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Abstract  

‘Safety by design’ (SbD) is an intuitively appealing concept that is on the rise within 

nanotoxicology and nanosafety research, as well as within nanotechnology research 

policy. It leans on principles established within drug discovery and development 

(DDD) and seeks to address safety early, as well as throughout product development. 

However, it remains unclear what the concept of SbD exactly entails for engineered 

nanomaterials (ENMs) or how it is envisioned to be implemented. Here we review the 

concept as it is emerging in European research and compare its resemblance with the 

safety testing and assessment practices in DDD. From this comparison, it is clear that 

‘safety’ is not obtained through DDD, and that SbD should be considered a starting 

point rather than an end, meaning that products will still need to progress through 

thorough safety evaluations and regulation. We conclude that although risk reduction 

is clearly desirable, the way SbD is currently communicated tends to treat safety as an 

inherent material property and that this is fundamentally problematic as it represents a 

recasting and reduction of societal issues into technical problems. SbD therefore faces 

a multitude of challenges, from practical implementation to unrealistic stakeholder 

expectations.   
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1 Introduction  

In July 2016, the European Nanosafety Cluster’s (NSC) annual report on the status of 

EU funded projects on nanosafety was released. It highlights that within these EU 

projects there is an ‘increasing focus on safety-by-design consideration for 

nanomaterials’ (Lynch, 2016) and ‘the focus of investment and research has moved 

increasingly towards predictive and high throughput approaches to nanosafety, 

including safety-by-design...’ (NSC, 2016). Furthermore, the report states that this 

focus will intensify when the 3rd round of Horizon 2020 projects commences (Lynch, 

2016). Although different ideas of safety by design (SbD) coexist, the basic concept 

refers to the process of anticipating potential impacts of a product or material on 

human and/or environmental health and preemptively addressing safety concerns 

early in the innovation process through altering product design.  

Predictive toxicology and high throughput approaches are currently being 

pursued to facilitate the investigation of safety considerations and early decision-

making on design choices by trying to elucidate the mode of action of engineered 

nanomaterials (ENMs), with the underlying assumption that there is a relationship 

between structure and activity and that mechanistic insight is needed to bridge the 

gap. By understanding this relationship, the vision is that we can predict the 

hazardousness of ENMs and design advanced materials to purposefully avoid 

unwanted properties while retaining desired functionality. Creating ENMs that are 

‘safer’ or ‘safe’ by design is arguably inspired by processes in drug discovery and 

development (DDD) (Damoiseaux et al., 2011; Movia et al., 2014; NANoREG, 2015) 

and has been a touted aspiration ever since nanotoxicology began as a field of 

research (Kelty, 2009).  
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Since establishing dedicated regulatory systems capable of adequately 

assessing the risks of ENMs ‘downstream’ from product development has proved 

problematic, considering safety as a characteristic that can be incorporated as a design 

parameter ‘upstream’ during product development is immediately appealing. Given 

that the regulatory situation for ENMs is still unclear and in development (Hansen and 

Baun, 2015), uncertainty concerning how to quantify and identify novel risks remains 

(Grieger, 2011, Johnston et al., 2013, Miller and Wickson, 2015, Saleh et al., 2015) 

and the pressing need for safety research to keep pace with innovation (Savolainen et 

al., 2013), the idea of safety by design seems to offer a particularly powerful approach 

to circumvent these obstacles.   

While applying the concept of SbD to ENMs has gained increased attention 

around the world in recent years, it has a particularly notable and consistent presence 

in European approaches to nanomaterial research and innovation. This is evidenced 

through existing FP7 projects (Lynch, 2014, 2015, 2016) and the emphasis seems set 

to continue into Horizon 2020. However, since current European approaches are 

underpinned by the paradigm of first identifying risks and then designing for safety, 

uncertainties surrounding the feasibility of SbD remain. Despite its current 

prominence, the concept of SbD for nanomaterials as it appears in European research 

and policy remains superficial, under-conceptualized and largely unevaluated. Indeed, 

the issue of how to implement the concept in practice is rarely articulated and the 

feasibility of the concept to facilitate the development of safer products rarely 

questioned. This is despite the presence of significant challenges remaining on several 

levels. 

