels. If a potential biomarker is found, further studies have 

to include confirmation of the findings and thereby identification of false positives. Strategically, it is better 

to include more potential biomarkers in the screen, as the irrelevant ones are likely to be sorted from the 

relevant in the confirmation process.  
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The ovary is a plastic organ undergoing dramatic changes during the menstrual/estrous cycle in adult 

individuals and also during pre-pubertal development (Picut et al. 2015). In Johansson et al. (2016) the 

exposure-associated reductions in primordial follicle numbers were observed at PD22, whereas in the present 

study the ovaries from PD17 animals were examined. Due to the rapid progression of ovarian development 

around this age, five days is a relatively long time allowing for significant changes in the pre-pubertal ovary. 

During the time interval from approximately PD17 to PD22 the estradiol negative feedback system is 

initiated, contributing to decline in FSH/LH levels, and circulating prolactin and inhibin B concentrations 

increase. On a histological level apoptosis of granulosa cells and atresia of follicles is initiated after PD21 

(Picut et al. 2015). This could be part of the explanation for the relatively small effects seen in the PD17 

AAmix and PM exposed proteomes. Another more likely possibility is that the reduction in ovarian oocyte 

pool identified at PD22 occurred much earlier in development, and at the time of proteomics investigation 

the proteomes did not express any changes which could explain the reduction. Exposure covered several 

sensitive developmental windows, such as primordial germ cell migration and gonadal sex determination, 

meiosis, and primordial follicle assembly, which are all sensitive to chemical insult (Chapter 2).  

4.3 Affected pathways and upstream regulators  

Within the ovary, the spatial environment may be just as important for follicle activation as hormonal 

signaling (Woodruff and Shea, 2007). The Hippo signaling pathway is involved in regulation of follicle 

development and defects in Hippo signaling genes are associated with POI, PCOS, ovarian follicle reserve, 

and ovarian tumorigenesis (Hsueh et al. 2015). In Totalmix, the Hippo signaling pathway was inhibited 

(negative z-score) indicating that regulation of follicle development might be disrupted.  

Another pathway in common for all groups was mTOR, which involves the two complexes mTORC1 and 

mTORC2 (Weber and Gutmann, 2012). Activation of mTORC1 leads to primordial follicle recruitment, but 

this effect can be stopped by rapamycin which affects mTORC1 (Adhikari et al. 2010). Interestingly, in the 

upstream analysis for Totalmix, rapamycin was predicted to be inhibited, meaning that the pathway acted as 

if rapamycin was not present, thus activation of the primordial follicle pool would be possible. Also, the 

Totalmix was composed of chemicals with both estrogenic and anti-androgenic potentials and examples of 

other upstream regulators predicted in Totalmix were β-estradiol, androgen receptor, dihydrotestosterone, 

and indomethacin. The chemicals in Totalmix can be expected to act in ways similar to several of these 

molecules.  

In the Emix-exposed ovaries genistein emerged as an activated upstream regulator. Genistein is a known 

estrogen (Vitale et al. 2013) and this indicates that the Emix affected downstream pathways in an expected, 

estrogenic way.  
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In summary, this study showed that exposure to representative mixtures of EDCs affect the pre-pubertal rat 

ovarian proteome to various degrees. Three proteins with potential as biomarkers of effect on ovary 

development were affected in all four exposure groups: TMLH, KRT8 and AMH. The latter demonstrates 

biological consistency of the approach taken since it is already employed as a biomarker for ovarian reserve. 

Further work investigating their potential role as biomarkers is warranted.  
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ABSTRACT 

Androgens play an important role in females as well as males, thus dysregulation of androgen-sensitive 

signaling pathways can have negative consequences for fertility in both sexes. In a previous study we found 

that perinatal exposure to a mixture of anti-androgenic pesticides and phthalates (AAmix) can cause a 

reduced follicle pool in pre-pubertal female rats. In the present study, we aimed to further investigate the 

etiology of this phenotype, as well as discerning whether the pesticides or the phthalates are the main drivers 

of the effect.  Explanted fetal rat ovaries collected around the day of birth were cultured in the presence of 

AAmix, or sub-mixtures of pesticides (PEmix) or phthalates (PHmix), as well as the di-(2-ethylhexyl) 

phthalate (DEHP)-metabolite mono(2-ethylhexyl)phthalate (MEHP) tested separately. No significant effects 

were observed in AAmix-exposed and PHmix-exposed ovaries as assessed by gene expression analysis and 

morphological assessments of the oocytes. However, ovaries exposed to PEmix displayed a significant 

reduction in primordial follicles. Although preliminary, these data suggests that some effects caused by 

selected pesticides are alleviated when they are present in mixtures with the phthalates, but the mechanisms 

behind these interactions remain unknown. Further investigations with appropriate group size are warranted 

in relation to effects on the primordial follicle pool. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 

 

 

81 
 

1. INTRODUCTION 

Androgens are typically referred to as male sex hormones, but it has become evident that they also play an 

important role in females, including maintenance of normal ovary function (Lebbe and Woodruff 2013; 

Prizant et al. 2014). Therefore, dysregulated androgen levels can have negative consequences for fertility, 

which has been observed in women with adrenal insufficiency or PCOS, which causes reduced or increased 

androgen levels, respectively (Lebbe and Woodruff 2013). Also, mice lacking the androgen receptor (AR) 

show irregular estrous cycling, lack of corpora lutea, and are infertile (Sen and Hammes 2010; Shiina et al. 

2006). Thus, androgens play a crucial role in female reproduction and are not simply present as precursor 

molecules for estrogen synthesis.  

It is generally accepted that females have a set number of eggs around the time of birth, the so called ovary 

reserve, which is established during fetal life in humans (Grive and Freiman 2015), and neonatally in mice 

and rats (Pepling 2012). The establishment of the follicle pool is a delicate process occurring over a 

prolonged period and involves breakdown of germ cell cysts, programmed cell death, and assembly of 

primordial follicles (Pepling 2012). Disruptions to any steps of this process can reduce the total number of 

primordial follicles and consequently affect reproductive function and physiology later in life. It has become 

increasingly clear that some EDCs can negatively impact follicle assembly in rodents, including di-(2-

ethylhexyl) phthalate (DEHP) (or its metabolite mono(2-ethylhexyl)phthalate (MEHP)) (Hannon et al. 2015; 

Zhang et al. 2014) and vinclozolin (Nilsson et al. 2012). Prenatal exposure to either DEHP or vinclozolin 

also causes reduced primordial follicle numbers in both pre-pubertal and adult mice, respectively (Nilsson et 

al. 2012; Zhang et al. 2015), attesting to the fact that more efforts should be spent on how female 

reproductive function is affected by EDCs.  

We recently showed that in utero exposure to a mixture of anti-androgenic EDCs can reduce the follicle 

reserve in pre-pubertal rats (Johansson et al. 2016). However, as that study focused primarily on effect 

endpoints, our present study was carried out to better understand the potential mechanisms that underpin the 

late life phenotypes, and to better understand what components of the chemical mixtures are most likely to 

drive the effects. To achieve this, explanted neonatal ovaries were exposed to the original mixture (AAmix), 

as well as sub-mixtures of pesticides (PEmix), phthalates (PHmix) and the sole phthalate metabolite MEHP. 

Expression of genes known to be important for ovary development and function was investigated as well as 

histological evaluation of ovary sections. As this was a pilot study, only one exposure dose per mixture was 

included, and the group size was small (n = 2-4). 
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2. MATERIALS AND METHODS 

2.1 Chemicals  

Test compounds were: di-n-butyl phthalate (DBP) (purity >99.0 %, CAS no. 84-74-2), di-(2-ethylhexyl) 

phthalate (DEHP) (purity >99.5 %, CAS no. 117-81-7), mono(2-ethylhexyl)phthalate (MEHP) (purity 97%, 

CAS no. 4376-20-9),  vinclozolin (purity >99.5 %, CAS no. 50471-44-8), prochloraz (purity >98.5 %, CAS 

no. 67747-09-5), procymidone (purity >99.5 %, CAS no. 32809-16-8), linuron (purity >99.0 %, CAS no. 

330-55-2), epoxiconazole (purity >99.0 %, CAS no. 106325-08-8), p,p’-dichlorodiphenyl-dichloroethylene 

(p,p’-DDE) (purity >98.5 %, CAS no.72-55-9); all purchased from VWR - Bie & Berntsen (Herlev, 

Denmark).  

2.2 Mixtures 

DMEM/F-12 (1:1) (1x) F-12 nutrient mixture (HAM) media (Thermo Fisher Scientific), Gentamicin 

(1:1000, Millipore, Thermo Fisher Scientific), Fungizone (1:100, Millipore, Thermo Fisher Scientific), and 

10% fetal bovine serum (Catalog no. F6765, Sigma Aldrich) was used for culture.  

Stock solutions were prepared in DMSO and added to the media to reach a combined concentration of 100 

µM in the AAmix. The phthalate mix (PHmix) contained DBP and DEHP, and the pesticide mix (PEmix) 

vinclozolin, procholoraz, procymidone, linuron, epoxiconazole, and p,p'-DDE at concentrations listed in 

Table 1. Since MEHP is an active metabolite of DEHP it was tested separately at concentration 

corresponding to DBP and DEHP (Table 1). The ratio between the chemicals corresponded to the ratios used 

in previous in vivo studies (Axelstad et al. 2014; Christiansen et al. 2012). DMSO was added at equal 

concentrations to all exposure and control groups.  

 

Table 1 Chemical composition of the different mixtures. Ratios between the chemicals correspond to the ratios in 

(Axelstad et al. 2014; Christiansen et al. 2012). 

