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Abstract

Overcrowding of hospital wards is a well known and often revisited problem in the literature, yet it

appears in many different variations. In this study, we present a mathematical model to solve the problem

of ensuring sufficient beds to hospital wards by re-distributing beds that are already available to the

hospital. Patient flow is modelled using a homogeneous continuous-time Markov chain and optimization

is conducted using a local search heuristic. Our model accounts for patient relocation, which has not

been done analytically in literature with similar scope. The study objective is to ensure that patient

occupancy is reflected by our Markov chain model, and that a local optimum can be derived within a

reasonable runtime.

Using a Danish hospital as our case study, the Markov chain model is statistically found to reflect

occupancy of hospital beds by patients as a function of how hospital beds are distributed. Furthermore,

our heuristic is found to efficiently derive the optimal solution. Applying our model to the hospital

case, we found that relocation of daily arrivals can be reduced by 11.7% by re-distributing beds that are

already available to the hospital.

Keywords— OR in health services, Queueing, Markov chain, Stochastic optimization, Heuristics

1 Introduction

Overcrowding of hospital wards is a well known problem in the Danish health care sector. A report from

the Ministry of Health [4] indicates that most regions of Denmark experience problems with overcrowding

of hospital wards. In addition, the patient organization Danish Patients in corporation with Danish Nurses

Organization and the Danish Medical Association reports that patient admission in hallways and depots is

a recurrent necessity for a range of hospitals [2], and in which case both objective and subjective quality of

care may suffer a great decrease [1,21]. Hence, in order to provide patients with the best possible treatment,

overcrowding should be reduced as much as possible.

An increasing number of Danish hospitals are developing methods to cope with overcrowding through ca-

pacity balancing, where patient relocation, is coordinated using daily capacity meetings, as well as dedicated

staff for patient flow coordination [3]. Using such methods, some hospitals have succeeded in significantly

decreasing the number of patients hospitalized to alternative locations. The hospitals relocate patients from
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1.1 Literature Review

wards with overcrowding to wards where sufficient nursing resources are still available, and thus match

resources with demand. However, we conducted interviews with a specific hospital and found that this ap-

proach entails costs for both planning, relocation of patients and some decrease in quality of care. In this

case, quality of care is decreased due to a mismatch between the optimal type of care and what type of care

is alternatively offered to the patient. Hence, a problem arises containing two different types of penalty for

the hospital management to consider. First, there is the tangible cost of spending man hours on defining

and implementing a plan, and secondly, management have to consider the risk of inducing a lower quality

of care, either through placing patients in buffer beds or relocating patients to other wards.

The objective of this study, is to provide hospital management with a tactical decision tool, capable of

optimizing the match between resources and demand. We focus on a specific case where patients are always

relocated whenever ward resources are depleted. The main methodological approach will be mathematical

modeling. More specifically, we model bed occupancy using a homogeneous continuous-time Markov chain,

and optimize the response using a local search heuristic.

In Section 2 we present the specific problem of this study. In Section 3 our solution approach is presented,

divided into two parts. The first part describes the Markov chain, we use to model patient flow behavior.

The second part connects this Markov chain model to a local search heuristic. Section 4 demonstrates the

usability of our solution approach for a specific hospital case, and tests on a number of different parameter

settings are presented. Lastly, we present our conclusion in Section 5.

1.1 Literature Review

Modelling and optimization of hospital bed utilization is a recurrent topic dating back to Newsholme,

1932 [18]. The specific problem structure differs from one study to another, however, all focus on one

of three major objectives: (1) Testing scenarios [5, 12], (2) deriving the required number of beds for one

or more wards [13–16, 19, 20, 25], or (3) balancing beds with demand [9, 10, 17]. In achieving these, two

methodological aspects are considered: (1) The methods used to model the system in focus, and (2) the

methods used to study and optimize the system.

Different approaches of modelling the system are known from the literature. These are usually either simu-

lation [12,16,25], queueing theoretic approaches [9, 13–15,17,19], or a mixture of these [5, 10,20].

In Goldman et al., 1968 [12], utilization and costs are tested for various bed allocation policies using a

simulation model. Harris, 1984 [16], develops a simulation model to assist decision making in the area of

operating theatre time tables and the resultant bed requirements. Lastly, Zeraati et al., 2005 [25], use a

statistical simulation to estimate the number of required beds for an obstetrics ward.

In the area of queueing theoretic models, two studies by Gorunescu et al., 2002, and Li et al., 2009 [13,14,17],

exploit M/PH/c/N and M/PH/c models, to assess a mixture of patient flow. Furthermore, Green, 2002

[15], use an M/M/s model to estimate bed availability in different intensive care and obstetrics units, and

Pendergast et al. 1988 [19], use clinical judgment and basic probability theory to derive future hospital bed

requirements. Lastly, Cochran et al., 2008 [9], develops a queueing network model that is implemented as a

capacity balancing tool between different hospital units.

Exploiting the use of both simulation and queueing theory, Cochran et al., 2006 [10], use queueing networks

to assess the flow between units of an obstetrics hospital, and define utilization targets. A Discrete-event-

simulation model is then used to maximize the flow. A related approach is used in Akkerman et al., 2009 [5],

where Markov chain theory and simulation is used to evaluate a number of different management scenarios.

This specific Markov chain model is found to produce useful insight into the theoretical number of required

beds, but a simulation model is required to derive the amount of patient rejections.

The second methodological aspect that is considered in most studies, is studying and optimizing the system
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in focus. Naturally, scenario testing is more straightforward, whereas bed requirement or capacity balancing

would suggest the application of a more elaborate approach. Here, we found only a few studies [17, 20]

that exploit advantages of heuristic or mathematical programming elaborately, leaving this area rather un-

exploited. In Pinto et al., 2014, a simulation-optimization model is developed to analyze dynamic features

of the system and find the best configuration of beds. Moreover, Li et al., 2009 [17], applied a M/PH/c

model from [13] in a multi-objective goal programming model to reallocate beds.

Two studies in the area of capacity balancing that are rather similar to this paper, are uncovered [9, 10].

However, in case of overcrowding, none of these studies modelled the effect of patients being relocated to

alternative locations. In this paper, we present an approach to balance capacity in a system of queues, where

patients are relocated when capacity is insufficient. To achieve this, we use a homogeneous continuous-time

Markov chain model.

A range of studies, using Markov chains to model patient flow, have already been conducted [6,8,11,24,26].