Here we therefore provide a timely review of how the concept of SbD for 

ENMs is being presented and approached within European nanosafety research as 

3 



 

well as an analysis of its major challenges. To do this, we specifically examine how 

the SbD concept is emerging for ENMs in Europe and consider how this compares 

with the current practice in DDD. Finally, we examine what lessons nanosafety can 

learn from DDD and highlight that, although safety is addressed throughout DDD, 

pharmaceuticals are not consequently considered safe. Indeed, as we will illustrate, 

treating safety as an inherent material property is fundamentally problematic and 

therefore it is important to revise existing expectations of what SbD can and can’t do 

within nanosafety research and policy.  

  

2 What is Safety by design for Engineered Nanomaterials?  

The concept of designing for safety has been developed and applied in the 

engineering sector for decades, where the focus has been on addressing potential 

safety concerns and minimising risk through the design of engineered products (e.g. 

Brown, 1976; Wang et al., 1996). Within the construction industry, there has also 

been an emphasis on design modification as a way to prevent injuries on the work 

floor and reduce negative health effects for those constructing, using or maintaining a 

product. In recent years though, the concept of designing for safety has gained 

increased attention in fields such as ‘green chemistry’ and ‘inherent safety’, in which 

there is an attempt to design processes that have an intrinsically low level of hazard 

instead of managing hazards through protective systems.  

 Actively pursuing a safer design of ENMs has been proposed in a 

number of scientific reports, book chapters and articles over the last years (e.g. Meng 

et al., 2009; Tinkle 2010; ICON 2010; Morose 2010; Fadeel 2010, 2013; Riediker 

2011; Truong et al., 2012; Nel et al., 2013; Som et al., 2013, Lynch et al., 2014; 

Geraci et al., 2015; Burello and Worth 2015; Costa, 2016). Recent empirical 
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examples of applying SbD approaches to nanomaterial design include studies on ZnO 

particles (Le et al., 2016), CuO particles (Naatz et al., 2017), carbon nanotubes 

(Gilbertson et al., 2016), Au nanoboxes (Movia et al., 2014), CeO2 particles (Forest et 

al., 2017) and SiO2 particles (Lehman et al., 2016). As seen in Table 1, most 

European nanosafety projects incorporate – or see themselves as part of – SbD 

approaches to varying degrees. Although it is common for European nanosafety 

projects to refer to the concept of SbD, a close investigation reveals that these projects 

rarely engage in a detailed discussion of what is meant by SbD or discuss challenges 

for its implementation in practice. Indeed the meaning and practice of SbD seems to 

have received its most extensive articulation in the projects NANoREG and 

NANoREG II (Lynch, 2016).  

 
2.1 The NANoREG and NANoREG II Approach to Safety by design  

As of May 2015, the NANoREG SbD concept was published as a 32 page ‘working 

document’ on the NANoREG website (Sips et al., 2015), and stands to this day as the 

most comprehensive description available. Within NANoREG, emphasis has been 

placed on ‘Safe-by-Design’ as a way to develop new products where functionality and 

safety are tested in an integrated way during product or material development. 

 In its approach to the concept, the NANoREG project has specifically chosen 

to link SbD to a stage gate model of innovation. A stage gate model is effectively a 

conceptual and operational map used in innovation arenas for tracking, directing and 

managing the development of new products to market. Linking the SbD idea to the 

stage-gate innovation model provides some structure for the application of the 

concept in the context of the development of ENMs. However, it should also be noted 

that such stage-gate models have typically been employed for guiding innovation 

decisions within single companies or firms and may not necessarily be easily 
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applicable for multi-actor networks and globally distributed value-chains, as can be 

the case for the development of ENMs and their incorporation into commercial 

products. The model for SbD from NANoREG presents the innovation process as 

consisting of various stages, each with its own requirements that need to be met in 

order for development to move on to the next stage. A gate then represents a decision 

point, or a control point, at which evaluation needs to occur, in this case on safety 

considerations and risk potentials, before product development can continue.  