  Mixtures in molar (µM) 

Compound Aamix Phthalate mix Pesticide mix MEHP 

DBP 14.7 14.7 

 
 35.6* 

  DEHP 20.9 20.9 
 Vinclozolin 12.9 

 
12.9 

 Prochloraz 15.2 
 

15.2 
 Procymidone 21.6 

 

21.6 

 Linuron 1.0 
 

1.0 
 Epoxiconazole 12.4 

 

12.4 

 p,p'-DDE 1.3   1.3   

Sum 100 35.6 64.4 35.6 

*Corresponding to the sum of DBP and DEHP concentrations  
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2.3 Animals and ex vivo fetal ovary culture 

Six time-mated Sprague Dawley rats (Taconic Europe, Ejby, Denmark) were delivered two weeks into 

pregnancy. Fetal age was designated as noon of the day following overnight mating corresponding to 0.5 

days post coitum (dpc). Fetuses were collected at 21 or 22 dpc and dissected directly into growth medium.  

The ovaries were collected with the top part of the fallopian tubes (infundibulum and fimbrae) attached. For 

culturing, the ovaries were placed on top of a filter (MF
TM

 Membrane Filters, 0.45um HA, HAWP02500, 

Merck Millipore Ltd.) and floated on top of 400µl of growth medium containing chemicals in 24-well plates 

(Costar, Corning Incorporated). The ovaries were cultured at 37 °C, 5 % CO2 for 72 h, with medium changed 

after 24 and 48 h. After 72 h, ovaries were snap-frozen and stored at -80 ºC.  

Animal experiments were performed under conditions approved by the Danish Animal Experiments 

Inspectorate (Council for Animal Experimentation) and by the in-house Animal Welfare Committee.  

2.4 Gene expression  

Relative gene expression was analyzed by RT-qPCR as previously described (Svingen et al. 2015). In short, 

ovaries were pooled together in groups of three, total RNA isolated using a RNeasy Micro Kit (Qiagen, 

Hilden, Germany) and quantified on a NanoDrop-1000 Spectrophotometer, then cDNA was synthesized 

from 500 ng RNA  in the presence of Random Primer mix (New England Biolabs, Ipswich, MA, USA) using 

an Omniscript kit (Qiagen, Hilden, Germany) as per manufacturer’s instructions. RT-qPCR reactions were 

performed in duplicates on a 7900 HT qPCR system (Applied Biosystems, Foster City, CA, USA) in 20 µl 

reactions containing TaqMan Fast Universal Master mix (Life Technologies, Carlsbad, CA, USA), 3 µl 

diluted (1:20) cDNA and gene-specific TaqMan assays (Life Technologies Europe BV, Naerum, Denmark): 

Ar (Rn00560747), Trpm2 (Rn00562081), Ddx4 (Rn01489814), , Fst (Rn00561225), Inhba (Rn01538592), 

Inhbb (Rn01753772), Inha (Rn00561423), and Pcna (Rn01514538), Sycp3 (RN 01648688). Foxl2 was 

designed in house (forward primer: ACG AGT GCT TCA TCA AGG TG, reverse primer: GGT AGT TGC 

CCT TCT CGA AC, probe: TAG TTG CCC TTG CGC TCG CC) and amplification efficiency of the FoxL2 

assay was tested to be 98% using a 6 serial 10-fold dilution in triplicates. Data were analyzed by the 

comparative Ct-method normalized with the geometric mean of verified reference genes Rps18 

(Rn01428913) and Sdha (Rn00590475). Intra-assay variability of technical replicates was < 0.5 cycles. 

2.5 Histological evaluation of germ cell and follicle numbers  

Ovaries cultured for 72h were fixed in 10% formalin for 1h and processed for paraffin embedding. The 

ovaries were sectioned at 5 µm and stained with hematoxylin and eosin (H&E) following standard 

procedures. The slides were evaluated for the presence or not (yes = 1 / no = 0) of germ cell cysts, single 

germ cells, and primordial follicles on every third section by a person blinded to exposure group. For each 
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germ cell category, the total numbers of sections denoted with a ‘yes’ were added and the number divided 

with the total number of sections, giving the percentage of sections with the specified germ cell 

developmental stage. After this the blinding key was revealed. 

2.6 Statistical analysis 

Unpaired, two-tailed Student’s t-test was used to compare control group with exposure group in the 

statistical software GraphPad Prism 5 (GraphPad Software, San Diego California, USA). As this was a pilot 

study, a less conservative statistical approach with no correction for multiple comparisons was applied. 

 

3. RESULTS 

In this study, neonatal ovaries were investigated for effects after exposure to EDCs with anti-androgenic 

potentials for 72 h in culture. Due to logistical restraints concerning experimental setup, conduction of two 

separate experiments was required to get a sample size fit for this pilot study. Unfortunately the age of the rat 

pups therefore differed with approximately 24 h between the two experiments; in Ex1 pups were killed a few 

hours after birth, and in Ex2 they were extracted with cesarean section the day before birth.  

3.1 Effects of exposure  

The pooled data from Ex1 and Ex2 did not show any effects on gene expression (Figure 1). To investigate if 

there were differences between the two groups, data from control and AAmix groups in the two experiments 

(n = 2 per group) was compared. A significant effect was seen on expression of Pcna when comparing the 

AAmix groups of Ex1 (AAmix 1) and Ex2 (AAmix 2) (p = 0.02), and a tendency was seen for Ar (p = 0.06) 

and Sycp3 (p = 0.06) for the same groups (Figure 2). No significant effects were seen in the controls or on 

the expression of the reference genes Rps18 and Sdha. 
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Figure 1 (A-J) Gene expression results from the pooled analysis of Ex1 and Ex2. No statistically significant effects 

were seen on gene expression after exposure to AAmix, PHmix, PEmix and MEHP. Mean ±SEM. 
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Figure 2 Comparison of gene expression results between Ex1 and Ex2. A) A significant effect was seen on expression 

of Pcna when comparing the AAmix groups (p = 0.02). B-C) A tendency towards effect on expression of Ar and Sycp3 

was seen between the AAmix groups (p = 0.06), (n = 2 per experiment, *p < 0.05, 
#
p < 0.1). Mean ±SEM. 

 

Histological evaluation of ovary sections showed a significant reduction of primordial follicles after 

exposure to PEmix (p = 0.01) and a slight, but not statistically significant, reduction after MEHP exposure (p 

= 0.07). No effects were seen after exposure to AAmix or PHmix (Figure 3A). No effect was seen on single 

germ cells or germ cell cysts (Table 2). To ensure that the effect seen on primordial follicles after PEmix 

exposure was not due to difference in age of the ovaries, data from Ex2 only was evaluated. This showed that 

a reduction in primordial follicles in PEmix compared to controls was still present (p = 0.008) (Figure 3B). 

Comparison of controls and PEmix exposed ovaries in Ex1 was not possible since group size was too small 

when Ex2 animals were removed. Example of a germ cell cyst, single germ cell and primordial follicle can 

be seen in Figure 4A-B. 
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Figure 3 Sections/total number of sections per animal (%) is shown. Mean ±SEM. A) Presence of primordial follicles 

was significantly reduced after PEmix exposure (p = 0.01) and there was a tendency towards  reduction after MEHP 

exposure (p = 0.07) (n = 4 (control), n = 2 (exposed)). B) Data on primordial follicles from control and PEmix from Ex2 

only were also tested separately to ensure that the effect seen was not due to age differences. The results showed  that 

the effect was still present (p = 0.008) (n = 2). Control was compared to exposed groups by use of students t -test, (*p < 

0.05, **p < 0.01, 
#
p < 0.1). 

 

  
N 

Naked germ 

cells 

Germ cell 

cysts 

Primordial 

Follicles 

Control  4 99 67 72 

Aamix 2 100 51 84 

PEmix 2 100 81 12* 

PHmix 2 100 58 69 

MEHP 2 100 86 30 
 

Table 2: Histological analysis of ovaries after EDC 

exposure. The percentage of sections per animal with 

presence of the three different oocyte classes was 

evaluated for each animal. A significant reduction in 

percentage of section with primordial follicles was seen in 

PEmix (t-test, (* = p < 0.01) 

 

 

 

 

During the scoring process, recruited follicles (primary and secondary) were found in some samples. These 

ovaries also had few germ cell cysts compared to other ovaries. When the blinding key was removed, all the 

ovaries with presence of recruited follicles were from Ex1. In Figure 4C a section from an Ex1 ovary with 

presence of recruited follicles is shown. 
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4. DISCUSSION 

 4.1 AR antagonism and effects on follicle assembly 

In utero exposure to the AR antagonist flutamide has been shown to increase the number of germ cell cysts 

and reduce the number of follicles in fetal pig ovaries (Knapczyk-Stwora et al. 2013). Since the  majority of 

pesticides in the PEmix are thought to act mainly as AR antagonists (Orton et al. 2011; Vinggaard et al. 

1999), except prochloraz and epoxiconazole acting primarily via testosterone inhibition (Kjærstad et al. 

2010), it can be speculated that AR antagonism underpins the reduction in primordial follicles that we 

observed in the cultured rat ovaries. Interestingly, vinclozolin has been shown to reduce oocyte numbers in 

rat ovaries cultured from 4-14 days post partum (dpp), albeit only at a high concentration of 500 µM; at 

lower concentrations (50-200 µM) no effects were seen  (Nilsson et al. 2012). Here we used 12.9 µM 

vinclozolin which is almost four times lower than the lowest no effect dose of 50 µM used by Nilsson et al. 

(2012). It is therefore unlikely that vinclozolin alone drives the reduction in primordial follicle numbers.  

a b 

A B 

C Figure 4 Histological sections from neonatal 

ovaries. A) The arrow points towards a germ 

cell cyst with five germ cells. A white line 

has been inserted around the cyst to highlight 

its borders. B) Arrow ‘a’ points towards a 

primordial germ cell, and arrow ‘b’ towards 

a single germ cell. C) Recruited follicles 

(secondary) are shown in this picture 

(arrows). Recruited follicles were only seen 

in animals from Ex1, i.e. explanted after 

birth. All pictures are taken with a 63x 

original magnification. 
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Only a few studies have investigated the effect of prochloraz on females, but in fish it has been shown to 

cause several adverse effects. For instance, prochloraz exposure can reduce the number of eggs laid by the 

fathead minnow (Ankley et al. 2005), it triggers oocyte maturation in the rainbow trout (Monod et al. 2004; 

Rime et al. 2010), and can reduce estradiol levels without affecting testosterone levels in cultured brown 

trout ovaries (a Marca Pereira et al. 2011). Although making direct comparisons between the reproductive 

systems of fish and mammals can be problematic, these results nevertheless indicate that prochloraz can 

adversely affect oocytes across animal phyla.  

