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Abstract 

Ductile iron is nowadays widely used in key industrial sectors like off-shore, transport and energy 
production, accounting for as much as 25 % of the total casting production in the world. It is well 
known that ductile iron parts, depending on their size, may contain residual stresses developing over 
distances of a few millimeters or more, which arise due to the presence of constraints that hinder the 
free thermal contraction of the material during cooling. Fortunately, dedicated studies performed in 
the last few decades have provided a detailed understanding of the phenomenon, and today reliable 
tools exist that allow predicting and coping with the problem in almost all practical cases. 
On the other hand, the intrinsic composite nature of ductile iron suggests the possible formation of 
another type of residual stresses, at much shorter length scales, associated with the thermal 
contraction mismatch between the two main metallurgical phases forming the material 
microstructure: the graphite nodules and the metallic matrix. Surprisingly, the subject has not 
received much consideration in the past, probably due the common belief that the graphite particles 
are very soft and unable to withstand any kind of loading. As a matter of fact, however, 
experimental evidence exists for their mechanical importance, especially at relatively high 
temperature and under compressive loadings, indicating that ductile iron might not be considered as 
a merely “voided material” in all situations. 
Taking this as point of departure, the present work initially focuses on finding a satisfactory 
description of the nodules’ thermo-elastic behavior, which is shown to be missing in the published 
literature, by means of micro-mechanical homogenization analyses based on a representative unit 
cell. These, combined with the application of elastic bound theory for polycrystalline materials, lead 
to the conclusion that the nodules cannot be considered as homogeneous and isotropic at the 
microstructural scale. Consequently, a novel strategy to simulate their elastic response is proposed, 
which consists in modeling their characteristic internal structure, composed of graphite platelets 
arranged into conical sectors, in an explicit manner. The resulting anisotropic model turns out to 
provide homogenized values for the ductile iron thermo-elastic properties at the macro-scale in 
excellent agreement with the experiments. In addition, it also indicates that the average thermal 
contraction of the nodules is likely 3 to 4 times smaller compared to that of the surrounding matrix, 
hence confirming the existence of a driving force for the formation of stresses at the local scale. 
In order to investigate this last aspect, the final stages of the manufacturing process are simulated 
numerically, accounting for the different thermal expansion of the nodules and of the matrix during 
both the eutectoid transformation and the subsequent cooling to room temperature. The results show 
the formation of significant residual stresses in the matrix region close to the nodules, which are 
mainly deviatoric and strongly affected by the number of conical sectors forming the graphite 
particles.  
To support the numerical findings, whose relevance calls for an adequate experimental validation, 
two techniques are employed. The Oliver-Pharr nano-indentation method is considered first, with 
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the aim of obtaining some direct information concerning the constitutive behavior of the individual 
graphite particles. Unfortunately, the technique turns out to feature a number of assumptions that 
pose strong limitations to its applicability to brittle, inhomogeneous and anisotropic structures like 
the nodules. Interestingly, one of them is related to a concealed way of accounting for the particular 
contact condition arising between the indenter and the sample during the test, which is revealed in 
detail in this work for the first time in literature.  
The second technique considered is a novel 3D X-ray diffraction method based on synchrotron 
radiation. This time, the experiments are successful and lead to the determination of the residual 
stress state around a single nodule lying beneath the material surface. The results are the first ever 
produced, and confirm the theoretical predictions that local stresses up to approximately half the 
macroscopic yield strength may remain in the ductile iron microstructure after manufacturing.  
Needless to say, this new type of residual stresses is expected to play an important role in 
determining the properties of ductile iron. Knowledge of the factors controlling it will pave the way 
for further optimization of the material performance under in-service loading. 
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Resumé 

 
Duktilt støbejern er i dag meget udbredt i væsentlige industrielle sektorer som offshore, transport og 
energiproduktion, og som tegner sig for op til 25 % af den samlede støbeproduktion på globalt plan. 
Det er velkendt, at emner af duktilt støbejern, afhængigt af størrelse, kan indeholde restspændinger 
der udvikles over afstande på få millimeter eller mere og som opstår på grund af begrænsninger, 
som forhindrer den frie termiske kontraktion af materialet under afkøling. Heldigvis har dedikerede 
studier, som er gennemført inden for de sidste årtier, sørget for en detaljeret forståelse af fænomenet 
og i dag findes der pålidelige værktøjer, som kan forudsige og håndtere problemer i næsten ethvert 
praktisk tilfælde.  
På den anden side, den indre komposit natur af duktilt støbejern tyder på en mulig formation af en 
anden type restspænding ved meget kortere længdeskalaer, og som er associeret med misforholdet 
mellem den termiske kontraktion af to primære metallurgiske faser, der danner mikrostrukturen af 
materialet: grafit kugler (noduler) og den metalliske matrix. Overraskende, så har emnet ikke fået 
meget opmærksomhed tidligere, muligvis på grund af den gængse forestilling om, at grafit partikler 
er meget bløde og ikke er i stand til at modstå nogen form for belastning. Faktisk findes der 
eksperimentelt bevis for deres mekaniske betydning, specielt ved relativt høje temperaturer og ved 
tryk-belastninger, som indikerer at duktilt støbejern muligvis ikke blot kan betragtes som ”ikke-
eksisterende materiale” i alle situationer. 
Med det som udgangspunkt, fokuserer det aktuelle arbejde på at finde en tilfredsstillende 
beskrivelse af nodulernes termo-elastiske adfærd, som vises at være fraværende fra det publicerede 
litteratur, ved hjælp af mikromekanisk homogeniserings analyse baseret på en repræsentativ 
enhedscelle. Dette, kombineret med anvendelse af elastisk nedre-og øvre-værditeori for 
polykrystalline materialer, fører til den konklusion, at nodulerne ikke kan opfattes som homogene 
og isotropiske på den mikrostrukturelle skala. Derfor foreslås en ny strategi til at simulere 
nodulernes elastiske opførsel, og som består af modellering af dets karakteristiske interne struktur, 
som består af grafit plateller arrangeret i koniske sektorer i en eksplicit måde. Det resulterende 
anistropiske model viser sig at give homogeniserede værdier for det duktile støbejerns 
termoelastiske egenskaber på den makroskopiske skala, og som er i fremragende overensstemmelse 
med eksperimenter. Ydermere, indikerer det også at den gennemsnitlige termiske kontraktion af 
nodulerne sandsynligvis er 3 til 4 gange mindre i forhold til den omkringliggende matrix, og 
dermed bekræfter den forekommende drivkraft for formation af spændinger på den lokale skala. 
For at undersøge det sidste aspekt, er de afsluttende stadier i fremstillingsprocessen simuleret 
numerisk ved at tage højde for de forskellige termiske udvidelser af nodulerne og af matricen, både 
under den eutektoide transformation og den efterfølgende afkøling til stuetemperatur. Resultaterne 
viser formationen af betydelige restspændinger i matrix regionen tæt på nodulerne, som primært er 
deviatoriske og stærkt påvirket af antallet af koniske sektorer, som danner grafit partiklerne. 
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For at understøtte de numeriske resultater, hvor det giver mening at udføre passende eksperimentel 
validering, er der gjort brug af to metoder. Oliver-Pharr nano-indhak metoden er først taget i 
betragtning, med det formål om at opnå noget direkte viden om den konstitutive opførsel af de 
individuelle grafit partikler. Desværre viser det sig, at metoden involverer et antal antagelser, som 
udgør en kraftig begrænsning til dets brug til skøre, inhomogene og anistrope strukturer som i 
nodulerne. Interessant nok, er en af antagelserne relateret til en skjult måde at gøre rede for den 
specifikke kontakt-tilstand der forekommer mellem indenteren og prøven under forsøget, og som 
for første gang i litteraturen er afsløret i detaljer i dette arbejde.  
Den anden metode er en ny 3D X-ray diffraktionsmetode baseret på synkrotron stråling. Denne 
gang er eksperimenterne vellykkede og fører til bestemmelse af restspændings tilstanden omkring 
en enkel nodul, som ligger under materiale overfladen. Resultaterne er de første produceret 
nogensinde og bekræfter de teoretiske forudsigelser, at lokale spændinger op til omkring det halve 
af den makroskopiske flydestyrke, forbliver i det duktile støbejerns mikrostruktur efter 
fremstillingen.  
Den nye type restspænding forventes at spille en afgørende rolle ved bestemmelse af duktilt 
støbejerns egenskaber. Viden om de faktorer der styrer egenskaberne vil give mulighed for 
yderligere optimering af materialets ydeevne ved belastninger under brug.  
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Chapter 1  
Introduction 

This introductory chapter is meant to provide the reader with sufficient background to understand 
the aim and motivation of the scientific work presented in the thesis, as well as in the appended 
articles. 

1.1 An unexplored aspect of the interplay structure-process-
properties-performance in ductile iron 

The discovery of ductile iron dates back to 1943, when Keith D. Millis of the International Nickel 
Company Research Laboratory found out that a small addition of magnesium to gray cast iron 
resulted in the formation of spherical graphite particles [1]. Since then, the material has experienced 
an enormous and constantly growing development, until becoming in 1998 the only ferrous casting 
alloy with a positive growth rate on the market [2]. Today, its high technological importance is 
reflected by the fact that as much as 25 % of the castings produced worldwide are made of ductile 
iron [3]. The main reason behind this phenomenal success is the unique combination of castability, 
high ductility and strength such material can offer, along with lower prices compared to traditional 
low carbon steels [4]. Examples of typical products are small and medium sized heavily loaded 
parts with high demands for consistent quality for the automotive industry and very large industrial 
components with extreme demands for mechanical properties, particularly fatigue strength and 
fracture toughness [5]. 
Over the years, a great deal of effort has been put to understand the science and engineering of 
ductile iron. Nevertheless, despite extensive experimental and theoretical studies, there are still 
some aspects which remain unclear. The primary reason is the complex set of interactions arising 
between material structure, manufacturing process and final mechanical properties, whose 
understanding may not be considered as fully achieved yet [6]. Among all these interactions, there 
is one in particular that has probably received much less consideration than necessary in the past: 
the possible formation of local residual stresses at the micro-structural level. This will be presented 
in details in the next paragraphs, on the basis of the direct application of the well-established 
structure-process-properties-performance paradigm [7] illustrated in figure 1.1.    

1.1.1 Ductile iron as a natural composite 

From a metallurgical standpoint, ductile iron may be classified as a ternary Fe-C-Si alloy where iron 
represents the main element by mass. The carbon and silicon content is normally adjusted so as to 
obtain eutectic or near-eutectic compositions according to the ternary equilibrium phase diagram. 
These are characterized by values of the carbon equivalent, defined as the sum wt% C + 1/3 wt% Si, 
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close to 4.3 wt%. Larger or smaller values lead to the so-called hyper-eutectic or hypo-eutectic 
grades respectively.  
With reference to figure 1.2, solidification of eutectic ductile iron begins with the independent 
nucleation of graphite and austenite from a properly inoculated melt [8]. The characteristic spherical 
shape of the graphitic phase is obtained by adding Mg and, in some cases, rare earth elements such 
as Ce and La to the base liquid metal, which give rise to a melt with low content of S and O [5]. As 
solidification proceeds, the graphite particles, often called spheroids or nodules, become enveloped 
by the austenite dendrites, and their further growth becomes controlled by carbon diffusion from the 
liquid through the austenite. Eventually, the liquid remaining in between the different dendrites or 
in between the secondary arms of the same dendrite solidifies, generating the so-called last-to-
freeze zones [8]. During the subsequent solid-state-cooling, marked with the red arrow in figure 1.2, 
the nodules keep growing, due to the reduced carbon solubility in the surrounding austenite. When 
the eutectoid interval is reached, austenite decomposition takes place. Slow cooling rate and high Si 
content favor the formation of ferrite, whereas high cooling rate and small amounts of elements like 
Mn, Cr or Cu promote the pearlitic transformation.  
From the optical micrographs shown in figure 1.3, it is clear that the final ductile iron 
microstructure may be naturally considered as composite [9][10], consisting of graphite particles 
embedded in a continuous matrix. The very high degree of nodularity of the former has justified the 
alternative designation of spheroidal graphite iron (SGI) or nodular cast iron (NCI), to emphasize 
the difference with other members of the cast iron family where the graphite is present in more 
irregular forms.  

1.1.2 Local residual stresses arising during manufacturing 

It is common knowledge that ductile iron components may be affected by the presence of residual 
stresses. This issue is normally more critical for parts used in the as-cast state, whereas it is 

 

Figure 1.1 – The particular type of interaction 
between structure, processing, properties and 
performance of ductile iron considered in the 
present work. 

 

Figure 1.2 – Schematic slice of the ternary Fe-C-Si 
phase diagram for a silicon concentration of 2.4 
wt%. Data taken from [11]. 
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Chapter 1 – Introduction 

relatively less important for components which are subjected to further heat treatment. Formally, 
residual stresses in a body are defined as those stresses which are not necessary to maintain 
equilibrium with the surrounding environment. Equivalently, they can also be described as the 
stresses which are not generated by the action of external forces, but rather by the volumetric misfit 
among different parts of the same component [12].  
In casting processes, residual stresses normally arise due to hindered thermal contraction. This 
simply means that they are associated with the presence of constraints that prevents the natural, free 
volumetric variation of the material upon cooling. As shown in figure 1.4, it is custom to distinguish 
between external and internal constraints [14]. The first type refers to the action of the mold, which, 
if stiff and strong, can effectively oppose the thermal contraction of the casting. The second type 
instead, indicates the constraint exerted on a particular region by the surrounding material which 
undergoes a different level of contraction. This implies the presence of an uneven volumetric 
variation within the casting itself, which, neglecting phase transformations, can originate from 

               
 

(a)                                                                              (b) 

Figure 1.3 – Examples of (a) fully ferritic and (b) ferritic-pearlitic ductile iron microstructures. Reproduced 
from [13]. 

 

Figure 1.4 – Schematic of the formation of residual stresses in a casting process, with indication of which 
driving mechanisms are active either at the global or at the local scale. 
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Chapter 1 – Introduction 

either a non-uniform temperature distribution, or from non-homogeneous material properties, i.e. 
different values of the coefficient of thermal expansion (CTE). 
From the reasoning above, one might think that mold constraints and temperature gradients could 
be responsible for the formation of transient stresses only. In fact, once the mold is removed and the 
casting has cooled down completely, no volumetric misfits should remain, either internal or 
external. Unfortunately, this is not true, as the transient stresses can promote non-homogeneous 
inelastic deformation during cooling, which in turn translates into a permanent, residual stress state 
in the final component.  
The two constraints just discussed drive residual stresses whose characteristic length scale normally 
coincides with the full size of the component. For this reason, they are normally referred to as 
global or macroscopic stresses. It is important to remark that, in the context of the present work, the 
characteristic length scale is defined as the distance over which the stresses self-equilibrate. 
Conversely, the residual stresses arising from variations in CTE are more likely to promote local or 
microscopic stresses, as they are frequently associated with the presence of two or more 
microstructural phases of different chemical nature.  
Concerning ductile iron, most of the past scientific and technological efforts have been addressed 
towards understanding and minimizing residual stresses occurring at the macroscopic level. 
However, the intrinsic composite structure visible in figure 1.3 suggests that local stresses might 
form too, as a consequence of the thermal expansion mismatch between the nodules and the 
surrounding matrix. To better appreciate this point, let us consider the specific case of ferritic 
ductile iron. The CTE of the matrix at room temperature can be assumed to be αm = 12 x 10-6 °C-1 
[15][16]. Regarding the nodules, dedicated CTE measurements do not seem to be available in the 
literature. Nevertheless, extensive experimental studies performed in the ‘70s on polycrystalline 
graphite for nuclear applications have reported values in the range of αg ≈ 3 ÷ 4 x 10-6 °C-1 [17]. By 
multiplying the difference in the CTEs by a hypothetic temperature jump of 700 °C, roughly 
coinciding with the cooling from the end of the eutectoid transformation, which marks the point 
where the nodules have attained their final size [18], one obtains a differential thermal strain of 5 ÷ 
6 x 10-3. This is as much as three times the permanent plastic deformation which conventionally 
defines the proof stress of a material.  
It has to be emphasized that the large difference between αm and αg is quite realistic. Indeed, it is an 
empirical fact that all crystalline solids expand by about 2 % on heating from absolute zero to their 
melting point [19]. This means that an estimate of the average CTE can be calculated as α = 0.02/T, 
where T is the melting temperature in Kelvin. For the ferritic matrix, the latter can be assumed to be 
1800 K. Graphite instead does not possess a real melting point at atmospheric pressure, as its triple 
point lies at several MPa [20]. However, by considering the temperature of the triple point itself ( ≈ 
4600 K [20]), it is possible to calculate an approximation to the ratio of the respective CTEs as 

 
𝛼𝛼𝑚𝑚
𝛼𝛼𝑔𝑔

=
𝑇𝑇𝑔𝑔
𝑇𝑇𝑚𝑚

=
4600
1800

≈ 2.6 (1.1) 

which justifies the large difference between the experimental values previously mentioned.  
On the basis of the present argument, it seems logical to expect a significant level of local residual 
stresses in the final ductile iron microstructure. In fact, this type of residual stresses has been known 
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to develop in traditional metal-matrix composites for long [21]. On the contrary, to the author’s best 
knowledge, the very first paper which analyzes quantitatively the formation of local residual 
stresses in ductile iron was published only in 2005 [16]. A natural question then arises as to why 
this subject has been overlooked for such a long time. In the author’s opinion, the primary reason 
has been the very limited knowledge of the thermo-mechanical behavior of the nodules, which have 
been traditionally considered as very soft and unable to withstand any kind of loading. This issue is 
examined in depth in the next section. 

1.1.3 Properties of the graphite nodules  

While the properties of the ductile iron matrix seem to be quite established, a detailed literature 
survey has shown that the thermo-mechanical role of the nodules is still, after 70 years, an open 
issue. On the one hand, contrary to common beliefs, experimental evidence exists for their 
importance during macroscopic material deformation. On the other hand, as a matter of fact, 
reliable information regarding their constitutive behavior is not available yet. 

1.1.3.1 Micro-structural importance: Experimental evidence 

As stated previously, the nodules have often been considered to have negligible influence on the 
mechanical properties of ductile iron. Especially in micro-mechanical analyses focusing on 
simulating uniaxial tensile tests, several authors simply neglected their presence, indeed regarding 
the material as porous [22][23][24]. This was justified mainly on the basis of microscopy 
observations, which had reported early debonding for spheroids sitting on the surface of the tensile 
test specimen [25]. However, as correctly pointed out in [26], the stress state around nodules located 
in the bulk is likely to be different, due to the material inhomogeneity, therefore it seems not 
possible to conclude that debonding always occurs, independently of the real local loading 
conditions. In addition, it is a fact that the tensile stress-strain curves for ductile iron are never 
perfectly linear, even at very low stress levels, due to the almost immediate onset of plasticity 
[27][28][29]. This can hardly be explained with a simple porous model, as finite element 
calculations for the stress concentration factor corresponding to cavities of the shapes typical of real 
nodules have provided the maximum value of 5.39 [30]. 
Apart from this, the voided-material assumption might still be reasonable at high values of the 
triaxiality ratio, at least in those circumstances where complete debonding from the matrix will 
certainly take place. But it is more difficult to rationalize in more complex situations, like cyclic 
loading or when the hydrostatic part of the stress tensor becomes negative. Clear facts point in this 
direction.   
First of all, the low-cycle fatigue behavior of ductile iron with stress ratio equal to -1 is better 
reproduced by models where nodules are treated as rigid spheres instead of voids [31]. At the same 
time, it has been proved that fatigue crack propagation cannot be modeled within the classic linear 
elastic fracture mechanics framework [32]. This might be related to the fact that, according to the 
imposed stress intensity factor, different competing damage mechanisms are active in the matrix 
and / or in the nodules [18]. Secondly, examinations of the cross-section of cylindrical samples 
heavily deformed (90 %) in compression at different temperatures have shown that, when the 
testing temperature is close to the eutectoid transformation, the nodules do not deform at all. That 
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is, they maintain their spherical shape whereas all the surrounding ferrite grains flatten out [33]. 
This is perhaps the most striking evidence of the fact that the nodules do have some load carrying 
capacity, at least under compressive forces.  
The last observation is particularly important in the context of the present work. In fact, it leads to 
the conclusion that local residual stresses are, in principle, to be expected during manufacturing, as 
the nodules can oppose, to a certain extent, the free contraction of the matrix. 

1.1.3.2 Mechanical behavior: Modeling uncertainty 

Having clarified the non-negligible role of the nodules from a mechanical standpoint, it would be 
useful to gain more knowledge concerning their individual constitutive behavior. In this way, a 
more quantitative interpretation of the results discussed in the previous section could be achieved. 
Unfortunately, this task is complicated by the much reduced size of the particles, which has always 
challenged any experimental characterization based on direct techniques. Apparently, the only 
simple method to test their mechanical properties is nano-indentation, which has provided values 
for the Young’s modulus in the range 15 ÷ 28 GPa [34][35][36]. Nevertheless, the validity of such 
measurements is quite disputable, as the nodules are highly anisotropic at the nanoscale [37], 
meaning that the concept of nano-indentation based Young’s modulus loses its significance. In 
addition, it has been argued [16] that the sharp Berkovich indenter usually employed could simply 
separate the graphite layers, without creating any elastic deformation at all. 
The difficulties in performing reliable measurements have contributed to create a large uncertainty 
concerning the real mechanical properties of the nodules. For instance, most of the authors who 
have tried to consider the spheroids in their analyses have assumed that they behave as isotropic 
linear elastic particles. However, as may be seen in table 1, there is no agreement whatsoever 
regarding values for their elastic constants. The spread is so large that it seems that all options, from 
a void up to a rigid body, are possible. 
The indetermination on the nodules’ mechanical properties carry over to uncertainty on the 
magnitude of the local residual stresses. In reference [16], compressive values of about 500 MPa for 

Table 1 – Micromechanical modeling of ductile iron elastic response: Assumed values for 
the nodules’ isotropic elastic constants. 

Year Authors Young’s modulus 
(GPa) 

Poisson’s ratio 

1980 Speich et al. [38] 8.5 0.29 
1992 Era et al. [39] 303 Not specified 
1997 Boccaccini, R. [40] 8.5 0.2 
1998 Pundale et al. [41] 0 (void) 0 (void) 
2002 Cooper et al. [42] 8.5 0.2 
2003 Gaudig et al. [43] 4.17 0.2225 
2004 Sjögren & Svensson [10] * Not available 
2005 Collini & Nicoletto [44] 15 0.3 
2005 Bonora & Ruggiero [16] 300-375 Not specified 
2006 Nicoletto et al. [45] 15 0.3 
2014 Carazo et al. [46] * 0.2225 
2015 Fernandino et al. [36] 15 0.28 
* = 0.173·Nodularity  + 18.9  → 36.2 GPa for 100 % nodularity 
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the stress component normal to the nodule-matrix interface were proposed. Nevertheless, these were 
primarily a consequence of 1) the very high Young’s modulus, of about 300-375 GPa, and 2) the 
perfectly elastic behavior assumed for the graphite particles.  
The impossibility to verify these two major assumptions, combined with the technical problems of 
performing direct local residual stress measurements, were probably at the basis of the absence of 
any follow-up investigation. As of 2016, to the author’s best knowledge, ref. [16] remains the only 
systematic work on local residual stresses in ductile iron ever published in literature. 

1.1.4 Influence on the material performance 

The absence of a reliable quantification of the local residual stress state in ductile iron can 
potentially constitute a severe limitation towards optimizing the material performance. In fact, 
despite having a different origin, residual stresses at the micro-structural level can be at least as 
detrimental as those occurring at the macro-scale. According to the discussion reported in [21][47] 
for the general case of metal-matrix composites, stresses arising from a mismatch in the thermal 
expansion during manufacturing may compromise the material properties in several different ways. 
For instance, they can be responsible for reduced elastic response of the material, damage 
amplification, accelerated stress corrosion, reduced toughness and fatigue resistance, etc.  
All these aspects are particularly relevant for ductile iron, since the material is typically used in 
applications which strongly require such characteristics. Examples include automotive steering 
knuckles, control arms, brake calipers and wind turbine rotor hubs, just to mention a few. Therefore, 
from an engineering perspective, proper quantitative knowledge about local residual stresses seems 
essential to improve the in-service behavior of ductile iron even further.  
At the same time, from a more scientific standpoint, a detailed description of the thermo-mechanical 
interactions developing between the nodules and the surrounding matrix might also contribute to 
shed light on some phenomena which are still poorly understood. Figure 1.5 shows an example of 
crack propagation under cyclic loading, which still represents an open field of research.    

 

Figure 1.5 – Fatigue crack propagation in ferritic ductile iron. Reprinted from [48] with permission of  John 
Wiley and Sons. 
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1.2 Objectives of the thesis 

From the arguments just presented, it is clear that the intrinsic composite nature of ductile iron may 
lead to the formation of significant local residual stresses during manufacturing. Unfortunately, any 
sound estimate of their magnitude is made impossible by the lack of reliable data concerning the 
thermo-mechanical properties of the graphite nodules. However, as local residual stresses could 
seriously prevent achieving the maximum material performance during in-service loading, 
additional investigations in this area are highly necessary. 
Within this framework, the present thesis aims at: 

1. Obtaining a more precise knowledge of the nodules’ thermo-mechanical behavior. This is 
the very first step needed to describe the interaction between the graphite particles and the 
surrounding matrix in more quantitative terms. In order to achieve this, a theoretical model 
is to be devised which allows determining the mechanical response of the nodules to a 
much higher degree of accuracy compared to what is possible at present. In this respect, the 
data presented in table 1 should be taken as reference. 

2. Investigating the formation of local residual stresses in ferritic ductile iron by means of the 
model developed in the previous point. In particular, it is extremely important to come up 
with a reliable approximation of their magnitude to assess the impact they could have on 
the material properties. That is, the question of whether or not local residual stresses are 
negligible has to be answered properly. 

3. Performing a thorough experimental validation of both the proposed theoretical model for 
the nodules and the local residual stress predictions. Concerning this, direct techniques are 
to be preferred over indirect ones, as the latter are normally characterized by much larger 
uncertainties.  

In plain words, whereas the previous sections discussed where?, when? and why? local residual 
stresses form, the remainder of this work will focus on how much? residual stress can be 
realistically expected in the final ductile iron microstructure. 

1.3 Structure of the thesis 

The thesis is composed by 7 chapters and 6 appended journal articles. To facilitate reading, a short 
description of each chapter is given in the following, where special emphasis is placed on clarifying 
the connections with the papers in appendix.  
 
Chapter 1 – Introduction 
This introductory chapter provides the reader with sufficient background to understand the overall 
aim and motivation of the present scientific work. The basic problem is exposed within the 
framework of the well-known structure-process-properties-performance paradigm, and the primary 
investigation objectives are defined. Section 1.1 in particular can be seen as a stand-alone, 
preparatory discussion for PAPER II to VI. 
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Chapter 2 – Modeling framework 
This chapter describes the methodology used to model the formation of local residual stresses in 
ferritic ductile iron. A proper micro-mechanical framework is presented, and the primary 
homogenization procedures are outlined. Special consideration is given to the selection of a periodic 
unit cell approach and the related implementation of appropriate periodic boundary conditions in 
the finite element software ABAQUS, as discussed in PAPER III.  
 
Chapter 3 – Ferrite matrix behavior 
The mechanical behavior of the ferritic matrix of the ductile iron grade GJS-400 is analyzed in 
detail in this chapter, considering both experimental and modeling aspects. Concerning this last 
point, a parameter identification strategy for Lemaitre’s damage model based on an analytical 
solution developed by the author in PAPER I is illustrated, accompanied by the description of a 
new 2D plane-stress implicit integration algorithm. 
 
Chapter 4 – Thermo-mechanics of the nodules 
Here the main results obtained regarding thermo-mechanical modeling of the graphite nodules are 
presented. Initially, some preliminary findings are briefly outlined which extend previous 
investigations by other authors. After that, the inadequacy of the assumption of isotropy and 
homogeneity of the nodules at the micro-scale is discussed, according to the analysis of PAPER II. 
Finally, a new, anisotropic model is presented, which is based on transmission electron microscopy 
(TEM) observations of the real internal structure of the graphite particles. This last part of the 
exposition reflects primarily the content of PAPER IV and, partly, of PAPER III. 
 
Chapter 5 – Local residual stresses  
This chapter, entirely based on PAPER IV, explores the formation of local residual stresses during 
manufacturing by means of numerical simulations. The starting point is the anisotropic formulation 
of the nodules presented in the previous chapter. Several considerations are also made concerning 
the relation between the residual stress pattern in the nodules and their internal structure and failure 
mode. 
 
Chapter 6 – Experimental validation via direct techniques 
Experimental validation via direct methods of the two main theoretical results achieved, i.e. the 
anisotropic model for the nodules and the local residual stress prediction around them, is addressed 
here. First, the Oliver-Pharr nano-indentation method is discussed, highlighting the hidden 
assumptions of the procedure (PAPER V) and their consequences when probing the nodules’ 
elastic properties. After that, the novel differential aperture X-ray microscopy (DAXM) synchrotron 
technique is shortly described, which allows measuring the residual elastic strain in the ferrite 
matrix with a spatial resolution of 1 micron. Results of measurements conducted at Argonne 
National Laboratory are finally presented and compared with theoretical predictions (PAPER VI). 
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Chapter 7 – Concluding remarks 
This chapter summarizes the main conclusions of the thesis in relation to the objectives set in the 
introduction. New questions stemming from the presented results are put forth and used to outline 
future research paths.   
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Chapter 2  
Modeling framework 

This chapter describes the basics of the methodology adopted to model the formation of local 
residual stresses in ductile iron. 