In the follow-up project, NANoREG II, three pillars of safe design, safe 

production, and safe use are to underpin a ‘safe innovation’ approach in which the 

SbD concept is combined with ´regulatory preparedness´. The latter is said to refer to 

a timely interaction between innovators and regulators, with the idea being that 

through focusing on safety issues early in the production and design process, as well 

as throughout the innovation chain, innovators are prepared with the information and 

knowledge they need to meet any regulatory requirements.   

Creating safe EMNs in pillar 1 is described as achieved through understanding 

factors that influence ‘risk potential’ (namely characteristics such as solubility, 

coating stability, genotoxicity, ecotoxicity and potential to accumulate or create 

inflammation) and assessing knowledge on these using ‘non-testing’ tools such as 

structure activity relationships (SAR), grouping strategies and high throughput 

screening (HTS) of in vitro and in vivo tests to find ‘less hazardous nanoforms’. 

However, NANoREG II also seeks to go beyond SbD to develop a ´Safe Innovation´ 

approach and describes itself as ‘built around the challenge of coupling SbD to the 

regulatory process’ (Lynch, 2016). It also calls for proactive regulatory authorities 

(Sips et al., 2015), and a flexible regulatory system that allows for robust, yet cost-

effective and rapid regulation underpinned by SbD (Lynch, 2016).  
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3 Fundamental Challenges   

Despite the intuitive appeal of the idea of SbD, and its grounding in the engineering 

and construction sector, the details of its conceptual development and practical 

implementation for ENMs raises a number of questions and faces various obstacles 

that need to be explicitly acknowledged and addressed. 

 Safety is clearly a core value of the concept, although exactly what safety 

means can differ between fields, disciplines and individual perspectives. Indeed, 

safety is a relational value (i.e. to understand its meaning you first need to answer 

safety for whom or for what?). The challenges associated with this become 

particularly clear in the concept of environmental safety, where it is not immediately 

obvious what type of entities are of interest and deemed worthy of protecting (e.g. 

particular individual organisms, populations, species or ecosystems), nor how harm to 

particular individual organisms might be weighed against safety for collectives such 

as whole populations, species or ecosystems. Since absolute safety can never be 

guaranteed, SbD also begs questions relating to what is safe enough, who gets to 

define acceptable levels of safety, and how this decision-making is performed. For 

this reason, the use of ‘safer’ also seems more appropriate, than the more absolute 

‘safe’ and ‘safety’. However, as seen in Table 1, most of the current European 

projects utilize the latter terms, which is also reflected in the concept develop by 

NANoREG. Although NANoREG claims to recognize the impossibility of absolute 

safety (Sips et al., 2015), it still chooses to use the absolute terms safe and safety and 

fails to acknowledge the relational nature of the concept or the specific challenges 

involved in operationalizing its definition. Furthermore, by centralising the sole value 

on safety, the SbD concept fails to substantially engage with other potentially 

significant questions that can generate social debate or be of political relevance, such 
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as how does the innovation align with social values, is it needed, is it ethically 

acceptable, and how does the innovation compare to other available alternatives for 

solving the same problem. 

 SbD clearly changes the typical risk evaluation question of ‘is it safe?’ to ‘can 

we engineer it to be safe?’ (Kelty 2009). The weight given to engineering and design 

implies that all safety concerns stem from the characteristics of the product rather than 

also being related to e.g. exposure and its context of use and deployment. SbD 

therefore threatens to take the political challenges of risk-based regulation (i.e. 

involving selecting values and protection goals during risk policy, interpreting science 

during risk assessment and taking political decisions during risk management) and 

reduces them to a technical engineering dilemma for scientists and innovators. In 

general, setting guiding values for a risk assessment, deciding on levels of risk 

acceptability, and deciding on risk management strategies are policy issues and 

involve an interplay of considerations, including technical, social, cultural, political, 

educational, and economic aspects (US Congress, 1993; van Leeuwen, 2007). Even 

risk assessment, which has traditionally been understood as solely a scientific matter, 

is intertwined with societal concerns and values (National Research Council, 2009; 