Although there are no studies showing that procymidone, epoxiconazole, nor p,p’-DDE can adversely affect 

oocyte development in mammals, procymidone has been shown to have estrogenic effects by activating 

mitogen-activated protein kinase (MAPK) in both MCF-7 breast carcinoma cells (Radice et al. 2006) and in 

rainbow trout hepatocytes (Radice et al. 2004). MAPK has important oocyte-specific functions, such as 

resumption of meiosis and meiotic spindle formation (Pomerantz and Dekel 2013). Epoxiconazole also seem 

able to interfere with female development causing masculinization of female rats after fetal exposure (Taxvig 

et al. 2007), as well as triggering oocyte maturation in rainbow trout (Monod et al. 2004).   

Herein, the concentrations of the individual compounds were relatively low and the effect seen in PEmix-

exposed ovaries may likely have been caused by the combined effect of two or more pesticides with similar 

effects. Mixture effects showing dose addition have previously been shown in vivo in male rats for several of 

the compounds present in the PEmix (Hass et al. 2007; Hotchkiss et al. 2010; Jacobsen et al. 2010). 

However, to determine if mixture effects - possibly by way of dose addition - did occur in the explanted 

ovaries, individual testing of the compounds would be necessary.  

It is surprising that no significant effects in AAmix-exposed ovaries were observed, which comprised both 

PEmix and PHmix. It is possible that there were interactions between the pesticides and phthalates in the 

AAmix, but without further experimentation, this remains an unsupported conjecture. Nevertheless, there are 

examples where similar phenomena have been seen in in vivo mixture studies, where one mixture on its own 

causes effect, but when combined with a second mixture, the effect disappears (Johansson et al. 2016). 

4.2 The PHmix and lack of effect 

No significant effects were seen after exposure to the PHmix containing DBP and DEHP. Previous studies 

using mouse in vitro ovary cultures have shown that DEHP can affect follicle assembly (Mu et al. 2015; 

Zhang et al. 2014).  The concentrations used in the different studies are in the same dose-range as used 

herein, and both Zhang et al. (2014) and Mu et al. (2015) observed effects of DEHP at concentrations lower 

than the PHmix concentration (35.6 µM). Thus, differences in concentrations cannot explain the lack of 

effect in our ex vivo culture.  
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In intact animals, effects caused by DEHP exposure are thought to be due to the activity of its metabolite 

MEHP. Biotransformation from DEHP to MEHP is likely to occur at a very low rate, or not at all, in 

transplanted ovaries, but this remains uncertain until more knowledge is obtained about ovarian metabolic 

capacity (Bhattacharya and Keating 2012). Nevertheless, we exposed ovaries to MEHP alone and found a 

tendency towards reduction in primordial follicles (p = 0.07). The lack of statistical significance may be due 

to the small group size (control n = 4, exposed n = 2) and a relatively crude method for counting oocytes and 

will be repeated in follow-up studies. These preliminary results are in agreement with Hannon et al. (2015), 

who also saw no effects on early folliculogenesis following DEHP exposure, but significant effects following 

MEHP exposure.  

4.3 The importance of developmental age of the ovary 

During development, transcriptional regulation is very dynamic and can change significantly during short 

windows of time, including in the developing ovary (Lawson et al. 2011; Lea et al. 2016). This fact must be 

considered when comparing data from differently staged tissues. In this study two separate experiments were 

conducted using rat ovaries collected immediately before and after birth. Although only representing one day 

difference in developmental age, it is possible that parturition itself can affect the ovarian transcriptome. 

When comparing the transcript levels of selected genes between control samples from the two groups, no 

changes to gene expression levels were evident. At the histological level, however, the postpartum ovaries 

had recruited follicles present and very few germ cell cysts. This was not observed in the ovaries collected 

from the 21 dpc fetuses. These observations are in line with the fact that  ovaries from newborn mice contain 

almost zero single oocytes/primordial follicles; a number that changes to almost 100% of the oocytes being 

single/primordial five to six days after birth (Pepling and Spradling 2001). 

Minor differences to ovarian gene expression levels were seen between the differently staged ovaries that 

had been exposed to AAmix for 72 h. There were no differences in the control ovaries, but further studies are 

needed to investigate any potential effects.   

4.4 Histological evaluation – a crude approach 

For this study we chose not to count oocytes and follicles, but rather evaluate presence or absence of three 

different stages. This was due to the time limitations and difficulties in identification of the oocytes in H&E 

sections. However, both H&E staining (Hannon et al. 2015; Kezele and Skinner 2003; Zhou et al. 2015) and 

other staining methods such as immunohistochemical staining for oocyte markers (Pepling and Spradling 

2001) have previously been used successfully for oocyte and follicle counting at this age.  
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5. CONCLUDING REMARKS 

The aim of this preliminary study was to investigate if AAmix could affect follicle assembly in neonatal rat 

ovaries and if a potential effect was caused by phthalates or pesticides, or both. Surprisingly, AAmix did not 

affect follicle assembly, whereas the PEmix, a submix of AAmix, reduced the number of primordial follicles. 

Also, no effects were seen after PHmix exposure, but exposure to MEHP showed a tendency towards 

reduction in primordial follicles. This indicates that AAmix may not interfere with primordial follicle 

assembly, but should be interpreted with care as the study involved few biological replicates. It would be 

most valuable to perform a larger study on MEHP to better understand the molecular mechanisms driving 

potential effects on the germ cell population.  
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Chapter 6: In Closing 

 

6.1 Overview  

 

A bullet-point summary of the main findings from chapter 2-5 is given below. 

 

Chapter 2:  

Chemical exposure and ovarian dysgenesis: Sensitive developmental windows 

 

 The aim was to synthesize current knowledge and to define knowledge gaps within the defined research 

area.  

 Four potentially EDC-sensitive female developmental stages and effects were identified: 

1) Primordial germ cell proliferation and gonadal sex determination: PM can affect primordial germ cell 

proliferation, and tamoxifen and BPA seem able to disturb the pathways governing the balance between 

male and female cell fates. 

2) Meiosis: BPA, DEHP, PM and indomethacin all seem able to disturb meiosis. BPA probably exerted 

its effect via ERβ antagonism and the other chemicals via not yet identified mechanisms.  

3) Follicle assembly: BPA and DEHP (or its metabolite MEHP), genistein and DES are all able to affect 

follicle assembly, but the precise mechanism of action is not known. 

4) Early folliculogenesis: BPA and DEHP seem able to increase recruitment of first wave follicles, 

potentially causing earlier reproductive senescence.   

 

Chapter 3:  

Perinatal exposure to mixtures of endocrine disrupting chemicals reduces female rat follicle reserves and 

accelerates reproductive aging 

 

 The aim was to investigate how perinatal exposure to mixtures of EDCs affects the ovary in young and 

senescent rats and apply a targeted approach to identify potential biomarkers. 

 In the pre-pubertal rats, reduction in primordial follicles was found after AAmix and PM exposure.  

 In the 1 year old rats, Totalmix caused a higher incidence of irregular estrous cycles. Reduced ovary 

weights were seen in Totalmix, AAmix, and PM exposed groups. Also, the incidence of rats with 

complete absence of CL was increased after AAmix and PM exposure. The mean number of CL, which 

was positively correlated to ovary weight, was reduced in Totalmix200 and PM groups. 
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 Together the results resemble premature ovarian insufficiency in humans and point to a possible role of 

EDCs in the pathogenesis of this disorder. 

 

Chapter 4:  

Mixtures of endocrine disrupting chemicals alter the rat ovary proteome:  a search for early biomarkers of 

late life adverse effects 

 

 The aim was to apply a non-targeted approach to investigate how the rat ovary proteome was affected by 

exposure to mixtures of EDCs and if one or more differentially regulated proteins could be potential 

biomarkers of effect. 

 Regardless of what FDR cut off level was used, Emix showed the largest number of dysregulated 

proteins, whereas proteins in AAmix ovaries were least affected. 

 Among proteins chosen as potential biomarkers of effect, three were in common for all exposure groups: 

Trimethyllysine dioxygenase (TMLH), Keratin, type II cytoskeletal 8 (KRT8), and anti müllerian 

hormone (AMH). Also, proteins involved in androgen signaling were affected. 

 The three proteins common for all groups, and proteins differentially regulated after exposure to the 

AAmix or Emix should be further studied to elucidate if they are potential biomarkers of adverse effects 

on the developing ovary causing late life effects. 

 

Chapter 5:  

Endocrine disrupting chemicals with anti-androgenic potential reduce the number of primordial follicles 

and disturb follicle assembly in neonatal rat ovary explants: A pilot study 

 

 The aim was to follow up on the results found in Chapter 3 by investigating, by a targeted approach, if 

the AAmix perturbed follicle assembly in the neonatal rat ovary in explanted ovaries, and if it was 

possible to deduce if phthalates or pesticides were driving a potential effect. 

 Histological evaluation showed significant reduction of primordial follicles after PEmix exposure and a 

reduction, however not significant, after MEHP exposure.  