2.1 Micro-mechanical approach 

The intrinsic composite nature of ductile iron described in section 1.1.1 suggests adopting a micro-
mechanical approach for the problem at hand. This means that the individual constituents, i.e. the 
nodules and the matrix, are each treated as continua via continuum mechanics, with their individual 
representative properties and arrangement defining the overall material behavior [49].  
As explained in [50], the first step in performing a micro-mechanical analysis is the identification of 
the relevant length scales involved. What should normally be defined is 1) the micro-scale, as the 
scale at which the material is heterogeneous, 2) the meso-scale, which is the smallest scale at which 
the material may be considered as homogeneous, and finally 3) the macro-scale, where traditional 
engineering methods apply. Micro-mechanical techniques are subsequently used to determine the 
properties of the material at the meso-scale, given the characteristics of the constituents at the 
micro-scale. This process is known as homogenization, and the resulting effective properties provide 
the input needed for static or dynamic analyses of the entire component or structure. The inverse 
process is called localization instead, and consists in finding the behavior of the micro-structural 
constituents for a prescribed overall material response. 
In the context of the present work, two main types of micro-mechanical analyses are performed: 

1. Homogenization studies, to assess the admissibility of a certain set of thermo-mechanical 
properties for the nodules via comparison with properties for ductile iron measured at the 
macro-scale. 

2. Localization analyses, to calculate the local residual stresses arising at the interface 
between the nodules and the ferrite matrix for prescribed global temperature variations and 
boundary conditions.  

As said previously, these types of investigations require the preliminary definition of suitable length 
scales. The identification of the micro- and macro-scale for ferritic ductile iron is straightforward, as 
the first one coincides with the size of the micro-structure seen in figure 1.3, and the second one is 
simply the size of the component under examination. In contrast, the definition of the most 
appropriate meso-scale calls for a more thorough discussion, which is presented in detail in the next 
section.   
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2.2  Periodic unit cell 

Today, micro-mechanical techniques extensively rely on the concept of representative volume 
element (RVE) [51], which is intuitively defined as the minimum volume whose constitutive 
behavior is equivalent to that of a homogeneous fictitious material. According to this definition, the 
meso-scale turns out to be determined by the dimension of the RVE.  
In ductile iron, the non-uniform size and distribution of the nodules imply that a RVE should 
include a considerable number of particles in order to be realistic. For instance, in [36] it was 
recommended to consider a minimum of 56 nodules for 2D problems, meaning that a corresponding 
3D RVE should contain, to a first approximation, at least 563/2 ≈ 420 graphite particles. This 
number, in itself, would not be prohibitive. Unfortunately, as will be explained in the next chapter, 
the mechanical behavior of the nodules can only be simulated by explicitly taking into account their 
internal structure. From a computational point of view, it is clear that the discretization of so many 
particles, each one featuring complex internal geometry, would be cumbersome.  
As a consequence, a less demanding periodic unit cell approach [52] is deemed more appropriate 
for the present analyses. The method assumes the ductile iron microstructure to be periodic and 
generated by the spatial repetition of the same elementary unit, reported in figure 2.1. As can be 
noted, the latter is composed of a cube with a single, spherical nodule in the center, whose relative 
size is adjusted to give the 11.5 % volumetric graphite concentration typical of the GJS-400 ferritic 
grade [53]. An example of unit cell mesh discretization in the finite element (FE) software 
ABAQUS, which is the modeling software primarily used in the present investigations in 
combination with the codes developed by the author in C-language, is given in figure 2.2. 
It is important to remark that, in spite of their simplicity, many unit cell models have been 
successfully applied to ductile iron in the past, e.g. [16][22][24][45][54][55]. On the other hand, it 
should be clear that some material features, like non-uniform nodule shape, size and distribution, 
cannot be captured with such periodic approach. 

e3

e2

e1

 
 

Figure 2.1 – 3D periodic unit cell representing the 
micro-structure of ferritic ductile iron. 

Figure 2.2 – Example of mesh used in ABAQUS. 
Only 1/8 of the periodic unit cell is shown. 
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2.3 Periodic boundary conditions 

2.3.1 Definition 

The periodicity assumption implies that, upon loading, the continuity of the displacements and of 
the surface tractions with the adjacent unit cells must be satisfied at any time. This requirement can 
be fulfilled a priori by the application of special periodic boundary conditions, as thoroughly 
discussed in [52]. Considering any two equivalent points 𝒙𝒙 and 𝒙𝒙 + 𝒅𝒅 lying on opposite faces of the 
unit cell and separated by the characteristic periodic length 𝒅𝒅, the following constraints must be 
imposed: 

 𝒖𝒖(𝒙𝒙 + 𝒅𝒅) = 𝒖𝒖(𝒙𝒙) + 𝛆𝛆� ⋅ 𝒅𝒅 
(2.1) 

 𝒕𝒕(𝒙𝒙 + 𝒅𝒅) = −𝒕𝒕(𝒙𝒙) 

where 𝒖𝒖 and 𝒕𝒕 denote displacement and surface traction. The 2nd order tensor 𝛆𝛆� represents the 
average of the infinitesimal strain over the entire unit cell volume, and it is normally an externally 
imposed quantity in homogenization analyses. 

2.3.2 ABAQUS implementation 

The implementation of the periodic boundary conditions (2.1) in ABAQUS deserves a special 
comment. This issue was examined in a recent article [56], where the authors claimed that the 
constraint on the boundary traction was unnecessary within the context of a displacement-based FE 
analysis [57]. However, as shown in PAPER III, this implies that the associated FE system of 
equations becomes undetermined, unless further, subjective assumptions are made on the nature of 
the external nodal forces. Therefore, to obtain unique results, both displacement and traction 
conditions must be imposed simultaneously. 
In ABAQUS, a natural method to enforce (2.1) is to use the “Linear constraint equations” command 
[58], which allows imposing a scalar linear constraint of the type 

 𝑎𝑎1𝑢𝑢1 + 𝑎𝑎2𝑢𝑢2 + ⋯+ 𝑎𝑎𝑘𝑘𝑢𝑢𝑘𝑘 = 0 (2.2) 

where 𝑢𝑢𝑗𝑗, 𝑗𝑗 = 1:𝑘𝑘 are generic displacement degree of freedoms (dofs) and 𝑎𝑎𝑗𝑗, 𝑗𝑗 = 1:𝑘𝑘 are real 
coefficients. Nevertheless, this approach has two limitations. First of all, the first dof appearing in 
an equation is automatically eliminated and cannot be used in any subsequent relation. Secondly, 
equations can only be formulated in terms of displacement dofs, hence imposition of the traction 
part of (2.1) is in principle not trivial. To overcome these issues, a general method is proposed in 
PAPER III, which is illustrated in figure 2.3. It can been seen that, in order to impose the periodic 
traction condition, entries of the FE global stiffness matrix related to the boundary nodal forces are 
extracted by means of the MATRIX GENERATE command [59]. Moreover, repetition of dofs 
already set as first dofs in previous equations is avoided by prior reduction to echelon form via 
Gauss-Jordan pivoting of the matrix associated with the set of linear constraints.  
Another critical aspect of the FE implementation relates to the choice of the boundaries over which 
the periodic conditions (2.1) have to be imposed. In fact, it is of utmost importance to avoid 
generating a number of linear independent constraints greater than the number of dofs associated 
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with the boundary nodes of the model: if that happened, spurious deformation would occur in the 
unit cell, adversely affecting the quality of the analysis.  
A simple strategy to deal with this last issue is presented in PAPER III as well. With reference to 
the 3D unit cell mesh of figure 2.4, the following quantities are introduced: 

• 𝑛𝑛𝑓𝑓: number of face internal nodes 
• 𝑛𝑛𝑒𝑒: number of edge internal nodes 
• 𝑛𝑛𝑐𝑐: number of corner nodes 
• 𝑛𝑛𝑏𝑏 = 𝑛𝑛𝑓𝑓 + 𝑛𝑛𝑒𝑒 + 𝑛𝑛𝑐𝑐: number of total boundary nodes 

Periodic displacement boundary conditions are applied considering all 𝑛𝑛𝑏𝑏 nodes. Constraints are set 
between all possible pairs of equivalent nodes, meaning that a single corner node will be subjected 

ABAQUS 
• Generate periodic unit cell model including: 

- 3 reference points, whose displ. components 
correspond to: 1) average normal strains, 2) 
average shear strains 3) rigid body 
translation  

- fixed displ. BCs at the reference points 
- boundary node and element sets 

• Generate and export stiffness matrix limited to 
boundary elements  

 
 
 

PYTHON SCRIPT-1 
• Find one-to-one correspondence between nodes 

located on opposite faces of the unit cell 
• Assemble constraints in matrix format: 

- impose periodic displacements 
- impose periodic tractions 

• Re-order the constraint matrix columns: boundary 
dofs first, then remaining internal dofs, finally 
dofs of reference points     

• Reduce matrix to echelon form using Gauss-
Jordan pivoting 

 
 
 

PYTHON SCRIPT-2 
• Create a set for every node giving nodal force 

contribution along the boundary  
• Impose constraints as linear equations  
• Set the desired average strains and run the 

analysis 

Figure 2.3 – Procedure for setting up periodic 
displacement and traction boundary conditions in 
ABAQUS.  
                                                                

 

 

Figure 2.4 – Definition of useful node sets on the 
unit cell mesh: (a) face internal nodes, (b) edge 
internal nodes, (c) pair of opposite parallel edges 
along y-direction, (d) corner nodes.   

Mesh data +  
stiffness matrix  
 

Linear constraints 
set in echelon matrix 
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to 3 linear constraints of the vector type (2.1)(a), an edge node to two, and a face node to one only. 
The total number of linear independent equations 𝐶𝐶𝑑𝑑 generated in this way may be determined as 

 𝐶𝐶𝑑𝑑 = 3 �
1
2
𝑛𝑛𝑓𝑓 +

3
4
𝑛𝑛𝑒𝑒 + (𝑛𝑛𝑐𝑐 − 1)� (2.3) 

Conversely, periodic traction boundary conditions are imposed considering the face internal nodes 
only, plus the internal nodes lying on 3 pairs of opposite parallel edges as shown in figure 2.4 (c), 
one pair for each Cartesian direction. Consequently, the number of independent traction constraints 
𝐶𝐶𝑡𝑡 created is given by 

 𝐶𝐶𝑡𝑡 = 3 �
1
2
𝑛𝑛𝑓𝑓 +

1
4
𝑛𝑛𝑒𝑒� (2.4) 

The overall number of linear independent equations 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡 is then 

  𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐶𝐶𝑑𝑑 + 𝐶𝐶𝑡𝑡 + 3 (2.5) 

where the last term relates to the prescribed motion of a single selected node, necessary to avoid 
rigid body translation. By inserting expressions (2.3) and (2.4) into (2.5), it can be easily verified 
that 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡 = 3𝑛𝑛𝑏𝑏, i.e. the number of independent constraints is exactly equal to the number of 
boundary dofs. 

2.4 Homogenization methods 

As stated in section 2.1, homogenization analyses are employed here to assess the admissibility of a 
certain set of thermo-mechanical parameters for the nodules via comparison with effective 
properties measured at the macro-scale. In this respect, two procedures which allow calculating 
effective properties for the unit cell of figure 2.1, to be compared with experimental values for 
ductile iron, are presented in the following. 

2.4.1 Linear elastic case 

Under the assumption of linear elastic behavior of all material constituents, a linear relation 
between volume averages of the stress and strain field over the whole unit cell is sought in the form 

 𝛔𝛔� = ℂ�: 𝛆𝛆� (2.6) 

where ℂ� is the 4th order effective stiffness tensor.  
It is important to say that small deformations are always assumed in the present work, so that 𝝈𝝈 is 
the usual Cauchy stress tensor and the strain 𝛆𝛆 is defined as 

 𝛆𝛆 =
1
2 �
𝛁𝛁𝒖𝒖 + (𝛁𝛁𝒖𝒖)𝑻𝑻� (2.7) 

with respect to the displacement field 𝒖𝒖. The symbols 𝛁𝛁() and ()𝑇𝑇 appearing in the last equation 
denote the gradient and transposition operator respectively.  
In the most general anisotropic case, the tensor ℂ� possesses 21 independent components. Similarly 
to what is done in [60] for the case of a RVE, they can be determined by prescribing in sequence six 
independent loadings in the form 𝛆𝛆�(1), … , 𝛆𝛆�(6) to the unit cell according to equation (2.1). The 
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corresponding average stresses 𝛔𝛔�(1), … ,𝛔𝛔�(6) may then be used to set up a linear system of equations 
for the effective elastic constants. 
The calculated effective stiffness tensor can be decomposed into an isotropic and an anisotropic part 
as follows: 

 ℂ� = ℂ�iso + ℂ�ani (2.8) 

The former can be further written as 

 ℂ�iso = 3𝑘𝑘�𝕊𝕊+ 2�̅�𝜇𝔻𝔻 (2.9) 

where 𝕊𝕊 and 𝔻𝔻 are the spherical and deviatoric projection tensors [61], which form an orthogonal 
basis for isotropic 4th order tensors. The quantities 𝑘𝑘� and �̅�𝜇 represent the effective bulk and shear 
modulus respectively and may be calculated as 

 𝑘𝑘� =
1
3
⟨ℂ�|𝕊𝕊⟩
⟨𝕊𝕊|𝕊𝕊⟩

,       �̅�𝜇 =
1
2
⟨ℂ�|𝔻𝔻⟩
⟨𝔻𝔻|𝔻𝔻⟩

 (2.10) 

where ⟨⋅ | ⋅⟩ indicates the scalar product between 4th order tensors. Conversion to effective Young’s 
modulus and Poisson’s ratio is performed via the basic relations 

 𝐸𝐸� =
9𝑘𝑘��̅�𝜇

3𝑘𝑘� + �̅�𝜇
,     �̅�𝜈 =

3𝑘𝑘� − 2�̅�𝜇
2(3𝑘𝑘� + �̅�𝜇)

 (2.11) 

The last two quantities can be naturally compared to experimental values for ductile iron available 
in the literature. 
Finally, an anisotropy index may be obtained as [36] 

 𝐼𝐼𝑎𝑎 = �
�ℂ� − ℂ�iso�ℂ� − ℂ�iso�

⟨ℂ�|ℂ�⟩
�
1/2

 (2.12) 

The latter parameter provides an indication of the degree of anisotropy of the unit cell. Therefore, it 
is particularly useful to discuss the validity of the periodic approach for modeling the ductile iron 
mechanical response, which is known to be isotropic at the macro-scale. 

2.4.2 Inelastic case 

It must be emphasized that the homogenization analysis presented in the previous section is valid 
provided that the entire unit cell behaves elastically. And correspondingly, only effective elastic 
properties can be determined. On the other hand, it is sometimes very useful to be able to calculate a 
few effective non-linear parameters as well, like the proof stress or the maximum tensile strength 
during tensile testing. In order to achieve this, a different type of homogenization technique may be 
adopted, based on the application of the plane-remain-plane constraint widely used in other studies 
on ductile iron, e.g. [16][44][53]. Essentially, tensile testing along one of the three unit cell 
principal axes (shown in figure 2.1) can be simulated by increasing the distance between two 
opposite faces by a prescribed amount, at the same time enforcing all six faces to remain plane and 
to conserve the same orientation. This means that all points on a given face will experience the 
same displacement in the direction perpendicular to the face itself. The magnitude of such 
displacement is set arbitrarily on the two faces orthogonal to the assumed loading axis, whereas on 
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the remaining four it is determined by imposition of an average stress-free condition. At each time 
during “uniaxial” loading, the effective stress and strain can then be calculated by averaging the 
corresponding microscopic quantities over the entire unit cell volume. From the tensile stress-strain 
curve obtained in this way, other useful effective properties, like those mentioned before, can be 
easily estimated.  
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Chapter 3  
Ferrite matrix behavior 

This chapter is dedicated to the analysis of the constitutive behavior of the matrix of ductile iron. 
Specifically, the grade GJS-400 according to UNI-EN 1563 is considered throughout the analysis. 
This choice is motivated by the relevance of this material to the industrial community, particularly 
to the wind energy sector, and by its relatively homogeneous ferrite matrix, which considerably 
simplifies the theoretical treatment of the problem. 

3.1 Thermo-mechanical data 

3.1.1 Isotropy assumption 

Following the authors listed in table 1, who have all modeled ductile iron using micro-mechanical 
approaches, the constitutive behavior of the ferrite matrix at the micro-scale is assumed to be 
isotropic. One should bear in mind, however, that the size of the matrix grains is usually 
comparable with the size of the graphite particles, as figure 1.3 indicates. Therefore, any calculation 
of the local residual stress field around the nodules should, in principle, consider the anisotropy of 
the single ferrite crystals. On the other hand, the bcc lattice of the ferrite exhibits only a moderate 
anisotropy, with the apparent Young’s modulus changing between 130 and 280 GPa according to 
the direction considered (PAPER III). In addition, from a practical point of view, by taking the 
grain anisotropy into account one would obtain results which depend on the local grain 
orientation. In contrast, the present work aims at determining only an approximate average 
value for the residual stress around the nodules, indeed independent of the particular local 
crystallography.  

3.1.2 Experimental observations 

On the basis of the isotropy assumption just discussed, the mechanical behavior of the ferritic 
ductile iron matrix can be studied by creating a polycrystalline material with similar metallurgical 
features and testing it at the macro-scale [62]. Uniaxial tensile curves at room temperature obtained 
in this way for the GJS-400 matrix show the typical ductile response of low carbon steel [24]. 
Initially, a linear elastic stage is seen, followed by yielding at approximately 300 MPa and 
subsequent hardening up to about 440 MPa. This ductile behavior finds direct confirmation in in-
situ observations of plastic deformation and damage evolution in ductile iron samples strained in 
tension [26]. 
Concerning the matrix properties at higher temperature, which are crucial for the accurate 
calculation of the residual stresses developing during manufacturing, very little information can be 

19 
 



Chapter 3 – Ferrite matrix behavior 

found in the literature. In [16] an indication of the variation of Young’s modulus, CTE and initial 
yield stress up to 1000 °C is given. Unfortunately, this data is not sufficient to fully characterize the 
non-linear constitutive response of the ferrite above room temperature, which is expected to show 
some kind of time-dependent behavior in analogy with steels of similar composition [63]. In order 
to gain a deeper insight into this unexplored topic, an experimental campaign was carried out, as 
described in the following. 
Steel with 0.036 wt% C, 1.99 wt% Si and 0.1 wt% Mn was cast in Y-blocks as shown in figure 3.1 
(a). From the bottom part of each block, cylindrical specimens with gauge length 28 mm and gauge 
diameter 5 mm were machined (figure 3.1 (b) ) and tested in tension at different temperatures and 
different strain rates using the Gleeble 1500 [64] thermo-mechanical simulator, see figure 3.1 (c). 
The obtained results, which are preliminary and have not been published yet, are reported in figure 
3.2. Unfortunately, the average grain size of the tested material is in the order of 1 mm, therefore 
much larger compared to that of real GJS-400 castings. As a consequence, according to the Hall-
Petch equation, the stress required to promote inelastic deformation is likely under-estimated. 
However, the curves of  are still very valuable, as they indicate that already at 350 °C some strain-
rate sensitivity starts to be present, which becomes very pronounced at 700 °C.  
The reason for the abnormal grain size is probably the particular chemical composition adopted. 
Silicon and carbon are known to be ferrite- and austenite-stabilizing elements respectively [65]. The 
high concentration of the former combined with the unusually low amount of the latter gives rise to 
an alloy whose ferritic field stretches from liquidus all the way down to room temperature. The lack 

 

 
(a) 

 

 
(b) 

 
(c) 

Figure 3.1 – Ductile iron matrix mechanical testing. (a) Cast Y-blocks, with composition similar to the GJS-
400 ferrite matrix but different grain size. (b) Cylindrical specimen machined from the bottom of the Y-block. 
(c) Setup for high-temperature tensile testing using the Gleeble 1500 simulator.  
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of any eutectoid transformation, with associated nucleation of newer, smaller crystals, can partly 
explain the very coarse grains observed in the final microstructure.  
It has to be mentioned that this issue seems to be well-known in electrical steels, which are a class 
of metallic materials with composition similar to the one investigated here [66][67]. Their 
microstructure is normally refined by hot-rolling until the desired grain size is eventually obtained. 
However, in the present case hot-rolling does not seem to provide indisputable advantages. Indeed, 
if on the one hand it would refine the grains, on the other it would destroy the as-cast microstructure 
completely, closing the porosity, redistributing the segregation, etc. As a consequence, grain 
refinement via increased cooling rate during solidification might be, in the author’s opinion, a better 
option. Unfortunately, this strategy could not be tested in the context of the present work due to 
time and budget constraints.  

3.2 Constitutive models 

The experimental findings presented in the previous section clearly show that ductile damage is 
important during loading at room temperature, whereas time-dependent inelastic deformation seems 
to be the most relevant phenomenon at intermediate temperatures.   

 
 

Figure 3.2 – Experimental engineering stress-strain tensile curves at different temperatures and different 
strain rates for the ferrite matrix material.   
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3.2.1 Ductile damage at room temperature: Lemaitre’s model 

A simple way to model the observed ductile behavior of the ferrite matrix at room temperature is by 
using continuum damage models, like those developed by Lemaitre [68] and Bonora [69]. In the 
present work, the isotropic version of the former is adopted, whose constitutive equations may be 
summarized as follows: 

- additive strain decomposition: 

 𝛆𝛆𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛆𝛆𝑒𝑒𝑒𝑒 + 𝛆𝛆𝑝𝑝𝑒𝑒 + 𝐈𝐈𝛼𝛼𝛼𝛼𝑇𝑇 (3.1) 

- elastic constitutive law: 

 𝛔𝛔� = ℂ𝑒𝑒𝑒𝑒 ∶ 𝛆𝛆𝑒𝑒𝑒𝑒 ,       𝛔𝛔� = 𝛔𝛔/(1 −𝐷𝐷) (3.2) 

- yield function: 

 𝑓𝑓 =
𝜎𝜎𝑒𝑒

1 − 𝐷𝐷
− 𝜎𝜎𝑦𝑦(𝑟𝑟) ≤ 0,         𝜎𝜎𝑒𝑒 = �

3
2
𝐬𝐬 ∶ 𝐬𝐬�

1/2
,        𝐬𝐬 = 𝛔𝛔 − 𝐈𝐈

𝑡𝑡𝑟𝑟(𝛔𝛔)
3

 (3.3) 

- flow rule: 

 �̇�𝛆𝑝𝑝𝑒𝑒 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝛔𝛔

�̇�𝜆 (3.4) 

- isotropic hardening rule: 

 𝜎𝜎𝑦𝑦 = 𝑘𝑘(𝑟𝑟 + 𝑟𝑟0)𝑛𝑛,        𝑟𝑟0 = �
𝜎𝜎𝑦𝑦0

𝑘𝑘 �
1/𝑛𝑛

 (3.5) 

- effective plastic strain increment and hardening parameter increment: 

 �̇�𝑝 =
�̇�𝑟

1 − 𝐷𝐷
,         �̇�𝑟 = �̇�𝜆 (3.6) 

- damage evolution law: 

 �̇�𝐷 = �
𝑌𝑌
𝑆𝑆
�
𝑠𝑠
�̇�𝑝,          𝑖𝑖𝑓𝑓 𝑝𝑝 > 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 (3.7) 

- energy release rate: 

 𝑌𝑌 =
𝜎𝜎𝑒𝑒2𝑅𝑅𝑣𝑣

2𝐸𝐸(1 − 𝐷𝐷)2 ,         𝑅𝑅𝑣𝑣 =
2
3

(1 + 𝜈𝜈) + 3(1 − 2𝜈𝜈)�
𝑡𝑡𝑟𝑟(𝛔𝛔)
3𝜎𝜎𝑒𝑒

�
2

 (3.8) 

- consistency condition: 

 𝑓𝑓 ≤ 0, �̇�𝜆 ≥ 0,       𝑓𝑓�̇�𝜆 = 0 (3.9) 

where the meaning of the different symbols is explained in table 2. It may be noticed that 9 material 
parameters are required: 3 thermo-elastic (𝐸𝐸, 𝜈𝜈,𝛼𝛼), 3 related to plastic flow (𝜎𝜎𝑦𝑦0,𝑘𝑘,𝑛𝑛) and finally 3 
related to damage (𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 , 𝑆𝑆, 𝑠𝑠). In principle, an additional parameter specifying the conditions at 
which crack nucleation occurs would be necessary: however, in the present investigations damage 
never exceeds 0.1, which is well below the critical fracture initiation threshold for common metals 
and alloys [70]. 
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3.2.1.1 Parameter identification via 1D analytical solution 

The parameters entering Lemaitre’s model are usually determined from knowledge of the damage 
evolution history in loaded specimens, obtainable by means of well-established experimental 
methods [71]. Nevertheless, often such information is either not available or too expensive to obtain 
for the specific material at hand. Under these circumstances, it is common practice to identify the 
material constants on the basis of an optimization analysis aiming at minimizing the error between 
the predicted numerical results and a reference uniaxial tensile curve [70]. However, the use of such 
procedure in combination with a numerical resolution of the mathematical model exhibits three 
main disadvantages. First of all, it requires the use of an optimization algorithm coupled with a 
numerical tool for solving the system of differential equations (3.1) – (3.9), which makes the 
method elaborate and time-consuming. Secondly, the numerical solution procedure in itself is 
complicated by the “softening” behavior of the damaged material at sufficiently large strains. 
Thirdly, the produced values for the material parameters are affected, in addition to the 
experimental & optimization uncertainty, by the error associated with the numerical discretization 
adopted.  
With the aim of overcoming all the above-mentioned aspects, an analytical solution to the isotropic 
Lemaitre’s model for the specific case of uniaxial tensile testing is presented in PAPER I. The key-
point in the derivation is the choice of the hardening law (3.5), which allows obtaining an integral 
relationship between total strain and effective stress. By means of the generalized binomial theorem 
[72], it is proved that the relation between the former quantities after damage initiation can be 
expressed as 

 

𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑡(𝜎𝜎�) = 𝜀𝜀̅𝑡𝑡𝑡𝑡𝑡𝑡 +
𝜎𝜎� − 𝜎𝜎�
𝐸𝐸

+ 

+2𝐵𝐵 �
(−1)𝑚𝑚

2𝑚𝑚 + 1
�𝛽𝛽𝑚𝑚�

+∞

𝑚𝑚=0

��1−
𝜎𝜎�𝑧𝑧+1

𝜎𝜎�𝑒𝑒𝑐𝑐𝑚𝑚𝑧𝑧+1
�
𝑚𝑚+1/2

− �1−
𝜎𝜎�𝑧𝑧+1

𝜎𝜎�𝑒𝑒𝑐𝑐𝑚𝑚𝑧𝑧+1
�
𝑚𝑚+1/2

� 
(3.10) 

Table 2 – Symbols used in the definition of Lemaitre’s damage model.  

𝛆𝛆𝑡𝑡𝑡𝑡𝑡𝑡 , 𝛆𝛆𝑒𝑒𝑒𝑒 , 𝛆𝛆𝑝𝑝𝑒𝑒   Total, elastic, plastic strain tensor Rv  Triaxiality function 
ℂ𝑒𝑒𝑒𝑒 4th order elastic stiffness tensor f  Yield function 
𝐈𝐈 2nd order identity tensor D  Damage variable 
σ  Stress tensor S,    s  Lemaitre’s damage evolution parameters 
σ̃  Effective stress tensor Y  Energy release rate 
𝐬𝐬 Stress deviator k,    n  Isotropic hardening parameters 
σe  Equivalent von Mises stress p  Equivalent plastic strain 
σy,    σy

0  Actual, initial yield stress pcrit  Critical effective plastic strain for damage 
evolution E  Young’s modulus  

ν  Poisson’s ratio r  Hardening variable 
α  Thermal expansion coefficient λ  Plastic multiplier 
Δ𝑇𝑇 Temperature variation   
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in which 𝜎𝜎�𝑒𝑒𝑐𝑐𝑚𝑚, 𝜀𝜀�̅�𝑡𝑡𝑡𝑡𝑡, 𝜎𝜎�, 𝐵𝐵, 𝑚𝑚, 𝛽𝛽, 𝑧𝑧 simply denote combinations of the basic nine parameters entering 
the constitutive equations of the model. As discussed in PAPER I, expression (3.10) can be used in 
combination with a Matlab script for fast identification of the material parameters for the ferrite 
ductile iron matrix, on the basis of the uniaxial tensile curve reported in [24].  

3.2.1.2 Numerical implementation for the plane-stress case 

In the context of the present work, some preliminary investigations were carried out using a 2D 
periodic plane-stress model instead of the full 3D unit cell of figure 2.1. The reason was to enable a 
direct comparison with in-situ microscopy observations taken on the surface of tensile test 
specimens, where the stress state is biaxial in nature.  
Whereas the 3D numerical implementation of the Lemaitre’s isotropic model may be performed 
relatively easily following the implicit discretization scheme suggested in [73], the corresponding 
2D plane-stress formulation presents more challenges. Indeed, if a traditional displacement-based 
implicit finite element code is used, a natural complication arises in ensuring the out-of-plane 
components of the stress tensor to be zero at the end of each load increment. This is due to the fact 
that the solution procedure is strain-driven, and the stress components are treated as dependent 
variables. To cope with the problem, three different strategies can be used, as discussed in [74]: A) 
direct inclusion of the plane-stress constraint at the Gauss point level, B) addition of a  plane-stress 
constraint at the global structural level, C) use of plane-stress projected constitutive equations at the 
Gauss point level. The first two solutions are usually easier to implement, but at the price of higher 
computational time. As a consequence, approach C) is to be preferred whenever possible, as it leads 
to more efficient computational procedures due to the fact that only the relevant in-plane stress and 
strain components are considered [75]. Quite surprisingly, in spite of this important advantage, no 
scientific works concerning the plane-stress projected implementation of Lemaitre’s model had 
been published in literature before 2016.  
To fill the gap, a new, fully implicit integration procedure is presented in the second part of PAPER 
I. Due to space limitation, the associated mathematical expressions, which are quite lengthy, are not 
reported here. However, it is emphasized that the entire system of discretized equations is reduced 
to a single, scalar, non-linear equation, which may be easily solved using a standard Newton’s 
method. Furthermore, in order to ensure achieving maximum convergence rate at the global finite 
element level, a suitable expression for consistent tangent modulus is also derived. 