Miller and Wickson 2015). For example, the very question of what data is required to 

suffice regulatory risk assessment and how such data should be generated is 

fundamentally a political decision (van Leeuwen, 2007). This reduction and recasting 

of political challenges as technical problems of engineering design implies a paradigm 

of control that is in contrast to a more nuanced and realistic navigation of complexity 

and uncertainty. According to the vision of SbD, if we understand x and do y, we will 

be able to attain control over the otherwise unruly nano-domain. However, although 

the application of SbD in the engineering sector is based on mitigation of known risks,  
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it is important to note that this is currently not the case for ENMs where the process of 

developing standards for safety testing is still ongoing (Shatkin and Ong, 2016; 

Skjolding et al., 2016) and there is no reliable and complete body of knowledge on the 

risks of ENMs that can simply be incorporated into design processes.  

One of the key characteristics of SbD is that it requires stakeholder 

collaboration to discuss and respond to potential safety implications throughout the 

value chain. However, although stakeholder collaboration is arguably desirable, 

(close) collaboration between scientists researching safety and innovators developing 

new products can itself create new challenges and concerns, such as the potential for 

bias in research priorities, tension from diverging power relations among different 

stakeholders, questions about the freedom to disseminate (negative) results and the 

distribution of responsibility. These challenges related to the autonomy and 

independence of scientists can significantly affect the willingness to collaborate and 

therefore the uptake and realization of SbD in practice and demand careful reflection 

and deliberation in order to guide collaborations in fruitful, robust and mutually 

respectful ways. Moreover, it is worth noting that close collaborations between 

industrial innovators and safety scientists as called for within SbD can affect public 

trust in the research and products coming out of such collaborations. This has been 

demonstrated in the case of biotechnology, in which the call has been for improving 

conditions for greater levels of independent safety research, rather than for more 

safety research conducted in collaboration with industry (Waltz 2009; Mehta, 2004), 

or alternatively, that clear lines are established between when collaboration is useful 

and when independent safety evaluation, audits and quality controls are required 

(Kapuscinski et al., 2003).  
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4 Drug Discovery and Development  

Throughout the process of inventing and designing new drugs, the pharmaceutical 

industry addresses toxicity issues from the earliest stages in drug discovery into 

preclinical and clinical drug development. In drug discovery, high-throughput assays 

are utilized to screen for toxicity to identify risks early in the innovation process. 

Most of this early work is considered exploratory and done without good laboratory 

practices (GLP), whereas later in vivo toxicity testing is targeted to fulfill regulatory 

demands. This is fundamentally different from the current situation for most ENMs 

regulated e.g. through REACH, where the focus on testing primarily occurs once they 

have entered, or are about to enter, the market. Moving away from current regulatory 

toxicology models and closer to the principles within drug discovery seems to be at 

the core of how SbD is being envisaged for EMNs.  

In drug discovery, early in vitro and in silico screening is used to predict 

toxicity and avoid safety-related failure downstream in development (including the 

significant waste of resources this represents) (Ahuja and Sharma, 2014). This is a 

huge issue in DDD as approximately 90% of drugs that come through pre-clinical 

testing fail in the clinical phase (Hay et al., 2014). Approximately one third of this 

clinical attrition is due to safety concerns (Kola and Landis, 2004) and improving the 

predictability of failure before entering clinical trials by 10% is estimated to save a 

company approximately $100 million (Sasseville et al., 2004). This is the foundation 

of the ‘fail early, fail often’ discovery paradigm in DDD (Blomme and Will, 2016).  

Thus, the primary point of ‘frontloading’ the drug pipeline with early safety 

tests is to try to reduce future loses. This does not, however, change the need for 

thorough downstream toxicological evaluation in vivo, nor make the process faster or 

cheaper (Snodin, 2002; Rang, 2007; Dambach et al., 2016) and, perhaps surprisingly, 
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it seems questionable whether the approach has had a significant impact on clinical 

attrition rates thus far (Blomme and Will, 2016).   