As relevant examples, Broyles et al., 2010 [8], predicts distribution and expected admissions, and Bartolomeo

et al., 2008 [6], determines the probabilities of readmission for two different patient categories. However,

none of these exploit the advantages of Markov chains, to model patient relocation, and subsequently use

these models to optimize the system.

2 Problem Description

In this study, we consider a Danish hospital where an organizational structure for patient relocation has

been fully implemented.

That is, even though minor changes in the distribution of resources might take place on a daily basis, most

actions to avoid overcrowding are performed using patient relocation. Any greater changes in the distribution

of resources are not practical if they occur too frequently, and are thus considered more as a tactical decision.

Deciding on the best allocation of resources, is therefore an important decision, as the result will affect how

patients are hospitalized, and the hereto related costs, through a period of several months.

For this reason, the decision this study will focus upon, is how resources should be allocated among the

hospital wards. As hospitalizations are usually dependent on a range of different resources, we assume that

one hospitalization can only take place when one ”sufficiently” staffed and equipped bed is available. That

is, we disregard the possibility that a hospitalization may in some instances take place without sufficient staff

or equipment. Thus, if an entrance to a ward is restricted by the lack of resource units, we assume that an

alternative ward always exists somewhere else. We have found through interviews with hospital employees

that this is a reasonable assumption.

Taking all of the above considerations into account, the overall goal of this study, is to develop a mathemat-

ical model that can be used to efficiently minimize the number of rejections at preferred wards, by changing

the distribution of bed resources.

For the remaining of this paper, a patient hospitalization at a preferred ward, will be denoted as a primary

hospitalization. A patient relocation to an alternative ward, will be denoted as a secondary hospitalization.

In the same way, patient blocking at a preferred ward, is denoted a primary rejection, as well as patient

blocking at the alternative ward is denoted a secondary rejection.

2.1 Dynamics of the System

As mentioned above, wards have limited resources, and as a result, arriving patients are relocated whenever

resources have been depleted (no staffed and equipped beds are available). During such a relocation, patient
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(a) All wards are available.

w1

w2 w3

P1

P2 P3

(b) Ward 1 is blocked.

Figure 1: Graphical representation of the hospitalization procedure. Patient types are P1, P2 and P3 for

which the preferred hospitalization is at ward w1, w2 and w3, respectively. (a) represents the system under

regular load, and (b) the result if ward 1 was to be fully loaded.

characteristics are required to match with the specialization of the alternative ward. Thus, relocating a

patient to an arbitrary free ward, is not always a feasible solution.

We interpret these hospitalization operations as a queueing system with N different patient types, arriving

at N parallel service stations. The number of servers at each station is equal to the number of staffed and

equipped beds at each ward. If all servers are occupied at a station the station is blocked, but a queue is

not created. Instead, arrivals will be distributed with a probability to other stations, or disappear from the

system entirely. This is illustrated in Figure 1, where a system of N = 3 patient types and wards is (a)

under regular load, and (b), blocked for ward 1.

Due to these system operations, resources allocated to a ward will not only affect the amount of primary

rejections, but also the amount of secondary hospitalizations at that ward. Moreover, notice that treatment

time is tied to the patient type, and therefore independent of the ward in which hospitalization takes place.

Wards will therefore experience a mixture of different patients with different lengths of stay.

3 Modelling & Solution Approach

To solve the problem of optimizing the distribution of beds, we model the ward occupancy density functions

using a homogeneous continuous-time Markov chain. This model approach, is presented in Section 3.1. From

the density functions, we derive the specific probabilities of wards blocking, followed by the overall expected

number of arriving patients experiencing a primary rejection. This is used as our objective value, as the

system is optimized using a local search heuristic. The specific heuristic we use, is presented in Section 3.2.

3.1 A Homogeneous Continuous-Time Markov Chain

As mentioned in Section 2, we consider N patient types, i ∈ {1, 2, · · · , N}, as well as N ward types, j ∈
{1, 2, · · · , N}. To model the ward occupancy density functions for each ward, we introduce a homogeneous

continuous-time Markov chain (CTMC) model with state s = (w11, w21, · · · , wij , · · · , wNN ) and state space

S, where wij is the number of type i patients hospitalized in ward j. Let Mj define the amount of allocated

beds to ward j. Hence, Mj is the maximum amount of patients that may be hospitalized in ward j. Further,

let fj be the number of free beds at ward j, so fj = Mj −
∑
i∈I wij . For the purpose of presenting our

modelling approach, we include fj in the state representation to get:
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3.1 A Homogeneous Continuous-Time Markov Chain

s =



w11 w12 · · · w1N

w21 w22 · · · w2N

...
...

. . .
...

wN1 wN2 · · · wNN

 , (f1, f2, · · · , fN )

 ∈ S

Note that fj is otherwise redundant to the model. Now, λi is the arrival rate of patient type i, and µi the

service rate of patient type i. We assume patients arrive according to a Poisson process and that inter-service

time distributions are exponentially distributed. The reader should notice that if the latter does not hold,

rejection systems, such as this, are in general robust to the distribution of inter-service times [7, p. 121]. In

addition, we statistically test the CTMC model fit for a specific case-hospital in Section 4.1.6.

Let p(f1, f2, · · · , fN )ij define the fraction of patients of type i that are hospitalized in ward j as function

of the number of free beds at all wards in the system, f1, f2, . . . and fN . Let Q define the transition rate

matrix of the CTMC, with qss∗ the transition rate from a current state s ∈ S to a new state s∗ ∈ S. In the

following, p(fi = 0, fj > 0, · · · , fN > 0) is abbreviated p(fi = 0), just as p(fi = 0, fk = 0, fj > 0, · · · , fN > 0)

is abbreviated p(fi = 0, fk = 0), and so on. Moreover, we refer to a new state s∗ = (· · · , wij+1, · · · , fj−1, · · · )
to indicate the arrival of a patient i to a ward j, and s∗ = (· · · , wij − 1, · · · , fj + 1, · · · ) for a corresponding

discharge. The transition rates are then,

qss∗ =



λi if s∗ = (· · · , wii + 1, · · · , fi − 1, · · · ) and fi > 0 ∀i ∈ I
λip(fi = 0)ij if s∗ = (· · · , wij + 1, · · · , fj − 1, · · · ) and fi = 0, fj > 0 ∀i, j ∈ I, i 6= j

λip(fi = 0, fk = 0)ij if s∗ = (· · · , wij + 1, · · · , fj − 1, · · · ) and fi = 0, fk = 0, fj > 0 ∀i, j, k ∈ I, i 6= j 6= k
...