3.2.2 Visco-plastic flow at intermediate temperatures: Peric’s model 

The tensile stress-strain curves of figure 3.2 indicate that between room temperature and the 
temperature of the eutectoid transformation, the mechanical response of the ferrite matrix is affected 
by the time-scale of the experiment. Therefore, its behavior should be described by a model capable 
of taking the strain-rate sensitivity into account. A possible option is the model proposed by Peric 
[76], which is defined by the same additive strain decomposition, elastic law, yield function and 
flow rule stated in expressions (3.1) – (3.4) (where the damage variable is set to zero), with the 
addition of the following equation 

24 
 



Chapter 3 – Ferrite matrix behavior 

 �̇�𝜆 = �
1
𝜇𝜇 ��

𝜎𝜎𝑒𝑒
𝜎𝜎𝑦𝑦
�
1/𝑚𝑚

− 1�            if  𝑓𝑓�𝛔𝛔,𝜎𝜎𝑦𝑦� > 0

0                                         if  𝑓𝑓�𝛔𝛔,𝜎𝜎𝑦𝑦� ≤ 0
         (3.11) 

which replaces the consistency condition (3.9) in dictating the magnitude of the inelastic 
deformation. The material constants 𝜇𝜇 and 𝑚𝑚 denote the viscosity-related parameter and the rate-
sensitivity parameter respectively. It may be noticed that Peric’s model is, after all, very similar to 
the well-known Perzyna’s model [77]. Its advantage is that in the limit 𝜖𝜖 → 0 the classic time-
independent von Mises formulation with yield stress 𝜎𝜎𝑦𝑦 is recovered exactly, whereas the Perzyna’s 
model shows a limiting time-independent yield stress of twice 𝜎𝜎𝑦𝑦 [74]. 
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Chapter 4  
Thermo-mechanics of the nodules 

This chapter summarizes the main results concerning modeling the thermo-mechanical behavior of 
the graphite nodules. Conceptually, it is divided into two parts. In the first one, the so-called 
phenomenological approach is discussed, which has been the traditional choice for modeling the 
nodules in the past. Basically, this methodology rests on postulating a certain type of behavior a 
priori, e.g. isotropic linear elastic, and on determining the associated constitutive parameters via 
direct or indirect measurements. The second part of the chapter presents instead an innovative 
micro-mechanical approach, where the internal structure of the nodules is modeled explicitly. The 
advantage is that the mechanical properties of the single building blocks forming the graphite 
particles are known to a higher level of accuracy, so that the overall uncertainty on the nodules’ 
behavior may be reduced significantly. 

4.1 Phenomenological approach 

4.1.1 Early results: Extension of previous authors’ findings 

The vast majority of authors who have tried to model the nodules in the past have assumed that they 
behave as isotropic linear elastic particles. However, as already explained in section 1.1.3.2, the 
main complication with this choice is the difficulty of selecting suitable values for the 
corresponding elastic constants, i.e. Young’s modulus and Poisson’s ratio. In an effort to solve this 
issue, some initial investigations by the author, published in a series of two conference papers 
[78][79], were dedicated to find the nodules’ best approximation in terms of a homogeneous 
isotropic material, on the basis of the response generated at the macro-scale. 
The new analyses were inspired by the investigations of Bonora & Ruggiero [16], which 
represented the state-of-the-art in the field at the time, and focused on modeling the early 
deformation stage of GJS-400 during tensile testing. To make the results comparable with those of 
the previous authors, a periodic unit cell approach was adopted and the formation of local residual 
stresses was modelled by simulating a uniform temperature decrease from a temperature of 1000 
°C, neglecting any phase transformation. Poisson’s ratio and CTE of the nodules were taken equal 
to those of common grades of isotropic polycrystalline graphite, whereas Young’s modulus was 
varied systematically to generate a range of effective properties, to be compared against 
experimental values for GJS-400. Furthermore, the nodule-matrix interface was modeled as a 
frictionless contact interface and ductile damage occurring in the ferrite was simulated using 
Lemaitre’s model.  
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Most importantly, three additional aspects, overlooked in reference [16], were also taken into 
account. First of all, the loading conditions for nodules located on the surface as well as in the bulk 
of the material were recreated, by employing both 2D plane-stress and full 3D periodic unit cells. 
Secondly, a maximum load carrying capacity for the graphite was set, according to a simple elastic-
perfectly plastic formulation based on the J2-flow theory of plasticity. Thirdly, the effective 
Poisson’s ratio, in addition to the effective Young’s modulus, was calculated according to the 
homogenization procedure described in section 2.4.2 and compared with experimental data. 
The results of the analyses showed that, when inelastic deformation of the graphite is neglected, the 
effective properties are controlled by the twofold effect played by the nodules’ elastic stiffness. On 
the one hand, larger values of the nodules’ Young’s modulus make the entire unit cell stiffer, as the 
nodule offers greater resistance to being deformed to an “oval” shape by the surrounding matrix 
during tensile loading. On the other hand, they drive higher residual stresses at the end of the 
manufacturing stage, increasing the risk of promoting plastic deformation in the matrix, with 
consequent loss of stiffness at the macro-scale. The interaction between these two factors generates 
the 3-stage behavior visible in figure 4.1 (a) and (b), whose nature is explained in detail in [78][79]. 
It has to be mentioned that the vertical shift of the 2D plane-stress curve is simply a consequence of 
how the volumetric concentration of graphite is defined in either a 2D or 3D model. 
The results for the 3D formulation do not change significantly if a yield threshold is set for the 
nodules according to typical values for isotropic polycrystalline graphite [17]. In fact, during the 
manufacturing process the stress field developing in the nodule is mainly hydrostatic. Therefore, no 
yielding can occur according to the J2-flow theory of plasticity. During subsequent loading, 
deviatoric stress components build up, but they are not sufficient to cause an appreciable amount of 
yielding, at least within the small deformation range investigated (up to 0.5 % strain). It should be 
kept in mind, however, that the choice of adopting the J2-flow formulation for the graphite was 

  
(a) (b) 

Figure 4.1 – Predicted effective (a) Young’s modulus and (b) Poisson’s ratio as a function of the graphite 
particles’ Young modulus, for different unit cell geometries. The nodules are assumed to behave as isotropic 
linear elastic particles, with Poisson’s ratio and CTE equal to those of common grades of isotropic 
polycrystalline graphite. 
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dictated by the necessity of setting, in the simplest way, a maximum load carrying capacity for the 
nodules. There are no solid grounds to sustain that such theory really reflects the physical behavior 
of the graphite particles.  
Despite simplistic and affected by large uncertainties on several important parameters, these initial 
investigations allowed drawing a fundamental conclusion: the combined stiffness and strength of 
the nodules cannot be sufficient to give rise to yielding in the matrix at the end of the manufacturing 
process. Indeed, if that happened, the matrix would remain in the plastic state upon subsequent 
tensile loading, causing a too low effective Young’s modulus and a too high effective Poisson’s 
ratio compared to the measured values for ductile iron, the last effect due to plastic 
incompressibility of the ferrite.  

4.1.2 Inadequacy of the assumption of isotropy and homogeneity 

The analyses presented in the previous section attempted to identify suitable values for the nodules’ 
isotropic elastic constants without making any initial assumptions on their admissible range. That is, 
no value for the nodules’ Young modulus was discarded a priori, mainly as a consequence of the 
large spread of seemingly possible choices documented in table 1. On the other hand, it is clear that 
having an indication of where the elastic constants should approximately lie would simplify the 
problem considerably. 
This idea is at the basis of the analysis presented in PAPER II, which rests on three fundamental 
assumptions: 

1. The nodules can be considered as mechanically isotropic; 
2. Their behavior can be described by a linear elastic model; 
3. Their basic building blocks are graphite platelets with hexagonal symmetry. 

The last point is justified by TEM observations of the nodules’ internal structure, which will be 
described in detail in the next section.   
It follows from assumption 1 that the building blocks, which are strongly anisotropic, must then be 
arranged in a statistically homogeneous way throughout each nodule to provide overall isotropic 
elastic properties. This observation is crucial, as it allows establishing a domain of physically 
admissible values for the nodules’ isotropic moduli. Indeed, according to the discussion on the 
statistical order of polycrystalline materials reported in [80], assuming that nodules are statistically 
homogeneous and isotropic polycrystalline aggregates consisting of many single anisotropic 
graphite crystals, then 1st order upper and lower bounds on the isotropic elastic constants can be 
derived, corresponding to Voigt and Reuss bounds. Moreover, if the distribution of the local elastic 
moduli is not correlated with the crystal shape and size (for instance, it is excluded that, on average, 
lengthy platelets are stiffer in one direction than compact platelets), then tighter 2nd order bounds 
can be established, corresponding to Hashin-Shtrikman bounds [81]. Finally, if no particular crystal 
shape and size is distinguishable, implying that many platelet shapes and sizes exist in an irregular 
composition, even tighter 3rd order bounds can be derived. 
Explicit analytical expressions for the 1st, 2nd and 3rd order bounds in the case of crystals with 
hexagonal symmetry may be found in [9], [82] and [83] respectively. By using the former in 
combination with the anisotropic elastic constants of a single graphite crystal, reported in table 3, 
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bounds on the isotropic bulk and shear moduli of the polycrystalline aggregate may be determined. 
These can be subsequently converted into bounds on Young’s modulus and Poisson’s ratio, 
following the procedure outlined in PAPER II. 
The calculated bounds may be used to define admissible domains for the isotropic constants, which 
are reported graphically in figure 4.2. At first glance, it may be seen that an increase in the 
homogeneity requirement leads to a contraction of the corresponding admissible domain. This is 
particularly evident for the maximum admissible value of the Young’s modulus, which drops from 
the value of 521.3 GPa obtained by applying 1st order bounds to 272.2 GPa for 3rd order bounds; 
conversely, the minimum value increases from 1.3 GPa to 4.2 GPa. It is worth remarking that 
within each domain, intermediate Young’s modulus values are characterized by a very large 
variation in Poisson’s ratio, which may actually become negative. In principle, this possibility 
should not be excluded a priori, both theoretically and physically, as there is experimental evidence 
of polycrystalline materials whose cross-section expands when stretched under uniaxial tension 
[85]. It is also interesting to observe that most of the authors listed in table 1 have assumed values 
for Young’s modulus and Poisson’s ratio in the range 4 ÷ 36 GPa and 0.2 ÷ 0.3 respectively, which 
lie outside any domain. 
As said previously, the isotropy assumption on the nodules’ mechanical behavior holds only if the 
graphite platelets are arranged in a statistically homogeneous way throughout the nodules 
themselves. Consequently, their isotropic moduli must lie at least within the 1st order domain 
indicated in figure 4.2, henceforth simply denoted as admissible domain. This motivates a new type 
of inverse analyses, similar to the ones presented in the previous section, where, in addition to allow 

Table 3 – Elastic constants of a single graphite crystal with hexagonal symmetry [84]. Entries are in GPa.  

C11 C44 C12 C13 C33 
1107 4.4 175 -2.5 29 

 

 
 
Figure 4.2 – Admissible domains for the nodules’ isotropic elastic moduli, according to different levels of 
statistical order assumed for the graphite crystals. 
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matching the effective elastic properties of ductile iron, the best set of nodules’ elastic constants is 
also required to belong to such domain. The main results of these new investigations are concisely 
presented in the following paragraphs, whereas the full details are available in PAPER II. 
Figure 4.3 shows the effects of choosing values for the nodules’ elastic constants which belong to 
the admissible domain, under the assumptions of linear elastic behavior of the ferrite matrix and 
perfect bonding with the graphite. In both figure 4.3 (a) and (b) three contours are plotted in 
addition to the reference literature values for the GJS-400 elastic constants. The first one indicates 
the extension of the well-known Voigt-Reuss bounds for a two-phase composite: for each value of 
the nodules’ Young’s modulus, when the Poisson’s ratio is varied within the corresponding 
admissible domain, the ductile iron elastic response is bounded by the green area. The second and 
third contours, instead, represent estimates for the effective elastic properties obtained via the 
analytical Mori-Tanaka approach [49] and via the numerical 3D unit cell model described in section 
2.2.  
From an analysis of figure 4.3 (a) it may be concluded that values for the nodules’ Young’s 
modulus above approximately 100 GPa must be rejected, as the horizontal band indicating 
experimental measurements lies well outside the Voigt-Reuss bounds in that range. Conversely, 
with focus on the data of figure 4.3 (b), no values can be excluded on the basis of the same 
principle, because the reference Poisson’s ratio always falls in between the bounds. Nevertheless, 
analytical and numerical estimates clearly indicate that the experimental value of GJS-400 can only 
be matched by assuming the nodules’ Young’s modulus to be above 100 GPa. Therefore, there is an 
evident contradiction between values which allow matching the effective Young’s modulus of 
ductile iron and those which are necessary for matching the effective Poisson’s ratio. 
It should be emphasized, however, that the last consideration is based on a series of analyses where 
two important factors are ignored: the possibility of having a weak nodule-matrix interface and/or 
matrix plastification induced by the formation of local residual stresses during manufacturing. 

 
(a) 

 
(b) 

Figure 4.3 – Effect of statistically admissible nodules’ constants on the effective (a) Young’s modulus 
and (b) Poisson’s ratio of ductile iron. For a given value of the nodules’ Young’s modulus, bounds and 
estimates are derived considering the full range of values for Poisson’s ratio indicated by the 1st order 
domain of figure 4.2.  
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Concerning this, further investigations presented in PAPER II demonstrate that for a wide range of 
admissible nodule’s elastic parameters, the experimental Young’s modulus of ductile iron can be 
actually matched by inducing a controlled amount of plastic deformation in the matrix during 
manufacturing. In fact, as explained in the previous section, the initial yielding of the ferrite 
strongly affects the effective stiffness of the unit cell upon subsequent loading. Therefore, the 
former can be artificially tuned by varying the magnitude of the residual stress field via selecting a 
convenient stress-free temperature in the range 0 ÷ 750 °C, i.e. the temperature from which the 
residual stresses are assumed to build up. On the other hand, it is also shown in PAPER II that 
yielding of the matrix drives unrealistically high values of the effective Poisson’s ratio, together 
with an asymmetry of the tension-compression response which does not find confirmation in 
experimental findings [86][87]. Inclusion of a yield threshold for the nodules according to the von 
Mises criterion does not sort any effect on the results, for the reasons discussed earlier. 
In summary, it does not seem possible to find values for the nodule’s isotropic elastic constants 
which belong to the admissible domain of figure 4.2 and, at the same time, allow recovering the 
effective elastic properties of ductile iron measured at the macro-scale. The reason is probably that 
the nodules cannot be assumed homogeneous and isotropic at a micro-scale, at least from a 
micromechanical viewpoint. In other words, they cannot be considered as constituted of graphite 
platelets which are arranged in a statistically homogeneous way. This means that a satisfactory 
elastic constitutive description should take into consideration the intrinsic inhomogeneity and 
anisotropy of the nodules as well.  
It has to be remarked that it might still be possible to find values for the nodules’ Young’s modulus 
and Poisson’s ratio which allow a good match with the ductile iron response recorded during 
uniaxial testing. After all, this is what many of the authors listed in table 1 have done. However, it is 
difficult to justify such isotropic parameters on the basis of physical grounds and, in addition, there 
is no guarantee that they will work for different loading conditions. Moreover, even if they provide 
good results when used as input for homogenization procedures, the description they offer in terms 
of stress & strain fields in and around the nodules is quite disputable. Obviously, this point is of 
utmost importance in the context of the present thesis, whose ultimate aim (see section 1.2) is 
precisely the accurate description of the local residual stress state developing at the micro-scale.  

4.2 Nano-structure-based modeling 

From the arguments adduced so far, it may be concluded that the phenomenological approach is 
likely inappropriate for the present purposes. A viable alternative, presented in PAPER III and 
PAPER IV, consists in modeling the intrinsic structure of the graphite nodules explicitly. In this 
way, their mechanical behavior turns out to be defined by properties and spatial arrangement of the 
elementary units they are made of. In this respect, it has to be mentioned that a few pioneering 
works along this line were done already in the late ‘80s [88][39]. Nevertheless, the scarce 
experimental knowledge available at the time, combined with the limitations of the analytical 
approach adopted, prevented devising models consistent with the elastic properties of ductile iron 
measured at the macro-scale.  
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4.2.1 The nodules’ internal structure from recent experimental investigations 

Figure 4.4 (a) shows the microstructure of a typical grade of ferritic ductile iron. From a chemical 
perspective, each nodule is made of a small nucleus containing complex oxides and sulfides, which 
served as nucleation site during solidification [89], and a much thicker outer shell of graphitic 
nature, which represents the major part of the nodule by volume. As shown by electron microscopy 
investigations [90], the latter one may be subdivided into two parts, according to the schematic of 
figure 4.4 (b): a bulk region, constituted by oriented graphite crystals arranged into conical sectors 
radiating from the nodule center to the outer periphery, and a superficial graphite layer, 
characterized by smaller grains with high misorientation. 
It seems to be well established now that the basic building blocks forming the conical sectors in the 
internal region are graphite platelets consisting of graphene layers piled up with only few 
crystallographic defects [37][91]. These structural units have thicknesses in the sub-micrometer 
range and appear to be elongated along the graphene planes. From a continuum point of view, they 
can be described on the basis of the hexagonal unit cell reported in figure 4.4 (c) [29], where the c-
direction is orthogonal to the graphene layers. Within a sector, the platelets are stacked on each 
other, with the c-direction constant and oriented approximately radially. Nevertheless, the stacking 
is not perfect, and rotations about the c-axis occur on an almost regular basis, defining domains of 
similar orientation [92]. 
In contrast, only a few investigations have been reported in literature so far regarding the nature of 
the superficial structure of the nodules. Monchoux et al. [90] described a microcrystalline, highly 
disorientated layer approximately 1.5 micrometer thick over an overall diameter of approximately 
30-40 microns, giving a powder-like diffraction diagram; later, the presence of microcrystalline 
areas at the extreme outer periphery of the nodules was also observed by Theuwissen et al. [93][94]. 
According to the former authors, the existence of this surface layer would be connected to the 
amount of graphite which precipitates during solid state cooling, due to the reduced carbon 

 
 

(a) 
 

(b) 
 

(c) 

Figure 4.4 – Nodules’ structure at different scales. (a) Micrograph of ferritic ductile iron. (b) Schematic 
of the division of a nodule into an oriented internal bulk region and an external surface layer. (c) Platelets 
arrangement within a single sector and hexagonal graphite unit cell. 
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solubility in the metallic matrix. This hypothesis is also supported by the extensive work of Di 
Cocco et al. [18][95][96], who, in order to justify some experimental results, speculated on the 
existence of a gradient of mechanical properties within the nodules connected to the different stages 
of growth during solidification. On the basis of thermodynamic calculations, they suggested a value 
for the thickness of the layer associated with solid state cooling of 10 % the final nodule radius, 
which is in very good agreement with Monchoux et al. findings. However, the reason for the 
different structure of the graphite crystals in this region compared to the bulk of the nodule remains 
unclear. 

4.2.2 A new thermo-elastic anisotropic model for the nodules 

On the basis of the experimental studies presented in the previous section, a new anisotropic 
micromechanical model for the nodules is proposed, which is physically consistent with their 
intrinsic structure. Each graphite particle is assimilated to a sphere composed of two concentric 
regions: an internal core and an external shell with thickness equal to 10 % the radius. The former is 
additionally subdivided into a progressive number of conical sectors by means of sectioning with 
orthogonal planes passing through the sphere center. In this way, internal regions with 8, 48 and 80 
partitions are obtained, as shown in figure 4.5, which qualitatively cover the range of values 
suggested by the experimental investigations.  
The sectors are assigned the thermo-elastic properties characteristic of unidirectional graphite, 
reported in table 3 and in figure 4.5. For the sake of clarity, it is recalled at this point that the 
general thermo-elastic relation for a material exhibiting hexagonal symmetry takes the form [97]   
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(a)                                                   (b)                                                  (c) 

Figure 4.5 – Modeling the graphite nodules according to their real internal structure. Subdivision of the 
internal nodule core region into (a) 8 (b) 48 and (c) 80 sectors respectively. 
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where the index 3 denotes the c-direction as defined in figure 4.4 (c). In the model such direction is 
identified, within each conical partition, by the axis connecting the center of the sphere to the 
centroid of the related spherical triangle, which is formally defined as the element of the spherical 
surface identified by a given sector. As a body exhibiting hexagonal symmetry is transversely 
isotropic with respect to the basal plane (i.e. the graphene layers in this case), the other two 
principal material directions can be set arbitrarily without affecting the analysis. It has to be 
remarked that if the c-direction is prescribed parallel to the radius pointwise throughout the entire 
nodule core, a spherically anisotropic description is obtained, which is essentially equivalent to 
assuming an infinite number of conical sectors.  
For the external shell instead, which is supposed to be representative of the superficial layer of the 
nodule, a linear elastic isotropic behavior is assumed. This is motivated by the much smaller size of 
the crystallites in that region and their high degree of misorientation. As a consequence, the elastic 
properties are assumed to be equal to those of commercial grades of fine grain isotropic graphite, 
reported in table 4. In particular, a variation of Young’s modulus between 9.7 and 10.9 GPa is 
considered, associated with the uncertainty on the real size of the crystallites. Regarding Poisson’s 
ratio, a sharp value of 0.2 can be chosen instead, which is quite standard for polycrystalline 
graphite. Finally, the CTE can be assumed equal, to a first approximation, to the average of the 
CTEs along the principal graphite crystallographic directions, given in figure 4.6. 

 

Figure 4.6 – Anisotropic CTE along the principal directions of a unidirectional graphite crystal [98].  
 

Table 4 – Physical properties of commercial grades of fine grain isotropic graphite produced by Asbury 
Carbons [99]. 

Type Fine Grain Super Fine Grain Ultra Fine Grain 
Grade IPG IPG15 IPG19 

Average grain size (micron) 25 8 4 
Young’s modulus (GPa) 9.7 10.1 10.9 

Compressive strength (MPa) 79 106 135 
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4.2.3 Predictions of effective thermo-elastic properties 

The model proposed in the previous section may be used for modeling the behavior of the single 
nodule contained in the 3D unit cell of figure 2.1. Accordingly, the associated thermo-elastic 
effective properties, obtainable by means of the general homogenization technique described in 
section 2.4.1, provide a simple, indirect method of validation. Indeed, if they do not agree with 
experimental values for ductile iron measured at the macro-scale, the model has to be inevitably 
rejected.  
Before presenting the results of the homogenization procedure as reported in PAPER IV, a few 
important aspects have to be discussed. First of all, it has to be recalled that such mathematical 
procedure assumes elastic behavior of all micro-structural constituents, meaning that possible 
inelastic deformation in the matrix cannot be taken into account. Secondly, the anisotropy of the 
model representing the nodule implies that the orientation of its main axes with respect to the unit 
cell could potentially play an important role. This issue is analyzed in depth in PAPER III for a 
model very similar to the one proposed in the previous section. It is shown that variations of only 
less than 1 % on the effective elastic quantities are recorded by changing the relative orientation 
between the nodule and the unit cell, meaning that this parameter can be reasonably neglected in the 
analyses. Finally, it has to be remarked that the anisotropy of the nodule could make the entire unit 
cell anisotropic, to a certain extent. This would be in contrast to the observed behavior of ductile 
iron at the macro-scale, which is undoubtedly isotropic. Fortunately, this inconsistency is not 
supported by the values of the anisotropy index, equation (2.12), which remain below 1.5 % 
throughout all calculations. 
Having clarified these points, the focus is now turned to the outcome of the elastic homogenization 
procedure. As visible in figure 4.7 (a) and (b), the effective values for Young’s modulus at room 
temperature and average CTE in the interval 700 ÷ 20 °C are in excellent agreement with 
experiments, according to the assumed range 9.7 to 10.9 GPa for the nodule surface layer stiffness. 
Within this range, it may also be seen from the error bars that a variation in the number of conical 
sectors from a minimum of 8 up to plus infinite produces a change in the effective Young’s 
modulus of 2-3 GPa. This is related to the increment in the nodule core stiffness associated with the 
tendency of the graphite platelets to form a rigid shell as the number of sectors increases, as 
thoroughly explained in PAPER IV. Regarding the third and last effective isotropic thermo-elastic 
quantity, namely Poisson’s ratio, calculated values turn out to be in the range of 0.278 to 0.280. 
Again, there is a very good match with experimental measurements, which have been reported 
between 0.275 and 0.280 according to different sources [4][86]. Finally, figure 4.7 (c) and (d) 
provide an indication of the sensitivity of the predicted effective elastic properties to variations of 
the surface layer thickness, for the particular choice made of the other model parameters. It is seen 
that in order to match the experimental Young’s modulus, the former quantity has to have a value of 
approximately 10 % the nodule radius, which is in agreement with the TEM observations and 
thermodynamic calculations discussed in the last paragraph of section 4.2.1. 
 
 

36 
 



Chapter 4 – Thermo-mechanics of the nodules 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.7 – Predicted effective thermo-elastic properties as a function of the superficial nodule layer 
Young’s modulus (a,b) and thickness (c,d). In (a,b) the thickness is fixed at 10 % of the nodule radius, 
whereas in (c,d) the Young’s modulus is set at 10 GPa. In all plots the error bars denote the spread due the 
variation in the number of conical sectors contained in the nodule core region. The hatched intervals 
indicate reference experimental values for GJS-400 ductile iron. 
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Chapter 5  
Local residual stresses 

The anisotropic model for the graphite nodules presented in the previous chapter enables studying 
the interaction with the surrounding matrix in a novel, quantitative fashion. The following sections 
describe how this can be exploited to investigate the magnitude of the local residual stresses which 
develop in the ductile iron micro-structure during manufacturing.  

5.1 Micro-structural volumetric variations during manufacturing 

The accurate numerical prediction of the local residual stresses arising in ductile iron requires a 
preliminary, careful examination of all the different stages of the manufacturing process. To some 
extent, this task is simplified by the fact that the GJS-400 grade is normally used in the as-cast state, 
without any additional heat-treatments, implying that only solidification and solid-state cooling 
need to be taken into consideration. These two steps were already described in detail in section 
1.1.1 for an alloy of nearly-eutectic composition, under the assumption of thermo-dynamic 
equilibrium. Here, however, a different type of analysis is performed, which focuses on identifying 
the volumetric variations experienced by the different microstructural phases over time. Indeed, as 
explained in the introduction, these represent the driving force behind the formation of local stresses 
in the material. 
With reference to the slice of the Fe-C-Si phase diagram shown in figure 1.2, it may be assumed 
that, upon cooling, ductile iron follows the path indicated by the red dashed arrow. During 
solidification, the mushy consistence of the material implies that only hydrostatic stresses can, to a 
certain extent, develop in addition to the basic metallostatic pressure. In principle, these might be 
promoted by the well-known graphitic expansion associated with the eutectic reaction. Thermo-
dynamic arguments suggest, in fact, that during this stage the radius of the nodules grows up to 
approximately 90 % of its final value [18]. However, this expansion is fully compensated by the 
shrinkage connected to the liquid-to-solid transition of the matrix, and as a matter of fact, the 
overall macroscopic effect is a slight contraction of the material.  
Upon completion of the eutectic transformation, solid-state cooling in the austenitic field begins. 
During this stage, the nodules expand another 5 %, while the surrounding metallic phase undergoes 
thermal contraction. Nevertheless, it seems reasonable to assume that the volume mismatch between 
the two is compensated by plastic flow of the soft austenitic matrix, and any tension is released 
almost instantaneously due to its very low flow stress, probably in the order of a few MPa [63].  
As explained in PAPER IV, the situation becomes more complicated when the eutectoid interval is 
reached, as on the one hand the matrix transforms into ferrite, hence increasing in volume and 
creating more space for the graphite particles, but on the other hand the nodules expand too, due to 
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carbon migration from the metallic phase. It is clear that the complex thermo-mechanical 
interactions between all phases involved could only be fully understood by simulating the 
nucleation and growth of the single ferritic grains. Nevertheless, as the interest here is only in 
capturing the global effect, a simplified analysis is performed, as schematically shown in figure 5.1 
(a). The starting point is to assume that the eutectoid reaction takes place simultaneously throughout 
the matrix at a fixed temperature, which may correspond to either the upper TU or the lower TL 
eutectoid temperature.  
In the first case, the austenite containing 0.5 wt% carbon transforms into supersaturated ferrite at 
TU, with a resulting volume expansion ΔV. Subsequently, the ferrite gradually releases the excess of 
carbon until the equilibrium concentration of 0.02 % is achieved at TL. Meanwhile, the nodule 
radius increases approximately 5 %, which is far more than the ΔV associated with the austenite-
ferrite transformation. Therefore, no “clearance” between the nodule and the matrix remains at the 
end of the process.  
Conversely, in the second case the austenite cools down without transforming from TU to TL, 
gradually loosing carbon. During this stage, the nodule expands to almost its final size, promoting 
plastic deformation in the matrix. This should not look unrealistic, as at temperatures close to the 
eutectoid transformation the compressive strength of the graphite particles is much larger compared 
to the flow stress of the matrix, as already emphasized in section 1.1.3.1. Subsequently, the low-
carbon austenite transforms into ferrite at TL with an associated ΔV. 
The main difference between the two scenarios just described is that in the first one no differential 
expansion between the nodules and the matrix remains, whereas in the second one a differential 
volume change is produced. This is equal to the ΔV of the austenite-ferrite transformation, which, 
for pure iron, is of approximately 1 % at 910 °C [101]. The main ductile iron allying elements, 
namely C and Si, affect this volume variation in two ways: by increasing/decreasing the 
transformation temperature and by changing the lattice parameter to a different extent in the ferrite 
and in the austenite. As explained by Cockett and Davis [102], silicon increases the transformation 
temperature, therefore reducing the associated “jump” between the specific volume curves shown in 

  
(a) (b) 

Figure 5.1 – (a) Schematic of the volume variations occurring during the eutectoid transformation. (b) 
Specific volume as a function of temperature for pure iron [100], with indication of the effects of C and 
Si. Double arrows indicate a stronger effect compared to single arrows.  
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figure 5.1 (b). At the same time, it also promotes a larger lattice contraction in ferrite than in 
austenite: both factors contribute to reduce ΔV. Carbon instead generates exactly the opposite 
effect. Cockett and Davis measured ΔV for an iron alloy with 0.005 wt% C and increasing Si 
content, concluding that the primary variable controlling ΔV was the transformation temperature. 
For instance, with 1.45 wt% Si, the phase change occurred at 1020 °C with a ΔV of 0.79 %, which 
is approximately the value that may be calculated from the curves for pure iron of figure 5.1 (b) 
assuming the transformation to take place at the same temperature. Hence, assuming TL to be equal 
to 700 °C for the ductile iron at hand, ΔV may be reasonably estimated from figure 5.1 (b) as 1.4 %. 
In conclusion, according to the first hypothesis no differential expansion would take place during 
the eutectoid transformation, whereas according to the second one the matrix would expand locally 
1.4 % more than the nodules in volume. As what happens in reality is probably something in 
between the two extremes, an average value of 0.7 % is considered in the present work. 
Finally, from TL down to room temperature the carbon mass contained in the nodules remains 
approximately constant. On the other hand, thermomechanical interactions with the matrix still arise 
from the mismatch in the CTE values, as discussed in section 1.1.2. 