 This indicates that the pesticides in AAmix, and likely also MEHP, affects follicle assembly and further 

studies are needed to investigate the mechanisms driving the effects. 
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6.2 Discussion 
 

6.2.1 Morphological biomarkers of effect 

In Chapter 3 follicular counts showed a reduced ovary reserve in histological sections from ovaries of pre-

pubertal (PD22) rats after PM and AAmix exposure. PM has been shown to affect the ovary reserve in two 

other rodent in utero exposure studies. Dean et al. (2016) found a reduced number of primordial follicles in 

rats after PM exposure from 13.5-21.5 dpc, whereas Holm et al. (2016) found a reduced number in mice after 

exposure from 7 dpc to birth. Based on these recent studies, the effects seen in Chapter 3 may be caused by 

delayed meiosis (Dean et al. 2016), or inhibited proliferation of primordial germ cells (Holm et al. 2016), or 

both. However, since PM exposure was initiated at 7 dpc and continued until weaning, several sensitive 

developmental windows were included (Lea et al. 2016; (Chapter 2)), such that disruption to postnatal 

processes such as follicle assembly and early folliculogenesis cannot be excluded. 

The effect seen on the ovary reserve was most pronounced in animals exposed to AAmix. Two of the 

compounds in the AAmix have previously been shown to affect the follicle pool. Vinclozolin reduced 

primordial follicle numbers in adult mice after prenatal exposure (Nilsson et al. 2012), and DEHP decreased 

the incidence of primordial follicles in ovaries of pre-pubertal mice exposed during fetal life (Zhang et al. 

2015) or postnatally (Zhang et al. 2013). Both vinclozolin and DEHP, as well as its metabolite MEHP, have 

been shown to interfere with germ cell numbers in explanted ovaries from newborn rodents (Hannon et al. 

2015; Mu et al. 2015; Nilsson et al. 2012; Zhang et al. 2014; Zhou et al. 2015). We therefore wanted to 

investigate if the reduced number of primordial follicles after AAmix exposure could be explained by 

disruption of follicle assembly. This was addressed in Chapter 5 where neonatal ovaries were cultured in 

vitro and exposed to AAmix or subgroups of pesticides (PEmix), phthalates (PHmix), or MEHP alone. 

In Chapter 5 we found a significant reduction in primordial follicles in the PEmix group and a tendency 

towards effect in the MEHP group. Unexpectedly, no effects were seen in the AAmix group, which could be 

due to the effect on ovary reserve seen in Chapter 3 occurring earlier, or due to the phthalates and pesticides 

affecting each other and thereby the response (see 6.2.5 Mixture exposure). It should be carried in mind that 

this was a preliminary study with low power, having a high risk of false negatives.  

In humans, reduced ovary reserves can cause premature ovarian insufficiency, where reproductive function is 

lost before the age of 40 (Cox and Liu 2014). Based on the findings in Chapter 3, a reduced follicle pool in 

pre-pubertal animals may be a potential marker for shortened reproductive lifespan after EDC exposure. 

However, the link between ovary reserves and late life effects is not clear, as no effects were seen on the 

follicle reserve after Totalmix exposure, despite showing signs of earlier reproductive senescence at 1 year of 

age. Furthermore, using follicle counts as a biomarker is not optimal, with the method having some 
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drawbacks, the most important being that follicle count is time consuming and labor intensive using the 

currently available methods. Also comparisons of values between studies are not recommended (Tilly 2003). 

A molecular marker would therefore be of great value.  

 

6.2.2 Molecular biomarkers of effects 

In Chapter 3, 1 year old animals showed signs of early reproductive senescence, corresponding to early 

menopause in women. There were no signs of pituitary dysregulation, and plasma levels of the pituitary 

hormones FSH and LH were unaffected, which led us to hypothesize that the ovaries were directly affected 

and additional studies focused on the ovary were conducted.  

Plasma levels of the ovarian hormones AMH and inhibin A were measured. The concentration of AMH was 

below the limit of detection, and could therefore not be assessed (results not shown), and no effects were 

seen on inhibin A levels. The expression level of Amh, Bmp15, Ddx4, Fshr, Fst, and Lhr were also 

investigated. No effects were seen on Amh, Fshr, Fst or Lhr, indicating that at least the ovarian cellularity 

was relatively unaffected by exposure. The germ cell-specific gene Ddx4 was significantly reduced in the 

PM group though, and there was a tendency towards downregulation of Bmp15, indicating that the overall 

number of germ cells was reduced. PM has previously been found to reduce Ddx4 expression in female 

ovaries after early fetal exposure, and in the same study the number of primordial follicles was reduced at 7 

weeks of age (Holm et al. 2016) which supports the findings in Chapter 3. As no effect was seen on 

expression of Ddx4 or Bmp15 in the AAmix exposed group, where the most significant effect on follicle 

reserve was seen, it is likely that the effect on Ddx4 was specifically due to PM, as also seen by Holm et al. 

(2016). Interestingly, sheep exposed to androgen (testosterone propionate)  during fetal life show increase in 

DDX4 protein and increased numbers of germ cells enclosed in follicles (Comim et al. 2015), and in human 

fetal ovaries exposed to smoking, increase in DDX4 positive oocytes and increase in primordial follicle 

numbers are seen in the second trimester (Fowler et al. 2014). Based on this, and on the fact that the effect 

seen after PM exposure was relatively weak, Ddx4 and Bmp15 would not be considered sensitive biomarkers 

of effect on the follicular reserve after a general EDC exposure. 

In Chapter 4, investigation of protein expression was conducted by proteomics and three proteins, TMLH, 

KRT8, and AMH were found to be significantly dysregulated in all exposure groups. It would be interesting 

and relevant to further investigate the effects on these proteins and the pathways they are part of, to see if 

they are indeed affected after EDC exposure and if there is a direct relationship with effects on reproductive 

senescence. If so, one or several proteins could prove to be good effect biomarkers for early disruption of 

ovary development causing later life  adverse effects. CALB2 could also be worth studying further, since it is 

used as a tumor marker in female reproductive organs (Portugal and Oliva 2009) and could be a potential 
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biomarker of adverse effects after exposure to EDCs with primarily anti-androgenic potential, as it was 

down-regulated in both Totalmix and AAmix.  

In Chapter 5, neonatal ovaries were exposed to mixtures of EDCs with anti-androgenic potentials for 72 h in 

culture. Due to experimental constraints, two separate experiments (Ex1 and Ex2) were conducted and 

pooled. For the second experiment the rats proved to be mislabeled so that we were forced to conduct 

caesarian sections rather than collect ovaries from partitioned animals. Hence, the ovaries from these pups 

were one day younger than Ex1. At the gene expression level, a significant difference between Ex1 and Ex2 

was only seen for Pcna expression when comparing the AAmix groups. As statistically significant effects 

were not seen on other genes, we pooled the data and ran analyses, but again, no effects were observed. For 

many of the genes tested, the variability in the control group was high, which makes comparison between 

groups difficult and increases the uncertainty of the results (Crawley 2005). The high variability could be due 

to various factors, not least the low transcript abundance of some of the target genes. But also, when grown 

in culture there is expected to be a more significant variability in tissue cellularity between biological 

replicates, with certain cell types being more susceptible to insult, such as germ cells, as well as the 

mesenchyme expanding more than during in vivo conditions. Finally, the differences in age likely 

contributed some to the variability even though no statistically significant differences were seen between the 

two experiments. 

The two approaches used have both advantages and shortcomings.  An advantage of the targeted approach is 

that the role of the chosen endpoints in ovary function is largely known, and there are established methods 

for identification. A shortcoming is that many potentially important molecular components can be missed by 

the simple fact that they remain to be characterized. This problem could be solved by use of methods such as 

shotgun proteomics where thousands of proteins are identified. However, a limitation to this approach is that 

only the most abundant proteins are identified, which means that less abundant proteins can go undetected 

even if they are significantly affected by chemical exposure (Cayer et al. 2016). 

 

6.2.3 Females and EDCs  

Within the area of endocrine disruption, male reproduction has been the main focus for many years, 

centralized around the TDS hypothesis (Skakkebæk et al. 2001). Female reproductive health has gained 

much less attention, one of the reasons likely being that female fetal development is considered to occur 

largely independent of sex hormones, and hence not vulnerable to EDC exposure. However, disturbance of 

endocrine functions or tissues are seen in female test animals exposed to EDCs during fetal life and early 

development (Chao et al. 2012; Gámez et al. 2015; Mandrup et al. 2015; Rodríguez et al. 2010; Santamaría 

et al. 2016; Zhang et al. 2013). This indicates that hormones might be more involved in female fetal 
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development than previously anticipated or that functions programming later life endocrine functions are 

affected by exposure. 

In medical research there are examples of illnesses that were viewed as typically male diseases, for example 

cardiovascular disease, which later proved to affect women as well, but with different symptoms (Wenger 

2012). In relation to EDCs, a possible relationship between reproductive effects and exposure appears to be 

more difficult to identify in females than in males due to difficulties in examination and choice of 

appropriate endpoints. However, the consequences of exposure may be harsh in females, such as effects on 

reproductive capacity (Holm et al. 2016; Zhang et al. 2015, Fernández et al. 2010). 

A great challenge working with female reproductive tissues is the constant hormonal and physiological 

changes during the menstrual or estrous cycle (Farage et al. 2009; Goldman et al. 2007). When conducting 

experiments, it is therefore important that endpoints are evaluated at the same stage of menstrual or estrous 

cycling. Changes occurring due to exposure can be similar to one of the natural phases in the cycle and be 

missed if thought of as a normal (Gopinath 2013). Furthermore, evaluation of endpoints during different 

stages of cycling can cause great intra-group variability, which can lead to failure of establishing an effect of 

exposure when it actually exists (Goldman et al. 2007). However, evaluation of endpoints at the same estrous 

stage can be a great logistical challenge as it requires time and flexibility. Females are rarely completely 

synchronized and must therefore be examined on several different days.  

Characterization of estrous cycling itself after chemical exposure can also give important information, but 

can be challenging in relation to determination of cycling stage, as a transition between stages is often 

present, and statistical analysis of data needs to be carefully conducted not to mask effects (Goldman et al. 

2007). 