...

λip(fi = 0, fk = 0, · · · , fl = 0)ij if s∗ = (· · · , wij + 1, · · · , fj − 1, · · · ) and fi = 0, fk = 0, · · · , fl = 0, fj > 0 ∀i, j, k · · · l ∈ I, i 6= j 6= k 6= · · · 6= l

µiwij if s∗ = (· · · , wij − 1, · · · , fj + 1, · · · ) and wij > 0 ∀i, j ∈ I

where all other transition rates, qss∗ , are 0.

Notice, as treatment times differ between patient types, the state definition contains an element for ev-

ery combination of patient type and ward. The variables wii count primary hospitalizations, whereas the

variables wij count secondary hospitalizations. The model can only jump to a state, where the number of

secondary hospitalizations is increased, if capacity is full at the preferred ward. For instance if N = 3 and

M1 = 10, M2 = 15 and M3 = 20, s = (w11, w21, w31, w12, w22, w32, w13, w23, w33) = (7, 2, 1, 1, 4, 2, 3, 2, 10)→
s∗ = (7, 2, 1,2, 4, 2, 3, 2, 10) is allowed, because ward 1 is full. However, s = (7, 2, 1, 1, 4, 2, 3, 2, 10) → s∗ =

(7, 2, 1, 1, 4, 2, 3,3, 10) is not possible, as ward 2 is still open.

The transition rate depends on how many other wards are blocked. s = (7, 2, 1, 1, 4, 2, 3, 2, 10) → s∗ =

(7, 2, 1,2, 4, 2, 3, 2, 10) has rate qss∗ = λ1p(f1 = 0)12, as only ward 1 is blocked. Now, s = (7, 2, 1, 1, 4, 2, 3, 2, 15)→
s∗ = (7, 2, 1,2, 4, 2, 3, 2, 15) has rate qss∗ = λ1p(f1 = 0, f3 = 0)12, as both ward 1 and ward 3 are blocked.

The total state space size, |S|, of the CTMC is the product of N polynomials of the order N , as shown in

(1).

|S| =
N∏
j=1

(
1

N !
·
N∏
i=1

(Mj + i)

)
(1)

Let us consider a case where N = 3, and M1 = 27, M2 = 23 and M3 = 24. Then, from (1), the state space,

S, has a size of |S| = 30, 876, 300, 000 states – which is rather difficult to cope with computationally. Thus,

in order for our CTMC to be applicable for even small cases, a rather large fraction of the state space needs

to be truncated. To attain this, we use two recursive procedures presented in the following Section 3.1.1.
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3.1 A Homogeneous Continuous-Time Markov Chain

3.1.1 The Truncation Procedures

Let uij be an upper bound on the number of patients of type i that is hospitalized in ward j (wij) for i 6= j,

so
∑Mj

k=uij+1 Prob{wij = k} is sufficiently small, where Prob{wij = k} is the probability of attaining a state

where wij = k. Taking this idea further, we also let Lj and Uj define the lower and upper bounds on the total

amount of patients hospitalized in ward j. In this case, Lj and Uj are chosen so
∑Uj
k=Lj

Prob{
∑
i wij = k}

is sufficiently large, but the number of truncated states are maximized. Here, Prob{
∑
i wij = k} is the

probability of attaining a state where the sum of patients in ward j is equal to k. Let φj be the number

of free slots at ward j in the truncated system, then φj = Uj −
∑
i wij . Thus as Uj ≤ Mj , we have that

φj ≤ fj .
Our goal is then to adjust uij , Lj and Uj , so reasonable accuracy is maintained, within the practical limits

of computing the probability distribution. To attain this, we notice that the hospitalization of patients at

each ward is closely related to an M/M/c/c queueing system, cf. Figure 2. That is, a queueing system with

capacity equal to the number of beds. The probability that there are n beds occupied in such a system can

be derived using (2),

pn =
(λ/µ)n/n!∑c
i=0(λ/µ)i/i!

(2)

where λ is the arrival rate, µ the service rate, and c the number of beds in the system [7, p. 121]. We use

(2) to determine bounds on the total amount of occupied beds at each ward, Lj and Uj , as well as for each

secondary hospitalization pair, uij . For the latter, consider that wij is stochastically smaller or equal to the

occupancy in an M/M/c/c system where the arrival rate is the maximum fraction of arriving type i patients

to ward j, λi ·max{p(·)ij}, and service rate µi. The probability mass of such a system, derived using (2),

will be at least as shifted in positive direction as the marginal probability mass of wij in the CTMC. We

refer to this M/M/c/c system as the right-shifted distribution. Letting τ (0 ≤ τ ≤ 1) define a truncation

tolerance, the upper bound, uij , is derived using Algorithm 1.

wjj· · · · · · wij · · ·Arriving patients

Ward j

Pj

Pi

Figure 2: Graphical representation of patients hospitalized in ward j. Patients of different types are hospi-

talized as long as
∑
i wij < Mj , where Mj corresponds to the parameter c in (2).

Algorithm 1 Procedure for deriving uij for i 6= j

1: lamdba← λi ·max{p(·)ij} . Initialize

2: mu← µi
3: c←Mj

4: right← erlangB(c, lambda,mu) . Calculate distribution using (2) and save as an array

5: st← length(right)

6: while sum(right) ≥ 1− τ do

7: right[st]← 0

8: st← st− 1

9: end while

10: u← st+ 1 . The final bound is the number of non-zero elements plus 1

return u
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3.1 A Homogeneous Continuous-Time Markov Chain

Here, right represents the right-shifted distribution for wij . The upper bound, uij , is then determined by

recursively truncating right starting at the highest occupancy, and lastly adding one to ensure that the least

probability mass larger or equal to 1− τ is left.

In deriving Lj and Uj we consider both a lower and an upper bound of occupancy in ward j. Therefore, in

order to ensure sufficient probability mass in the CTMC, and derive the maximum number of states that

may be truncated from ward j, we have to consider both a left-shifted and right-shifted distribution at the

same time. The procedure we use to derive Lj and Uj , is presented below:

1. Determine the minimum service rates in ward j: µMIN ← mini∈I{µi}.

2. Determine the maximum arrival rate to ward j: λMAX ← λj +
∑
i∈I\{j} λi ·max{p(·)ij}.

3. Calculate left- and right-shifted distributions using (2).

(a) right← erlangB(Mj , λMAX , µMIN ).