5.2 Numerical predictions 

5.2.1 Model setup 

In light of the arguments put forth in the previous section, it seems unlikely that thermo-mechanical 
interactions of significant magnitude develop in the microstructure before the eutectoid 
transformation. Therefore, the formation of local residual stresses may be reasonably simulated by 
subjecting the 3D unit cell of figure 2.1 to cooling starting from the eutectoid transformation down 
to room temperature, accounting for the different thermal expansion of the nodule and the matrix. 
To a sufficient degree of approximation, the temperature variation may be assumed uniform over 
the entire unit cell volume. This is justified by the reduced size of the latter compared to the length-
scale over which temperature gradients normally arise in real casting processes.  
Concerning the properties of the unit cell constituents, the thermo-elastic anisotropic model 
proposed in section 4.2.2 can be naturally adopted to describe the mechanical behavior of the 
graphite nodule. Regarding the matrix instead, an obvious choice would be the model due to Peric 
(see section 3.2.2), which may effectively account for possible visco-plastic deformation in the 
ferrite. Unfortunately, any reliable identification of the associated material parameters is prevented 
by the uncertainty on the experimental data available, which is limited to the curves of figure 3.2. 
As a consequence, within the context of the present work, a simple linear elastic relation is 
considered. Clearly, this choice is valid provided that the magnitude of the local stresses remains 
significantly below the yield stress of the ferrite over the entire temperature interval considered. 

5.2.2 Equivalent CTE of the nodules 

As stated in section 1.1.2, direct CTE measurements for the nodules are not available in the 
published literature. However, on the basis of the newly-developed anisotropic model, numerical 
estimates may be obtained by performing a series of finite element simulations considering one 
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nodule alone, without the presence of the surrounding matrix, and recording its average contraction 
during cooling. An equivalent CTE may then be defined as 

 𝐶𝐶𝑇𝑇𝐸𝐸𝑒𝑒𝑒𝑒 =
1

3𝑉𝑉
𝑑𝑑𝑉𝑉
𝑑𝑑𝑇𝑇

 (5.1) 

where V denotes the nodule volume.  
Figure 5.2 compares the calculated values for CTEeq, taken from PAPER IV, with the CTE of the 
ferrite matrix. It may be noted that the predicted average thermal contraction of the nodule is always 
smaller than that of the matrix over the entire temperature range examined, independently of the 
number of sectors the nodule core is made of. This confirms the speculations of section 1.1.2 about 
the existence of a driving force for the formation of local residual stresses in ductile iron, as the free 
shrinkage of the ferrite during cooling is hindered by the presence of the embedded graphite 
particles.  
In addition, figure 5.2 shows that the larger the number of conical sectors, the smaller the 
corresponding equivalent CTE. This is because the graphite in the core region contracts almost only 
in the c-direction, which is oriented approximately radially according to the schematic of figure 4.4 
(b) and (c). However, the contraction towards the nodule center is opposed by the high in-plane 
stiffness of the graphite platelets with different orientation located in the neighboring sectors. 
Obviously, this effect becomes more pronounced when the distance between adjacent partitions is 
decreased, or, equivalently, the number of sectors is increased. When this number tends to infinity, 
the nodule core behaves as a sort of shell with high circumferential stiffness, subjected to a negative 
internal pressure which builds up progressively as the temperature diminishes. In section 5.3.1, the 
consequence of this particular loading configuration will be discussed more thoroughly in relation 
to some experimental findings.  

 

Figure 5.2 – Nodule equivalent CTE for different numbers of conical sectors in the internal core, 
compared to the CTE of the ferrite matrix. 

 

42 
 



Chapter 5 – Local residual stresses 

5.2.3 Residual stresses in and around the nodules 

A comprehensive set of finite element simulations of the residual stress state in and around the 
graphite particles in ductile iron were carried out on the basis of the model described in section 
5.2.1. The results, which are documented in detail in PAPER IV, show that very large hoop stresses 
are generated during cooling at the extreme outer periphery of the nodule core, as visible in figure 
5.3. This is primarily due to the high in-plane stiffness of the graphite platelets in that region, which 
strongly opposes the compressive action generated by the greater thermal contraction of the matrix. 
In particular, extremely high compressive stresses, above 1 GPa, are recorded at the points of 
contact between two or more conical sectors. These values are probably unrealistic, as local 
buckling and/or fracture of the single platelets are likely to occur. Nevertheless, as inelastic 
deformation is not considered in the model, the stresses arising at these concentration points 
propagate through the nodule surface layer into the matrix. In order to diminish their unphysical 
impact on the overall analysis, it is convenient to present results for the residual stresses in the 
matrix not in terms of the maximum stress recorded, but by using an average criterion. More 
specifically, two average values are considered: one related to a fictitious shell enveloping the 
nodule and another one associated with the external boundary layer of the unit cell depicted in 
figure 2.1, both having a thickness of 10 % the nodule radius. They are assumed to be representative 
of the overall stress state in the matrix regions closest to and most distant from the nodule 
respectively. In this way, a global indication of the residual stress gradient existing in the ferrite 
matrix can be obtained. 
From an analysis of the related data reported in figure 5.4 (a) and (b), two major observations can 
be made. First of all, the mean von Mises stress is approximately one order of magnitude larger 
close to the nodule than at the unit cell boundary, but, at the same time, the mean hydrostatic stress 
shows almost negligible variations between these two different locations. The reason is that near the 
interface the matrix is compressed along the nodule radial direction, whereas it is stretched 
circumferentially, hence generating stress components which are primarily deviatoric. Accordingly, 
a steep gradient in the von Mises stress is recorded. In addition, a strong influence of the nodule 
core partitioning is observed: it appears that by varying the number of conical sectors from 8 to 48, 

 
(a) 

 
(b) 

 
(c) 

Figure 5.3 – (a) Radial, (b) circumferential and (c) meridional residual stress components on the outer part 
of a nodule core with 8 internal sectors. The spherical coordinate system used has the origin in the nodule 
center and the zenith direction points upward. Units are Pa. The upper contour limits have been artificially 
reduced to avoid the spurious influence of a few elements close to the contact points between 4 sectors.  
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a 50 % increment in the values of both deviatoric and hydrostatic mean stresses is obtained, 
followed by another 50 % increase when their number tends to infinite. This effect is simply due to 
the increased CTE mismatch between the matrix and the nodule which arises from the reduced 
thermal contraction of the latter one, already pointed out in connection with figure 5.2. 
Finally, figure 5.4 (c) and (d) show how the mean local residual stresses in the matrix are affected 
by a variation of the graphite volume fraction within the range 7.0 to 13.0 %. This interval is 
representative of values found in typical grades of ductile iron, obtained by minor changes in the 
composition, solidification parameters, etc. Not surprisingly, it is seen that by increasing the nodule 
relative volume, the surrounding stress field increases accordingly. Nevertheless, while the other 
mean stress quantities almost double throughout the considered interval, the mean von Mises stress 
around the nodule, which is by far the most critical in terms of absolute values, exhibits only a 
modest 3 % variation.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.4 – Mean hydrostatic and von Mises local residual stresses in the matrix as a function of the 
number of conical sectors in the nodule core (a, b) and the graphite particles volume fraction (c, d). In (a, 
b) the volume fraction is 11.5 %, whereas in (c, d) the number of sectors is 8. The nodule-adjacent region 
is identified as the matrix shell enveloping the nodule with a thickness of 10 % its radius. Similarly, the 
outer boundary region corresponds to the 10 % thick unit cell boundary layer. All error bars indicate the 
spread due the variation in the nodule surface layer Young’s modulus between 9.7 and 10.9 GPa. 
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5.3 Link to experimental findings 

5.3.1 The nodules’ failure mode 

While investigating the ferritic ductile iron behavior under loading, Di Cocco et al. [96] reported 
the presence of an internal form of damage in some nodules sitting on the sample surface, which 
was referred to as “disgregation”. It was characterized by the formation of cracks originating from 
the center of the particles and propagating radially. The fact that this type of failure was detected 
during both tensile and fatigue testing suggests that it is, to a certain extent, independent of the 
specific loading condition applied. Rather, it might be related to the presence of a specific residual 
stress state in the nodules, representing the main driving force for fracture.  
More specifically, it was observed during tensile testing of ductile iron that the nodules tend to 
separate from the matrix [25], hence becoming mechanically “isolated”. Nevertheless, a non-
negligible stress field probably still exists inside them, associated with the anisotropic thermal 
deformation of the graphite occurring during manufacturing. As explained in the last paragraph of 
section 5.2.2, the free contraction in the c-direction of the platelets located in a given sector is 
hindered by the presence of the adjacent partitions with different orientations. This implies that 
during cooling tensile stresses locally develop perpendicularly to the graphite platelets, as shown in 
figure 5.5 (a). The predicted stresses are particularly high in the center of the nodule and along the 
interfaces between different sectors, where, additionally, a weaker mechanical bonding probably 
exists. It is not difficult to realize that the local change in orientation of these tensile forces could 
have a “tearing” action in the latter regions, at the same time promoting the formation of a “void” in 
the center of the particle. As long as a nodule remains fully embedded in the ferrite, the superposed 
compressive action of the matrix probably prevents any crack opening, but when debonding begins, 
the probability of having this “disgregation” mechanism increases. By comparing figure 5.5 (b), 
which schematically shows the expected failure mode for a debonded particle, with figure 5.5 (c), 
taken from the work of Di Cocco et al., support for the argument is found. 

 
(a) 

 
(b) 

 
(c) 

Figure 5.5 – “Disgregation” mechanism in the bulk of a nodule. (a) Stress component locally orthogonal 
to the graphite platelets, over the middle section of a nodule core with 8 sectors, in Pa, after cooling 
neglecting the presence of the matrix. (b) Schematic of the expected failure mode. (c) Scanning electron 
microscope image of the lateral surface of a mini tensile specimen at 13 % engineering strain, reprinted 
from [96] with permission of Elsevier. Radial cracks propagating from the center of the partially 
debonded nodule are visible.  
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5.3.2 The nodules’ internal structure 

The present findings indicate that the nodules are potentially subjected to significant compressive 
forces during cooling. This suggests a simple explanation for the variation in the graphite crystal 
structure between the surface and the bulk of the nodules, which, as stated in section 4.2.1, is still a 
source of debate. In fact, Oku et al. [103] investigated the effects of compressive pre-stresses on 
fine-grain isotropic graphite, and found that upon subsequent compression the material Young’s 
modulus was reduced, whereas its strength was increased. The changes were more pronounced at 
high temperatures and were connected to rotation and cracking of the single graphite crystallites, 
which tended to assume a low-energy configuration with the stiff basal planes oriented 
perpendicularly to the applied stress. It is not unrealistic then to hypothesize that something similar 
could happen during the manufacturing process of ductile iron. As long as the nodules are not 
subjected to significant external pressure, i.e. until the end of solidification, graphite keeps growing 
in conical sectors. However, when compressive hoop stresses start building up in the outer nodule 
layers due to contraction of the surrounding solid matrix, this growing condition is no longer 
energetically favorable. As a consequence, smaller crystallites with different orientation form, 
hence generating the surface layer observed by the authors cited in section 4.2.1. 

5.3.3 The nodules’ size effect 

According to figure 5.4 (a) and (b), the graphite particles drive the formation of high deviatoric 
residual stresses in the surrounding matrix which strongly increase in magnitude as the number of 
conical sectors grows. Considering the model overestimation due to the linear elastic assumption, 
which will be discussed in detail in the next chapter, a variation of at least 50 MPa in the stress 
magnitude close to the nodule is still expected when the number of core partitions is varied from 8 
to 48. This is approximately 1/3 of the maximum stress amplitude that can be applied to the GJS-
400 grade in order to achieve a target fatigue life of 2.5 million cycles under axial loading [104]. An 
obvious question then arises with regard to the factors controlling such number. Intuitively, one 
would expect that larger nodules contain a higher number of partitions. This seems to find 
confirmation in several experimental works on the subject [91][92][93][105], where some sectors 
appear to branch at a certain distance from the nodule center, even though this could be an artificial 
effect due to sectioning of a 3D geometry with a plane. However, if confirmed, it would suggest the 
presence of a material size-effect, i.e. a non-scaling relation between particle size and magnitude of 
the surrounding residual stresses, which could provide additional justification for the observed link 
between ductile iron fatigue resistance and dimensions of the nodules [106][107]. Dedicated 
experimental investigations would be useful to verify this potential connection and its relative 
importance compared to other factors. 
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Chapter 6  
Experimental validation via direct 
techniques 

As explained in the introduction, the past uncertainty on the nodules’ properties and on the local 
residual stress magnitude, perfectly exemplified by table 1, was primarily associated with 
difficulties in performing direct measurements of any kind. While the nodules’ mechanical response 
could still, to a certain extent, be probed using indentation instruments, no technique was available 
to characterize the residual stress state around nodules fully embedded in the ductile iron matrix. 
Today, however, with the advent of new, powerful X-ray diffraction techniques based on 
synchrotron radiation, the possibilities offered by materials characterization have improved 
dramatically compared to those available at the time when most of the studies reported in table 1 
were carried out. 
In this context, this chapter reviews first the traditional nano-indentation technique, highlighting its 
limitations when applied to testing the nodules’ properties. After that, it presents the successful 
application of one of these novel X-ray diffraction methods to measure the residual stress 
distribution around a single graphite nodule lying beneath the material surface. Needless to say, 
such data form an ideal basis to validate the numerical model developed in chapter 5. 

6.1 Nano-indentation 

6.1.1 Introduction to the technique 

Instrumented nano-indentation is a well-established technique which is widely used for probing 
mechanical properties of materials at length scales in the sub-micrometer range. Its high scientific 
relevance combined with a relatively simple experimental setup have attracted the attention of many 
researchers in the last decades, and several dedicated review papers exist which offer extensive 
accounts of the subject, e.g. [108][109][110].  
In essence, a nano-indentation test consists in pressing a 3-sided pyramidal Berkovich indenter onto 
the surface of the sample under investigation and recording the resulting applied force vs 
penetration curve (figure 6.1 (a)). The main difference compared to traditional indentation 
techniques performed at the micron or millimeter scale is that the area of the residual impression 
left on the material is normally not measured, due to its much reduced size. For this reason, 
mechanical properties are usually estimated on the basis of the loading and unloading 
characteristics alone. Concerning this, a number of methods have been proposed so far which allow 
deriving parameters related to elastic and plastic material behavior, fracture toughness, creep, 
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impact resistance, etc., a full list of which has recently been given in a comprehensive monograph 
[111].  
Focusing in particular on the determination of the isotropic elastic constants from nano-indentation 
data, the main analysis procedures available at the present time can be roughly classified into three 
distinct categories. The first one comprises methods which make use of additional experimental 
quantities, for instance measurements of the residual surface profile using the atomic force 
microscope [112][113] or of the contact area at maximum load using electrical resistance 
techniques [114]. Despite delivering very precise results, the application of these procedures has 
been limited somehow by the much higher degree of experimental complexity they involve, which 
seems in contrast to the conceptual simplicity of a nano-indentation test. In order to keep the 
experimental burden to a minimum, a second group of methods has been devised which only 
require knowledge of the force-penetration curve. The latter is analyzed on the basis of a set of 
dimensionless functions which are constructed from a large number of finite element simulations of 
the indentation process, as done in e.g. [115][116][117]. An intrinsic limitation in this case is the 
range of validity of the derived dimensionless relations, which are typically obtained under specific 
assumptions for the material inelastic behavior during loading. As a consequence, they should be 
used with caution for materials whose constitutive response is either completely unknown or 
remarkably different from the one employed in the numerical simulations. Finally, the third 
category refers to methodologies which rely on exact analytical solutions to the so-called 
Boussinesq’s problem of indentation into an elastic half-space [118]. The well-known technique 
proposed by Doerner and Nix [119] and later extended and improved by Oliver and Pharr [120] 
belongs to this group, and it is nowadays widely adopted in the scientific community for its 
simplicity combined with relatively good accuracy. 

  
(a) (b) 

Figure 6.1 – Nano-indentation test. (a) Recorded load vs penetration curve. (b) Definition of the main 
geometrical quantities and of the coordinate axes. 
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6.1.2 The Oliver-Pharr method of analysis 

6.1.2.1 Assumptions and apparent inconsistencies 

As just mentioned, the Oliver-Pharr method is likely the most popular technique for extracting the 
isotropic elastic constants of a material from nano-indentation data. However, it features a number 
of built-in assumptions which have to be taken into proper consideration when assessing the 
reliability of the obtained results. 
First of all, it should be clear that the method works provided that the material can be considered as 
isotropic at the indentation scale, which is typically in the range of 1 micron or less. For metals, for 
instance, this implies that either the grain size has to be in the order of nano-meters, or that the 
anisotropy of the single crystals has to be negligible, to a certain extent. 
Secondly, only the value of a particular combination of the isotropic elastic constants, called the 
reduced Young’s modulus 𝐸𝐸∗, can be univocally determined. Formally, this is defined as 

 𝐸𝐸∗ = 𝐸𝐸/(1 − 𝜈𝜈2) (6.1) 

where 𝐸𝐸 and 𝜈𝜈 denote the standard Young’s modulus and Poisson’s ratio respectively. Accordingly, 
some a priori knowledge of one of these two parameters is required in order to identify the other. If 
this information is missing, the method becomes ineffective. 
A third important aspect is that the entire procedure is based on purely elastic solutions developed 
for axisymmetric indenters [121][122][123][124][125]. How these can effectively be used to 
analyze nano-indentation data, which is normally affected by an appreciable amount of inelastic 
deformation produced by the pyramidal indenter, is a matter which needs a special comment. The 
very first point to note is that the Oliver-Pharr method considers only the unloading part of a nano-
indentation test, which is assumed to be an entirely elastic process. Furthermore, the force-
penetration curve obtained using the 3-sided Berkovich indenter is supposed to be the same as that 
generated by a conical indenter with the same area-to-depth ratio. Despite apparently questionable, 
extensive finite element calculations and experimental investigations have confirmed that these two 
assumptions are either fully satisfied, or lead to negligible errors in almost all practical cases 
[115][126][114][127].  
Finally, there is still another critical point to discuss, which relates to the applicability of the above-
mentioned elastic solutions, obtained for indentation into a perfectly flat half-plane, to the 
description of the unloading stage, which involves contact with a surface containing a residual 
impression. The key-point is that this particular contact condition can arguably be described by the 
equivalent indenter concept [128], whose profile is determined pointwise by the vertical distance 
between the real indenter and the profile of the sample surface after unloading, as schematically 
shown in figure 6.2. In principle, the Oliver-Pharr method takes this geometrical effect into account 
via a correction parameter 𝜖𝜖 appearing in the formula for the calculation of the contact depth ℎ𝑐𝑐 
[129][130][126], whose geometrical definition is given in figure 6.1 (b). The particular expression 
used is   

 ℎ𝑐𝑐 = ℎ − ϵ
𝑃𝑃
𝑃𝑃′

 (6.2) 
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where 𝑃𝑃 is the applied load, ℎ is the total downward displacement of the indenter tip relative to the 
undeformed sample surface and 𝑃𝑃′ is the slope of the unloading curve. Nevertheless, it is the present 
author’s opinion that a consistent application of the equivalent indenter concept should also entail 
other modifications, in addition to the inclusion of the 𝜖𝜖 parameter. Indeed, according to the 
standard Oliver-Pharr procedure, the reduced Young’s modulus is calculated by means of the 
formula  

 𝐸𝐸∗ =
√𝜋𝜋
2𝛽𝛽

𝑃𝑃′

√A
 (6.3) 

where 𝛽𝛽 is a small correction factor, which normally takes the value of ≈ 1.05 [109], and 𝐴𝐴 is the 
projected contact area, equal to 𝜋𝜋𝑎𝑎2 in figure 6.1 (b). This last quantity is estimated from the 
contact depth ℎ𝑐𝑐 on the basis of the geometrical relation 𝐴𝐴 = 𝐴𝐴𝑐𝑐(ℎ𝑐𝑐) characteristic of the real 
indenter. In the eyes of the author, this is inconsistent, as one would expect that it is the function 
𝐴𝐴 = 𝐴𝐴𝑒𝑒𝑒𝑒(ℎ𝑐𝑐) associated with the equivalent indenter that should be used instead. Furthermore, ℎ𝑐𝑐 is 
obtained from expression (6.9) assuming ℎ to represent the total downward displacement of the 
indenter tip. In principle, given the elastic nature of the previous relation, only the recoverable part 
of the penetration, i.e. the total minus the residual, should be considered. Else, when the indenter 
separates from the sample at the end of the unloading stage, meaning that ℎ𝑐𝑐 = 0, ℎ would be equal 
to the residual penetration ℎ𝑝𝑝 indicated in figure 6.1 (a). But this would imply that, to satisfy 
equation (6.9), some load 𝑃𝑃 ≠ 0 should still be transmitted across the contact surface, which is non-
sense of course.  
However, as a matter of fact, the Oliver-Pharr method has repeatedly proved to provide good 
accuracy even when the residual impression left on the material is actually not negligible in 
comparison to the maximum indentation depth. This is somewhat surprising, given the apparent 
inconsistencies just discussed. A possible explanation, which was actually missing in the published 
literature, is put forth in the following section, on the basis of the findings of PAPER V. 

6.1.2.2 A new interpretation based on the equivalent indenter concept 

The starting point of the analysis presented in PAPER V is to hypothesize that the equivalent 
indenter concept can effectively account for a surface containing a residual impression, provided 

 
Figure 6.2 – Geometrical definition of the equivalent indenter concept. 
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that the function describing its equivalent shape, and not the one of the real indenter, is used in the 
associated contact equations.  
To verify this, a two-step procedure is followed. First, dimensional analysis is used to prove that the 
axisymmetric shape of the equivalent indenter can be regarded as a material property, assuming that 
size-effects are negligible. This means that it can be described with respect to the x-y coordinate 
system of figure 6.1 (b) by the function 

 𝑦𝑦� = 𝑓𝑓̅(�̅�𝑥,𝐸𝐸, 𝜈𝜈,𝑝𝑝1,𝑝𝑝2, … ) (6.4) 

where 𝑝𝑝1,𝑝𝑝2, … denote generic inelastic material parameters and the symbol ( � ) indicates 
normalization with respect to an arbitrary length 𝑙𝑙.   
Subsequently, nano-indentation tests on different materials are simulated via finite element 
modeling, each time recording the equivalent indenter shape 𝑓𝑓̅(�̅�𝑥) associated with the residual 
impression left on the sample. In all cases, it is found that the unloading stage is well described by 
the elastic functions [125] 

 ℎ� = �
𝑓𝑓̅′(�̅�𝑥)

�1 − (�̅�𝑥/𝑎𝑎�)2
𝑑𝑑�̅�𝑥

𝑎𝑎�

0
,           𝑃𝑃 = 2𝐸𝐸∗𝑙𝑙2 �

�̅�𝑥2𝑓𝑓̅′(�̅�𝑥)
√𝑎𝑎�2 − �̅�𝑥2

𝑑𝑑�̅�𝑥
𝑎𝑎�

0
 (6.5) 

where 𝑓𝑓̅′ is simply the derivative of the function 𝑓𝑓̅(�̅�𝑥) extracted from the model. The fact that the 
last two expressions were derived analytically assuming a perfectly flat contact surface, leads to the 
conclusion that the equivalent indenter is indeed a viable concept. 
Unfortunately, in most real cases the shape of the equivalent indenter is unknown, as it would call 
for local profilometry which is normally not feasible. As a consequence, the possibility of 
formulating the problem of extracting the reduced Young's modulus from the unloading curve as an 
optimization problem, where both 𝐸𝐸∗ and 𝑓𝑓̅(�̅�𝑥) are to be determined at the same time, is 
additionally investigated in PAPER V. However, the related analysis demonstrates that the problem 
cannot be solved unambiguously, due to the particular mathematical structure of the relations (6.9), 
unless additional constraints are introduced to set restrictions on the admissible functions among 
which the solution 𝑓𝑓̅(�̅�𝑥) is to be sought.  
Interestingly, it turns out that the Oliver-Pharr method intrinsically embeds one of these constraints. 
In fact, by manipulating the apparently inconsistent equation (6.2), it is possible to show that it 
implies a relation between contact depth and elastic penetration which is the same as the one valid 
for a conical indenter. Moreover, the semi-apical angle of the latter can be calculated as 

 𝛼𝛼𝑒𝑒𝑒𝑒 = 𝜋𝜋/2 − atan �
2 cot(𝛼𝛼)

𝜋𝜋 �
ℎ𝑝𝑝/ℎ𝑚𝑚

1 − ℎ𝑝𝑝/ℎ𝑚𝑚
+

2 − ϵ
2 �

−1

� (6.6) 

where 𝛼𝛼 denotes the semi-apical angle of the real indenter used in the test. The dependency of 𝛼𝛼𝑒𝑒𝑒𝑒 
on the quantity ℎ𝑝𝑝/ℎ𝑚𝑚, which represents the ratio between permanent and maximum indenter 
penetration, is visualized in figure 6.3. Two different values for the constant ϵ are considered: 0.72, 
which is typical of a conical indenter, and 0.75, which relates to a paraboloid but is often used in 
practice as it seems to provide better results [109]. It can be noted that when the material is 
perfectly elastic, i.e. ℎ𝑝𝑝/ℎ𝑚𝑚  = 0, 𝛼𝛼𝑒𝑒𝑒𝑒 reduces to 𝛼𝛼 = 70.30, the semi-apical angle assumed for the 
real indenter. This happens exactly for 𝜖𝜖 = 0.72, whereas a small deviation is seen for 𝜖𝜖 = 0.75. 
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Conversely, when the material exhibits extensive plastic deformation and ℎ𝑝𝑝/ℎ𝑚𝑚 tends to one, 𝛼𝛼𝑒𝑒𝑒𝑒 
approaches 90 degrees, independently of the 𝜖𝜖 value. This is sensible, as during loading the material 
conforms perfectly to the real indenter shape, which is retained during subsequent unloading due to 
negligible elastic recovery.  
In conclusion, it seems that the apparent inconsistencies in the Oliver-Pharr method are in reality 
associated with a concealed, convenient choice of the equivalent indenter profile. This might 
explain the good accuracy provided by the method even in presence of significant residual 
impression on the sample. 

6.1.3 Applicability limits for nodules’ testing 

To the author’s best knowledge, all the nano-indentation tests on graphite nodules reported in the 
literature so far are based on the Oliver-Pharr method. Unfortunately, the assumptions behind the 
technique suggest that the reliability of the measurements is, at the very least, disputable.  
First of all, as explained in section 4.2.1, the nodules are inhomogeneous and strongly anisotropic at 
the local scale. This is undoubtedly in contrast with the isotropy assumption under which the 
analytical solutions which form the backbone of the method are derived. Moreover, even by 
assuming that the reduced Young’s modulus is still somehow indicative of the local stiffness, it is 
clear that its determination would be affected by the different orientations of the conical sectors the 
nodule core is made of. This effect is captured in figure 6.4, which reports the results of nano-
indentation tests conducted along a line crossing a nodule of diameter ≈ 150 μm, using 1 μm as 
maximum indentation depth. It may be seen that the reduced Young’s modulus varies by as much as 
a factor 3 to 4 throughout the particle.   
Another issue is that even with a meaningful value for the reduced Young’s modulus on hand, the 
quantification of the standard isotropic elastic constants would be problematic. In fact, as mentioned 
in section 4.1.2, graphitic materials are characterized by a very large spread in Poisson’s ratio. So it 
is not possible to assume a value for the latter a priori and then use it in combination with the 
definition (6.1) to calculate the Young’s modulus, as often done for metals. 

 
Figure 6.3 – Semi-apical angle of the equivalent conical indenter implicitly assumed by the Oliver-Pharr 
method, as a function of the ratio between residual and maximum penetration. 
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Finally, the intrinsic shape of the equivalent indenter associated with the Oliver-Pharr method has 
proved to work very well for materials which deform plastically. On the other hand, brittle materials 
like graphite behave in a totally different manner during the loading stage, meaning that an 
alternative type of analysis is probably needed to achieve the same level of accuracy [131].  
It has to be remarked that the Oliver-Pharr method is not the only possibility. Other techniques exist 
which allow analyzing the nano-indentation curves, as explained in section 6.1.1. Nevertheless, they 
imply the use of either advanced characterization instruments, which complicate the measurements 
considerably, or of dimensionless relations obtained from a large number of finite element 
simulations, which can only be obtained provided that the material inelastic behavior is known, to 
some extent. These reasons have probably discouraged the application of these alternative 
techniques to the present case.  
In conclusion, standard nano-indentation does not seem to be appropriate for testing the elastic 
properties of the nodules contained in ductile iron. As a consequence, it is the author’s opinion that 
previous values reported in the literature should be taken with care, as there are no solid grounds to 
sustain that they reflect the real particles’ behavior. 

6.2 3D differential aperture X-ray microscopy  

6.2.1 Overview of the technique 

Differential aperture X-ray microscopy (DAXM) is a recently developed non-destructive technique 
based on synchrotron radiation, which provides crystallographic orientation and local elastic strain 
with submicron spatial resolution in three dimensions [132][133][134]. It is applicable to single-
crystal, polycrystals, composites and functionally graded materials and represents a unique way of 
performing quantitative microstructural characterization on mesoscopic length scales.  