The early in vitro screening in DDD can also be denoted as pharmacological 

profiling as it is done to determine what targets and off-targets a compound interacts 

with; the classical example being ‘hERG screening’ as unintended hERG interference 

has been one of the most frequent causes for preclinical attrition as well as drug 

withdrawals (Sanguinetti and Tristani-Firouzi, 2006; Möller, 2010, Danker and 

Möller, 2014). The approach to avoid hERG related issues was screening potential 

new drugs in vitro, e.g. in a ligand binding assay, to ensure that marketed drugs do not 

show affinity to bind to hERG. Such approaches have had an impressive effect, to the 

point where no new drugs have been withdrawn due to this side-effect since the 

screenings began (Shah, 2006; Stockbridge et al., 2013; Polak et al., 2015). 

However, despite the efforts to address toxicity early (as well as throughout) 

DDD, the concept of having designed safety into the drug is nonexistent. On the 

contrary, it is considered a misconception that even all serious adverse drug reactions 

are known when a new drug reaches the market (FDA, 2016). It is not uncommon that 

drugs can come through 10-15 years of discovery, development, optimization, testing 

and finally regulatory approval, only to be withdrawn again because of safety issues 

that arise during their use. The database WITHDRAWN has collected data on 578 

withdrawn drugs and identified safety issues as the main reason for withdrawal in half 

the cases (Siramshetty et al., 2015). Currently, the probability that a new drug will be 

withdrawn from the market due to safety issues or receive a new black box warning is 

estimated to be at 20% (Lasser et al., 2002).  
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5 What can Nanosafety learn from Drug Development? 

It seems clear that establishing a strategy to screen EMNs with e.g. (Q)SAR and HTS 

has the possibility of identifying materials with lower intrinsic hazard potential. 

However, the leap of faith between the ability to identify lower hazard potentials and 

the ability to design materials to simultaneously maximize safety and functionality in 

such a way that the resulting material may be called ‘safe’ seems unjustifiable. A 

recent example of this is the study by Naatz et al. (2017). Through Fe doping, a 

hazard reduction was obtained for CuO particles, which led the authors to conclude 

that they had demonstrated the particles’ ‘safe use in the environment’. However, 

even their safest particle still gives rise to EC50 values below 1 mg/L, which classifies 

CuO particles as ‘very toxic’ (Kahru and Dubourguier, 2010). 

Furthermore, using a pharmaceutical analogy, finding a material that performs 

well in HTS might be considered a hit compound, but turning hits into leads requires 

optimization, and as such, the material is still far from being considered a viable drug 

candidate and decades from being a commercially available drug. This is not to say 

that all ENMs should be held to the same safety standard as pharmaceutical drugs, 

however it emphasizes that true optimization is no trivial task and cannot rely on 

screening without redesigning and redesigning without screening. Achieving a hazard 

reduction through optimization without interfering with functionality - if possible - 

requires iterative testing. 

What seems more reasonable than bold claims of complete safety is that 

nanosafety as a science is getting closer to identifying material characteristics or 

properties linked to hazard or risk potential that should be avoided as much as 

possible. This could lay the foundation for ‘design guidelines’ of the type that have 

had an immense impact on DDD, with the most well-known being Lipinski’s rule of 
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five (Lipinski et al., 1997), driving development towards more rational drug design 

(Zhang and Wilkinson, 2007; Leeson, 2012). Although these guidelines for design 

aim towards optimizing a compound’s so-called ‘druggability’, similar rules exist for 

avoiding creating compounds with known toxicity (Smith, 2011). Already in 2009, 

Nel et al. (2009) summarized the mode of action of multiple types of EMNs as well as 

possible design features to mitigate toxicity. Most notable was the ‘fiber 

pathogenicity paradigm’ that recommends against designing persistent high aspect 

ratio nanoparticles (HARNs) longer than 5µm and wider than 3µm (Donaldson et al., 

2011). Similarly, Yan et al. (2011) proposed five properties for carbon nanomaterial 

design to reduce toxicity, such as adding hydrophilic surface modifications. Other 

examples include metal doping strategies (Wake et al., 2004; George et al., 2010, 

Naatz et al., 2017),  modifying particle surface charge (Harper et al., 2011; Fröhlich, 

2012; Gilbertson et al. 2016) as well as shape considerations (Forest et al. 2017). 