 

6.2.4 Mixture exposure 

Mixtures of chemicals can cause a greater effect than each chemical on its own, and humans are exposed to a 

mixture of different man-made chemicals with EDC properties on a daily basis (Svingen and Vinggaard 

2016). In this thesis a top-down approach was implemented to have the exposure anchored in a real-life 

situation using a human relevant mixture pattern. Top-down approaches have been used in several other 

studies using different exposure periods and endpoints, and in common for these experiments is the use of a 

human or environmentally relevant mixture of chemicals (Berger et al. 2014; Hadrup et al. 2016; Lefevre et 

al. 2016).  

A problem with exposing to mixtures of chemicals is that it is not possible to deduce if the increased effects 

seen are due to synergism or addition of the effect of each compound, or if some chemicals have opposing 
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effects. For this, testing the chemicals individually and in smaller mixtures is needed, as done by Hass et al. 

(2007).The subgrouping used in Chapter 3 was an attempt to look at groups of compounds having similar 

main modes of action instead of looking at single compounds. This was to see which ones contributed to 

potential effects in the mixture comprised of all compounds. Doing this, an interesting phenomenon was seen 

in Chapter 3, and also in the explanted ovaries in Chapter 5, which might be due to opposing modes of 

action. It appeared that effects seen for AAmix and PM on the follicular reserve in Chapter 3 was opposed by 

the presence of Emix in the Totalmix, as no effects were seen after Totalmix exposure. We proposed that 

endocrine effects of Emix exposure can modulate the effects of AAmix and PM on the developing ovary.  

Similarly, in Chapter 5 the PEmix affected primordial follicle numbers, whereas the AAmix, which 

contained both PEmix and PHmix, did not. Pesticides belonging to both different and the same chemical 

classes have previously been reported to sometimes reduce each other’s potency when mixed (Rizzati et al. 

2016). Opposing actions of different chemicals or chemical mixtures may not only be due to antagonistic 

actions on a specific receptor, but may very well reflect several endocrine modes of action appearing at the 

same time. One compound, or group of compounds, could increase the metabolism or excretion of another or 

the compounds could interact directly with each other when mixed. It is possible that combining the different 

compounds in Totalmix, as in Chapter 3, and AAmix, as in Chapter 5, caused antagonistic interactions 

leading to a no-effect result. However, given the limited power of these studies, further investigations are 

necessary to determine whether the findings reflect actual differences between the mixture groups.   

 

6.2.5 Extrapolation between species 

In the work conducted for this PhD thesis, the rat was used as a model for potential effects in the human after 

EDC exposure. To enable comparison between species such as rat and human, it is important to choose 

similar stages of development (Habert et al. 2014). This is especially critical to keep in mind when 

comparing processes occurring at different ages in the different species such as follicle assembly, which 

occurs during fetal life in humans and neonatally in the rat (Grive and Freiman 2015). However, this still 

does not ensure a total comparability as there can be great differences in molecular signaling pathways, gene 

expression, protein folding, endocrine processes and so forth, between species. One example of this is 

estrogen signaling in the testis. The estrogen hypothesis was presented by Sharpe and Skakkebaek (1993) 

stating that estrogen exposure from various sources may underlie male reproductive disorders. However, in 

2013, Mitchell et al. published a paper showing that the estrogen hypothesis was not valid because ESR1, 

which mediates the effects of estrogens on the fetal rat testis, was not expressed in human fetal testis 

(Mitchell et al. 2013). Another example is the difference in susceptibility to phthalate exposure between the 

rat and human fetal testis. Phthalates affect expression of steroidogenic genes and testosterone levels in the 
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rat, but not in the human fetal testis (Heger et al. 2012; Mitchell et al. 2012). This illustrates the importance 

of mechanistic knowledge when extrapolating data from one species to another.  

 

6.3 Perspectives 

The proteomics study (Chapter 4) revealed that several proteins were dysregulated following exposure to 

EDCs. The factors that were dysregulated typically varied between the different exposure groups, but among 

the chosen potential biomarkers three proteins were affected in all groups: TMLH, KRT8 and AMH. It 

would be of great interest to confirm the differential regulation of these proteins by other methods. Also in 

relation to TMLH to investigate if other proteins involved in L-carnitine biosynthesis or β-oxidation of long-

chain fatty acids are dysregulated in the exposed ovaries. It could be tempting to speculate that TMLH or a 

related factor, could be a general biomarker for ODS resulting from EDC exposure. On the other hand, the 

idea that a single biomarker should function as a marker for all potential ovarian pathologies caused by EDC 

exposure is perhaps unrealistic. Different etiologies can vary greatly both with respect to mechanisms of 

action and resulting pathology. Therefore, one would more likely expect specific biomarkers for specific 

effect-endpoints, such as AMH for reduced ovarian reserve, and perhaps a panel of biomarkers, a fingerprint 

of sorts, functioning as a general ‘biomarker’ for ODS more broadly. The continued search for effect 

biomarkers could involve experiments using chemicals with known mechanisms/modes of action to pinpoint 

common denominators that are affected at either the histological or molecular levels. 

The concept of mixture effects is an issue that is attracting increasing attention. Today, the general 

requirement when conducting risk assessment is to evaluate each chemical on its own, which could 

underestimate the effects as they may add up. However, as shown in Chapter 3 and Chapter 5, the chemical 

makeup of mixtures can greatly affect the effect outcome; in this case a sub-mixture gave greater effects than 

a total mixture containing a larger number of chemicals. Further studies on why this phenomenon appears 

would be of great value for understanding mixture interactions. 

The work performed during this PhD study not only revealed novel effects of EDCs on the ovary, but also 

highlighted knowledge gaps with regard to basic female reproductive biology. In females, the potential role 

of hormones during fetal and neonatal development is not well established, and the consequences of 

antagonism or activation of receptors by EDCs during early development remains to be clarified with respect 

to adverse health outcomes later in life. There may be a ‘feminization window’, corresponding to the 

‘masculinization window’ (Welsh et al. 2008), even though female development is considered to be largely 

independent of sex hormones. However, this remains to be empirically verified, albeit some time periods and 

processes during development seem more sensitive to insult than others (Lea et al. 2016; (Chapter 2)). This 

raises several questions concerning the mechanisms behind the effects exerted by EDCs on the developing 
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female. Are the observed effects due to chemicals mimicking endogenous hormones and their activity? Or 

are they due to the chemicals affecting pathways that modulates or participate in programming of 

reproductive tissues and the endocrine system later in life, or both? To answer these questions, further 

targeted approaches for the purpose of specifically looking into effects in females are needed.  

 

6.4 Conclusion 

An early life effect biomarker for late life disease would be of great value when evaluating effect of EDCs on 

female reproductive health. Several periods during female development were identified as sensitive to 

chemical insult, and experimental data showed that exposure to mixtures of EDCs during the entire perinatal 

period cause reduction in follicle count in pre-pubertal rats and earlier reproductive senescence at 1 year of 

age. In addition, using a proteomics approach showed that exposure to mixtures of EDCs caused reduced 

levels of the proteins TMLH, KRT8 and AMH. These proteins could function as biomarkers of effects on the 

developing ovary and holds potential as early biomarkers of late life effects.  
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Exposure  to  endocrine  disrupting  chemicals  (EDCs)  during  development  can  have  negative  consequences
later  in  life.  In  this  study  we  investigated  the  effect  of perinatal  exposure  to  mixtures  of  human  relevant
EDCs  on  the female  reproductive  system.  Rat dams  were  exposed  to  a mixture  of phthalates,  pesti-
cides,  UV-filters,  bisphenol  A,  butylparaben,  as  well  as paracetamol.  The  compounds  were  tested  together
(Totalmix)  or  in subgroups  with  anti-androgenic  (AAmix)  or estrogenic  (Emix)  potentials.  Paracetamol
was  tested  separately.  In pre-pubertal  rats,  a significant  reduction  in  primordial  follicle  numbers  was
seen in  AAmix  and  PM groups,  and  reduced  plasma  levels  of prolactin  was  seen  in  AAmix.  In one-year-
old  animals,  the  incidence  of irregular  estrous  cycles  was  higher  after  Totalmix-exposure  and  reduced
ovary  weights  were  seen  in  Totalmix,  AAmix,  and  PM  groups.  These  findings  resemble  premature  ovarian
insufficiency  in  humans,  and raises  concern  regarding  potential  effects  of  mixtures  of  EDCs  on  female
reproductive  function.

© 2016  Elsevier  Inc.  All  rights  reserved.

1. Introduction

Exposure to endocrine disrupting chemicals (EDCs) during
development can have long-lasting consequences extending into
adulthood, for instance compromised reproductive health [1,2].
Numerous studies have investigated the link between early expo-
sure to EDCs and late-life effects on the male reproductive system,
often referred to as the testicular dysgenesis syndrome (TDS)
hypothesis, comprising a range of male disorders presumed to have
a common developmental origin [3,4]. Studies addressing com-
parative questions in females, however, are far fewer. An ovarian
dysgenesis syndrome (ODS) hypothesis has been proposed though.
And as with males, pathologies presenting in adulthood; impaired
placental function, early pregnancy loss, breast cancer, pubertal
timing, and polycystic ovarian syndrome (PCOS), are suspected to
share a common developmental origin [5,6].

The generally accepted view, although challenged by a few stud-
ies (reviewed in Ref. [7]), is that females are born with a set number
of follicles that depletes throughout their reproductive lifespan,
inevitably leading to infertility. Disturbed establishment of the fol-
licle pool during development may  therefore be detrimental to

∗ Corresponding author.
E-mail address: jubo@food.dtu.dk (J. Boberg).

fertility in the adult female [8]. Rodent studies have indicated that
oocyte meiosis, ovarian folliculogenesis, fertility, and the onset of
reproductive senescence can be altered by environmental contam-
inants, including EDCs [9–15]. This has led to an increased level
of concern regarding female reproductive health, particularly since
reduced fecundity has been associated with EDCs in humans [16].