(b) left← erlangB(Mj , λj , µj).

4. Truncate states constrained by τ : Lj , Uj ← ipmodel(right, left, τ).

Notice that our procedure lastly takes an Integer Programming model, ipmodel(), to maximize the number

of truncated states. We propose to formulate this as a Knapsack Problem variation, minimizing the number

of states in the truncated system constrained by the probability mass tolerance τ .

This concludes the approach we use to derive uij , Lj and Uj . Notice, how the resulting transition rate

matrix, Q, will be dependent on whether Uj < Mj or Uj = Mj , leading to different representations of the

matrix.

3.1.2 Computing the State Probability Distribution

We have derived a method for reducing the state space as a function of the tolerance τ , and are therefore

set to generate the transition rate matrix Q. We assume that most non-acute wards will have long expected

length of stay relative to the respective fluctuations in arrival rate. We further assume that most arrivals and

discharges occur during the day, causing the system to be ”inactive” during the night, so any remaining time-

dependency will be negligible in the scope of deriving a long-term allocation of beds for the hospital. Thus,

we consider the CTMC as a steady-state process. Now let π define the steady-state probability distribution

of the CTMC. Then, we are faced with solving the global balance equations in (3),

πQ = 0 (3)

where ‖π‖1 = 1. We have found that a solution to (3) can be derived within reasonable runtime using the

method of successive overrelaxation [22, p. 311]. That is, (3) is written on the form Ax = b by transposing,

so we get: QTπT = 0. Further, QTπT = (D −X − Y )πT = 0, where D, X and Y are the diagonal, lower-

and upper- strictly triangular matrices of QT . Let xk be the k′th iteration solution to πT . Then we can

recursively derive πT , using (4),

xk+1 = (1− ω)xk + ω{D−1(Xxk+1 + Y xk)} (4)

until convergence. The relaxation parameter, ω, may be adjusted to ensure the fastest rate of convergence.

As our case is dependent on different representations of Q, and we want our implementation to be flexible, we

chose to conduct a range of tests to search for a fixed relaxation parameter that would result in a reasonable

convergence time for ”most” cases. We calculated the iteration matrix Hw = (D − ωX)−1[(1− ω)D + ωY ].

We then adjusted ω to maximize the distance between the unit dominant and subdominant eigenvalue of

Hw, with a view to maximize the convergence rate. It was found that a high distance could be obtained with
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3.2 A Heuristic Optimization Model

a relatively high relaxation parameter – usually around 1.7 to 1.8. Thus for the remaining of this paper,

ω = 1.75.

Regarding the question of when convergence has occurred, we decided to check this on the largest relative

tolerance δ = maxi(
∣∣xki − xk−mi

∣∣ / ∣∣xki ∣∣). Where m is set to increase as δ decreases – recall limδ→0 x
k = πT ,

and thus the rate of convergence is expected to decrease as xk is closing in on πT .

To assess our approach, we conducted a series of tests for N = 3, M1 = 27, M2 = 23 and M3 = 24, and

different settings of the truncation parameter τ . In Table 1, the total runtime of our approach implemented

in Java, along with state space sizes, are presented for τ = 0.05, 0.01 and 0.001.

Each of these settings were assessed by comparing the respective marginal distributions of π – that is, the

distribution of how many beds are expected to be occupied for each ward. Obviously, the tails approach zero

as the truncation is relaxed. However, the algorithm only takes 69 seconds to finish for τ = 0.05, against

1,947 seconds for τ = 0.001. Additionally, in case we are only interested in the blocking probabilities, we

would be able to make do with the largest truncation value – given that we always end up with a CTMC

model representation where Uj = Mj ∀j ∈ I. However, to gain a more generic use of our model, we find it

more appropriate to use τ = 0.01.

Table 1: Results from adjustment of τ .

τ Total Runtime (s) |S|
0.05 69 517,000

0.01 483 1,358,760

0.001 1,947 3,563,520

3.2 A Heuristic Optimization Model

In Section 3.1 we presented an approach to model the ward occupancy for N wards and correspondingly N

patient types. We now consider the number of beds, available to ward i, Mi, as a decision variable that may

be adjusted to optimize the overall system performance. In general, we consider the following optimization

problem:

min. f(M) (5a)

s.t. ∑
i∈IMi = Θ (5b)

Mi ≥ 1 ∀i ∈ I (5c)

Mi ∈ N

Where, as previously defined, I is the set of wards. Here, (5b) ensures that all available resources, Θ, are

utilized. Moreover, (5c) ensures that wards contain at least one bed. The objective function (5a) evaluates

the system performance as a function of M = (M1 M2 · · · MN )T , where in this case, a large value indicates

a poor performance. As shown in the following, the objective function can easily be replaced and customized

to the specific hospital preferences. In this study, we propose an objective value that increases as more

”work” is spent on relocating patients. Consider f(M) =
∑
i∈I π

B
i (M), where πBi (M) is the probability

of all beds being occupied in ward i, with beds distributed as in M . In this case, we would get some kind

of measure for the total amount of work – recall when πBi (M) increases, so does the amount of relocated

patients from ward i. However, the expression does not incorporate the weight of patient types arriving with

different rates. So we insert λi, to get (6), the total expected number of primary rejections.
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f(M) =
∑
i∈I

λiπ
B
i (M) (6)

Returning to the idea that (2) can be used to approximate the occupancy at a single ward, we have a way

to estimate f(M). Specifically, we use (2) to estimate πBi (M), by calculating the blocking probability

pc = B(c, λ/µ) – known as the Erlang-B formula.

Inserting B(c, λ/µ) into (6), we are now able to derive an estimate of the objective value using (7). Doing

so, gives us the opportunity to derive an estimate of the optimal solution in a few seconds.

f̂(M) =
∑
i∈I

λiB(Mi, λi/µi) (7)

Now, from (5b) we have that
∑
i∈IMi = Θ. Therefore, MN = Θ−

∑
i∈I\{N}Mi, reducing (7) to a function of

N − 1 variables, f̂(M1,M2, · · · ,MN−1). Let f̂Mi
(·) be the i’th partial derivative of f̂(M1,M2, · · · ,MN−1),

with the derivative of B(Mi, λi/µi) presented in (10) in Appendix A. The horizontal tangent plane of

f̂(M1,M2, · · · ,MN−1) can then be found from the system of equations: f̂M1(·) = 0 ∧ f̂M2(·) = 0 ∧ · · · ∧
f̂MN−1

(·) = 0. We solve this, using the Newton-Raphson method.