  
(a) (b) 

Figure 6.4 – Nano-indentation testing of a graphite nodule. (a) Load-penetration curves obtained by 
indenting the nodule at several positions along its main diameter. Courtesy of Dr. Techn. Grethe Winther, 
DTU Mechanical Engineering, and Dr. Søren Fæster, DTU Wind Energy. (b) Reduced Young’s modulus 
and exponent associated with fitting the first 40 % of the unloading curve, calculated by applying the 
standard Oliver-Pharr method to the data in (a). 
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The experimental configuration for DAXM at beamline 34-ID-E at the Advanced Photon Source of 
Argonne National Laboratory (USA) is schematically reported in figure 6.5. A polychromatic X-ray 
beam generated by the synchrotron ondulator enters from the right hand side. The 
removable/insertable monochromator can be used to select either single or multiple wavelengths 
before the beam is focused on the target via two Kirckpatrick–Baez mirrors, designed for energies 
in the range 8 ÷ 25 keV. The focused beam with diameter  ̴ 0.5 μm hits the sample at an angle of 
45°, generating diffraction patterns which are collected by a CCD detector. To separate the patterns 
associated with different positions along the penetration depth, which overlap on the detector, a 
differential aperture depth profiling method is adopted [132]. This consists in stepping a 50 μm 
diameter platinum wire along the sample surface and collecting CCD images at regular intervals. 
By subtracting CCD images taken before and after each step, it is possible to reconstruct the full 
diffraction pattern at all depths. From knowledge of this, local crystallographic orientations and 
elastic strains can eventually be calculated with a resolution of 0.1° and 1x10-4 mm/mm respectively 
by means of dedicated software.  

6.2.2 Residual elastic strain around a fully embedded nodule 

A comprehensive experimental campaign was carried out to investigate the local microstructure and 
the presence of residual elastic strain in the ferrite grains surrounding the nodules in ductile iron. 
The DAXM technique was selected for two reasons. Firstly, it provides sufficient resolution to 
identify gradients of strain and orientation near the particles. Secondly, it offers a penetration depth 
which enables studying the material state around nodules which are fully embedded in the ferrite. 
This is of fundamental importance, as the investigations showed that the residual strain around 
nodules exposed on the surface is remarkably different, likely due to some mechanical relaxation. It 
is emphasized that due to space limitations, only the main findings are discussed in the following 
sections. A complete description of the experiments may be found in PAPER VI and in the 
associated supplementary material available online.   

 
Figure 6.5 – Schematic depiction of the DAXM layout. The removable/insertable micro-monochromator 
provides white or monochromatic beams; the elliptically figured Kirckpatrick–Baez (K-B) mirrors focus 
the incident beams to ∼0.5 μm diameter at the sample position; a 50 μm diameter Pt wire is used as a 
diffracted beam profiler and a CCD area detector collects white beam Laue diffraction patterns. Reprinted 
from [133] with permission of Elsevier. 
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6.2.2.1 Experimental setup  

A ductile iron sample with the composition indicated in table 5 was chosen for the study. Its 
microstructure consisted of almost spherical graphite nodules surrounded by a relatively 
homogeneous matrix with very large ferrite fraction (~95%) and average grain size of ~30 μm. The 
mean size (equivalent circle diameter) and mean volume fraction of the nodules were ~30 μm and 
11.5%, respectively. It should be noted that this last value coincides with the one chosen in section 
2.2 to model the standard GJS-400 ferritic grade, which was subsequently taken as reference in the 
numerical calculations of chapter 4 and chapter 5. 
To enable sub-surface DAXM investigations, the 3D distribution of the graphite nodules was 
characterized by X-ray tomography using a Zeiss Xradia 520 Versa micro-CT system. This allowed 
identifying nodules with three important requisites: very high spheroidicity, no close neighboring 
particles and distance from the surface not greater than approx. 70-80 μm. The first two conditions 
are important to facilitate the interpretation of the results and to make the comparison with the 
numerical model more realistic, whereas the third one ensures that the diffracted X-ray intensity is 
above the critical threshold needed for reliable measurements.  
A nodule fulfilling all the previous requirements is the one indicated by the white arrow in figure 
6.6 (a), which has a diameter of approximately 50 μm and it is located about 15 μm beneath the 
sample surface. The region around it was selected for DAXM analysis, which was carried out using 
two beam modes. First a polychromatic beam was employed to determine the crystallographic 
orientations on a slice crossing the nodule and perpendicular to the sketch of figure 6.6 (b). Then a 

Table 5 – Average composition of the ductile iron sample used for the DAXM investigations (wt %). 

C Si Mn P S Cr Ni Co Cu Mg 
3.68 2.30 0.22 0.015 0.011 0.027 0.048 0.024 0.016 0.11 

          
 

 

 

(a) (b) 

Figure 6.6 – Experimental setup for DAXM of ductile iron. (a) X-ray computed tomography of the 
sample, with indication of the sub-surface nodule chosen for the analysis. (b) Schematic of the DAXM 
applied to a ferrite grain close the selected nodule, illustrating the crystallographic planes generating 
monochromatic diffraction and the corresponding interplanar spacing. 
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monochromatic beam was used for determining the interplanar spacing 𝑑𝑑 associated with the atomic 
planes parallel to the sample surface and belonging to a ferrite grain located behind the nodule, as 
schematically shown in figure 6.6 (b). From knowledge of 𝑑𝑑, the normal elastic strain component in 
the direction perpendicular to the previous planes was estimated as 

   𝜀𝜀𝑛𝑛 = (𝑑𝑑 − 𝑑𝑑0)/𝑑𝑑0 (6.7) 

where 𝑑𝑑0 denotes the value of the interplanar spacing for a reference unstrained crystal. This last 
quantity was calculated on the basis of the characteristic (ℎ,𝑘𝑘, 𝑙𝑙) indices by means of the expression 

 𝑑𝑑0 = 𝑎𝑎0/�ℎ2 + 𝑘𝑘2 + 𝑙𝑙2 (6.8) 

The parameter 𝑎𝑎0 appearing in the last formula indicates the lattice constant of ferrite. For its 
determination, the following relation, which takes data from various publications into account, was 
used [135] 

 
𝑎𝑎0 = 𝑎𝑎𝐹𝐹𝑒𝑒 +

10
3𝑎𝑎𝐹𝐹𝑒𝑒2

[(𝑎𝑎𝐹𝐹𝑒𝑒 − 0.001297𝑤𝑤𝐶𝐶)2(𝑎𝑎𝐹𝐹𝑒𝑒 + 0.011606𝑤𝑤𝐶𝐶)

− 𝑎𝑎𝐹𝐹𝑒𝑒3 ] − 0.0006𝑤𝑤𝑆𝑆𝑐𝑐 + 0.0006𝑤𝑤𝑀𝑀𝑛𝑛 
(6.9) 

where 𝑎𝑎𝐹𝐹𝑒𝑒 =  2.8664 Å is the lattice parameter of pure ferrite and 𝑤𝑤𝑥𝑥 is the weight percentage of 
the element 𝑥𝑥. For the present case, the Si and Mn contents listed in table 5 and a maximum 
solubility of 0.005 wt% of C in ferrite at room temperature were used as 𝑤𝑤𝑆𝑆𝑐𝑐, 𝑤𝑤𝑀𝑀𝑛𝑛 and 𝑤𝑤𝐶𝐶, 
respectively.  
It has to be pointed out that given the high Si content, a large uncertainty on the coefficient 
multiplying 𝑤𝑤𝑆𝑆𝑐𝑐 in equation (6.9) might severely affect the accuracy of the calculated elastic strain 
(6.7). However, values close to 0.0006 have been confirmed by a number of authors. For instance, 
Polcarova et al. [136] measured 0.00069 on pure Fe-Si crystals, with negligible amount of carbon, 
whereas Cockett [102] proposed 0.00042, considering ferrite with 0.005 % carbon. The only 
exception is the work of Rubin et al. [137] where a much higher coefficient of 0.00185 was 
suggested. Nevertheless, their analyses were performed directly on ductile iron containing graphite 
particles, in which the elastic lattice distortion due to local residual stresses might lead to erroneous 
results. The scarce reliability seems supported by the fact that the 0.00185 coefficient was later 
found to generate unrealistic values for the carbon content in ferrite at room temperature determined 
via standard XRD measurements.   

6.2.2.2 Measurements vs model predictions 

The crystallographic orientations of the ferrite grains determined using the polychromatic beam 
mode for the 2D slice described previously are shown in figure 6.7 (a). A critical misorientation 
angle of ~0.1° is used for revealing the detailed dislocation boundary structure, whereas a critical 
angle of 3° is used for defining individual grains. It is evident that only a few relatively small grains 
are nearly dislocation free, whereas most of the others are plastically deformed, containing 
dislocation boundaries with misorientation angles below 1°. Clearly, this represents a clue of the 
existence of local stresses greater than the ferrite flow stress at some point during the processing 
history of the sample.  
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Figure 6.7 (b) reports instead the residual elastic strain measured with monochromatic beam in the 
region indicated by the yellow box at the bottom of the figure 6.7 (a), as a function of the 
normalized distance from the nodule-matrix interface. As may be deduced from the schematic of 
figure 6.6 (b), the specific vertical location selected for creating the 2D slice implies that the strain 
refers to a direction which is approximately radial with respect to the nodule. Therefore, the 
compressive values seen close to the latter, which gradually decrease in magnitude moving further 
into the ferrite, are physically consistent with the type of thermo-mechanical interaction 
hypothesized in the introductory chapter: that is, during manufacturing the matrix shrinks more that 
the nodule, hence generating normal compressive forces at the interface between the two.  
It is important to clarify that the observed values cannot be ascribed to gradients in chemical 
composition. In fact, one might speculate that local segregation of elements like Si and Mn could 
drive changes in the ferrite lattice parameter according to expression (6.9). As these are not taken 
into account via a corresponding variation of the 𝑑𝑑0 parameter in equation (6.7), an artificial strain 
gradient might arise. However, the Si + Mn segregation that would be required to generate the strain 
gradient visible in figure 6.7 (b) would be 2.5÷3.0 wt%, which is almost more than the average 
content present in the material. A 10 % variation, which is more realistic as discussed in PAPER 
VI, changes the strain only by the small amount indicated by the error bars. Furthermore, a similar 

 

 

(a) (b) 

Figure 6.7 – Results of the DAXM analysis. (a) Crystallographic orientations for the 2D slice whose trace 
is indicated by the horizontal blue dashed line in figure 6.6 (b). Dislocation boundaries with misorientation 
angles in the range of 0.1-1°, 1-3°, and >3° are shown in thin white, thin black and thick black lines, 
respectively. (b) Elastic strain in the direction perpendicular to the sample surface, and approximately 
normal to the nodule-matrix interface, relative to the region indicated by the yellow box at the bottom of 
the crystallographic map in (a). The error bars refer to 10 % uncertainty on the local chemical composition. 
For comparison, the elastic strain predicted by the numerical model developed in chapter 5 is also reported.   

 

57 
 



Chapter 6 – Experimental validation via direct techniques 

gradient is also observed in the deviatoric strains, which can be calculated from the orientation map 
of figure 6.7 (a). As these do not depend on the choice of the lattice parameter, the compressive 
strain variation may be considered as real. 
Concerning the comparison with the predictions of the model introduced in section 5.2.1, which are 
also shown in figure 6.7, it may be noted that the experimentally recorded strain pattern is 
reproduced quite well, even though the simulated gradients and absolute values seemed somewhat 
overestimated by a factor 2. Considering the thermo-elastic nature of the model and the limited 
mechanical data available, which makes any inelastic description out of reach, the relatively good 
agreement between theoretical predictions and measurements is surprisingly good.  
A possible explanation is that inelastic deformation does take place in the outer part of the nodule 
core during solid-state cooling, as hypothesized in section 5.2.3, but it somehow remains localized 
to a region of limited thickness, without propagating to the entire graphite particle. In this way, the 
pressure exerted by the surrounding matrix is partially relieved, and the residual gradients smoothed 
out, but at the same time the overall material elastic stiffness remains almost unaffected. This 
hypothesis could justify the over prediction of the residual elastic strains, while at the same time 
explaining the excellent agreement of figure 4.7 obtained in terms of simulated macroscopic elastic 
properties.  
With regard to the discrepancy that still exists between numerical predictions and measurements, it 
has to be admitted that it was rather expected. In fact, a quite rough approximation of the eutectoid 
transformation is considered in the analysis, and any kind of high-temperature creep mechanism in 
the matrix, which could partly relieve the elastic strain, is ignored. In this respect, the plastic 
deformation observed in the grains of figure 6.7 (b) clearly indicates that some non-linear 
phenomena occur in the ferrite at some point, meaning that the linear elastic assumption is likely 
too simplistic. Moreover, the anisotropy of the single ferritic grains is also neglected in the model. 
Given the microscopic scale considered, including in the simulation some crystallographic 
information of the region around the nodule would probably improve the results. Finally, the 
periodic unit cell approach and the perfect spheroidal geometry assumed for the nodule also 
constitute a limitation, whose effect is however difficult to quantify. 
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Chapter 7  
Concluding remarks 

7.1 Conclusions 

The present findings demonstrate unequivocally that the load carrying capacity of the nodules must 
be taken into account when analyzing the mechanical behavior of ductile iron at the micro-structural 
scale. In other words, the old belief that the presence of the graphite particles can be neglected a 
priori in light of their presumed soft nature and marginal strength is to be categorically rejected. The 
key point is that their strongly inhomogeneous and anisotropic character implies that the response 
they offer is very much dependent on the loading scenario: in some circumstances, they show minor 
stiffness, while in others they may closely resemble rigid bodies. 
In this respect, the availability of TEM studies of their internal structure has turned out to be of 
utmost importance to unveil their real elastic behavior. First of all, it has allowed, via elastic bound 
theory analysis, to rule out the hypothesis that they could be modeled as homogeneous and 
isotropic. A direct implication of this is that it is not possible to justify any of the isotropic 
parameters reported in table 1 on the basis of physical grounds. Even if some of them provide a 
good match with the ductile iron response at the macro-scale recorded during uniaxial testing, there 
is no guarantee that they work for different loading conditions, nor that the description they offer in 
terms of stress & strain fields in and around the nodules is accurate. This conclusion is expected to 
have significant consequences on the way local phenomena in ductile iron will be addressed in the 
future, e.g. crack propagation, as most of the past studies were based on considering the graphite 
particles as isotropic.   
Knowledge of the real nodules’ structure has also helped bring to light the scarce reliability of the 
nano-indentation tests performed according to the Oliver-Pharr method, which were apparently 
suggesting values for the Young’s modulus in the range 15 ÷ 28 GPa. Indeed, the real anisotropic, 
inhomogeneous and brittle nature of the graphite particles is simply too far from the implicit 
assumptions of isotropy, homogeneity, and somewhat uniform plastic deformation the technique 
rests on. Concerning this, it has to be emphasized that the condition of uniform plastic flow is 
required to justify the particular shape of the equivalent indenter associated with the method, which 
has been revealed by the present investigations for the first time in literature. 
Finally, the numerical reconstruction of the nodules’ internal morphology has led to the 
development of a new micro-mechanical model, which performs excellently when used to predict 
the ductile iron thermo-elastic behavior at the macroscopic scale. Moreover, the model turns out to 
be characterized by an average thermal contraction which is 3 to 4 times smaller compared to that 
of the ferrite matrix, hence confirming the hypothesis of a pronounced CTE mismatch that was 
initially supported by materials science speculations only.  
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In relation to this last aspect, the present PhD work has demonstrated from a theoretical and 
experimental viewpoint that significant local residual stresses may form during the manufacturing 
process. This is certainly a breakthrough compared to the past, when only macroscopic residual 
stresses were assumed to exist in ductile iron castings. Thanks to the new model for the nodules and 
the advanced DAXM synchrotron technique, the nodule-matrix interaction has been studied in an 
unprecedented manner, leading to the conclusion that deviatoric stresses of up to approximately 150 
MPa may be present in the ferrite region in the vicinity of the graphite particles. The former value is 
meant to be indicative only, but it is reported to emphasize that the local residual stresses may be of 
the same order of magnitude of the macroscopic ductile iron yield strength, at least for low-alloyed 
ferritic grades. 
The existence of non-negligible stresses at the micro-scale opens up for a totally new way of 
looking at the structure and properties of ductile iron. For instance, the presence of the graphite 
layer with different structure on the surface of the nodules may be explained, in this new 
framework, by cracking and rotation of the single crystallites upon formation of localized 
compressive forces in that region. Similarly, the connection between magnitude of the local residual 
stresses and number of the nodules’ internal subdivisions provides an additional ingredient to 
understand the link between fatigue resistance and size of the graphite particles.    

7.2 Future work 

The description of the local residual stresses obtained so far cannot be considered as fully 
comprehensive. Both the theoretical and the experimental analyses presented in the previous 
chapters feature simplifying assumptions which leave room for improvement. Concerning 
modeling, given the difficulties with extending the nodules’ model to the inelastic regime, the 
priority is a reliable time-dependent description of the ferrite behavior, together with a more 
realistic representation of the eutectoid transformation. Moreover, in order to analyze general 
micro-structures which are not limited to the case of a spherical graphite particle isolated from the 
others, the unit cell should be replaced with a RVE which embeds statistical data regarding the 
nodules’ size, shape and spatial distribution. With respect to the experimental technique instead, 
only monochromatic diffraction measurements from a single Laue spot have been carried out up to 
now, which provide knowledge of one strain component only. In principle, by combining 
diffraction data coming from three widely separated spots the full elastic strain tensor, and therefore 
the stress tensor too, can be reconstructed [138]. This would allow for a much deeper understanding 
of the local thermo-mechanical conditions experienced by the material, in addition to enable better 
validation of the theoretical models.  
Apart from these very technical considerations, it has to be emphasized that the present PhD work 
has covered only the first three points of the structure-process-properties-performance diagram of 
figure 1.1. Performance aspects have been just shortly touched upon, despite being probably the 
most relevant from a technological perspective, as key industrial sectors like off-shore, transport 
and energy production are constantly pushing for lighter and more reliable ductile iron components. 
As mentioned in the previous section, the presence of local residual stresses constitutes an element 
that may actually be used to shed further light on why the material performs in a certain way under 
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certain conditions. For instance, by studying how the process parameters affect the local residual 
stress state, and how this in turn affects the e.g. fatigue resistance, useful indications may be 
obtained on how to manufacture critical parts with longer service life. The unexplored field of local 
residual stresses can then potentially represent the key to optimize the ductile iron performance 
even further, contributing to ensure a bright future for this evergreen material. 
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a b s t r a c t 

In the present paper, for the first time in literature an exact analytical solution to 

Lemaitre’s isotropic damage model is developed for the special case of uniaxial tensile 

testing. This is achieved by taking advantage of a convenient formulation of the isotropic 

hardening function, which allows obtaining an integral relationship between total strain 

and effective stress. By means of the generalized binomial theorem, an expression in terms 

of infinite series is subsequently derived. The solution is found to simplify considerably ex- 

isting techniques for material parameters identification based on optimization, as all issues 

associated with classical numerical solution procedures of the constitutive equations are 

eliminated. In addition, an implicit implementation of the plane stress projected version 

of Lemaitre’s model is discussed, showing that the resulting algebraic system can be re- 

duced to a single non-linear equation. The accuracy of the proposed integration scheme is 

then verified by means of the presented 1D analytical solution. Finally, a closed-form ex- 

pression for the consistent tangent modulus taking damage evolution into account is given, 

and its impact on the convergence rate is analyzed. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Lemaitre’s model [1] is today one of the most widely used techniques for modeling damage evolution in ductile mate- 

rials. Despite several improvements have been proposed in order to account for additional effects like micro-cracks closure 

under compressive stresses [2] and anisotropy [3,4] , the original isotropic formulation limited to isotropic hardening is still 

often employed due to its simplicity and the relatively low number of material parameters involved. The latter can be easily 

determined from knowledge of the damage evolution history in loaded specimens, obtainable by means of well-established 

experimental methods [5] . Nevertheless, it might be that such information is either not available or too expensive to obtain 

for the specific material at hand. Under these circumstances, it is common practice to identify the material constants on 

the basis of an optimization analysis aiming at minimizing the error between the predicted numerical results and a ref- 

erence uniaxial tensile curve [6] . More recently, methodologies which offer improved accuracy by combining the classical 

experimental stress–strain relationship with other observables have also been proposed [7,8] . However, the use of all such 

procedures in combination with a numerical resolution of the mathematical model exhibits three main disadvantages. First 
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Nomenclature 

s ij Deviatoric part of the stress tensor 

δij Kronecker delta 

ε tot 
i j 

, ε e 
i j 
, ε p 

i j 
Total/elastic/plastic strain tensor 

σ ij Stress tensor 

˜ σi j Effective stress tensor 

σ e Equivalent Von Mises stress 

σy , σ 0 
y Actual/initial yield stress 

E Young’s modulus 

D Damage variable 

R v Triaxiality function 

S, s Lemaitre’s damage evolution parameters 

Y Energy release rate 

� Yield function 

k , n Isotropic hardening parameters 

p Equivalent Von Mises plastic strain 

p crit Critical effective plastic strain for damage evolution 

r Hardening variable 

λ Plastic multiplier 

ν Poisson’s ratio 

( · ) Increment operator 

�() Finite variation operator 

of all, it requires the use of an optimization algorithm coupled with a numerical tool for solving the underlying system 

of differential equations. Secondly, the numerical solution procedure in itself is complicated by the “softening” behavior of 

the damaged material at sufficiently large strains. Thirdly, the produced values for the material parameters are affected, in 

addition to the experimental & optimization uncertainty, by the error associated with the numerical discretization adopted. 

With the aim of overcoming all the above-mentioned aspects, an analytical solution to the isotropic Lemaitre’s model for 

the specific case of uniaxial tensile testing is developed in the present paper. Quite surprisingly, no previous works on the 

subject appear to have been published in literature, despite the intrinsic value that analytical solutions possess, especially 

in relation to numerical implementations assessment. 

Lemaitre’s model has also proved effective in predicting damage evolution in situations of plane stress, as recently con- 

firmed by geometric transferability investigations carried out on flat specimens of Ti-6Al-4 V alloy [9] . These characteristic 

loading conditions are frequently encountered in industrial processes where material degradation becomes a critical factor, 

as discussed in [10] for the case of sheet metal forming. If a traditional displacement-based implicit finite element code with 

global full Newton–Raphson iterations is used for the related numerical analysis, a natural complication arises in ensuring 

the out-of-plane components of the stress tensor to be zero at the end of each load increment. This issue is thoroughly 

discussed in the context of general elasto-plasticity in [11] , where three different techniques are suggested to cope with the 

problem: (A) direct inclusion of the plane stress constraint at the Gauss point level, (B) addition of a plane stress constraint 

at the global structural level, (C) use of plane stress projected constitutive equations at the Gauss point level. The first two 

solutions are usually easier to implement, but at the price of higher computational time; an example of implicit constitutive 

discretization of Lemaitre’s model with kinematic hardening using approach (A) is given in [12] . As a consequence, approach 

(C) is to be preferred whenever possible, as it leads to more efficient computational procedures due to the fact that only the 

relevant in-plane stress and strain components are considered [13] . This is also the approach adopted in the second part of 

the present paper, where it is shown that implicit integration of the plane stress projected Lemaitre’s model with isotropic 

hardening using the elastic predictor-return mapping scheme can be reduced to a single non-linear equation. Furthermore, 

a closed-form expression for the related consistent tangent modulus is proposed, which is found to improve significantly 

the convergence rate. 

2. Lemaitre’s isotropic damage model with isotropic hardening 

The fundamental equations characterizing Lemaitre’s isotropic damage model with isotropic hardening are reported here 

in Cartesian components [6] : 

(a) additive strain decomposition: 

ε tot 
i j = ε e i j + ε p 

i j 
, (1) 
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(b) elastic constitutive law: 

σi j 

1 − D 

= 

E 

1 + ν

[ 
ε e i j + 

ν

1 − 2 ν
δi j ε 

e 
kk 

] 
, (2) 

(c) flow rule: 

˙ ε p 
i j 

= 

3 s i j 

2 σe 

˙ λ

1 − D 

, (3) 

(d) yield function: 

� = 

σe 

1 − D 

− σy ( r ) ≤ 0 , σe = 

(
3 

2 s i j s i j 

) 1 
2 

, (4) 

(e) isotropic hardening rule: 

σy = f ( r ) , (5) 

(f) hardening parameter increment: 

˙ r = ( 1 − D ) ˙ p , ˙ p = 

(
2 

3 

˙ ε p 
i j 

˙ ε p 
i j 

) 1 
2 

, (6) 

(g) damage evolution law: 

˙ D = 

(
Y 

S 

)s 

˙ p , i f p > p crit , (7) 

(h) energy release rate: 

Y = 

σ 2 
e R v 

2 E ( 1 − D ) 
2 
, R v = 

2 

3 

( 1 + ν) + 3 ( 1 − 2 ν) 

(
σkk 

3 σe 

)2 

, (8) 

(i) consistency condition: 

� ≤ 0 , ˙ λ ≥ 0 , � ˙ λ = 0 . (9) 

It may be easily demonstrated that the flow rule (3) together with (6) imply the equality ˙ r = 

˙ λ. The derivation is reported 

in [14] . 

With regards to the isotropic hardening function appearing in Eq. (5) , it is often assumed to have the exponential form: 

σy = σ 0 
y + R 

∞ ( 1 − exp ( −br ) ) , (10) 

where b is a material parameter and R ∞ represents a saturation value corresponding to r → + ∞ . In the context of the 

present work, the following power-law hardening rule is chosen instead: 

σy = k ( r + r 0 ) 
n 
, r 0 = 

(
σ 0 

y 

k 

)1 /n 

, (11) 

in which k denotes the hardening factor, n the hardening exponent and r 0 is simply a constant whose value is adjusted to 

ensure σy = σ 0 
y for r = 0 : from a physical point of view, it could be thought of as a parameter associated with the hardening 

induced by the initial amount of dislocations present in the virgin material. The reason for adopting formulation (11) over 

(10) is the lower degree of complexity it entails in developing an analytical solution, as explained in the next section. 

3. Analytical solution for uniaxial tensile test 

The tensor equations presented above may be recast in the corresponding 1D form as follows: 

ε tot = ε e + ε p , (12) 

σ = ( 1 − D ) E ε e , (13) 

˙ r = ( 1 − D ) ̇ ε p , (14) 

� = 

σ

1 − D 

− σy ( r ) ≤ 0 , (15) 

σy = k ( r + r 0 ) 
n 
, (16) 

˙ D = 

(
Y 

S 

)s 

˙ ε p i f ε p > p crit , (17) 



5762 T. Andriollo et al. / Applied Mathematical Modelling 40 (2016) 5759–5774 

Y = 

σ 2 

2 E ( 1 − D ) 
2 
, (18) 

� ≤ 0 , ˙ r ≥ 0 , � ˙ r = 0 , (19) 

where use has been made of the standard equalities σe = σ11 = σ and p = ε p 
11 

= ε p , which are valid in the uniaxial case. 

In the next paragraphs, an integral solution in the form σ = f ( ε tot ) to the set of Eqs. (12) –(19) is sought, assuming 

monotonic growth of the applied total strain, which is taken to be the independent variable for the problem at hand. The 

two differential relations (14) and (17) are assumed to be complemented by the initial conditions r = D = 0 for ε tot = 0 . The 

analysis is split into two parts: the first one corresponds to the pure elasto-plastic regime ( ɛ p ≤ p crit ⇒ D ≡ 0), whereas the 

second one considers damage evolution in addition to plastic flow ( ɛ p > p crit ⇒ D > 0). 

3.1. Elasto-plastic regime 

For values of the externally imposed total strain which are sufficiently small, the stress state remains inside the yield 

surface and the material behaves elastically. This means that � < 0 ⇒ ˙ r = 0 ⇒ ˙ ε p = 0 ⇒ ε tot = ε e and the entire system of 

Eqs. (12) –(19) reduces to the simple Hooke’s law: 

σ = E ε tot . (20) 

When the applied strain exceeds the critical threshold ε tot = σ 0 
y /E, plastic flow takes place, implying ˙ r > 0 ⇒ � = 0 . 

However, as long as ɛ p ≤ p crit , no damage occurs in the material, therefore Eq. (14) dictates ˙ ε p = ˙ r and consequently ε p = r

as both variables are assumed to have the same initial value at the beginning of the test. Using the last expression in Eq. (16) 

gives σy = k ( ε p + r 0 ) 
n ; then, by combining this result with Eqs. (12) , (13) , (15) one obtains the implicit expression relating 

stress and total strain as: 

σ = k 

(
ε tot − σ

E 
+ r 0 

)n 

. (21) 

The critical stress value σ̄ at which damage evolution starts during uniaxial straining can be easily found by setting 

ε tot = ε e + ε p = σ̄ /E + p crit in the last equation, obtaining: 

σ̄ = k ( p crit + r 0 ) 
n 

(22) 

and the corresponding critical total strain is found as: 

ε̄ tot = p crit + 

σ̄

E 
. (23) 

3.2. Damage regime 

Once the externally applied strain grows beyond the critical value ε̄ tot calculated according to Eq. (23) , damage evolution 

occurs in addition to plastic flow. In order to simplify the calculations, it is convenient to introduce the effective stress ˜ σ as 

[14] : 

˜ σ = 

σ

1 − D 

. (24) 

By using the above definition together with the consistency condition � = 0 , the number of equations appearing in the 

system (12)–(19) can be reduced by 3, and the following 5 relations are obtained: 

ε tot = ε e + ε p , (25) 

˜ σ = E ε e , (26) 

˙ r = ( 1 − D ) ̇ ε p (27) 

˜ σ = k ( r + r 0 ) 
n 

(28) 

˙ D = 

(
˜ σ 2 

2 ES 

)s 

˙ ε p , (29) 

which need to be further combined together and then integrated to find a suitable solution in the form ˜ σ = f ( ε tot ) . 