When evaluating toxicity of a chemical, the state-of-the-art has
been to assess one chemical at a time. A more realistic scenario,
however, is that humans are exposed to a mixture of different
chemicals simultaneously. Thus, there is a need for evaluation of
toxicity of mixtures rather than single compounds only [17–19].
The aim of this study was to address effects of perinatal exposure to
mixtures of EDCs on female reproductive endpoints in a top-down
approach starting from a human relevant mixture and subgroups
of this mixture. Thirteen EDCs, including phthalates, pesticides,
UV-filters, Bisphenol A, butylparaben, and the pharmaceutical drug
paracetamol (PM) were tested in a mixture ratio based on high-end
human exposure levels as previously described [20,21]. The tested
phthalates are known to influence steroid synthesis (reviewed in
Ref. [22]) and indications of altered ovarian development have been
seen in rodent studies [15,23]. The tested pesticides are known to
act mainly as androgen receptor antagonists [24,25] and the UV-
filters, Bisphenol A and butylparaben are known estrogen receptor
agonists [26–28], but the compounds may  also act via other modes
of action [24,26]. PM is a prostaglandin synthesis inhibitor with

http://dx.doi.org/10.1016/j.reprotox.2016.03.045
0890-6238/© 2016 Elsevier Inc. All rights reserved.
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Table  1
Mixture composition and dose for the tested mixtures in mg/kg per day. Design of the mixtures has previously been described [20,21].

Chemical Mixture dose (mg/kg per day)

Totalmix 100 Totalmix 200 Totalmix 450 AAmix200 AAmix450 Emix 200 Emix 450 PM

DBP 1 2 4.5 2 4.5 0 0 0
DEHP  2 4 9 4 9 0 0 0
Vinclozolin 0.9 1.8 4.05 1.8 4.05 0 0 0
Prochloraz 1.4 2.8 6.3 2.8 6.3 0 0 0
Procymidone 1.5 3 6.75 3 6.75 0 0 0
Linuron 0.06 0.12 0.27 0.12 0.27 0 0 0
Epoxiconazole 1 2 4.5 2 4.5 0 0 0
p,p’-DDE 0.1 0.2 0.45 0.2 0.45 0 0 0
4-MBC 6 12 27 0 0 12 27 0
OMC  12 24 54 0 0 24 54 0
Bisphenol A 0.15 0.30 0.675 0 0 0.30 0.675 0
Butyl  paraben 6 12 27 0 0 12 27 0
Paracetamol 80 160 360 0 0 0 0 360
Sum  (mg/kg per day) 112 224 504 16 36 48 109 360

possible anti-androgenic modes of action [29]. To evaluate whether
effects of the Totalmix could be attributed to one or more compo-
nents of the mixture, we also tested subgroups of chemicals with
anti-androgenic or estrogenic potentials, and PM alone (Table 1).
The mixtures were administered in doses 100–450 times high-end
human exposure levels, as these doses were predicted to affect anti-
androgenic endpoints in male offspring, whereas the PM dose was
corresponding to human exposure levels, see also [21].

Effects of these EDC mixtures on early male reproductive
development [21], and mammary gland development [30] have
previously been published. In the current study we  hypothesized
that perinatal exposure to mixtures of EDCs adversely affects the
ovary in young and senescent animals, and investigated the impact
of perinatal EDC exposure on ovarian gene expression, number of
follicles, pituitary hormone levels in plasma, sexual maturation,
estrous cyclicity and ovarian histology in rat offspring. Together,
the results from young and senescent animals indicated premature
ovarian insufficiency after exposure to this human-relevant EDC
mixture, and these effects were likely caused by the anti-androgen
mixture components and PM.

2. Materials and methods

2.1. Test compounds

Test compounds were: di-n-butyl phthalate (DBP) (purity
>99.0%, CAS no. 84-74-2), di-(2-ethylhexyl) phthalate (DEHP)
(purity >99.5%, CAS no. 117-81-7), vinclozolin (purity >99.5%, CAS
no. 50471-44-8), prochloraz (purity >98.5%, CAS no. 67747-09-5),
procymidone (purity >99.5%, CAS no. 32809-16-8), linuron (purity
>99.0%, CAS no. 330-55-2), epoxiconazole (purity >99.0%, CAS
no. 106325-08-8), octyl methoxycinnamate (OMC) (purity >98.0%,
CAS no. 5466-77-3), dichlorodiphenyl-dichloroethylene (p,p’-DDE)
(purity >98.5%, CAS no.72-55-9); all purchased from VWR—Bie &
Berntsen (Herlev, Denmark). And: 4-methyl-benzylidene camphor
(4-MBC) (purity >98.0%, CAS no. 36861-47-9), bisphenol A (BPA)
(purity >99.5%, CAS no. 80-05-7), butyl paraben (purity >99.0%, CAS
no. 94-26-8) and paracetamol (PM) (purity >99.0%, CAS no. 103-90-
2); all purchased from Sigma-Aldrich (Brøndby, Denmark). Corn oil
was used as a control compound and as vehicle; purchased from
VWR—Bie & Berntsen (Herlev, Denmark).

2.2. Mixtures

The mixture compositions were based on high-end human
exposure levels of 13 well-characterized endocrine disrupters,
as previously described [20,21]. Totalmix contained all 13
compounds; AAmix contained compounds with predominantly

anti-androgenic modes of action; Emix contained compounds with
predominantly estrogenic properties (Table 1). PM was included
in the Totalmix, as well as tested on its own. Totalmix was  given
at 100-, 200- or 450-times human high-end exposure, the AAmix
and Emix at 200- and 450-times human high-end exposure. PM
was given at 350 mg/kg, which corresponds to the dose given in
the Totalmix450 (Table 1).

2.3. Animals and exposure

A detailed design of the animal study can be found in Ref.
[21]. In short, time-mated nulliparous Wistar rats (HanTac:WH,
SPF, Taconic Europe, Ejby, Denmark) were supplied at gestation
day (GD) 3 of pregnancy. The day vaginal plug was detected was
designated as GD 1 and the expected day of delivery (GD23) was
designated as pup day (PD) 1. The dams received vehicle (controls),
or one of the eight mixtures (Table 1). Each dose group comprised
16–20 dams, with 14–20 viable litters obtained for each group.
Rats were exposed by oral gavage from GD7-21, and again after
birth from PD1-22. PM exposure was from GD13-19 and PD14-
22, both in mixtures and single dosing, to avoid possible effects
on embryo implantation [31] and problems during parturition. At
PD22, 1–2 females per litter were weaned and kept until adulthood.
One female pup per litter was  killed at weaning (PD22) and one or
two female pups per litter were killed at 13 months of age whilst
in estrous or proestrous, evidenced by vaginal smears in the morn-
ing. Blood was collected for hormone analysis, and ovaries were
weighed and prepared for histological examination and/or gene
expression analysis. The study was performed under conditions
approved by the Danish Animal Experiments Inspectorate (Council
for Animal Experimentation) and by the in-house Animal Welfare
Committee.

2.4. In vivo measurements

2.4.1. Anogenital distance and sexual maturation
Anogenital distance (AGD) was  measured, by the same tech-

nician, in all offspring. The technician was  blinded with regard
to exposure group. Measurements were performed using an ocu-
lar stereomicroscope with unit markings on the ocular. Onset of
puberty was defined as day of vaginal opening (VO) and assessed
daily from PD28 until VO was  detected in all female offspring. Age
and body weights were recorded on the day when VO was first
observed.

2.4.2. Estrous cyclicity
Vaginal smears were taken daily between 8 and 10 a.m., for

21 consecutive days at 3 and 12 months of age. A swab moist-
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ened in saline was inserted into the vaginal lumen and cells were
transferred to a microscope glass slide to air dry. The smears were
fixed in 96% ethanol and stained with Gill’s hematoxylin, Orange
G6 and eosin-azure 50 (VWR—Bie & Berntsen, Herlev, Denmark)
according to the adapted Papanicolaou (PAP stain) procedure [32].
The smears were mounted in Eukit (VWR—Bie & Berntsen, Her-
lev, Denmark) and examined by light microscopy under blinded
conditions. Classification was done according to stages; estrous,
metestrous, diestrous or proestrous, or transitions between stages
[33,34].

The animals were categorized as either being regularly cycling
(cycles lasting four to five days) or irregularly cycling (cycles lasting
less than four days or more than five days) [35]. Episodes of three
to four consecutive days of vaginal estrous and/or four to five days
of diestrous were considered extended [33].

2.5. Histological examination

Ovaries from one female per litter, alternately left and
right, were examined at PD22 as follows: control, Totalmix450,
AAmix450, Emix450, and PM (n = 12–16) ovaries were fixed in
formalin, processed for paraffin embedding, sectioned (5 �m sec-
tions at 90 �m intervals, all sections were counted) and stained
with hematoxylin and eosin (H&E). In all sections, primordial
(oocyte surrounded by flat pre-granulosa cells), primary (oocyte
surrounded by one layer of cuboidal granulosa cells), secondary
(oocyte surrounded by two or more layers of granulosa cells and
theca cells), tertiary (presence of antrum), and atretic follicles (pres-
ence of condensed, dark cells) were counted, provided a nucleolus
was visible.

At 13 months of age, histological evaluation was performed on
one section per ovary (all groups), uterus and pituitary (control,
Totalmix450, AAmix450, Emix450 and PM groups). The number
of corpora lutea (CL) and the presence of follicular cysts (follicles
devoid of oocytes, displaying a large antrum surrounded by 1–2 lay-
ers of flattened granulosa cells and a thecal cell layer) and cyst-like
structures (follicles devoid of oocytes, displaying a large antrum
surrounded by a few layers of granulosa cells) were investigated.
In uterus the number and appearance of endometrial glands were
evaluated, and the presence of squamous metaplasia, endome-
trial cysts and endometrial stromal polyps was registered. Pituitary
glands were examined with emphasis on the presence of nodular
hyperplasia and adenoma in pars distalis [36].