Now, recall that the difference between (6) and (7), is the relocation of patients from fully occupied to free

wards. Therefore, as the probabilities p(·)ij from the CTMC model decrease, (6) approaches (7). In other

words, an optimal solution derived using (7) is likely close to the optimal solution using (6). To locate the

optimal solution to the optimization problem (5a)-(5c), an idea would therefore be to slowly change the

solution configuration, starting with an initial guess derived from the estimate (7).

Let N(M) define the ”neighborhood” of the bed distribution M , and still consider that MN = Θ −∑
i∈I\{N}Mi, so now M = (M1 M2 · · · MN−1)T . Then, (M + ν) ∈ N(M), where ‖ν‖ = 1 and the

elements νi ∈ {0,−1, 1}. This leads to a maximum neighborhood size of |N(M)| = N2 − 1 or O(N2).

Hence, in case N = 3, |N(M)| = 32 − 1 = 8 solutions.

Consider if M∗ is the currently best known solution to (5a)-(5c), then an idea would be to systematically

check N(M∗) for an even better solution, and update M∗ in case such a solution is found. This leads to

the local search heuristic presented in Algorithm 2.

The heuristic progresses by firstly generating an initial solution from the horizontal tangent plane of (7).

This is conducted using the function init() that, based on the Newton-Raphson method, takes an initial

guess M0. The ”raw” output is most likely not integral, so we round to the integer solution yielding the

lowest objective value. Next, the currently best known objective value, f∗, is calculated.

Then, generateneigh() is used to generate a list of the entire neighborhood. For larger cases, a probabilistic

candidate list might be more appropriate, choosing a random fraction of the solutions in N(M). Elements

of the list should in any case be placed in random order.

Due to the local progression of the heuristic, and a relatively long function evaluation time, we further

introduce a list of banned solutions, C. As the heuristic can only move one step at a time, there will always

be an overlap between the neighborhood of iteration k and k + 1. For this reason, we add all previously

evaluated solutions to a list (line 10, Algorithm 2), to ensure that we do not spend time on evaluating a

solution more than once.

4 Implementation & Results

In this section, we directly implement the methods from Section 3 to obtain an improved distribution of

beds for a case-hospital. In modelling the system behavior, we have limited our scope to the hospitalization

of patients to the medical area of the hospital. More specifically, we focus on patient flow in gastrology,
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4.1 Case & Data Description

Algorithm 2 Heuristic to optimize the bed requirements problem in (5).

1: M∗ ← init(M0) . Initialize using the horizontal tangent plane of (7)

2: f∗ ← objval(M∗)

3: N ← generateneigh(M∗) . Generate list of neighborhood in random order

4: C ← ∅
5: j ← 0

6: while j < length(N) and elapsedtime < timelimit do

7: j ← j + 1

8: M ← N [j]

9: if checkbanned(C,M) == false then . Check banned or constraint violation.

10: C ← add(C,M) . Add M to the list of banned solutions.

11: f ← objval(M)

12: if f < f∗ then

13: f∗ ← f . Update values

14: M∗ ←M

15: N ← generateneigh(M∗) . Generate the new neighborhood, again in random order

16: j ← 0

17: end if

18: end if

19: end while

20:

pneumology, endocrinology and geriatrics, respectively. For the case hospital, these areas make up three

different wards and correspondingly three different patient types.

In Section 4.1, we present the data obtained from the case-hospital and statistically test our homogeneous

continuous-time Markov chain (CTMC) model. Next, Section 4.2 presents the implementation of our solution

approach. Lastly, we assess the robustness of Algorithm 2, and investigate the solution behavior when the

CTMC model parameters are adjusted. This is presented in Section 4.3.

4.1 Case & Data Description

The patient flow was investigated through interviews with hospital staff. Furthermore, we retrieved data

from the period of 01-05-2014 to 30-04-2015 on patient arrival and discharge times. From this, we were able

to categorize patients on diagnosis and thus also treatment type, giving us the opportunity to determine

preferred and alternative wards.

4.1.1 Arrival Rates

Patient hospitalization data was used to derive hourly arrival rates for each of the three patient types,

showing clear repetitive patterns on a weekly scale of the hourly arrival rate. In Figure 3, the empirical

hourly arrival rates are presented for all patient types. As expected for non-acute wards, most patients are

hospitalized during the daytime, whereas an almost negligible fraction of patients arrive during the night.

Further, the arrival rates seem to slightly decrease during the weekend, and regain its level starting Monday.

The empirical average arrival rates were estimated to λ1 = 5.42, λ2 = 3.96, λ3 = 2.52 patients per day,

respectively.
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Figure 3: Empirical hourly arrival rate. Presented for each of the three patient types.

4.1.2 Service Rates

To derive service rates for each of the three patient types, we calculated the Length of Stay (LOS) using the

same patient hospitalization data, as was used to derive the arrival rates. Time-dependency was checked on

a daily level by deriving the average hourly LOS from time of arrival. Performing a graphical representation

showed no signs of seasonality, neither did an estimate of the autocorrelation function. Regarding load-

dependency, we did not obtain sufficient data to confirm nor reject such behavior. For the case-hospital,

capacity meetings are often held to ensure that patients are immediately relocated upon blocking. As a result,

neither LOS increase nor early-discharge due to overcrowding is rarely the case. The overall distribution

of LOS was investigated graphically, where the patient type 1 and 2 distributions show close similarity to

an exponential distribution (See Figure 4). With a longer average LOS, the patient type 3 distribution has

probability mass that is moved more to the right, quite similar to a gamma distribution.

Due to the similarities that was found between patient type 1 and 2, we tested their difference in mean LOS

using a Wilcoxon rank-sum test [23]. With a p-value of 0.2105, we found no significant difference in mean

LOS between the two patient types. Figure 4 suggests that there is no difference in statistical distribution

either. For patient type i ∈ {1, 2, 3}, the resulting service rate (1/LOSi = µi) was estimated based on an

empirical average to µ1 = µ2 = 0.19 and µ3 = 0.11 patients per day, respectively.