Being aware of this type of knowledge when developing new materials seems 

paramount, although the impact such guidelines have on the actual practice of 

innovation and the commercialization of products utilizing nanomaterials remains to 

be demonstrated. It is also crucial to note that such guidelines remain a starting point 

for product design that still require empirical testing. 

 In DDD the focus of risk mitigation naturally revolves around hazard 

reduction, as exposure considerations for pharmaceuticals are limited. Implementing a 

SbD concept, inspired from DDD, appears to have created a bias in nanosafety 

research. As seen in Table 1, all but one EU project on SbD addresses hazard, 

whereas only a few have a focus on the exposure and fate of ENMs. Reducing hazard 

may certainly be possible in some cases, however, it is highly unlikely to be 

achievable for all applications as it can clash with the desired functionality of the 
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material. For example, ENMs developed to remediate polluted environments, should 

ideally be both mobile and reactive when seen from a performance perspective and 

yet, these are exactly the same characteristics that are undesirable from an 

environmental safety perspective (Karn et al., 2009). Optimization therefore always 

requires carefully considering and balancing functionality and toxicity. For instance, 

for ZnO particles a metal doping strategy can effectively be used to decrease 

dissolution and thereby toxicity (Xia et al., 2011). However, as emphasized by 

Sotiriou et al. (2014), this unfortunately interferes with the transparency of the 

particles as needed in e.g. sunscreen applications. Sotiriou et al. (2014) demonstrated 

that ZnO particles can instead be coated with a thin layer of SiO2 that can maintain the 

desired optical properties while still reducing toxicity. However, coating particles in 

e.g. SiO2 ‘cannot be considered a “swiss army knife” for all ENMs and all 

applications’ (Gass et al., 2013). The current enthusiasm being shown for SbD in 

nanosafety research projects and policy in Europe usually fails to acknowledge that 

there is a fundamental challenge involved in trying to maximize both functionality 

and safety for all ENM applications. This undermines the potential value of the 

concept because it promotes an unrealistic ideal of universal applicability and 

potential without engaging in serious considerations of where the concept may be 

useful and where other approaches to minimizing harm may also be required.  

As noted by Hjorth et al. (2017), exposure considerations may in some cases 

be a more obvious starting point for improving the safety profile of ENMs. 

Furthermore, as hazard has proven difficult to assess in nanotoxicology and linking 

e,g, unwanted ROS generation to particles properties is at times even noted as 

controversial (von Moos and Slaveykova, 2014), other warning signs such as novelty, 

persistency, dispersibility and the possibility of bioaccumulation or irreversible 
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actions should also be taken into account when addressing the potential harmful 

properties of ENMs (Hansen et al., 2013). Similarly, other decision support tools also 

exist for near-term decision-making (Som et al., 2013).  

 Besides pharmaceuticals, early safety screening is also set in place in the 

development of pesticides. Again, as the process of obtaining regulatory approval of 

pesticides is expensive and requires a demanding safety evaluation (Damalas and 

Eleftherohorinos, 2011), the industry tries to limit late-stage rejections due to safety 

concerns. In contrast to pharmaceuticals and pesticides, ENMs do not necessarily 

trigger any special regulatory safety testing requirements. On the contrary, different 

ENMs will be handled by very different regulations based on their use and product 

category. Therefore, the requirements for safety testing can vary considerably and 

encouraging an early toxicity evaluation risks being an undesirable financial burden 

unless the material is forced to go through an even costlier safety assessment to obtain 

market access.  

Although it is rarely explicitly claimed that SbD can replace regulatory risk 

assessment for ENMs, when it is presented as a way for nanosafety to keep pace with 

innovation, there is an implicit assumption that it will not just create a host of new 

testing demands prior to the needs of regulatory toxicology, but that it will somehow 

reduce the time and load of work required for ‘regulatory preparedness’ and risk 

analysis.  