2.6. Plasma hormone levels

On PD22, blood was collected in heparin-coated vials,
centrifuged and plasma withdrawn. Plasma levels of adreno-
corticotropic hormone (ACTH), brain-derived neurotrophic factor
(BDNF), follicle stimulating hormone (FSH), growth hormone (GH),
luteinizing hormone (LH), prolactin (PRL) and thyroid stimulating
hormone (TSH) was measured using a Milliplex map  Rat Pituitary
Magnetic Bead Panel (Cat. No. RPTMAG-86K; Merck Life Science
A/S, Hellerup, Denmark). The PM group was not included. Plasma
levels of Inhibin A were measured by ELISA (Cat. No. CSB-E08239r,
CUSABIO Biotech Co.) Measurements were conducted according to
the manufacturer’s instructions.

2.7. Gene expression

For all nine dose groups (n = 9–10 per group), the alternate
left and right ovary was excised from one female per litter at
PD22 and stored in RNAlater (Qiagen, Hilden, Germany) at −80 ◦C.
Relative gene expression was analyzed by RT-qPCR as previously
described [37]. In short, total RNA was isolated using RNeasy Mini
Kit (Qiagen, Hilden, Germany) and quantified on a NanoDrop-

1000 Spectrophotometer. RT-qPCR reactions were run in duplicates
on a 7900HT qPCR system (Applied Biosystems, Foster City, CA)
in 20 �l reactions including 3 �l diluted (1:20) cDNA and gene-
specific TaqMan assays (Life Technologies Europe BV, Naerum,
Denmark: Amh (Rn01535314 g1), Bmp15 (Rn00572320 m1), Ddx4
(Rn01489814 m1), Fshr (Rn01648507 m1), Fst (Rn00561225 m1),
Lhr (Rn00564309 m1)). Intra-assay variability of technical repli-
cates was  <0.5 cycles. Data were analyzed by the comparative
Ct-method normalized with the geometric mean of verified ref-
erence genes Rps18 (Rn01428913 gH) and Sdha (Rn00590475 m1)
[37].

2.8. Statistical analysis

For all analyses, the alpha level was  set at 0.05. Data from
continuous endpoints were examined for normal distribution and
homogeneity of variance and if required, logarithmic transforma-
tion was performed. For endpoints where ANOVA and Dunnett’s
post-test were used, data were compared as follows: Control versus
Totalmix, Control versus AAmix, Control versus Emix. PM was
compared to control by use of Student’s t-test. For non-normally
distributed data Kruskal-Wallis and Dunn’s post-test or Mann-
Whitney was used. Data from follicle count were investigated by
t-test as only highest doses were used. Litter was used as an inde-
pendent, random and nested factor when more than one pup from
each litter was  examined.

AGD data were analyzed using pups’ birth weights as covari-
ate and by the AGD-index, i.e. AGD divided by the cube root of
body weight. Statistical analyses were adjusted using litter as an
independent, random, and nested factor. Age and weight at sexual
maturation was analyzed by ANOVA using body weight at PD22 as a
covariate to compensate for size differences. Estrous cyclicity data
were tested using logistic regression and tested for over-dispersion
with Deviance and Pearson Goodness-of-Fit tests. Correction for
over-dispersion due to litter effects was used when appropriate.

Organ weights were analyzed by ANOVA using body weight as
a covariate. Histological data were evaluated using Fisher’s Exact
Test. Regression was used to investigate relationship between
ovary weight and number of CL.

The statistical software SAS (SAS Enterprise Guide 4.3), R [38],
and GraphPad Prism 5 (GraphPad Software, San Diego California
USA) were used for analysis.

3. Results

3.1. Gene expression

No significant changes in overall expression were observed for
any of the somatic markers (Suppl. Fig. S1), suggesting that the over-
all ratio of cell-specific populations were relatively unchanged. A
significant reduction in Ddx4 (p = 0.03) and trend to a reduction in
Bmp15 (p = 0.07) transcript levels were observed in the PM-exposed
group (Fig. 1A and B). As this suggested a smaller number of oocytes,
manual counting of follicles was  performed.

3.2. Follicle count

Primordial follicles were significantly reduced (78.2% of con-
trol values, p = 0.02) in rats exposed to AAmix450, and a tendency
towards reduction was  seen in the PM-exposed group (p = 0.06)
(Fig. 1C). There were no statistically significant differences in num-
ber of recruited follicles (pool of primary, secondary and tertiary)
between groups. Visual evaluation of the total number of follicles
(total number in all sections counted), indicated a slight reduction
in total number of follicles in AAmix450 and PM,  but the differences
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Fig. 1. Results from PD 22. (A and B) A significant reduction in relative mRNA expression of Ddx4 and a slight, but not statistically significant reduction, in Bmp15 were seen
in  ovaries after PM treatment (n = 9–10 per group). (C) Absolute follicle count showed significantly reduced numbers of primordial follicles in the AAmix450 group (n = 12–16
per  group). (D) Percentage of follicles (each animal’s total number of follicles set to a 100%) showed a significant reduction in primordial follicles after AAmix450 and PM
exposure. AAmix450 exposure also caused an increase in secondary and tertiary follicles. (E) Prolactin level in plasma was reduced after AAmix450 exposure (n = 9–10 per
group).  Data presented as mean ± SEM, (*p < 0.05, **p < 0.01).
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Fig. 2. (A) Sexual maturation, measured as day of vaginal opening (VO), occurred significantly earlier in animals exposed to Totalmix200, AAmix200 and Emix450 (n = 26–36
per  group, corresponding to 13–19 litters per group). (B) Body weight at VO was  significantly lower in animals exposed to Totalmix200 and AAmix200 (n = 26–36 per group,
corresponding to 13–19 litters per group). (C) The incidence of animals with irregular estrous cycles was increased in the Totalmix100 and Totalmix200 (n = 11–14 animals per
group  from separate litters) in adult females (12 months of age). (D) The incidence of animals with irregular estrous cycles was higher in the Totalmix450 (n = 31) compared
to  control (n = 30) when data was  pooled with a previous study (Isling et al., 2014) in adult females (12 months of age). Data presented as mean ± SEM, (*p < 0.05, **p < 0.01).

were not statistically significant (Fig. 1C). When using percent-
age of follicles instead of absolute values, a significant reduction
in primordial follicles was seen in groups exposed to AAmix450
(p = 0.005) and PM (p = 0.01) and there was a significant increase in
secondary (p = 0.05) and tertiary (p = 0.04) follicles in the AAmix450
group (Fig. 1D). Furthermore, the number of recruited follicles (pool
of primary, secondary and tertiary) was significantly increased in
animals exposed to AAmix450 (p = 0.01) and PM (p = 0.02).

3.3. Hormone levels

There was a significant reduction (p = 0.01) in PRL levels after
AAmix450 exposure, and visual evaluation of the data indicated
a reduction also in the Totalmix450 and AAmix200 groups. How-
ever, these reductions were not statistically significant (p = 0.15 and
p = 0.27, respectively) (Fig. 1E). No effects were seen on the levels
of other pituitary hormones or inhibin A (Supplementary Figs. S2
and S3).

3.4. AGD, sexual maturation and estrous cyclicity

No significant differences between groups were observed for
female AGD [21]. Sexual maturation occurred significantly ear-

lier in Totalmix200 (p = 0.0002), AAmix200 (p = 0.02) and Emix450
(p = 0.04) groups. Animals in Totalmix200 and AAmix200 groups
had lower body weights at the day of VO (p = 0.01 and p = 0.02,
respectively) (Fig. 2A and B). There were no effects on estrous cycle
regularity at three months of age. At 12 months of age, overall
analyses showed no effect on estrous cycle regularity, however
pairwise comparison of control with each group showed signifi-
cant effects in Totalmix100 (p = 0.041) and Totalmix200 (p = 0.048)
(Fig. 2C). In a previous study on the same mixture (though only
including Totalmix450) estrous cyclicity data was also collected
at 12 months of age [1]. As the power appeared low for estrous
cyclicity, the control and Totalmix450 data from both studies were
pooled, resulting in a significant difference between Totalmix450
and control (p = 0.02) (Fig. 2D). Irregular cycles were primarily
characterized by longer than normal cycles with extended die-
strous. Extended estrous and shorter than normal cycles were also
observed, but to a lesser extent.

3.5. Ovary weight and histology

At 13 months of age, ovary weight was significantly reduced in
all Totalmix groups, both AAmix groups and the PM group (Fig. 3A).
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Fig. 3. Effects on ovary weight and the presence of corpora lutea (CL) in 13 months-old animals. (A) Mean ovary weight was  reduced in animals exposed to Totalmix, AAmix
and  PM (n = 11–20). (B) Complete absence of CL in animals exposed to AAmix and PM. (C) Mean number of CL was significantly lower in Totalmix200 and PM (n = 11–20). (D)
Regression analysis showed that the mean ovary weight was  associated with the mean number of CL, independent of exposure (r2 = 0.41, slope significantly non-zero with
p  < 0.0001). Data presented as mean ± SEM, (*p < 0.05).

All females were killed whilst in proestrous or estrous, therefore
observed effects were not considered to be due to variability in
estrous cycle stage. No relevant changes in ovary weights were seen
at PD22 (data not shown).

Histological examination at 13 months of age revealed a sig-
nificant increase in incidences of rats presenting with complete
absence of CL in AAmix200 (p = 0.033), AAmix450 (p = 0.039), and
in PM (p = 0.028) groups (Fig. 3B). In addition, the mean number
of CL was significantly reduced to 55% of control values in the
Totalmix200 group (p = 0.04) and 54.7% of control values in the
PM group (p = 0.011). The mean number of CL was also reduced
in AAmix450, but did not reach statistical significance (p = 0.056)
(Fig. 3C). The mean number of CL was positively correlated to ovary
weight (r2 = 0.41, p < 0.0001) (Fig. 3D).