The starting point is to invert and subsequently differentiate Eq. (28) to get: 

r = 

(
˜ σ

k 

)1 /n 

− r 0 ⇒ 

˙ r = 

˜ σ
1 
n −1 

n k 1 /n 
˙ ˜ σ. (30) 
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It is worth noticing in the last expression that as ˙ r is required to be positive, the effective stress variable ˜ σ grows 

monotonically during the test. Combination of Eq. (30) with Eq. (27) yields: 

˙ ε p ( 1 − D ) = 

˜ σ
1 
n −1 

n k 1 /n 
˙ ˜ σ. (31) 

Finally, the plastic strain increment ˙ ε p appearing in the last relation can be expressed in terms of ˜ σ and 

˙ D by use of the 

damage evolution law (29) , leading to: (
˜ σ 2 

2 ES 

)−s 

( 1 − D ) ̇ D = 

˜ σ
1 
n −1 

n k 1 /n 
˙ ˜ σ. (32) 

Simple algebraic manipulation allows the equivalent form: 

( 1 − D ) ̇ D = A ̃  σα ˙ ˜ σ, (33) 

where the following constants have been defined: 

A = 

(
n k 

1 
n ( 2 ES ) 

s 
)−1 

, α = 2 s + 

1 

n 

− 1 . (34) 

The differential Eq. (33) is in separable form and can be integrated from the state ( 0 , σ̄ ) to ( D, ˜ σ ) , providing the follow- 

ing direct relation between the effective stress and the damage variable: 

D − D 

2 

2 

= 

A 

α + 1 

(
˜ σα+1 − σ̄ α+1 

)
. (35) 

It is important to point out that the last integral expression has been obtained in closed-form taking advantage of very 

basic functions of D and ˜ σ that appear at both sides of (33) . In particular, the simple power-law dependence on ˜ σ is a direct 

consequence of the specific hardening rule adopted. It may be demonstrated that if the exponential expression (10) were 

chosen instead of (11) , a relation of the type ˜ σ 2 s / ( R ∞ + σ 0 
y − ˜ σ ) would appear at the right-hand side of Eq. (33) , which 

could not be integrated analytically using conventional techniques. 

For a given value of ˜ σ , expression (35) represents a 2nd order polynomial in D . Remembering that the damage variable 

must be confined to the interval [0, 1], only one root can be accepted (the other being greater than one); its value may be 

calculated using a standard algebraic formula as: 

D ( ̃  σ ) = 1 −
√ 

1 − 2 A 

α + 1 

(
˜ σα+1 − σ̄ α+1 

)
. (36) 

It is important to observe that the latter relation poses a limitation on the maximum accepted value of ˜ σ , as the ar- 

gument of the square root must remain positive. From a physical point of view, such limit value ˜ σlim 

corresponds to the 

point at which damage equals one, meaning that the material stops having any load carrying capacity. In light of these 

considerations, the following inequality holds: 

˜ σ ≤ ˜ σlim 

= 

(
α + 1 

2 A 

+ σ̄ α+1 
) 1 

α+1 

. (37) 

Having clarified the range of validity of expression (36) , Eqs. (25) and (26) may be differentiated and combined together 

to express the plastic strain increment in terms of total strain increment and effective stress increment as: 

˙ ε p = ˙ ε tot − ˙ ˜ σ/E. (38) 

Then, (38) can be inserted into Eq. (31) to obtain, after simple manipulations, the following expression: 

˙ ε tot = 

(
1 

E 
+ 

˜ σ
1 
n −1 

( 1 − D ) n k 1 /n 

)
˙ ˜ σ. (39) 

Relation (39) represents again a differential equation in separable form, where the function D ( ̃  σ ) is defined according to 

Eq. (36) . Integration from the state ( ̄ε tot , σ̄ ) to ( ε tot , ˜ σ ) yields: 

ε tot ( ̃  σ ) = ε̄ tot + 

˜ σ − σ̄

E 
+ I ( ̃  σ ) . (40) 

The function I( ̃  σ ) appearing in the last expression corresponds to: 

I ( ̃  σ ) = z 

∫ ˜ σ

σ̄

˜ σα−2 s √ 

˜ σα+1 
lim 

− ˜ σα+1 
d ̃  σ , (41) 

where ˜ σlim 

is defined according to (37) and the constant z denotes the following combination of material parameters: 

z = 

1 

n k 
1 
n 

√ 

α + 1 

2 A 

(42) 
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It is worth noticing that as the hardening exponent n is usually smaller than unity, the definition (34) implies that the 

following inequality is satisfied: 

1 

n 

− 1 = α − 2 s > 0 . (43) 

As s is a positive parameter, it follows that α is greater than zero as well. Consequently, both z and ˜ σlim 

turn out to be 

strictly positive, as inspection of Eqs. (37) and (42) reveals. 

Unluckily, the integral in Eq. (41) cannot be computed in a straightforward manner; however, an exact solution in terms 

of infinite series is presented in the next section. 

3.3. Exact integral solution in terms of infinite series 

The first step to arrive to an analytical expression for the integral (41) is to make the following variable change: 

˜ σα+1 
lim 

− ˜ σα+1 

˜ σα+1 
lim 

= x ⇔ ˜ σ = ˜ σlim 

( 1 − x ) 
1 

α+1 , (44) 

in order to obtain: 

I ( x ) = B 

x 

∫ 
x̄ 

( 1 − x ) 
β

√ 

x 
dx, (45) 

where the following constants have been introduced: 

B = − z 

α + 1 

( ̃  σlim 

) 
α−4 s +1 

2 , β = 

−2 s 

α + 1 

. (46) 

Expression (37) states that ˜ σ can never grow beyond the value ˜ σlim 

at which damage equals unity. Consequently, the def- 

inition (44) implies x to be positive and less than one. Under these conditions, the numerator of the integrand in expression 

(45) can be represented in terms of an infinite series by means of the binomial theorem generalized to real powers [15] : 

( 1 + x ) 
β = 

+ ∞ ∑ 

m =0 

(
β
m 

)
x m , 

(
β
m 

)
= 

β( β − 1 ) ( β − 2 ) . . . ( β − m + 1 ) 

m ! 
, (47) 

where convergence is guaranteed for | x | < 1. By using the latter result in Eq. (45) one obtains: 

I ( x ) = B 

x 

∫ 
x̄ 

( 

+ ∞ ∑ 

m =0 

( −1 ) 
m 

(
β
m 

)
x m −1 / 2 

) 

dx, (48) 

and straightforward integration provides: 

I ( x ) = 2 B 

+ ∞ ∑ 

m =0 

( −1 ) 
m 

2 m + 1 

(
β
m 

)[
x m +1 / 2 − x̄ m +1 / 2 

]
. (49) 

The last expression represents a closed-form solution to the integral reported in Eq. (41) ; therefore, it allows relation 

(40) between the effective stress and the total strain to be defined in the following exact analytical form: 

ε tot ( ̃  σ ) = ε̄ tot + 

˜ σ − σ̄

E 
+ 2 B 

+ ∞ ∑ 

m =0 

( −1 ) 
m 

2 m + 1 

(
β
m 

)[ (
1 − ˜ σα+1 

˜ σα+1 
lim 

)m +1 / 2 

−
(

1 − σ̄ α+1 

˜ σα+1 
lim 

)m +1 / 2 
] 

. (50) 

An appealing feature of the above solution is that the first 10 terms of the expansion are already sufficient to achieve an 

accuracy of approximately 0.3 % on the calculated total strain, as Fig. 1 shows . 

4. Application to damage parameters identification 

The analytical solution developed in the previous sections can be effectively used in all material parameters identification 

procedures which involve fitting of one or more experimentally measured uniaxial stress–strain curves. As data are usually 

provided as a set of ( ε tot 
i 

, σ exp 
i 

) values, a natural measure of the deviation of the model predictions from measurements is: 

L ( A ) = 

1 

n e 

n e ∑ 

n =1 

[
σ
(
ε tot 

i , A 

)
− σ exp 

i 

]2 
, (51) 

where n e indicates the total number of experimental points and A denotes a certain set of material parameters: 

A = 

[
E, σ 0 

y , k, n, p crit , S, s 
]

(52) 
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Fig. 1. Relative accuracy of the computed solution as a function of the number of terms included in the series expansion of Eq. (50) . Values are obtained 

using an effective stress of 600 MPa, corresponding to a total strain of approximately 0.3, and the material parameters of Table 1 . The accuracy is related 

to a reference solution with 10,0 0 0 terms. 

The best set of parameters can be determined by minimizing expression (51) with respect to A . A discussion on the 

numerical procedures currently available for such optimization problem may be found, for instance, in [6] or [16] , where 

the specific issue of damage parameter identification is addressed. Usually, values for E and σ 0 
y can be directly read off the 

uniaxial tensile curve, so that the number of unknown parameters in (51) reduces to five. Moreover, if the critical strain ε̄ tot 

at which damage evolution begins can be experimentally determined (normally, it can be roughly identified with the peak 

point of the curve [6] , i.e. the ultimate stress), the optimization can be performed into two distinct stages. In the first one, 

all experimental points with ε tot 
i 

> ε̄ tot are neglected, and the two plastic flow parameters k and n are calculated; then, a 

new minimization analysis including the entire data set is run for determining the remaining damage parameters S and s . It 

has to be emphasized that with this kind of approach, the final damage threshold D c at which crack initiation occurs turns 

out to be implicitly defined by the point of maximum total strain. An additional algebraic constraint could be used during 

optimization to set D c to a specific level or to keep it within a prescribed range. 

4.1. Obtaining the solution for a fixed total strain value 

In Eq. (51) , for a given A and a given total strain ε tot 
i 

, the corresponding stress value σ ( ε tot 
i 

, A ) predicted by the isotropic 

Lemaitre’s damage model can be calculated as follows: 

• the constants A, α, ˜ σlim 

, z, B, β are determined according to (34) , (37) , (42) , (46) ; 
• the critical total strain ε̄ tot and stress σ̄ for damage initiation are computed using (22) and (23) ; 
• the total strain value is checked: 
• ε tot 

i 
≤ σ 0 

y /E: stress is calculated using (20) ; 

• σ 0 
y /E < ε tot 

i 
≤ ε̄ tot : stress is calculated using (21) ; 

• ε tot 
i 

> ε̄ tot : the effective stress is calculated first by solving the algebraic Eq. (50) . 

Then, the corresponding damage value is obtained from (36) and finally the stress is determined via (24) . 

It is worth noticing that Eq. (50) still requires a numerical algorithm to be solved for a prescribed value of the total 

strain. However, the advantage is that it is not the common stress which appears in the expression, but the effective stress. 

This quantity grows monotonically during tensile testing, as explained in Section 3.2 . Therefore, its dependence on the total 

strain turns out to be monotonic as well, as confirmed by Eq. (39) , which may be rewritten for convenience in the following 

form: 

d ε tot 

d ̃  σ
= 

1 

E 
+ 

˜ σ
1 
n −1 

( 1 − D ) n k 1 /n 
. (53) 

Further differentiation provides: 

d 2 ε tot 

d ̃  σ 2 
= 

( 1 − n ) ̃  σ
1 
n −2 

( 1 − D ) n 

2 k 1 /n 
+ 

˜ σ
1 
n −1 

( 1 − D ) 
2 n k 1 /n 

dD 

d ̃  σ
. (54) 
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Fig. 2. Qualitative representation of the function ε tot ( ̃ σ ) defined by Eq. (50) and influence of the starting point on the subsequent Newton–Raphson 

iterations. 

Fig. 3. Number of Newton–Raphson iterations required to achieve machine precision while solving Eq. (50) for the effective stress. Curves are parametric 

in the choice of the initial starting point. 

As damage can never decrease, d D/d ̃  σ is always positive in the latter expression. As a consequence, both the first and 

the second derivative of the function ε tot ( ̃  σ ) are always greater than zero. This means that ideal conditions for application 

of the Newton–Raphson algorithm exist, as the function is smooth, monotonic and with constant convexity. This is of course 

in sharp contrast with the behavior of the stress-total strain relationship, which inevitably exhibits softening at a certain 

stage, compromising the stability of finite element codes based on the Newton–Raphson method. 

Within the present context, the choice of the starting point for the numerical iterations deserves a special comment. 

With reference to Fig. 2 , for a given total strain ɛ tot it is important to choose an initial value ˜ σstart which is larger than 

the effective stress ˜ σ which represents the final solution. This ensures a fast convergence of the Newton–Raphson method. 

Conversely, if a smaller value is adopted, the updated value for the effective stress might be larger than the limit value ˜ σlim 

defined in expression (37) . In such a case, it is necessary to set as the new value a point between ˜ σstart and ˜ σlim 

, whose 

choice is somehow arbitrary. 

In situations of practical interest, a good strategy is to select as starting point an effective stress value which corresponds 

to a very high damage level, according to Eq. (35) . The reason is that in common materials damage values close to unity 

are usually never achieved, as cracks nucleate when the critical damage threshold D c < 1 is exceeded. Fig. 3 shows the 

number of Newton–Raphson iterations required to solve Eq. (50) for a range of total strains corresponding to damage levels 

between 0.1 and 50%, using the parameters of Table 1 . As one would expect, the closer the initial and final states, the lower 

the number of iterations required to achieve machine precision. However, by choosing as starting point a damage level of 

60 %, only 2–3 iterations are saved compared to selecting a starting point with 99.9 % damage. Therefore, effective stresses 

corresponding to damage values close to unity should be preferred when it comes to select a suitable starting point, as they 

allow solving the function ε tot ( ̃  σ ) over almost the entire admissible range of total strain, at the same time maintaining the 

computational cost reasonable. 
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Table 1 

Admissible range used in the constrained optimization analysis and computed value for each material 

parameter of the ferritic matrix of GJS 400-18 ductile iron. 

k (MPa) n p crit (%) S (MPa) s 

Admissible range 500 ÷ 1000 0.100 ÷ 0.300 0 ÷ 10.0 0 0 0.100 ÷ 10.0 0 0 0.100 ÷ 5.000 

Calculated value 818 0.245 0.533 0.357 0.167 

Fig. 4. Lemaitre’s damage parameters identification for the ferritic matrix of GJS 400-18 ductile cast iron. The experimental uniaxial tensile curve is taken 

from [17] . 

4.2. Damage parameters for the GJS 400-18 ductile iron matrix 

In order to give an example of the applicability of the proposed analytical solution in the context of the simple identifica- 

tion procedure described above, material parameters have been determined on the basis of the uniaxial tensile curve for the 

ferritic matrix of GJS 400-18 (according to EN1563) ductile cast iron reported in [17] . Such material is known to be very duc- 

tile and characterized by values of Young’s modulus and initial yield strength of E = 210 GPa and σ 0 
y = 295 MPa respectively. 

As the curve was provided as true stress vs true strain, conversion to “engineering” quantities has been necessary. 

Minimization of Eq. (51) has been carried out using the standard genetic algorithm available in the Matlab Global Opti- 

mization Toolbox. In a first step, an admissible range for the hardening quantities k and n have been determined by taking 

into account only the increasing part of the uniaxial curve. Then, in a second stage, the damage parameters have also been 

included in the analysis, this time considering the entire dataset. The optimization algorithm has been run setting maximum 

and minimum constraints on S and s according to realistic values for metals and alloys on the basis of the data reported in 

[6] . Moreover, admissible values for the critical plastic strain have been limited to 10%, which is approximately the deforma- 

tion corresponding to the point of initial softening in the uniaxial tensile curve. An additional non-linear constraint which 

ensures that ε tot ( ̃  σlim 

) be greater than the maximum total strain experimentally recorded has also been enforced. 

A summary of the imposed limit constraints together with the calculated values of all material parameters is reported in 

Table 1 . It is worth saying that the computed values are of the same order of magnitude of those tabulated in [6] , except for 

the damage exponent s , which is usually greater than or equal to one. A qualitative comparison between the experimental 

data and the stress–strain curve predicted using the calculated parameters is given in Fig. 4 . 

5. Implicit algorithm for the plane stress case 

In this section, a plane-stress projected version of Lemaitre’s isotropic model is first derived and then discretized using 

the implicit (backward-Euler) method. Furthermore, it is shown that the resulting algebraic system can be reduced to a 

single non-linear equation, similar to what done in [18] for the general 3D case. The notation adopted closely follows that 

employed in [11] for deriving the implicit plane stress projected version of the classical von-Mises plasticity model; in 

particular, boldface capital letters are used for matrices, and boldface lowercase letters for vectors. 

To simplify the derivation, it is convenient to replace the yield function (4) with the equivalent form: 

� = 

σ 2 
e 

( 1 − D ) 
2 

− σ 2 
y ( r ) ≤ 0 , σe = 

[ (
3 

2 

)
s i j s i j 

] 1 
2 

. (55) 
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As a consequence, the flow rule (3) becomes: 

˙ ε p 
i j 

= 

3 s i j 

( 1 − D ) 
2 

˙ λ (56) 

Furthermore, it could be shown that (6) combined with (56) leads to the following relation: 

˙ r = ( 1 − D ) ˙ p = 

˙ λ

[
6 s i j s i j 

( 1 − D ) 
2 

]1 / 2 

. (57) 

By using the last 3 formulas and the definition of the effective stress (24) , the 2D plane-stress projected Lemaitre’s model 

can now be written in terms of the in-plane stress and strain components only as follows: 

ε 

tot = ε 

e + ε 

p , (58) 

˜ σ = D ε 

e , (59) 

� = 

3 

2 

˜ σT P ̃  σ − σ 2 
y ( r ) ≤ 0 , (60) 

˙ ε 

p = 

3 ̇

 λ

1 − D 

P ̃  σ, (61) 

˙ r = ( 1 − D ) ˙ p = 

˙ λ
√ 

6 ̃  σT P ̃  σ, (62) 

˙ D = 

(
Y 

S 

)s 

˙ p i f p > p crit , (63) 

Y = 

1 

2 

˜ σT D 

−1 ˜ σ, (64) 

� ≤ 0 , ˙ λ ≥ 0 , � ˙ λ = 0 , (65) 

where: 

• the effective stress vector ˜ σ and the generic strain vector ɛ are defined as: 

˜ σ = 

1 

1 − D 

[
σ11 σ22 σ12 

]T 
, ε = 

[
ε 11 ε 22 2 ε 12 

]T 
(66) 

• the plane stress isotropic elasticity matrix D and the “deviatoric” matrix P are given by: 

D = 

E 

1 − ν2 

[ 

1 ν 0 

ν 1 0 

0 0 

1 −ν
2 

] 

, P = 

1 

3 

[ 

2 −1 0 

−1 2 0 

0 0 6 

] 

. (67) 

It is worth observing that expression (64) for the energy release rate has been obtained on the basis of its formal defi- 

nition, reported in [6] . Moreover, for deriving Eqs. (60) and (62) the well-known identity s i j s i j = σi j s i j has been used. 

At this point, the system of differential Eqs. (58) –(65) is implicitly discretized, i.e. all differentials are replaced by the 

corresponding finite variation in the pseudo-time step t n → t n +1 and the other variables are evaluated at t n +1 : 

ε 

tot 
n +1 = ε 

e 
n +1 + ε 

p 
n +1 

, (68) 

˜ σn +1 = D ε 

e 
n +1 , (69) 

�n +1 = 

3 

2 

˜ σT 
n +1 P ̃  σn +1 − σ 2 

y ( r n +1 ) ≤ 0 , (70) 

�ε 

p = 

3�λ

1 − D n +1 

P ̃  σn +1 , (71) 

�r = ( 1 − D n +1 ) �p = �λ

√ 

6 ̃  σT 
n +1 

P ̃  σn +1 , (72) 

�D = 

(
Y n +1 

S 

)s 

�p i f p n +1 > p crit , (73) 

Y n +1 = 

1 

2 

˜ σT 
n +1 D 

−1 ˜ σn +1 , (74) 

�n +1 ≤ 0 , �λ ≥ 0 , �n +1 �λ = 0 . (75) 

The solution of the above system of non-linear equations is assumed to be performed according to an elastic predictor 

– return mapping scheme, which allows an efficient handling of the discrete condition (75) . In the present paper, only the 
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return mapping stage ( �λ > 0) with p n +1 > p crit is discussed; the other two cases, elastic predictor ( �λ = 0 ) and return 

mapping ( �λ > 0) with p n +1 < p crit are basically identical to those described in details for the von-Mises plasticity model 

in [11] . In order to be consistent with the framework adopted by the latter authors, the total strain at the new time level, 

which is the main independent variable of the problem, is substituted by the elastic trial strain: 

ε 

e 
trial = ε 

e 
n + �ε 

tot ⇒ ε 

tot 
n +1 = ε 

e 
trial − ε 

e 
n + ε 

tot 
n = ε 

e 
trial + ε 

p 
n . (76) 

The last expression allows recasting (68) in the equivalent form: 

ε 

e 
trial = ε 

e 
n +1 + �ε 

p . (77) 

If the elastic law (69) and the flow rule (71) are inserted into (77) and the expressions for the hardening variable varia- 

tion (72) and energy release rate (74) are used in (70) and (73) , the discretized system for �λ ≥ 0 and p n +1 > p crit reduces 

to the following three algebraic equations: 

D 

−1 ˜ σtrial = D 

−1 ˜ σn +1 + 

3�λ

1 − D n +1 

P ̃  σn +1 , (78) 

�n +1 = 

3 

2 

˜ σT 
n +1 P ̃  σn +1 − σ 2 

y 

(
r n + �λ

√ 

6 ̃  σT 
n +1 

P ̃  σn +1 

)
= 0 , (79) 

D n +1 − D n = 

�λ

1 − D n +1 

(
˜ σT 

n +1 D 

−1 ˜ σn +1 

2 S 

)s √ 

6 ̃  σT 
n +1 

P ̃  σn +1 , (80) 

in the three unknowns ˜ σn +1 , �λ and D n+1 . To simplify things even further, similar to what is done in [13] , the following 

orthogonal transformation Q is introduced: 

Q = Q 

T = Q 

−1 = 

[ 

1 / 
√ 

2 1 / 
√ 

2 0 

1 / 
√ 

2 −1 / 
√ 

2 0 

0 0 1 

] 

, (81) 

and the matrix D 

−1 and P assume the corresponding diagonal form: 

D 

−1 
Q = Q 

T D 

−1 Q = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

1 − ν

E 
0 0 

0 

1 

2 G 

0 

0 0 

1 

G 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, P Q = Q 

T PQ = 

[ 

1 / 3 0 0 

0 1 0 

0 0 2 

] 

. (82) 

Taking advantage of representation (82) which enables easier matrix multiplication and inversion, simple algebraic ma- 

nipulations allow rewriting (78) in the new reference system as: 

˜ σQ , n +1 = F Q ̃  σQ , trial , (83) 

where matrix F Q is given by: 

F Q = 

(
I + 3 ω D Q P Q 

)−1 = 

⎡ 

⎢ ⎣ 

1 − ν

ωE + 1 − ν
0 0 

0 1 / ( 6 ωG + 1 ) 0 

0 0 1 / ( 6 ωG + 1 ) 

⎤ 

⎥ ⎦ 

, (84) 

and the parameter ω has been introduced as: 

ω = 

�λ(
1 − D 

n +1 
) . (85) 

By inserting expression (83) into the scalar Eqs. (79) and (80) the following two relations are obtained: 

�n +1 = 

3 

2 

ξ ( ω ) − σ 2 
y 

(
r n + �λ

√ 

6 ξ ( ω ) 

)
= 0 , (86) 

D n +1 − D n = ω 

(
ψ ( ω ) 

2 S 

)s √ 

6 ξ ( ω ) , (87) 

in which the scalar functions ξ and ψ are given by: 

ξ ( ω ) = ˜ σT 
Q , trial F 

T 
Q P Q F Q ̃  σQ , trial = 

= 

1 

3 

(
1 − ν

ωE + 1 − ν

)2 (
˜ σ11 ,trial 

)2 + 

1 

( 6 ωG + 1 ) 
2 

(
˜ σ22 ,trial 

)2 + 

2 

( 6 ωG + 1 ) 
2 

(
˜ σ12 ,trial 

)2 
, (88) 
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ψ ( ω ) = ˜ σT 
trial F 

T 
Q D 

−1 
Q F Q ̃  σtrial = 

= 

1 

E 

( 1 − ν) 
3 

( ωE + 1 − ν) 
2 

(
˜ σ11 ,trial 

)2 + 

1 

2 G 

1 

( 6 ωG + 1 ) 
2 

(
˜ σ22 ,trial 

)2 + 

1 

G 

1 

( 6 ωG + 1 ) 
2 

(
˜ σ12 ,trial 

)2 
. (89) 

It has to be remarked that the components of the trial effective stress entering the last two formulas are those of the 

transformed vector ˜ σQ , trial = Q ̃  σtrial . 

Finally, by expressing D 

n +1 in terms of �λ and ω from Eq. (85) and inserting the result in (87) one gets after simple 

algebraic manipulations: 

�λ = ω ( 1 − D n ) − ω 

2 

(
ψ ( ω ) 

2 S 

)s √ 

6 ξ ( ω ) , (90) 

which provides the plastic multiplier as a function of the parameter ω only. Then, substitution of (90) into (86) yields: 

�n +1 = 

3 

2 

ξ ( ω ) − σ 2 
y 

(
r n + ω ( 1 − D n ) 

√ 

6 ξ ( ω ) − 6 ω 

2 

(
ψ ( ω ) 

2 S 

)s 

ξ ( ω ) 

)
= 0 . (91) 

The last expression represents fulfillment of the consistency condition at the new pseudo-time step t n +1 and contains the 

parameter ω as only unknown. With its solution at hand, obtained for instance using a simple Newton formula, the other 

variables are trivially updated as follows: 

• calculate �λ from (90) and update damage as D 

n +1 = 1 − �λ/ω; 

• update the hardening variable using r n +1 = r n + �γ
√ 

6 ξ (ω) ; 
• calculate the new effective stress ˜ σQ , n +1 in the diagonal reference system using (83) ; 

• update the new elastic strain in the original reference system as ε e 
n +1 

= QD 

−1 
Q ˜ σQ , n +1 . 

6. Closed-form expression for the consistent tangent modulus 

The consistent tangent modulus represents the derivative of the stress σn +1 delivered by the integration algorithm with 

respect to the externally imposed total strain ε tot 
n +1 

and it plays a crucial role for attaining quadratic rate of asymptotic 

convergence in finite element implementations based on the full Newton–Raphson scheme [19] . In relation to the plane- 

stress projected Lemaitre’s implicit integration procedure presented in the previous section, it is clear in the light of relation 

(76) that the derivative with respect to the total strain is equivalent to the derivative with respect to the trial elastic strain 

ε e 
trial 

, which is in turn related to the derivative with respect to ˜ σtrial via the elasticity matrix D. 

With reference to the diagonal reference system defined by the transformation (81) , the differential of the relation con- 

necting stress and effective stress is given by: 

d σQ , n +1 = ( 1 − D n +1 ) d ̃  σQ , n +1 − ˜ σQ , n +1 d D n +1 . (92) 

In what follows, suitable formulas for both differentials appearing on the right-hand side of the latter expression in terms 

of d ̃  σtrial will be developed. 

Starting out with the differential of the effective stress, straightforward differentiation of (83) reads: 

d ̃  σQ , n +1 = d F Q ̃  σQ , trial + F Q d ̃  σQ , trial . (93) 

By exploiting the property d F Q = −F Q d F −1 
Q 

F Q valid for invertible matrices together with Eq. (84) the following relation is 

promptly obtained: 

d F Q = −3 F Q D Q P Q F Q dω. (94) 

Then, by making use of the last relation and (83) , Eq. (93) may be rewritten as: 

d ̃  σQ , n +1 = F Q d ̃  σQ , trial − 3 F Q D Q P Q ̃  σQ , n +1 dω. (95) 

The differential of the parameter ω can be put in relation with d ̃  σtrial by differentiating the consistency condition (91) . 

Application of the chain rule provides: 

∂ �n +1 

∂ω 

∣∣∣∣
˜ σQ , trial 

d ω + 

∂ �n +1 

∂ ̃  σQ , trial 

∣∣∣∣
ω 

d ̃  σQ , trial = 0 

⇒ 

(
∂ �n +1 

∂ω 

+ 

∂ �n +1 

∂ξ

∂ξ

∂ω 

+ 

∂ �n +1 

∂ψ 

∂ψ 

∂ω 

)
d ω + 

(
∂ �n +1 

∂ξ

∂ξ

∂ ̃  σtrial 

+ 

∂ �n +1 

∂ψ 

∂ψ 

∂ ̃  σtrial 

)
d ̃  σQ , trial = 0 . (96) 

Expressions for the partial derivatives appearing in (54) can be easily computed from (88) and (89) ; they are reported in 

the appendix at the end of the paper. 
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Then, by making use of (96) in Eq. (95) to eliminate d ω, one gets: 

d ̃  σQ , n +1 = 

[ 

F Q + 3 

(
∂ �n +1 

∂ω 

)−1 

F Q D Q P Q ̃  σQ , n +1 ⊗ ∂ �n +1 

∂ ̃  σQ , trial 

] 

d ̃  σQ , trial . (97) 

The focus is now turned to the differential of the damage variable. By inverting (85) and taking its differential, one 

obtains: 

d D 

n +1 = 

�λ

ω 

2 
d ω − d ( �λ) 

ω 

. (98) 

The differential of the plastic multiplier can be found by differentiating expression (90) by means of the usual chain 

rule: 

d ( �λ) = 

∂ ( �λ) 

∂ω 

∣∣∣∣
˜ σQ , trial 

d ω + 

∂ ( �λ) 

∂ ̃  σQ , trial 

∣∣∣∣
ω 

d ̃  σQ , trial = 

= 

(
∂ ( �λ) 

∂ω 

+ 

∂ ( �λ) 

∂ξ

∂ξ

∂ω 

+ 

∂ ( �λ) 

∂ψ 

∂ψ 

∂ω 

)
d ω + 

(
∂ ( �λ) 

∂ξ

∂ξ

∂ ̃  σtrial 

+ 

∂ ( �λ) 

∂ψ 

∂ψ 

∂ ̃  σtrial 

)
d ̃  σQ , trial . (99) 

As before, expressions for the partial derivatives are reported in the appendix. 