However, all of this relies on the predictive capacity of simplified testing. 

Going back to pharmacological profiling, it is today recognized that hERG is a 

‘promiscuous’ target causing binding screenings to be too simplistic, quite 

conservative and giving rise to too many false positives (Möller, 2010; Polak et al., 

2015). So although, the screening has been effective in stopping potentially risky drug 
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candidates, it is actually not very predictive and consequently potentially good drugs 

have been missed (Blomme and Will, 2016). More nuanced and sophisticated 

screenings with better predictability call for a shift in paradigm towards integrated in 

vitro and in silico methods based solely on a mechanistic understanding (Sager et al., 

2014; Frommeyer and Eckardt, 2016). 

 Much effort is similarly currently invested in advancing nanotoxicology to be 

able to improve in silico and in vitro predictability based on a mechanistic foundation. 

Especially the identification of adverse outcome pathways (AOP) has received much 

attention to help in vitro to in vivo extrapolation and fill knowledge gaps in 

nanotoxicology (Gerloff et al., 2016). However, nanotoxicology is still struggling 

with fundamental issues in experimental testing, giving rise to experimental data of 

variable quality and hampering the generation of predictive models, such as QSARs 

(Tantra et al., 2015). A similar concern has also been articulated by the NSC in the 

European Commission’s research strategy for nanosafety in Horizon 2020. E.g. 

‘Current resources or test methods are not likely to enable safety assessment of the 

numerous novel nanomaterials…’ and ‘we still lack a fundamental understanding of 

how nanomaterials interact with living systems and, thus, we are not yet in a position 

to assess the relevant end-points for nanomaterial toxicity’ (Savolainen et al., 2013).  

The working group on SbD in the NSC directly states that SbD has not been applied 

to ENMs ‘primarily because nanosafety research is not yet robust enough to operate 

in a predictive manner’ (Lynch, 2016). 

SbD seems to go straight towards ‘ensuring safety’ in response to, and in spite 

of, these problems. However, reliable testing arguably precedes hazard identification, 

while hazard identification precedes mechanistic understanding, mechanistic 

understanding precedes prediction and prediction precedes ‘SbD’. Or simply, SbD 
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cannot be used to circumvent the issues we are currently facing in developing robust 

risk analysis for ENMs.  

  

6 Conclusion  

Safety is not an inherent material property. It goes against even the most fundamental 

concepts in toxicology to propose that it is. ‘All things are poison and nothing is 

without poison’ is as true today as when Paracelsus stated it in the 16th century. 

Perhaps this central contradiction in SbD is well understood by nanotoxicologists; 

however it could fool other stakeholders and lead them to consequently have 

unrealistic expectations as to what can be achieved through SbD. The novelty of 

ENMs and the limitations of our existing knowledge and test methods have meant that 

ENMs have proven difficult to adequately risk assess and consequently risk manage - 

however SbD cannot remediate or replace this. In DDD, early in vitro or in silico 

screening is used as a risk reduction or risk mitigation strategy, which is ultimately 

followed by detailed toxicological testing and regulation, and a simulation of the 

approach in nanosafety would best adopt a similar approach. From DDD we should 

realize that ‘SbD’ can only be considered a starting point rather than the end point on 

the road towards developing innovative new products that are safe for human health 

and the environment.  

Risk identification, reduction and mitigation should of course be encouraged. 

Having safety considerations in mind throughout research and development and early 

identification of safer alternatives is indeed imperative and should be supported, e.g. 

through the implementation of approaches such as alternatives assessment (Hjorth et 

al., 2017). Addressing fate and exposure in design considerations (in addition to the 

currently predominating focus on hazard reduction) should also have a higher priority. 
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DDD has taught us that despite the best intentions and the best design, no drug is 

without side effects. Likewise, no ENM can be designed to be safe for all organisms 

and systems under all contexts and conditions of use. Overcoming the challenges 

facing ENM regulation and the obstacles within risk-based research to fast-track 

nanosafety cannot be achieved through high ambitions alone. The nanosafety field 

would do well to learn from DDD and temper its expectations and claims regarding 

SbD with open acknowledgement of its limitations and challenges in practice.  
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Table 1 Overview and focus of the projects in the 2016 Nanosafety Cluster Compendium that address Safety by design (SbD) (our highlights). The exes indicate 
whether the projects are involved in the conceptually idea behind SbD and whether safety is approached through hazard, exposure and/or fate considerations.  