4.1.3 Relocations

We investigated the secondary hospitalization options for each of the three patient types. From data, we

obtained the 80% most common diagnoses for each patient type, and for each of these diagnoses, hospital

staff identified the alternative locations they would usually offer to these patients. This allowed us to draw

a picture of how relocated patient are usually distributed. Here, we found that patients have secondary

hospitalization options both within and outside the three wards; hence, in case of blocking, a fraction of

patient will always be lost from the system. Moreover, we found that patients would usually have a third

hospitalization options – however, for this case, we found it reasonable to assume that a third hospitalization

options is always situated outside the system. The resulting relocation probabilities are presented in Table

2, showing that a reasonably large fraction of patients has to be relocated elsewhere.
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Figure 4: Empirical distribution of length of stay, measured in number of days. Presented for each of the

three patient types.

Table 2: Probability that patient type i ∈ {1, 2, 3} (Pi), is relocated to ward j ∈ {1, 2, 3} (wi), in case ward

i is blocked.

Pi/wj 1 2 3 Other

1 - 0.05 0.23 0.72

2 0.10 - 0.27 0.63

3 0.06 0.00 - 0.94

4.1.4 Other Characteristics of the System

From the distinct fluctuating arrival rate, one would naturally expect the level of hospitalized patients to be

fluctuating as well. Figure 5 shows the empirical probability of a patient being discharge as function of hour

of the week. As expected for non-acute patients, discharges mainly occur on weekdays during the daytime,

with a negligible number of patients discharged during the night. Comparing with the arrival rates in Figure

4, we notice that the system is mainly ”active” between 07:00 and 23:00.

Observations from 14-09-2015 to 31-10-2015 were obtained to investigate the time-dependent behavior of

ward occupancy in the system. Figure 6 shows the average number of occupied beds every 8’th hour during

the week. From here, we notice some time-dependent behavior as the occupancy is usually lower during the

middle of the day. This behavior repeats on a daily basis, with a small overall decrease during the weekend

for ward 2 and 3. Taking the time-dependency of hourly arrival rate and discharge hour into account might

be necessary for purposes of accurately predicting the occupancy for each specific hour of the week. However,

as our aim is to derive a long-term allocation of beds for the hospital, we consider the observed fluctuations

as negligible for this case.

4.1.5 Truncation of the CTMC

For practical reasons we are often required to truncate the CTMC prior to implementation. We start this

process by firstly considering the data obtained from the case-hospital. In Section 4.1.2 we found that

µ1 = µ2; hence the number of patients of type 1 and 2, can be contained in only two ”bins” of the state

space. In other words, w11 and w12 are merged into w121, as well as w21 and w22 are merged into w122.

Moreover, from Table 2, we have that p(f1, f2, f3)32 = 0 in all cases, so w32 can be neglected. This results
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Figure 5: Empirical probability of a patient being discharged as function of hour of the week. Presented for

each of the three wards.

in the state representation:

s =

w121 − w13

− w122 w23

w31 − w33

 , (f1, f2, f3)

 ∈ S

Now we apply the truncation procedures described in Section 3.1.1. We use the truncation parameter

τ = 0.01, as proposed in Section 3.1.2. For the case-hospital, the total number of beds Θ = 74, so we

calculate uij , Lj and Uj for any feasible value of Mj ∈ {0, 1, · · · ,Θ− (N − 1)} ∀j ∈ J = {1, 2, 3}.
To illustrate the resulting truncation, the total state space size, |S|, for a non-truncated model with N = 3

wards, where M1 = 27, M2 = 23 and M3 = 24 has |S| = 30, 876, 300, 000 states. The truncated model, with

the same settings, has |S|= (
∑u31

i (U1 − i −max{L1 − 1; 0} + 1))(U2 − L2 + 1)(
∑u13

j=0

∑min{U3−i;u23}
k=0 (U3 −

j − k −max{L3 − i− j; 0}+ 1)) = 1, 358, 760 states — a substantial reduction of the state space.

4.1.6 Statistical Testing of the CTMC

We conducted a statistical test to assess the CTMC model fitness with observations on ward occupancy.

To our knowledge, there exists no standard technique to test the fitness of a CTMC with a complexity as

considered in this study. Thus in this section we present a heuristic approach that combines a simulation of

the CTMC behavior and compare this to hospital data on ward occupancy.

To begin with, our null-hypothesis is that the observed values are generated by the CTMC process. If that

is the case, we would expect the observed frequency of occupied beds to be quite similar to the marginal

distributions of π for each ward. A standard approach would be to test the observed frequencies against the

corresponding expected frequencies from the CTMC using a chi-squared test. However, such as test would

require each of the observed values to be independent, which is not the case here.

Let ωj be the expected number of occupied beds from the CTMC for ward j ∈ J , where J = {1, 2, 3}. Then

ωj =
∑Mj

k=0 k · πkj , where πkj is the probability that ward j ∈ J has k occupied beds. Further, let oij and

eij be the observed and expected frequency of i occupied beds in ward j. Then, we define our test statistic

as (8),
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Figure 6: Empirical average number of occupied beds for each of the three wards. Observations were obtained

for every 8’th hour of the week.

T =
∑
j∈J

∑
i∈I

(oij − eij)2/ωj (8)

where I = {0, 1, 2, · · · ,Mj} is the set of beds that can be occupied, and J = {1, 2, 3} the set of wards. In

order to quantify the fit of our CTMC model, we require a measure of how (8) relates to the model noise.

For this reason, we introduce the simulated model residual (9), where yij is the simulated frequency of i

occupied beds in ward j. Thus, by replicating (9), we determine the distribution of noise that is expected

by our CTMC model, and then compare our results from (8) hereto.

z =
∑
j∈J

∑
i∈I

(yij − eij)2/ωj (9)

We implemented the simulation of the CTMC model as a Discrete-Event-Simulation using Matlab. Repli-

cations of (9) were conducted n = 30, 000 times (Appendices, Figure 7).

A total of 432 (144 pr. ward) observations were obtained from the period of 14-09-2015 to 31-10-2015. Using

these, we calculated T = 0.45. A fraction of 32.03% simulated residuals, scoring higher than T , were found.

Thus, with a significance level of α = 0.05, we accept the null-hypothesis.

The power of our test was evaluated by conducting a range of experiments where model parameters were

adjusted until under 5% significance would be obtained. Specifically, we adjusted the arrival rates propor-

tionally with 10% increment at the same time.

Results are presented in Table 3, showing a 10% increase (Test 1) and 20% decrease (Test 3), were sufficient

adjustments to gain less than 5% significance.
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Table 3: Assessment of the power of our test. Conducted by proportionally changing the three arrival rate

parameters (λi) and evaluating the resulting simulated p-value (p).