By first inserting (99) into (98) and then making use of (96) to express d ω in terms of d ̃  σQ , trial one may find: 

d D 

n +1 = 

1 

ω 

[ (
∂ �n +1 

∂ω 

)−1 (
∂ ( �λ) 

∂ω 

− �λ

ω 

)
∂ �n +1 

∂ ̃  σQ , trial 

− ∂ ( �λ) 

∂ ̃  σQ , trial 

] 

d ̃  σQ , trial . (100) 

Now that the closed-form expressions (97) and (100) have been developed, they may be inserted into Eq. (92) to obtain a 

direct relation between the externally imposed variation in the trial effective stress d ̃  σQ , trial and the corresponding variation 

of the stress d σQ , n +1 delivered by the integration algorithm. If the former is then written using the elastic law as d ̃  σQ , trial = 

D Q dε e 
Q , trial 

and the inverse of the orthogonal transformation (81) is applied, the following relation may be obtained: 

d σn +1 = D 

C dε 

e 
trial , (101) 

where the consistent tangent modulus D 

C turns out to be defined by: 

D 

C = ( 1 − D n +1 ) Q 

[
F Q + 

˜ σQ , n +1 

ω ( 1 − D n +1 ) 
⊗ ∂ ( �λ) 

∂ ̃  σQ , trial 

+ 

(
∂ �n +1 

∂ω 

)−1 (
3 F Q D Q P Q − ω∂ ( �λ) /∂ω − �λ

ω 

2 ( 1 − D n +1 ) 
I 

)
˜ σQ , n +1 ⊗ ∂ �n +1 

∂ ̃  σQ , trial 

] 

D Q Q . (102) 

It is worth mentioning that despite the length of expression (102) , almost all matrix–matrix products appearing have to 

be performed among matrices which are in diagonal form, thus maintaining the computational time at a reasonable level. 

It is also interesting to observe that the consistent tangent modulus is not symmetric, as can be easily checked by substi- 

tuting expressions reported in appendix for ∂( �λ) /∂ ̃  σQ , trial and ∂ �n +1 /∂ ̃  σQ , trial into (102) . Moreover, tedious but straight- 

forward algebraic manipulations may show that when no damage evolution takes place, relation (102) simply reduces to 

the symmetric expression for the consistent tangent modulus reported in [11] for the implicit integration of the plane stress 

projected von Mises plasticity model. 

7. Algorithm verification against 1D analytical solution 

The plane stress projected implicit integration algorithm based on Eq. (91) and the corresponding consistent tangent 

modulus (102) have been implemented in an “in-house” developed finite element code based on a full Newton–Raphson 

scheme. A mesh composed by a single 2D isoparametric 4-node square element has been considered, as shown in Fig. 5 , 

with material parameters taken from the GJS 400-18 ductile cast iron example of Table 1 . Such element has been subjected 

to a uniaxial tensile test by imposing a total strain of 0.3 and the predicted stress compared with the 1D analytical solution 

presented in Section 3 . 

In Fig. 6 the relative accuracy of the numerical solution is plotted as a function of the number of increments used for 

achieving the final strain value, adopting a tolerance on the increment residual of 1 ×10 −5 . In Fig. 7 instead, the number 

of increments is kept fixed at 10 and the number of total Newton–Raphson iterations needed to calculate the solution is 

reported as a function of the increment residual tolerance. It is seen that a great save in terms of iterations is achieved 

by using the consistent tangent modulus (102) compared to the corresponding plane stress projected implicit expression 

reported in [11] , which is valid for the von-Mises plasticity model. 
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Fig. 5. Single 4-node square element subjected to a prescribed total strain of 0.3 in the horizontal direction. 
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Fig. 6. Relative accuracy of the numerical stress solution as a function of the number of increments adopted, for a Newton–Raphson residual tolerance on 

each increment of 1x10 −5 . 
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Fig. 7. Comparison of the number of total Newton–Raphson iterations needed to calculate the numerical solution with and without considering the influ- 

ence of damage on the consistent tangent modulus. 
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8. Conclusions 

By means of a smart choice of the isotropic hardening function, an analytical solution to Lemaitre’s isotropic damage 

model in the form of an infinite expansion has been developed under the special conditions of uniaxial tensile testing. 

For a given value of the effective stress, the first 10 terms of the series already suffice to guarantee an accuracy of 0.3%. 

When the total strain is prescribed instead, the smooth and monotonic behavior of the corresponding implicit function 

guarantees that a very computationally efficient solution is obtainable using the Newton–Raphson method. This makes the 

analytical solution very attractive in the context of all material parameter identification procedures involving fitting of one 

or more experimentally measured uniaxial stress–strain curves, as it eliminates the need of using any numerical solver in 

combination with the optimization algorithm adopted. 

The derived solution has also been used to verify a proposed implicit integration procedure restricted to the plane-stress 

version of Lemaitre’s model. From a computational standpoint, the suggested numerical scheme is particularly advantageous 

as (a) only the relevant in-plane stress and strain components are considered and (b) the discretized system reduces to a 

single non-linear equation. A closed-form expression for the related consistent tangent modulus has also been provided, 

which is extremely valuable for increasing the convergence rate. This has been demonstrated for the simple 1D test case, 

where a substantial reduction in the number of required iterations is obtained when the effect of damage evolution on 

the global stiffness is taken into consideration, especially if high accuracy is needed. In summary, the proposed numerical 

scheme allows both a reduction in the computational complexity associated with the single iterations, as well as a decrease 

in their total number. As a final remark, it is worth mentioning that in absence of damage propagation, the entire numerical 

framework simply reduces to the implicit integration procedure for the plane-stress projected von Mises model reported in 

literature. 

Appendix 

Closed-from expressions for the partial derivatives appearing in Eqs. (96) and (99) : 

∂ �n +1 

∂ω 

= −2 σy H 

[
( 1 − D 

n ) 
√ 

6 ξ − 12 ωξ
ψ 

s 

( 2 S ) 
s 

]
, (A.1) 

∂ �n +1 

∂ξ
= 

3 

2 

− 2 σy H 

[ 

3 ω √ 

6 ξ
( 1 − D 

n ) − 6 ω 

2 ψ 

s 

( 2 S ) 
s 

] 

, (A.2) 

∂ �n +1 

∂ψ 

= 2 σy H 

[
6 ω 

2 ξ s 
ψ 

s −1 

( 2 S ) 
s 

]
, (A.3) 

∂ ( �λ) 

∂ω 

= (1 − D 

n ) − 2 ω 

√ 

6 ξ

(
ψ 

2 S 

)s 

, (A.4) 

∂ ( �λ) 

∂ξ
= − 3 ω 

2 √ 

6 ξ

(
ψ 

2 S 

)s 

, 
∂ ( �λ) 

∂ψ 

= −ω 

2 
√ 

6 ξ s 
ψ 

s −1 

( 2 S ) 
s , (A.5) 

∂ξ

∂ω 

= −3 ̃  σT 
Q , n +1 P Q F Q D Q P Q ̃  σQ , n +1 , 

∂ψ 

∂ω 

= −3 ̃  σT 
Q ,n +1 D 

−1 
Q F Q D Q P Q ̃  σQ , n +1 , (A.6) 

∂ξ

∂ ̃  σtrial 

= ˜ σT 
Q , n +1 P Q F Q , 

∂ψ 

∂ ̃  σtrial 

= ˜ σT 
Q , n +1 D 

−1 
Q F Q . (A.7) 
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a b s t r a c t 

A comprehensive description of the mechanical behavior of nodules in ductile iron is still 

missing in the published literature. Nevertheless, experimental evidence exists for the im- 

portance of such graphite particles during macroscopic material deformation, especially 

under compressive loading. In the present paper, the nodules’ elastic properties are thor- 

oughly investigated by means of both analytical and numerical techniques. The analysis 

takes into account the influence of several non-linear phenomena, as local residual stresses 

arising during solid-state cooling, interface debonding and limited particle strength. It is 

shown that if the nodule internal structure is considered, the traditional isotropy assump- 

tion leads to the definition of a domain of admissible values for the effective elastic con- 

stants. However, micromechanical calculations indicate that values within the domain do 

not provide mesoscopic moduli in agreement with Young’s modulus and Poisson’s ratio 

recorded for common ferritic ductile iron grades. This suggests that graphite nodules may 

not be considered isotropic at the microscopic scale, at least from a mechanical viewpoint. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Since its commercial introduction in 1948, ductile cast 

iron, also known as spheroidal graphite iron (SGI), has 

constantly found new fields of application, ranging from 

the automotive sector to the wind power industry. Nowa- 

days, 25% of the castings produced worldwide are made of 

SGI ( 47th Census of World Casting Production, 2013 ). The 

main reason behind this enormous success is the unique 

combination of castability, high ductility and strength such 

material can offer, along with lower prices compared to 

traditional low carbon steels ( Ductile Iron Society, 2013 ). 

Examples of typical modern SGI castings are small and 

medium sized heavily loaded parts with high demands for 

∗ Corresponding author. Tel.: +4545254722. 

E-mail addresses: titoan@mek.dtu.dk (T. Andriollo), jhat@mek.dtu.dk 

(J. Hattel). 

consistent quality for the automotive industry and very 

large industrial components with extreme demands for 

mechanical properties, particularly fatigue strength and 

fracture toughness ( Tiedje, 2010 ). 

From a metallurgical viewpoint, SGI is a ternary Fe-C-Si 

alloy whose properties to a large extent are controlled by 

chemical composition, cooling rate and heat treatment. The 

final microstructure may be naturally considered as com- 

posite ( Grimvall, 1997 ), consisting of graphite nodules em- 

bedded in a continuous matrix which, in most engineering 

applications, may be either ferritic, pearlitic or a mixture of 

the two ( American Foundrymen’s Society, 1992 ). Extensive 

experimental investigations carried out in the last 60 years 

have provided qualitative knowledge of the effects of the 

most important microstructural parameters on the overall 

mechanical properties of SGI ( Labrecque and Gagne, 1998 ). 

Nevertheless, a comprehensive quantitative description has 

always been challenged by the intrinsic material complex- 

ity, and much work remains to be done to cast light on 

http://dx.doi.org/10.1016/j.mechmat.2016.02.007 

0167-6636/© 2016 Elsevier Ltd. All rights reserved. 
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Nomenclature 

E ij volume average of total strain tensor 

�ij volume average of the stress tensor 

ε tot 
i j 

, ε e 
i j 
, ε p 

i j 
total, elastic, plastic strain tensor 

σ ij stress tensor 

s ij deviatoric part of the stress tensor 

δij Kronecker delta 

σ e equivalent Von Mises stress 

σy , σ 0 
y Actual, initial yield stress 

E Young’s modulus 

ν Poisson’s ratio 

K bulk modulus 

G shear modulus 

R v triaxiality function 

f yield function 

D Damage variable 

S , s Lemaitre’s damage evolution parame- 

ters 

Y energy release rate 

k , n isotropic hardening parameters 

p equivalent Von Mises plastic strain 

p crit critical effective plastic strain for dam- 

age evolution 

r hardening variable 

α thermal expansion coefficient 

λ plastic multiplier 

the microscopic features which determine the mechanical 

constitutive behavior of SGI at the macroscopic scale. 

In particular, the role of the individual graphite nodules 

is not fully understood yet. Probably, the main reason is 

that the only quantitative information available regarding 

their mechanical properties comes from nano-indentation 

tests performed according to the Oliver–Pharr method 

( Oliver and Pharr, 1992 ), which have provided values for 

the nodules Young’s modulus in the range 15–28 GPa 

( Dierickx et al., 1996; Pradhan et al., 2009; Fernandino et 

al., 2015 ). The validity of such measurements is in any case 

disputable as (1) a priori values for Poisson’s ratio must 

be assumed and (2) graphite nodules are not isotropic at 

all at the nanoscale ( Miao et al., 1990; Miao et al., 1994 ), 

meaning that the concept of indentation Young’s modulus 

loses its significance. 

Often, in micromechanical analyses graphite nodules 

are simply regarded as voids in consideration of the above- 

mentioned presumed negligible stiffness and the weak 

bonding with the surrounding matrix. It must be empha- 

sized that this last assumption is controversial too, as it is 

usually based on microscopy observations of early interface 

debonding for nodules sitting on the surface of tensile test 

specimens ( Dong et al., 1997 ). As correctly pointed out in 

( Liu et al., 2002 ), the stress state around nodules located 

in the bulk is likely to be different, due to the material in- 

homogeneity, therefore it seems not possible to conclude 

that interface debonding always occurs, independently of 

the real local loading conditions. 

Table 1 

Micromechanical modeling of the SGI elastic response: assumed values 

for the nodules’ isotropic elastic moduli. 

Year Authors E g (GPa) νg 

1980 Speich et al. (1980 ) 8.5 0.29 

1992 Era et al. (1992 ) 303 Not specified 

1997 Boccaccini (1997 ) 8.5 0.2 

1998 Pundale et al. (1998 ) 0 (void) 0 (void) 

2002 Cooper et al. (2002 ) 8.5 0.2 

2003 Gaudig et al. (2003 ) 4.17 0.2225 

2004 Sjögren and Svensson (2004 ) ∗ Not available 

2005 Bonora and Ruggiero (2005 ) 300-375 Not specified 

2005 Collini and Nicoletto (2005 ) 15 0.3 

2006 Nicoletto et al. (2006 ) 15 0.3 

2014 Carazo et al. (2014 ) ∗ 0.2225 

2015 Fernandino et al. (2015 ) 15 0.28 

∗ E g = 0.173 ·Nodularity + 18.9 → 36.2 GPa for 100% nodularity. 

As a matter of fact, there are clear indications pointing 

towards the mechanical importance of graphite nodules in 

SGI: 

• First of all, low-cycle fatigue behavior with R = −1 is 

better reproduced by numerical models where nodules 

are treated as rigid spheres instead of voids ( Rabold and 

Kuna, 2005 ). At the same time, it has been proved that 

fatigue crack propagation cannot be modeled within 

the classical linear elastic fracture mechanics frame- 

work ( Berdin et al., 2001 ); this might be related to the 

fact that, according to the imposed stress intensity fac- 

tor, different competing damage mechanisms are active 

in the matrix and / or in the nodules ( Di Cocco et al., 

2013 ). 
• Secondly, tensile stress-strain curves for SGI are never 

linear, even at very low stress levels, due to immediate 

onset of plasticity ( Sjögren and Svensson, 2005; Ko- 

hout, 2001 ). This can hardly be justified with a simple 

“voided matrix” model, as finite element calculations 

for the stress concentration factor corresponding to 

cavities of the shapes typical of real nodules have 

provided the maximum value of 5.39 ( Dorazil, 1991 ). 
• Thirdly, tensile and compression tests of SGI samples 

conducted at different temperatures (up to 800 °C) have 

highlighted large differences in the deformed nodule 

shapes ( Hervas et al., 2013 ): if the graphite stiffness and 

strength were negligible compared to the matrix in the 

entire range of temperatures considered, the nodules 

should always deform in the same manner. 

In light of these facts, it is clear that a thorough and 

complete understanding of the SGI mechanical behavior 

can only be achieved if accurate information on the nod- 

ules constitutive properties is available. This requirement is 

particularly important if non-linear phenomena like plas- 

tic deformation and fatigue are to be investigated, or the 

residual stresses arising during the manufacturing process 

are to be calculated. As previously mentioned, however, 

very little has been published in the literature concern- 

ing this issue, and even the basic elastic properties of the 

nodules are far from being firmly established. This uncer- 

tainty may be better appreciated by looking at Tables 1 

and 2 , which report the nodules’ isotropic elastic constants 
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Table 2 

Micromechanical modeling of the SGI elasto-plastic response: as- 

sumed nodules’ mechanical behavior. 

Year Authors Nodules considered as: 

1996 Kuna and Sun (1996 ) Voids 

1996 Brocks et al. (1996 ) Voids / rigid spheres 

1998 Steglich and Brocks (1998 ) Voids / rigid spheres 

1999 Zhang et al. (1999 ) Voids 

2005 Bonora and Ruggiero (2005 ) Isotropic linear elastic, 

E g = 300–375 GPa 

2011 Kosteski et al. (2011 ) Isotropic linear elastic, 

E g = 15 GPa, νg = 0.3 

assumed by researchers while modeling the microme- 

chanical behavior of SGI in the elastic and elasto-plastic 

regime respectively. It may be seen that adopted values 

for Young’s modulus span the range 4–375 GPa, with the 

“voids” and “rigid spheres” assumptions as lower and up- 

per bounds. Certainly, more accuracy is needed if models 

capable of predicting the SGI mechanical performance are 

to be devised. 

In this context, the present work aims at determining 

an effective elastic constitutive description of the graphite 

nodules based on physical grounds, which may be subse- 

quently used for further investigations on the SGI mechan- 

ical properties. The analysis is carried out using both ana- 

lytical and numerical micromechanical techniques and it is 

conceptually divided into two main parts. In the first one, a 

few assumptions regarding the nodules’ internal structure 

and behavior are introduced, and it is shown that they lead 

to the definition of a domain of admissible values for the 

elastic moduli. In the second part, an inverse analysis is 

carried out to single out values within the admissible do- 

main which allow matching the macroscopic Young’s mod- 

ulus and Poisson’s ratio of a standard ferritic SGI grade. To 

make the inverse analysis more realistic, the influence of 

several factors, as interface debonding, plasticity and duc- 

tile damage in the matrix induced by residual stresses, as 

well as inelastic deformation of the nodules, is critically as- 

sessed by means of a 3D periodic unit cell model. 

2. Materials 

The object of the present analysis is the ferritic ductile 

iron GJS-400-15 according to the European Standard EN 

1563, corresponding to the GGG-40 grade for the DIN 1693 

Standard ( Iron-foundry.com, n.d. ). The reason for making a 

precise material selection is that Young’s modulus varia- 

tions of 5–10 GPa may be found among the different SGI 

grades available on the market. As the internal structure of 

the embedded graphite particles is the same, it is usually 

assumed that this spread in the elastic properties is pri- 

marily associated with a different volume fraction of the 

nodules, as well as with a different com position of the 

metallic matrix. 

The GJS-400-15 is here considered as a 2-phase com- 

posite material constituted by spherical graphite particles 

regularly dispersed in a homogeneous ferritic matrix, with 

a volumetric graphite concentration of 12% ( Steglich and 

Brocks, 1998 ); the constitutive behavior of each constituent 

is discussed in detail in the following. 

2.1. Graphite nodules 

In agreement with what implicitly done by the authors 

listed in Table 1 , two fundamental assumptions are made 

regarding the graphite nodules: 

1. they can be considered as mechanically isotropic; 

2. their behavior can be described by a linear elastic 

model. 

These assumptions have significant consequences. First 

of all, they imply the nodules’ mechanical response to be 

completely determined in terms of two elastic constants, 

usually Young’s modulus and Poisson’s ratio. In addition, 

they have important implications on the description of the 

local stress and strain field in and around the nodules, e.g. 

the stress state in a nodule subjected to hydrostatic pres- 

sure is uniform, etc. 

Furthermore, a third assumption, physically justified by 

TEM and micro-diffraction investigations of the nodules’ 

internal structure ( Miao et al., 1990 , 1994 ), is introduced: 

3. the basic nodule building blocks are graphite 

platelets with hexagonal structure. 

It follows from assumption 1 that such building blocks, 

which are strongly anisotropic, must then be arranged in 

a “statistically homogeneous” way throughout each nodule 

to provide overall isotropic elastic properties. This observa- 

tion is crucial for the development of the present analysis, 

as it allows establishing a domain of physically admissible 

values for the nodules’ effective elastic moduli. The proce- 

dure is described in detail in Section 3.1 . 

As a concluding remark, it is worth saying that in the 

calculation of residual stresses arising during solid state 

cooling, the nodules’ mechanical properties are assumed to 

be unaffected by temperature variations up to 750 °C and 

the thermal expansion coefficient is set to a constant value 

of 2.5 ×10 −6 °C 

−1 ( Bonora and Ruggiero, 2005 ). 

2.2. Ferritic matrix 

Ferrite is a metallic phase characterized by high duc- 

tility and moderate yield strength, especially in the vicin- 

ity of nodules due to migration of carbon atoms to the 

graphitic phase. Therefore, it seems appropriate to de- 

scribe its constitutive response on the basis of Lemaitre’s 

isotropic damage model ( Lemaitre, 1985 ) with isotropic 

hardening, whose equations in Cartesian components are 

summarized as follows: 

• additive strain decomposition: 

ε tot 
i j = ε e i j + ε p 

i j 
+ δi j α	T (1) 

• elastic constitutive law: 

σi j 

1 − D 

= 

E 

1 + ν

[ 
ε e i j + 

ν

1 − 2 ν
δi j ε 

e 
kk 

] 
(2) 

• flow rule: 

˙ ε p 
i j 

= 

3 s i j 

2 σe 

˙ λ

1 − D 

(3) 
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Table 3 

Material properties for ferritic matrix (after ( Bonora and Ruggiero, 2005 )). 

Temperature ( °C) Young’s modulus (GPa) Thermal exp. coefficient (x10 −5 °C −1 ) Initial yield stress (MPa) 

25 210 .0 1.25 297 

250 153 .8 1.50 194 

500 102 .5 1.60 137 

750 41 .4 – 96 

900 20 .0 – 70 

10 0 0 0 .1 2.40 60 

Table 4 

Plastic flow and damage evolution parameters for ferritic matrix. 

Plastic flow factor k (MPa) Plastic flow exponent n Damage factor S (MPa) Damage exponent s Critical eff. plastic strain p crit (mm/mm) 

818.0 0.245 0.357 0.167 5.33 ×10 −3 

• yield function: 

f = 

σe 

1 − D 

− σy ( r ) ≤ 0 , σe = 

(
3 

2 

s i j s i j 

)1 / 2 

(4) 

• isotropic hardening rule: 

σy = k ( r + r 0 ) 
n 
, r 0 = 

(
σ 0 

y 

k 

)1 /n 

(5) 

• effective plastic strain increment and hardening param- 

eter increment: 

˙ p = 

˙ r 

1 − D 

, ˙ r = 

˙ λ (6) 

• damage evolution law: 

˙ D = 

(
Y 

S 

)s 

˙ p , i f p > p crit (7) 

• energy release rate: 

Y = 

σ 2 
e R v 

2 E ( 1 − D ) 
2 
, R v = 

2 

3 

( 1 + ν) + 3 ( 1 − 2 ν) 

(
σkk 

3 σe 

)2 

(8) 

• consistency condition: 

f ≤ 0 , ˙ λ ≥ 0 , f ̇ λ = 0 (9) 

It may be noticed that 9 material parameters are re- 

quired: 3 thermo-elastic ( E, ν , α), 3 related to plastic flow 

( σ 0 
y , k, n ) and finally 3 related to damage ( p crit , S, s ). In 

principle, an additional parameter specifying the condi- 

tions at which crack nucleation occurs would be necessary: 

however, in the present investigations damage never ex- 

ceeds 0.1, which is well below the critical fracture initia- 

tion threshold for common metals and alloys. 

In Table 3 values for ferrite Young’s modulus, thermal 

expansion coefficient and initial yield stress are reported 

over a wide range of temperatures, whereas Poisson’s ra- 

tio is assumed to be constant and equal to 0.3. The ini- 

tial yield strength at room temperature deserves a special 

comment, as it is considerably lower than that reported in 

( Baer et al., 1996 ) for a “manufactured” ferritic matrix, ob- 

tained by alloying mild steel Mk3Al with FeSi75 using fu- 

sion metallurgy. It has to be remarked, however, that the 

main conclusions of the present analysis are to a large ex- 

tent unaffected by the specific choice of the initial yield 

stress value, and more in general of the other plastic and 

damage parameters. 

The remaining five material quantities to be entered 

Lemaitre’s model have been identified following a two-step 

procedure. Initially, an analytical solution to Eqs. (1) –( 9 ) 

for uniaxial tensile loading has been calculated ( Andriollo 

et al., 2016 ); it turns out that the relation between effec- 

tive stress ˜ σ = σ/ ( 1 − D ) and t otal strain ɛ tot may be ex- 

pressed as: 

ε tot ( ̃  σ ) = ε̄ tot + 

˜ σ − σ̄

E 
+ 2 B 

+ ∞ ∑ 

m =0 

( −1 ) 
m 

2 m + 1 

(
β
m 

)

×
[ (

1 − ˜ σα+1 

˜ σα+1 
lim 

)m +1 / 2 

−
(

1 − σ̄ α+1 

˜ σα+1 
lim 

)m +1 / 2 
] 

(10) 

where ε̄ tot and σ̄ represent the critical total strain and 

stress at which damage evolution starts ( p = p crit ) and the 

other quantities are defined as: 

B = − z 

α + 1 

( ̃  σlim 

) 
α−4 s +1 

2 , β = 

−2 s 

a + 1 

z = 

1 

nk 
1 
n 

(
α + 1 

2 A 

)1 / 2 

, ˜ σlim 

= 

(
α + 1 

2 A 

+ σα+1 
)1 / ( α+1 ) 

A = 

(
nk 

1 
n ( 2 ES ) 

s 
)−1 

, a = 2 s + 

1 

n 

− 1 

(11) 

Then, by means of an inverse analysis performed us- 

ing MATLAB, the best set of parameters has been selected 

according to a least square fitting of the experimental 

stress-strain curve at room temperature for ferrite given 

in ( Zhang et al., 1999 ). Calculated values are reported in 

Table 4 . As no information is available for the post-yielding 

behavior of the ferritic matrix at higher temperatures, plas- 

tic flow and damage evolution parameters are assumed to 

be constant, except for the temperature dependence of the 

initial yield stress previously mentioned. Time-dependent 

deformation mechanisms are also neglected. 

3. Methods and theory 

As already stated in the introduction, the aim of the 

present analysis is to determine values for the nodules’ 

effective isotropic elastic moduli which on the one hand 
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Table 5 

Elastic constants of a single graphite 

platelet. Entries are in GPa. 

C11 C44 C12 C13 C33 

1060 0.18 180 15 36.5 

are admissible with respect to the physical assumptions 

of Section 2.1 and on the other hand allow matching the 

macroscopic Young’s modulus and Poisson’s ratio for GJS- 

400-15. 

3.1. Bounds on the effective elastic constants of polycrystals 

with hexagonal symmetry 

According to the discussion on the statistical order of 

polycrystalline material reported in ( Wawra et al., 1982 ), 

assuming that nodules are statistically homogeneous and 

isotropic polycrystalline aggregates consisting of many sin- 

gle anisotropic graphite crystals, then 1st order upper and 

lower bounds on the effective isotropic elastic constants 

can be derived, corresponding to Voigt and Reuss bounds. 

Moreover, if the distribution of the local elastic moduli is 

not correlated with the crystal shape and size (for instance, 

it is excluded that, on average, lengthy platelets are stiffer 

in one direction than compact platelets), then tighter 2nd 

order bounds can be established, corresponding to Hashin–

Shtrikman bounds. Finally, if no particular crystal shape 

and size is distinguishable, implying that many platelet 

shapes and sizes exist in an irregular composition, even 

tighter 3rd order bounds can be derived. 

Explicit analytical expressions for the 1st, 2nd and 3rd 

order bounds in the case of crystals with hexagonal sym- 

metry are quite lengthy and may be found in ( Grimvall, 

1997; Watt and Peselnick, 1980; Kroner, 1977 ), respectively. 

By using the former in combination with the anisotropic 

elastic constants of a single graphite crystal, bounds on the 

effective isotropic bulk and shear modulus of the polycrys- 

talline aggregate may be determined. Values calculated in 

this way by Grimvall (1997 ) and Wawra et al. (1982 ) are 

reported in Table 6 . It is worth noticing that the input val- 

ues adopted by these authors, given in Table 5 , are quite 

outdated. Nevertheless, calculations made by the present 

authors using more recent data ( Savini et al., 2011 ) have 

shown only negligible variations in the results. 

Bounds expressed in terms of bulk modulus K and shear 

modulus G can be converted to bounds on Young’s modu- 

lus E and Poisson’s ratio ν by means of the relations: 

E = 

9 KG 

3 K + G 

, ν = 

3 K − 2 G 

2 ( 3 K + G ) 
(12) 

together with their inverse formulas: 

K = 

E 

3 ( 1 − 2 ν) 
, G = 

E 

2 ( 1 + ν) 
(13) 

It may be easily checked from the first of Eq. (12) that 

the maximum (minimum) value of E is achieved when 

both K and G are at their maximum (minimum). Bounds 

defined in this way are denoted by E u and E l respectively. 

Then, for each value of E in such interval, Eq. (13) may be 

Table 6 

Bounds on the effective elastic moduli of a graphite polycrystalline 

aggregate. Entries are in GPa. 

Bound order Bulk modulus Shear modulus 

lower upper lower upper 

1st ( Grimvall, 1997 ) 35.76 286.28 0.45 217.84 

2nd ( Grimvall, 1997 ) 36.20 204.20 0.80 146.20 

3rd ( Wawra et al., 1982 ) 36.56 163.48 1.41 111.35 

employed to rewrite the constraints in terms of E and ν: 

K 

l < 

E 

3 ( 1 − 2 ν) 
< K 

u 

G 

l < 

E 

2 ( 1 + ν) 
< G 

u (14) 

where the superscripts “u” and “l” denote the bound type. 

Finally, after simple algebraic manipulations, the following 

expressions are obtained: 

E l < E < E u (15) 

max 

{ 

1 

2 

(
1 − E 

3 K 

l 

)
, 

E 

2 G 

u 
− 1 

} 

= ν l < ν < νu 

= min 

{ 

1 

2 

(
1 − E 

3 K 

u 

)
, 

E 

2 G 

l 
− 1 

} 

(16) 

The last two relations, complemented by the data of 

Table 6 , allow determining three different domains of ad- 

missible values for the effective Young’s modulus and Pois- 

son’s ratio, according to the statistical order assumed (1st, 

2nd or 3rd) for the distribution of the graphite platelets 

within the single nodules. 

3.2. Mesoscopic elastic constants of a 2-phase composite 

This section presents the micromechanical techniques 

used to construct bounds and estimates for the overall re- 

sponse of GJS-400-15 considered as a composite material, 

given the properties of the single constituents. 