 

Projects Statement 

Concept 
Hazard 
Exposure 
Fate 

Horizon 2020 

SmartNanoTox 
‘By scanning main groups of engineered NMs, we will identify the NM properties that might be responsible for causing a particular toxic effect and lead to a particular 
AO, and thus should be modified or avoided. This will provide means of grouping and read- across characterization of NMs and enable development of materials that 
are safe by design’ 
 

 X   

NanoFase 
[activities in NanoFase] ‘will aid Safe by Design and Benign by Design Concepts, as it will inform on how basic ENM properties will affect their final environmental 
form(s) and distribution following environmental release, allowing this to be a relevant consideration in the design phase’ 
 

   X 

NANOGENTOOLS ‘Conduct research and training on biophysical techniques and mathematical models for accurate and fast nanotoxicity prediction linked to safety-by-design concepts’ 
 

 X   

ProSafe [one objective is to] ‘Acceptance and further elaboration of the NANoREG safe innovation and safe-by-design concept’ 
 

X    

NANoREG II 
‘The NANoREG II project, built around the challenge of coupling SbD to the regulatory process, will demonstrate and establish new principles and ideas based on data 
from value chain implementation studies to establish SbD as a fundamental pillar in the validation of a novel MNM’ 
 

X X X X 

FP7 

eNanoMapper 
‘…we will develop resources, tools and standards for a scientifically sound risk assessment of ENMs that will support the design of new safe and environment- friendly 
ENMs as well as the assessment of existing materials’ 
 

 X   

FutureNanoNee
ds 

[one objective is] ‘To develop an understanding of the relationships between nanoparticle (pristine) structure, its properties (including in situ), and its biological and 
environmental activity (that is, structure and ’identity’ broadly defined) thereby giving early support to the science of ‘new nanomaterials, safe by design’’ 
 

 X   

GUIDEnano 

‘SbD strategies were intended to : re-design relevant physicochemical properties of NM to mitigate their hazardous potential, while maintaining their characteristic 
functionality within the NM enabled product, avoid or reduce the release of NM during different life cycle stages of the nano-enabled products by improving 
compatibility between NM and matrix, to lower the possibility of environmental and/or human exposure to NM, avoid or reduce the environmental and/or human 
exposure to NM by designing and synthesizing less reactive and/or less persistent NM’ 
 

 X X  

NanoMILE 
‘NanoMILE intends to revolutionise nanosafety research through its robust and novel approaches to the selection and development of the test nanomaterials, its 
technically and computationally advanced integration of systems biology, its thoughtfully balanced toxicological / ecotoxicological approaches, its development of 
novel high throughput platforms for screening and its feedback loops for development of nanomaterials that are safer by design’ 
 

 X   

NanoToxClass 

‘NanoToxClass also enhances our understanding of modes of action for NM and can give guidance to the large set of possible toxicity endpoints for NM by selecting 
the most predictive ones (which will be then used as a basis for grouping). Omics techniques will enable to assess NM hazards on a mechanistic basis and will enable 
the determination of adverse outcome pathways (AOP). Finally, this knowledge may be applied as a tool to create safer nanoparticles (so called “safe-by-design” 
approaches)’ 
 

 X   

SUN 
‘The SUN approach has covered the entire lifecycles of real nanoproducts, aiming at developing safer by design strategies in order to open new possibilities for 
innovators to design greener nanotechnologies’ 
 

 X X X 

NANoREG ‘An integrated research strategy which addresses product/material design and the safety aspects for humans and the environment will be developed’ X X X  
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