# Change λ1 λ2 λ3 p-value

0 1.0 5.42 3.96 2.52 0.32

1 1.1 5.96 4.36 2.77 0.01

2 0.9 4.88 3.56 2.27 0.56

3 0.8 4.34 3.17 2.02 0.02

4.2 Optimizing the Case-Hospital

We now consider the heuristic in Algorithm 2 applied to the case-hospital. We initialize the heuristic, by

handing M0 = (27 23)T to init(). From the Newton-Raphson method, we get M1 = 31.80 and M2 = 23.50.

The rounded integer solutions are then: (1) f(bM0
1 c, bM0

2 c) = 1.473, (2) f(dM0
1 e, dM0

2 e) = 1.468, (3)

f(bM0
1 c, dM0

2 e) = 1.470 and (4) f(dM0
1 e, bM0

2 c) = 1.467. (4) returns the lowest value, so we set M∗ =

(32 23)T , and proceed. The initial objective value is then f∗ = 1.603 patients per day, and initial neighbor-

hood N = {(33 23), (31 23), (32 24), (32 22), (33 24), (31 22), (31 24), (33 22)}. As the intention is to use our

method as a tactical decision tool, a maximum time-limit of 4 hours is considered reasonable. The entire

heuristic and its components are implemented in Java.

Each iteration is presented below, showing all function evaluations and how the list of banned solutions is

updated progressively:

• Iteration 1 – Checking: f(31, 22) = 1.641 and f(33, 23) = 1.600. f(33, 23) = 1.600 < f∗(32, 23) =

1.603, so we update, f∗ ← f , to f∗ = 1.600. The list of banned solutions is now: C = {(32 23), (31 22)}.

• Iteration 2 – Checking: f(34, 24) = 1.606, f(32, 22) = 1.623, f(34, 22) = 1.624, f(33, 22) = 1.620 and

f(32, 24) = 1.592. f(32, 24) = 1.592 < f∗(33, 23) = 1.600, so we update, f∗ ← f , to f∗ = 1.592. The

list of banned solutions is now: C = {(32 23), (31 22), (34 24), (32 22), (34 22), (33 22), (32 24)}.

• Iteration 3 – Checking: f(31, 25) = 1.607, f(33, 24) = 1.596, f(31, 23) = 1.617, f(33, 25) = 1.603,

f(32, 25) = 1.600 and f(31, 24) = 1.606. After checking all available solutions in the neighborhood, f∗

was not improved, so we stop and conclude that M1 = 32, M1 = 24 and M3 = Θ− (M1 + M2) = 18

is at least a local optimum. The total runtime was 1791.12 seconds (≈ 30 min.).

Notice, the final solution, M∗ = (32 24)T , is actually an element in the initial neighborhood, and could

have been selected by chance during the first iteration. Moreover, in generating the initial solution, (32 24)T

would have been obtained by simply rounding to nearest integer.

Now, consider that the search space for three wards has a total size of n =
∑Θ−2
i=1 (Θ − 1 − i) = (1/2)Θ2 −

(3/2)Θ+1. Thus for Θ = 74, n = 2628 solutions. As n is reasonably low for this case, a complete enumeration

of the search space is possible. To investigate how results from the heuristic relates to the optimal solution,

we conducted a complete enumeration with the result presented in Appendices, Figure 8. Interestingly, the

objective function contains only a single extrema – a global minimum in M1 = 32 and M2 = 24. Hence,

we can conclude that the solution found from the heuristic, M∗ = (32 24)T , is in fact the global optimal

solution to the problem. We ask the reader to notice that the procedure of complete enumeration spend

464,212.02 seconds (≈ 5 days and 9 hours) to complete. Thus, even though the procedure is possible, it is

certainly not practical. The heuristic in Algorithm 2, solved the problem in just under 30 min. That is,

99.6% faster.

The optimal solution is compared to the current distribution of beds in Table 4. As for the current distribu-

tion, f(M) = 1.804 patients per day, the optimal solution yields a 11.77% reduction in number of primary

rejections. We notice for the current case, the highest probability of ward blocking, πBi , takes place in ward
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1. Unfortunately, we find that patient type 1 has the highest arrival rate of 5.42 patients per day as well.

Thus, it would be expected, in order to minimize f(M), additional resources has to be pushed to ward 1

with a view to decrease πB1 . Conversely, patient type 3 has the lowest arrival rate of 2.52 patients per day,

and with πB3 = 0.161, ward 3 is expected to reject 0.41 patients per day – 0.56 patients fewer than for ward

1. Turning to the optimal solution, we find the probability of rejection has been vastly increased for ward 3,

but decreased for both ward 1 and 2. Further, we find that maxi∈I{λiπBi } has been decreased from 0.969

to 0.803 patients per day, and mini∈I{λiπBi } decreased from 0.405 to 0.335 patients per day.

Table 4: The optimal solution compared to the current distribution of beds. Presented with objective

values, f(M), beds Mi and blocking probabilities πBi . The product λiπ
B
i shows the expected daily amount

of primary rejections for each ward.

Current Optimal

Ward Mi πBi λiπ
B
i Mi πBi λiπ

B
i

1 27 0.178 0.969 32 0.083 0.454

2 23 0.109 0.430 24 0.084 0.335

3 24 0.161 0.405 18 0.318 0.803

f(M) - - 1.804 - - 1.592

4.3 Case Testing

With a view to investigate the solution behavior of our heuristic, we conducted a series of tests with various

parameter adjustments. The hospital is planning to introduce a number of organizational changes, with

the result of increased patient arrival rate, but additional overall bed capacity. Thus in our last test, we

demonstrate how our approach may be used as a tool to assess future changes to the organization.

We conducted a total of five different basic tests, where patient flow or available resources were changed. In

Table 5 the parameters that were subject to change are presented in bold font, the rest are from the hospital

case.

The results for each of Test 1-5 are presented in Table 6, with firstly the initial solution, then the optimal

solution, and lastly data on the heuristic progression. The total number of function evaluations that are

avoided as a result of the list of banned solutions are presented in the second last column.

Giving the five tests a closer look, we expect for Test 1-3 that an increase in arrival rate results in a corre-

sponding increase in allocated resources. This behavior is found for each of the three tests, where resources

are allocated to respond to the increased demand for primary hospitalizations.