Follicular cysts and cyst-like structures were observed in all
groups and are considered to be normal age-related changes. The
number of animals with cyst-like structures in ovaries was sig-
nificantly increased in the AAmix450 and the PM groups, and the
same was seen when pooling data for cysts and cyst-like structures
(Table 2).

3.6. Uterine and pituitary histology

Squamous metaplasia was observed in 1–3 rats per group in
Totalmix450, AAmix450, Emix450 and PM groups, but not in con-

trols (Table 2). Pituitary nodular hyperplasia or adenoma in pars
distalis was not different between dose groups (Table 2).

Six out of eight rats with squamous metaplasia in uterus also had
absence of CL or 1–3 small degenerated CL suggesting a common
endocrine effect. Only 6 out of 23 females with pituitary nodular
hyperplasia, adenoma or macroscopic tumor also had few or absent
CL, and only two had squamous metaplasia suggesting no clear
relationships between pituitary findings and reproductive organ
effects.

4. Discussion

This study showed effects of human relevant mixtures of EDCs
on both prepubertal and adult female rats; reduction in primor-
dial follicles, irregular cycling, and premature absence of CL. These
symptoms resemble premature ovarian insufficiency syndrome in
humans [39], causing concern that perinatal exposure to EDCs can
reduce the reproductive lifespan of women.

4.1. Early reproductive senescence

In rodents, onset of irregular estrous cycles, and eventually
cycling arrest, can be a sign of reproductive senescence, usually
initiating between 9 and 12 months of age [40]. We  observed an
increase in irregular cycles at 12 months of age following prenatal
exposure to Totalmix. As no effect was seen on estrous cyclic-
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ity at three months of age, this could indicate that exposed rats
entered reproductive senescence prematurely compared to the
control group. We also observed a reduction in ovary weight in
Totalmix, AAmix and PM groups. This was supported by a signifi-
cantly reduced mean number of CL in Totalmix200 and PM groups,
and an increased incidence of complete absence of CL and cyst-like
structures in rats exposed to AAmix and PM.  This accelerated rate
of age-related changes—as compared to background levels—is con-
sidered adverse and a sign of early aging in exposed groups. It is
possible that examination of slightly younger animals would have
resulted in fewer background findings and hence a clearer picture
of the chemically induced histological changes. Nevertheless, our
findings indicate that the AAmix and PM groups, as well as the
Totalmix group, displayed signs of early reproductive senescence
compared to the control group, despite only slight effects were seen
on estrous cyclicity in those dose groups. Reproductive senescence
may  also present as uterine changes. Squamous metaplasia of the
uterus occurs spontaneously among aged rats, and can be induced
by continued administration of estrogenic compounds [41]. Due
to low incidence, it is not clear whether the observed squamous
metaplasia was related to early reproductive senescence. Repro-
gramming of the hypothalamic–pituitary–ovarian axis at central
level may  be related to early reproductive senescence [42] and in
a study by Ref. [1], rats exposed to AAmix450 and Totalmix450
showed increased incidence of pituitary tumors at 19 months of
age. In our study the changes in uteri and ovaries did not appear
correlated with pituitary nodular hyperplasia or adenoma, thus we
hypothesize that the late effects may  be caused by direct effects on
the ovaries.

4.2. Early versus delayed effects of anti-androgens in ovary

Effects on aging animals are rarely examined and are not a part
of OECD test guidelines for reproductive toxicity studies [43,44].
Chemical effects on early reproductive senescence may thus be
overlooked. We  wanted to investigate if follicular development was
affected at an earlier time-point as early changes could be useful
markers of late-life effects. On PD22 we saw reduced expression
of the germ cell markers Ddx4 and Bmp15 in ovaries from animals
exposed to PM.  This could be due to an overall loss of oocytes, thus
follicles were manually counted. The number of primordial follicles
was reduced in rats exposed to AAmix and PM.  This is worrying as
females are considered to be born with a limited number of oocytes,
such that any reduction in the number of primordial follicles can
have permanent effects on fertility by reducing the reproductive
life span [45].

Interestingly, the reduction in primordial follicles was seen
in animals exposed to anti-androgenic chemicals. It has become
evident that androgens are important for ovarian function and fol-
licular development [46,47]. The androgen receptor (AR) knockout
(KO) mouse (ARKO) has a phenotype resembling premature ovarian
insufficiency with symptoms such as irregular estrous cycles, lack
of CL and infertility [48,49], effects similar to those observed in adult
rats in our study. AR regulates downstream factors controlling fol-
liculogenesis, and down-regulation in young individuals may  cause
impaired folliculogenesis at a later age [49]. It is therefore plausi-
ble that reduced AR signaling contributed to the observed late-life
effects on estrous cyclicity and number of CL.

Both AR antagonists and steroid synthesis inhibitors in the
AAmix may  have contributed to the observed effects on folli-
cle numbers. Prenatal exposure to the AR antagonist vinclozolin
reduced primordial follicle numbers in mice at 12 months of age,
and a reduction in total number of oocytes was  seen in explanted
newborn rat ovaries, cultured and exposed to vinclozolin for ten
days [50]. Two studies on the steroidogenesis inhibitor DEHP
and/or its metabolite MEHP have shown disruption of early fol-
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liculogenesis in explanted newborn mouse ovaries [51,52]. DEHP
decreased the incidence of primordial follicles in ovaries of PND21
mice exposed during fetal life [23], and reduced the percentage of
primordial follicles on PND15 and PND21 in mice following post-
natal exposure [15]. Furthermore, an increase in secondary and
antral follicles was registered by [15,23], a finding that agrees
with the increased ratio of recruited versus non-recruited folli-
cles in AAmix450 and PM groups. This indicates that in our study,
increased folliculogenesis may  have caused the reduction in pri-
mordial follicle numbers. However, slightly lower total follicle
numbers were observed in AAmix450 and PM groups. Therefore
it is unclear if the reduction was due to increased recruitment,
if the follicle reserve initially was smaller, or a combination of
both. Furthermore, both vinclozolin and DEHP have the poten-
tial to affect follicle numbers, but further studies are needed to
evaluate whether the remainder of compounds in the AAmix also
contributed to the observed effects.

Unexpectedly, the reduction in primordial follicle numbers after
AAmix and PM exposure was not seen in animals exposed to
the Totalmix comprising AAmix, Emix and PM.  Emix has been
shown to have endocrine effects during prepuberty, as Emix expo-
sure increased mammary outgrowth in PD22 females [30]. For
other endpoints such as male anogenital distance and prepubertal
male reproductive organ weights, the effects in Totalmix groups
reflected the effects of the AAmix [21]. We  therefore propose that
endocrine effects of Emix exposure can modulate the effects of
AAmix and PM on the developing ovary.

Plasma levels of PRL were reduced in PD22 animals exposed
to AAmix450. In young females, PRL is proposed to be involved in
pubertal timing and reduced levels may  cause delayed puberty [53].
VO was not significantly affected in AAmix450, but visual evalua-
tion indicated an earlier rather than delayed day of VO, which was
also observed in AAmix200, Totalmix200 and Emix450, rendering
PRL levels unlikely to be causative.

4.3. Human relevance of mixed chemical exposure

The EDCs included in this study were selected to reflect a chem-
ical exposure pattern relevant to humans [20,21]. The doses were
100- to 450-times higher than estimated high-end human exposure
levels and effects on estrous cyclicity and ovary weight were seen
at all doses, suggesting that a standard regulatory safety margin of
100 is not present for highly exposed persons. PM was administered
at a dose corresponding to the maximum recommended dose for
humans (when taking into account the different kinetics of rats and
humans). Such high exposure may  seem unlikely to occur during
the long time span modelled in the current study, but it is possible
that PM exposure for a limited time period during the most sensi-
tive period of fetal reproductive development can be sufficient to
affect the reproductive function later in life. The observed reduction
in primordial follicles, as well as irregular cycling and premature
absence of CL resemble premature ovarian insufficiency syndrome
in humans, a condition usually leading to premature menopause;
before the age of 40 [39]. The cause for premature ovarian insuffi-
ciency is largely unknown [39,54], but EDCs have been suggested
to be part of the etiology [55]. This raises the concern that early-
life exposure to EDCs can compromise the reproductive lifespan
of women. Such an effect, even if small, is problematic in today’s
society where the age at childbirth is delayed [56].

In summary, we investigated effects of perinatal exposure to
human relevant mixtures of EDCs on female reproductive end-
points and found a reduced follicle pool in pre-pubertal animals
after exposure to anti-androgenic chemicals or PM.  In adults, signs
of early reproductive senescence were seen: effects on estrous cycle
regularity and reduced ovary weight after Totalmix exposure, and
reduction in CL and ovary weight after anti-androgen and PM expo-

sure. Together, the effects resemble what in humans is categorized
as premature ovarian insufficiency, a condition where EDCs have
been proposed as part of the etiology. As the mixture composition
investigated resembles high-end everyday exposure for humans,
the results raise concern for the reproductive lifespan of children
of exposed women. The applied top-down approach, starting from
a human relevant exposure scenario, is considered highly relevant
for human health assessment and leads the way for targeted mech-
anistic studies of sub-mixtures and individual compounds.
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Supplementary Fig S1: Relative mRNA expression of somatic markers in ovaries on PD22. No statistically 

significant effects were seen (p>0.05, n=9-10). 
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Supplementary Fig S2: Plasma levels (pg/ml) of pituitary hormones on PD22. No statistically significant 

effects were seen (p>0.05, n=8-11, FSH= Follicle stimulating hormone, LH= Luteinizing hormone, ACTH= 

Adrenocorticotropic hormone, BDNF= Brain-derived neurotrophic factor, GH= Growth hormone, TSH= 

thyroid stimulating hormone. 
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Supplementary Fig S3: Plasma levels (pg/ml) of Inhibin A on PD22. No statistically significant effects 

were seen (p>0.05, n=7-10). 
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