In Test 4 nothing was changed but the total amount of available beds Θ. We conducted this test, to assess the

potential improvements caused by a relatively small increase in resources. We find that, as more resources

are available in the system, additional surplus is created and the fractional distribution of beds between the

wards is more balanced. In the original hospital case, the optimal fractional distribution was 43.2%, 32.4%

and 24.3% for ward 1, 2 and 3, respectively. In Test 4 with Θ = 80, this distribution changes to 42.5%,

31.3% and 26.3%. More importantly, as all wards receive more bed resources, the objective value is reduced

correspondingly. Adding six additional beds yields a 38.9% reduction in the number of primary rejections.

Test 5 was conducted to assess the effect from relocation in the system on the optimal solution. To emphasize,

we increased the demand for secondary hospitalizations in ward 3 substantially, by maximizing p(f1 = 0)13

and p(f2 = 0)23, keeping all other parameters fixed. Through these adjustments, we expect to increase the

distance from initial to optimal solution. Moreover, we clarify how the optimal solution relates to a large

probability of relocation within the system. Interestingly, it might seem natural to allocate beds to the ward
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Table 5: Test parameters used to assess Algorithm 2. Parameters subject to change are presented in bold

font.

# λ1 λ2 λ3 Θ p13 p23

1 6.775 3.96 2.52 74 0.23 0.27

2 5.42 4.95 2.52 74 0.23 0.27

3 5.42 3.96 3.15 74 0.23 0.27

4 5.42 3.96 2.52 80 0.23 0.27

5 5.42 3.96 2.52 74 0.95 0.73

with an increased demand (ward 3), however the optimal solution reveals the objective value is minimized

by moving beds to ward 1 and 2, and avoiding relocation in the first place.

Table 6: Results from the five parameter adjustment tests. Both initial and optimal solutions are presented.

Information on the heuristic progression is presented in the last four columns.

Initial Optimal

# M1 M2 M3 f(M) M∗1 M∗2 M∗3 f∗(M) Iter. Eval. A. Eval. Runtime (s)

1 38 22 14 2.376 39 23 12 2.354 4 12 5 368.27

2 31 28 15 2.165 32 29 13 2.158 3 12 5 686.39

3 31 23 20 2.180 32 23 19 2.175 3 11 6 1757.23

4 33 25 22 1.106 34 25 21 1.103 2 11 6 3925.02

5 32 23 19 1.733 33 25 16 1.688 7 21 4 3253.00

4.3.1 Assessment of Expected Hospital Changes

For our last test, we consider a number of organizational changes planned to be introduced in the spring of

2016. Patients of another organizational region are to be rerouted to the case-hospital. As a result, patient

arrival rate is expected to increase. Moreover, the case hospital are given additional resources to cope with

the increase in demand, and for the area of gastrology, pneumology, endocrinology and geriatrics, available

resources will increase from 74 to 93 beds. Patient arrival rate of type 1 and 2 are now expected at 9.84 and

3.44 patients per day, respectively.

Just as previously, we generate the initial solution, starting with M0 = (27 23)T . Rounding to the smallest

estimated objective value, we set M∗ = (56 20)T and initial objective value f∗ = 1.965. After 4 iterations we

find the new distribution of beds at M1 = 56, M2 = 21 and M3 = 16, with an objective value of f∗ = 1.958

patients per day. The total number of function evaluations is 9 with an overall runtime of 961.35 seconds.

5 Conclusion & Future Work

With a view to optimizing the distribution of bed resources, we presented a solution approach consisting of

two main components. The first was a homogeneous continuous-time Markov chain (CTMC) used to evaluate

the patient flow behavior. The second incorporated the Markov chain model in a heuristic to optimize the

distribution of bed resources. For a specific hospital case, our approach was used to find a 11.8% reduction

in number of primary rejections – that is, the number of patients rejected on first arrival to the hospital.

In addition, we found that a relatively small (≈ 8%) increase in bed resources to the medical area has a

potential to reduce this rejection rate from the current configuration with 38.9% fewer patients per day.

Regarding this, hospital management should consider how the increase in resources relates to the overall
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5.1 Future Work

cost, and if a potential increase in cost is compensated by the increased service level.

We collected data for the case-hospital by conducting interviews with hospital staff, and using patient data

already registered in the hospital system. During this process we found dependencies in the flow system

that stretches toward far more wards than were resources to include in this study. On the other hand, we

found it reasonable to assume the medical area as an isolated system with patients going out, rather than in

from other wards. Hourly arrival rate was found to be time-dependent, but with discharges mainly occuring

during the day, the time-dependent behavior could be neglected, as was confirmed from observations of ward

occupancy. Additionally, we found it reasonable to assume that patient length of stay was independent of

the system load. However, for other applications where load-dependency cannot be neglected, such behavior

can be implemented by defining service rates of the CTMC as function of the ward occupancy.

We statistically tested the CTMC model by replicating simulations of the CTMC itself. These were compared

to hospital observations, and a simulated p-value of p = 0.32 was derived. We concluded that the CTMC

model is not significantly different from the observed ward occupancy.

The local search heuristic was evaluated using a range of different tests. Firstly, the case-hospital result was

checked by conducting a complete enumeration of the search space. Here, we found the heuristic solution

was in fact the global optimal solution to the problem. However, as complete enumeration is foreseeable for

this problem size, it is certainly not practical as a decision tool. Even though global optimality cannot be

proven without, we propose to use our approach, with a 99.6% reduction in runtime. Secondly, we tested

our local search heuristic conducting five tests with different parameter adjustments, and one additional test

resembling a future organizational change. The local search heuristic performed well in all tests.

5.1 Future Work

For future work, a larger number of wards should be considered. We notice that such an expansion would

require a substantial increase in state space, possibly reducing the practical use of our modelling approach.

It should be considered how other methods could help to support the CTMC model approach with a view

to decrease runtime spend on function evaluations. Moreover, as the problem complexity grows, other local

search techniques, such as Tabu Search, might be more suitable approaches.

Lastly, to further support our modelling approach, simulation experiments should be conducted to assess

the nature of the system under different parameter settings, as well as the CTMC robustness to different

inter-arrival and service time distributions.
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Appendices

A Equations

Derivative of the Erlang-B formula,
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(10)

where Gm,n
p,q

( a1,...,an,an+1,...,ap
b1,...,bm,bm+1,...,bq

∣∣ z) is the Meijer-G function, Γ(x) and Γ(s, x) the complete and upper incom-

plete gamma functions, respectively; and Ψ(x) the digamma function.
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Figure 7: Simulated distribution of (9). Conducted with 30,000 replications.
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Figure 8: Complete enumeration of the search space for the current distribution of beds.
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