3.2.1. Analytical bounds and estimates 

Analytical results in relatively simple form are only 

available under the assumption of isotropic linear elastic 

behavior of both the nodules and the matrix and perfect 

interface bonding. 

First order upper and lower bounds on the equivalent 

mesoscopic elastic moduli of the composite material are 

given by: 

K 

u 
c = c K n + (1 − c) K m 

; G 

u 
c = c G n + (1 − c) G m 

;
1 

K 

l 
c 

= 

c 

K n 
+ 

1 − c 

K m 

; 1 

G 

l 
c 

= 

c 

G n 
+ 

1 − c 

G m 

(17) 

where the subscripts “c”, “n” and “m” refer to composite, 

nodules and matrix respectively and c denotes the graphite 

nodules’ volume fraction. Relations ( 17 ) require as input 

the effective isotropic elastic moduli of the nodules, which 

are only known within the domains defined by the bounds 

discussed in the previous section. Nevertheless, by using 

expressions ( 13 ), it is possible to demonstrate that for a 
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prescribed value of the nodules’ effective Young’s modulus 

E n lying in the interval ( 15 ), the maximum upper bounds 

and minimum lower bounds obtained by varying the nod- 

ule Poisson’s ratio νn within the range ( 16 ) are given by: 

K 

u,max 
c = 

c E n 

3 ( 1 − 2 νu 
n ) 

+ ( 1 − c ) K m 

;

G 

u,max 
c = 

c E n 

2 

(
1 + ν l 

n 

) + ( 1 − c ) G m 

;

1 

K 

l,min 
c 

= 

3 c 
(
1 − 2 ν l 

n 

)
E n 

+ 

1 − c 

K m 

;

1 

G 

l,min 
c 

= 

2 c ( 1 + νu 
n ) 

E n 
+ 

1 − c 

G m 

(18) 

Conversion to maximum upper bounds and minimum 

lower bounds in terms of Young’s modulus and Poisson’s 

ratio may then be easily performed on the basis of rela- 

tions ( 12 ). 

Often, second order Hashin–Shtrikman bounds are also 

employed in this kind of analyses. Unfortunately, they can- 

not be used here as they are strictly valid only if K n > K m 

and G n > G m 

( Hashin and Shtrikman, 1963 ), which is not 

always the case in the present investigations. 
As the word says, bounds indicate the intervals where 

the composite equivalent mesoscopic moduli must lie. 
However, if there is a large difference in the elastic prop- 
erties of the two constituents, the bounds may fall quite 
apart, becoming of little practical interest. In such a sit- 
uation, it is important to have tools providing reason- 
able estimates (i.e. approximated unique values) for the 
mesoscopic moduli. A very widespread class of analyti- 
cal estimates comprises the well-known “dilute methods”, 
which work satisfactorily when the secondary phase vol- 
ume fraction is limited to a few percent. For the problem 

at hand, however, the nodules’ concentration is as high as 
12%. Therefore, the Mori–Tanaka approach ( Aboudi et al., 
2012 ) is here preferred, which for spherical particles yields 
the following estimates for the mesoscopic bulk and shear 
moduli: 

K c = K m + 

c ( K n − K m ) 

1 + ( 1 − c ) ( K n –K m ) / ( K m + 4 G m / 3 ) 

G c = G m + 

15 c ( G n − G m ) ( 1 − νm ) 

( 7 − 5 νm ) + ( 8 − 10 νm ) G n / G m − 2 c ( 4 − 5 νm ) ( G n / G m − 1 ) 

(19) 

Similarly to first order bounds, conversion to estimates 

in terms of Young’s modulus and Poisson’s ratio may be 

easily achieved by means of relations ( 12 ). 

3.2.2. Numerical 3D unit cell predictions 

In order to overcome the limitations affecting the ana- 

lytical methods presented in the previous section and tak- 

ing non-linearities into consideration, a numerical 3D pe- 

riodic unit cell model is introduced. The GJS-400-15 mi- 

crostructure is therefore schematized as a periodic cubic 

cell with a single central spherical nodule, as shown in 

Fig. 1 . The ratio between nodule diameter and cell side 

is set to 0.61, hence satisfying the graphite volume frac- 

tion requirement. Due to geometrical considerations, only 

1/8 of the unit cell is analyzed, as Fig. 2 shows. Symmetry 

boundary conditions are applied on the three faces of the 

cube intersecting the nodule, whereas periodic boundary 

Fig. 1. Micromechanical 3D periodic unit cell representing the mi- 

crostructure of GJS-400-15. 

Fig. 2. Geometry and mesh used in the numerical simulations. 

conditions are imposed on the other faces according to the 

procedure described in ( Drago and Pindera, 2007 ), in order 

to fulfill continuity of displacements and surface tractions 

with the surrounding microstructure. 

With the aim of investigating the effects of a weak 

nodule-matrix bonding on the unit cell mechanical re- 

sponse, the phase boundary is modeled as a friction- 

less contact interface with no tensile strength in the 

normal direction, as suggested in ( Bonora and Ruggiero, 

20 05; Collini and Nicoletto, 20 05 ). Moreover, local resid- 

ual stresses arising due to the thermal expansion coeffi- 

cient mismatch between graphite and ferrite during manu- 

facturing are accounted for by applying a preliminary uni- 

form cooling to the entire volume, from an initial stress- 

free temperature T i down to 20 °C. 

The composite mesoscopic moduli are calculated from 

simulations of “uniaxial” tensile tests along the x-axis on 

the basis of the following formulas: 

E c = lim 

E 11 → 0 

(
∂ �11 

∂ E 11 

)
, νc = lim 

E 11 → 0 

(
−E 22 

E 11 

)
(20) 
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Fig. 3. Admissible domains for the nodules’ effective isotropic elastic 

moduli. 

where �11 , E 11 and E 22 denote normal components of the 

mesoscopic stress and strain tensors, given by the average 

over the unit cell volume V of the corresponding micro- 

scopic quantities: 

�11 = 

1 

V 

∫ 
V 

σ11 d V, E 11 = 

1 

V 

∫ 
V 

ε 11 d V, 

E 22 = 

1 

V 

∫ 
V 

ε 22 dV (21) 

In plain words, the limits appearing in expressions ( 20 ) 

simply indicate that it is the very initial slope of the uni- 

axial stress-strain curve which should be considered in the 

determination of the unit cell moduli. For practical im- 

plementation purposes, though, the secant modulus at a 

mesoscopic strain of 0.01% is used instead. 

Finite element calculations are performed with the 

commercial software ABAQUS. The mesh adopted, visible 

in Fig. 2 , is constituted by approximately 15,0 0 0 hexa- 

hedral 2nd order elements with reduced integration. A 

small-strain formulation in combination with a non-linear 

numerical solution procedure based on the full Newton–

Raphson scheme is chosen, and the contact condition at 

the matrix-nodule interface is enforced via the augmented- 

Lagrange method. Integration of the Lemaitre’s damage 

equations at the local level in the ferritic matrix is ac- 

complished by a user-defined material subroutine, accord- 

ing to the implicit scheme proposed in ( de Souza Neto, 

2002 ), where a suitable expression for the consistent tan- 

gent modulus is also reported. 

4. Results and discussion 

4.1. Admissible domain for the nodules’ elastic constants 

The three different domains for the nodules’ effective 

isotropic elastic moduli, which are admissible according 

to the three different levels of statistical order for the 

graphite platelets discussed in Section 3.1 , are shown in 

Fig. 3 . Not surprisingly, it is seen that an increase in the 

homogeneity requirement leads to a contraction of the 

corresponding admissible domain. At first glance, this is 

particularly evident for the maximum admissible value 

of the effective Young’s modulus, which drops from the 

value of 521.3 GPa obtained by applying 1 st order bounds 

to 272.2 GPa for 3rd order bounds; conversely, the min- 

imum value increases from 1.3 GPa to 4.2 GPa. It is also 

interesting to observe that within each domain, interme- 

diate Young’s modulus values are characterized by a very 

large variation in Poisson’s ratio, which may actually be- 

come negative. In principle, this possibility should not 

be excluded a priori, both theoretically and physically, as 

there is experimental evidence of polycrystalline materials 

whose cross-section expands when stretched under uniax- 

ial tension ( Lakes, 1993 ). Furthermore, it is known that py- 

rolytic graphite, which may be considered as transversely 

isotropic, shows negative Poisson’s ratio in the isotropy 

plane ( Bert, 1969 ). 

From a practical viewpoint, an important conclusion 

may be drawn on the basis of the present results. As 

thoroughly discussed in Section 2.1 , the isotropy assump- 

tion on the nodules’ mechanical behavior holds only if 

the graphite platelets are arranged in a statistically homo- 

geneous way throughout the nodules themselves. Conse- 

quently, their effective moduli must lie at least within the 

1st order domain indicated in Fig. 3 , henceforth simply de- 

noted as admissible domain. This conclusion stems directly 

from the physical structure associated with the graphite 

nodules. It is worth remarking that most of the authors 

listed in Tables 1 and 2 have assumed values for Young’s 

modulus and Poisson’s ratio in the range 4–36 GPa and 

0.2–0.3 respectively, which are outside the admissible do- 

main. The reason for this discrepancy will be discussed in 

the remaining sections, where the implications of adopt- 

ing nodules’ effective moduli within the admissible domain 

are analyzed with respect to the effects they have on the 

mesoscopic elastic constants of GJS-400-15. 

4.2. Perfect bonding assumption 

Initially, the influence of nodules’ effective moduli ly- 

ing within the admissible domain is assessed by assuming 

linear elastic behavior of both material constituents and 

perfect interface bonding. In this way, the mechanical re- 

sponse of the composite GJS-400-15 may be studied using 

the analytical relations presented in Section 3.2.1 . 

Figs. 4 and 5 present the influence of the nodules’ ad- 

missible moduli on the mesoscopic Young’s modulus and 

Poisson’s ratio respectively. It may be seen that several 

contours are plotted in addition to the reference litera- 

ture values ( American Foundrymen’s Society, 1992; “Mat- 

base: the free and independent online materials proper- 

ties resource,” 2015 ), which are quite standard for the SGI 

material at hand. The first contour indicates the exten- 

sion of the 1st order Voigt-Reuss bounds: for each value 

of E n , when νn is varied within the corresponding ad- 

missible range ( 16 ), the elastic response of GJS-400-15 is 

bounded by the green area. The second and third con- 

tours, instead, represent estimates produced by the analyt- 

ical Mori-Tanaka approach and the numerical 3D unit cell 

model. 
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Fig. 4. Analytical bounds and estimates for the mesoscopic Young’s mod- 

ulus, compared to the numerical results from the 3D periodic unit cell. 

Fig. 5. Analytical bounds and estimates for the mesoscopic Poisson’s ra- 

tio, compared to the numerical results from the 3D periodic unit cell. 

As preliminary observation, it is seen that both ana- 

lytical and numerical estimates are fully contained in the 

Voigt–Reuss bounds, indicating a good level of consistency 

of the former. The bounds tend to be very distant from 

each other at low E n values, whereas they are quite close 

when E n lies approximately in the interval 10 0–20 0 GPa. 

This is sensible, as it is well-known that the smaller the 

difference in the elastic properties of the composite con- 

stituents, the narrower the bounds. It is also worth notic- 

ing the very good agreement between analytical and nu- 

merical estimates, especially regarding predictions of the 

mesoscopic Poisson’s ratio. This confirms the applicability 

of periodic unit cell models to the study of the mechanical 

response of composite materials. 

By looking at Fig. 4 , it may be concluded that val- 

ues for the nodules’ effective Young’s modulus above ap- 

proximately 100 GPa must be rejected, as the horizon- 

tal band indicating experimental measurements lies well 

outside the Voigt–Reuss bounds in that range. Conversely, 

with focus on the data of Fig. 5 , no values can be excluded 

Fig. 6. 3D unit cell predictions of the mesoscopic Young’s modulus as a 

function of the nodules’ effective Poisson’s ratio, for selected values of the 

nodules’ effective Young’s modulus. The black arrows indicate the exten- 

sion of the admissible range. 

on the basis of the same principle, because the reference 

Poisson’s ratio always falls in between the bounds. Nev- 

ertheless, analytical and numerical estimates clearly indi- 

cate that the experimental value of GJS-400-15 can only be 

matched by assuming E n to be above 100 GPa. Therefore, 

there is an evident contradiction between values which al- 

low matching the mesoscopic Young’s modulus and those 

which are necessary for matching the mesoscopic Poisson’s 

ratio. However, it should be kept in mind that three criti- 

cal aspects, like interface debonding, matrix plastification 

induced by residual stresses and inelastic deformation of 

the nodules are not considered here at all. 

Before leaving this section, an important comment has 

to be made regarding the method used for the determi- 

nation of the contours associated with the 3D unit cell 

predictions. In principle, for every admissible choice of E n , 

many finite element simulations should be performed to 

cover all possible values of νn within the range ( 16 ). How- 

ever, in order to keep the overall number of simulations at 

a reasonable level, only the two end-points of the interval 

are tested, i.e. νn = ν l 
n and νn = νu 

n . Obviously, this method 

works as long as the mesoscopic moduli vary monotoni- 

cally with νn . Unfortunately, this is not always true. For 

instance, Fig. 6 shows that by increasing E n progressively 

from 50 to 150 GPa, the dependence of the mesoscopic 

Young’s modulus on νn in the admissible range changes 

from monotonically increasing to monotonically decreas- 

ing. This explains the intersection visible in Fig. 4 between 

the upper and lower limits of the numerical contour. On 

the contrary, the mesoscopic Poisson’s ratio always varies 

monotonically with νn , as shown in Fig. 7 , and in fact 

no intersection is present in Fig. 5 . Nevertheless, it must 

be said that this phenomenon affects the present analyses 

only to a little extent. Indeed, simulations run using inter- 

mediate values of νn have shown that in almost all cases 

the obtained mesoscopic moduli lie within the range cal- 

culated using the extreme values ν l 
n and νu 

n , and when this 

does not occur, the deviation is always small. 



146 T. Andriollo, J. Hattel / Mechanics of Materials 96 (2016) 138–150 

Fig. 7. 3D unit cell predictions of the mesoscopic Poisson’s ratio as a 

function of the nodules’ effective Poisson’s ratio, for selected values of 

the nodules’ effective Young’s modulus. 

Fig. 8. 3D unit cell predictions of the mesoscopic Young’s modulus in 

tension and compression. A frictionless nodule-matrix contact interface 

is assumed. 

4.3. Effect of frictionless contact interface 

Numerical estimates for the mesoscopic moduli of GJS- 

400-15 assuming a frictionless contact interface between 

the nodule and the matrix are reported in Figs. 8 and 

9 . As before, results have been obtained by varying the 

nodules’ effective moduli within the admissible domain 

depicted in Fig. 3 . The contact interface has two main 

consequences: it may open up, generating a non-linear 

effect, and it prevents transmission of shear stresses across 

the boundary. Both factors contribute to the reduction in 

the overall mesoscopic stiffness of the unit cell. However, 

while the second one plays the same role either in tension 

or in compression, contact opening occurs in tension 

only. This causes a strong dependence of the mesoscopic 

moduli on the loading condition type, which does not find 

confirmation in experimental findings ( American Foundry- 

men’s Society, 1992; Gilbert, 1964 ). In addition, although 

all investigations on nodule debonding mentioned in the 

introduction have detected early occurrence of the phe- 

nomenon, this was not recorded immediately. A retarded 

Fig. 9. 3D unit cell predictions of the mesoscopic Poisson’s ratio in ten- 

sion and compression. A frictionless nodule-matrix contact interface is 

assumed. 

debonding mechanism may be physically justified by 

either some tensile interface strength or by the presence 

of residual stresses, induced by the lower thermal expan- 

sion coefficient of the nodules compared to that of the 

matrix. More precisely, the latter situation is expected to 

generate radial compressive stresses in the nodules during 

solid state cooling, hence delaying the debonding process 

upon subsequent loading. If elastic residual stresses are 

accounted for in the simulation by applying a prelimi- 

nary uniform temperature decrease, it is found that the 

contours corresponding to tensile loading in Figs. 8 and 9 

move upwards and overlap perfectly those calculated in 

compression. Unfortunately, even if the different tension- 

compression behavior is removed, a major problem 

remains: the predicted values for the mesoscopic moduli 

are overestimated, in terms of both Young’s modulus and 

Poisson’s ratio, and never match experimental findings. 

4.4. Effect of local residual stresses 

In this section, the effects of local microscopic resid- 

ual stresses arising during solid state cooling are investi- 

gated for three different choices of the initial stress-free 

temperature T i : 250, 500 and 750 °C. Higher temperatures 

are not considered for two reasons: time-dependent de- 

formation mechanisms would become non-negligible and 

the eutectoid transformation would come into play, mak- 

ing the analysis much more complicated. 

From a micromechanical viewpoint, the main conse- 

quence of introducing the initial cooling stage in the anal- 

ysis is the formation of compressive radial stresses in 

the nodules and tensile tangential stresses in the matrix. 

Not surprisingly, their magnitude turns out to be propor- 

tional to three factors: the thermal expansion coefficient 

mismatch, the stiffness of both the nodules and the ma- 

trix, and the initial cooling temperature. Over the differ- 

ent simulations, only the choice of the initial tempera- 

ture and the elastic properties of the nodules are varied. 

As intuition suggests, the spherical nodules are subjected 

to almost pure hydrostatic compression during cooling, 

meaning that the most important parameter controlling 
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Fig. 10. 3D unit cell predictions of the mesoscopic moduli in tension and compression considering the influence of local residual stresses. a, b, c: predicted 

Young’s modulus using T i equal to 250, 500 and 750 °C, respectively. d, e, f: predicted Poisson’s ratio using T i equal to 250, 500 and 750 °C, respectively. 

thermal deformation is their bulk modulus K n . From the 

first of relations ( 13 ), it is seen that K n increases mono- 

tonically with Young’s modulus and Poisson’s ratio; as a 

consequence, higher residual stresses are expected when 

either E n , νn or T i are increased. Clearly, if the stresses in 

the matrix become so large that the yield point is eventu- 

ally reached, plasticity and ductile damage take place, ac- 

cording to Lemaitre’s model described in Section 2.2 . 

Numerical predictions of the mesoscopic moduli tak- 

ing local residual stresses into consideration are shown 

in Fig. 10 . By increasing the initial cooling temperature, 

three main effects are recorded, all originating from the 
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progressive matrix plastification. First of all, the meso- 

scopic Young’s modulus decreases, as the matrix becomes 

“softer”, and, at the same time, the mesoscopic Poisson’s 

ratio increases, due to plastic incompressibility. In addition, 

the influence of the effective Poisson’s ratio νn becomes 

more pronounced, due to its direct impact on the com- 

pressibility of the nodules during the preliminary cooling 

stage. Finally, a different behavior in tension and compres- 

sion becomes visible, due to the strong non-linearity of the 

underlying deformation mechanisms. In this respect, it is 

also worth saying that the contact condition does not have 

a major impact, as early interface separation upon uniax- 

ial loading is always prevented by the presence of residual 

stresses. 

From a comparison of the obtained numerical results 

with the reference data for GJS-400-15, it may be noticed 

that the predicted mesoscopic Young’s modulus can ac- 

tually match experimental values if initial cooling from 

a temperature of approximately 500 °C is accounted for 

in the simulations. However, for any choice of the initial 

stress-free temperature, the estimated mesoscopic Pois- 

son’s ratio is always above the reference data, indepen- 

dently of the selected admissible values for the nodules’ 

effective moduli. This is particularly evident for compres- 

sive loading. Moreover, as already stated in the previous 

section, there is no experimental support for the observed 

dependence of the mesoscopic constants on the loading 

condition type. 

4.5. Advanced constitutive models for the nodules 

The results presented so far suggest that, despite 

adopted by a large number of authors, the isotropic lin- 

ear elastic assumption is likely inadequate to represent 

the behavior of the nodules at the microstructural scale. 

Therefore, more advanced constitutive models are proba- 

bly needed, capable of considering the influence of inelas- 

tic deformation and/or anisotropy. 

Modeling the inelastic behavior of the graphite nodules 

is a very challenging task, mainly for the absolute absence 

of reliable experimental data concerning their non-linear 

mechanical response. In the present investigations, how- 

ever, an attempt has been made, assuming a linear elastic- 

perfectly plastic behavior according to the J2-flow theory 

of plasticity, in order to set, in the simplest possible way, 

a maximum load carrying capacity for the nodules. As a 

consequence, all the simulations presented in the previous 

sections have been performed a second time, varying the 

nodule yield strength in the interval 25–100 MPa, which 

corresponds to the range of tensile strengths recorded for 

bulky reactor graphite ( Taylor et al., 1967 ). However, it 

has been noticed that significant deviations in the results 

are not visible, except at very high values of the nodules’ 

effective moduli. As explained in detail in ( Andriollo et 

al., 2015b , a ), the reason is that during the cooling stage 

the stress field developing in the nodules is mainly hy- 

drostatic. Therefore, no yielding can occur according to 

the J2-flow theory of plasticity. During subsequent load- 

ing, deviatoric stress components build up, but they are 

not sufficient to cause appreciable amount of yielding, 

at least within the small deformation range investigated. 

Nevertheless, it must be kept in mind that there are no 

solid grounds to sustain that the J2-flow theory really re- 

flects the physical behavior of the graphite nodules. This 

means that other inelastic formulations, perhaps allowing 

the possibility of having brittle fracture, might be more 

suitable. 

Conversely, including a certain degree of anisotropy and 

inhomogeneity in the nodules, at the same time retaining 

the linear elastic structure of the constitutive equations, 

seems a more viable option. Dryden and Purdy (1989 ) pro- 

posed a radial symmetry model where the 5 elastic con- 

stants were directly taken from those characteristic of the 

graphite hexagonal unit cell. However, according to their 

findings, the SGI grade considered in the present work 

should have a Young’s modulus of 190 GPa, which is 20 

GPa larger than the experimental value. More recently, 

Di Cocco et al. (2015 ) assumed the nodules to be con- 

stituted by two isotropic concentric layers separated by 

a frictionless contact interface, both having Young’s mod- 

ulus and Poisson’s ratio of 80 GPa and 0.3, respectively. 

Unfortunately, they did not perform any homogenization 

procedures to check the resulting elastic properties at the 

macroscale. A more detailed analysis of all advanced mod- 

els for the nodules devised so far, along with some im- 

provements proposed by the current authors, will be the 

subject of a future paper. 

5. Conclusions 

In the present work, an admissible domain for the 

effective Young’s modulus and Poisson’s ratio of the 

graphite particles in SGI has been determined by means of 

homogenization theory for polycrystalline materials. The 

result has been achieved on the basis of the nodules’ real 

internal structure, composed of highly anisotropic graphite 

platelets, and by assuming an overall equivalent isotropic 

linear elastic behavior. Using both analytical and numerical 

micromechanical techniques, the implications of adopting 

nodules’ effective moduli within such admissible domain 

have been investigated in relation to the mesoscopic elas- 

tic constants of GJS-400-15. However, it has been found 

that the predicted mesoscopic parameters never match 

the reference experimental values, no matter the choice 

of the admissible nodules’ effective moduli. Furthermore, 

this important conclusion still holds when the influence of 

three relevant phenomena is taken into account: weak in- 

terface bonding, local microscopic residual stresses arising 

during solid state cooling and inelastic deformation of the 

nodules. 

The reason for the present findings is probably that 

nodules cannot be assumed isotropic at a microscopic 

scale, at least from a micromechanical viewpoint. In 

other words, they cannot be considered as constituted 

of graphite platelets which are arranged in a statistically 

homogeneous way throughout the individual secondary- 

phase particles. This means that a satisfactory elastic con- 

stitutive description should take into consideration the in- 

trinsic inhomogeneity and anisotropy of the nodules as 

well. It has to be remarked that it might still be possible to 

find values for the effective nodules’ Young’s modulus and 

Poisson’s ratio which allow a good matching with the SGI 
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response recorded during uniaxial testing. In the end, this 

is what many of the authors listed in Table 1 have done. 

However, it is difficult to justify such isotropic parameters 

on the basis of physical grounds and, in addition, there is 

no guarantee that they will work for different loading con- 

ditions. Moreover, even if they provide good results at the 

mesoscopic level, the description they offer in terms of mi- 

croscopic stress & strain fields in and around the nodules 

is quite disputable. This element has to be kept in mind es- 

pecially if fatigue crack nucleation and propagation in SGI 

is to be analyzed. 
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This paper presents a micro-mechanical approach to model the intrinsic elastic anisotropy of the graphite 

particles in ductile iron. Contrary to most of the published works in the field, the constitutive behav- 

ior is directly derived on the basis of the nodule characteristic internal structure, composed of graphite 

platelets arranged into conical sectors. In this way, the large uncertainty traditionally associated with lo- 

cal mechanical measurements of micro-hardness is eliminated. The proposed anisotropic description is 

validated by simulating the macroscopic ductile iron elastic response by means of a 3D periodic unit cell 

model. In this respect, an explicit procedure to enforce both periodic displacement and periodic traction 

boundary conditions in ABAQUS is presented, and the importance of fulfilling the traction continuity con- 

ditions at the unit cell boundaries is discussed. It is shown that localized inelastic deformation is likely 

to develop for loading conditions which can still be considered as elastic at the macroscopic scale. The 

presence of a weak interface between the graphite and the matrix is also investigated, and it is found to 

affect the results to a limited extent only. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Among the multitude of high-performance metallic materials 

available today, ductile cast iron, also known as spheroidal graphite 

iron (SGI), is probably one of the very few boasting a positive 

growth rate on the market since its commercial introduction in 

1948 ( Ductile Iron Society, 2013 ). According to recent estimates, 

as many as 25% of the castings produced worldwide are made of 

SGI ( 47th Census of World Casting Production , 2013 ) and represent 

mainly small and medium sized heavily loaded parts with high de- 

mands for consistent quality for the automotive sector and very 

large industrial components with extreme demands for mechani- 

cal properties, particularly fatigue strength and fracture toughness 

( Tiedje, 2010 ). 

From a metallurgical perspective, SGI may be classified as a 

ternary Fe-C-Si alloy ( Labrecque and Gagne, 1998 ) whose proper- 

ties to a large extent are controlled by chemical composition, cool- 

ing rate and heat treatment. The final microstructure may be nat- 
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(J. Thorborg), jhat@mek.dtu.dk (J. Hattel). 

urally considered as composite ( Grimvall, 1997 and Sjögren and 

Svensson, 2004 ), consisting of graphite nodules embedded in a 

continuous matrix which, in most engineering applications, may be 

either ferritic, pearlitic or a mixture of the two. 

Due to its high technological importance, a number of papers 

have addressed the problem of modeling the mechanical behavior 

of SGI, particularly ductile fracture and fatigue. Nevertheless, the 

intrinsic material complexity has always posed severe challenges, 

and as recently pointed out by ( Hütter et al., 2015 ) in a review 

article, much work is still needed to bridge the gap between mi- 

crostructural features and global properties. Particularly, according 

to the former authors, a deeper understanding of the mechanical 

response of the single constituents at the micro scale is highly nec- 

essary. 

Concerning this point, an important element, which has prob- 

ably received much less consideration than necessary in the past, 

is the mechanical nature of the graphite particles. Several numeri- 

cal investigations on the non-linear behavior of SGI during tensile 

testing published in the late ‘90 s (( Kuna and Sun, 1996 ; Brocks 

et al., 1996 and Zhang et al., 1999 ) among others) were based on 

the concept of a voided material model, meaning that the nodules 

were simply neglected in the analyses. This was motivated by their 

presumed “soft” nature and the early debonding from the matrix, 

http://dx.doi.org/10.1016/j.ijsolstr.2016.09.023 
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Fig. 1. Schematic of the two different approaches used to model the mechanical behavior of the graphite nodules. 

often observed experimentally ( Dong et al., 1997 ). It is quite clear, 

however, that this assumption may be reasonable at high values 

of the triaxiality ratio, but it cannot be justified under pure shear 

or in situations where the hydrostatic part of the stress tensor be- 

comes negative. Several experimental facts point in this direction, 

as discussed in detail in ( Andriollo et al., 2015a,b ). Perhaps, the 

most striking evidence of this is that 1) at temperatures close to 

the eutectoid transformation, the nodules remain undeformed un- 

der heavy compressive deformation of SGI samples ( Hervas et al., 

2013 ) and 2) the low-cycle fatigue behavior with negative stress 

ratio is better reproduced by numerical models where nodules are 

treated as rigid spheres instead of voids ( Rabold and Kuna, 2005 ). 

Hence, as loading scenarios for real SGI components usually in- 

volve complex combinations of tensile and compressive stresses 

( Shirani and Härkegård, 2011 ), the simplistic voided material as- 

sumption is likely inadequate. 

On the other hand, including the graphite particles in the anal- 

ysis is not trivial, primarily because of the lack of reliable data 

concerning their mechanical properties. The vast majority of au- 

thors who have tried to model the nodules’ behavior have followed 

the phenomenological approach summarized in Fig. 1 , assuming an 

isotropic linear elastic response. Unfortunately, the procedure suf- 

fers from two important shortcomings. 

First of all, it is very hard, if not impossible, to perform a di- 

rect identification of the required material parameters. In fact, the 

only easy way to experimentally characterize the nodules is via 

nano-indentation ( Oliver and Pharr, 1992 ). The method however, 

is quite disputable, as it relies on an exact isotropic elastic solu- 

tion ( Harding and Sneddon, 1945 ) whereas graphite is notoriously 

highly anisotropic at the local scale. Moreover, it was argued by 

( Bonora and Ruggiero, 2005 ) that the sharp indenter usually em- 

ployed could simply separate the graphite layers without creating 

any elastic deformation at all. In light of these considerations, pa- 

rameters identification based on indirect measurements, e.g. test- 

ing the stiffness of SGI at the macroscopic level, is sometimes pre- 

ferred. In both cases, however, the phenomenological approach has 

proved to lead to large uncertainties, as confirmed by Table 1 , 

which reports the nodules’ isotropic elastic constants assumed by 

several researchers over the last 30 years. 

The second important drawback is that the isotropy assump- 

tion cannot be justified using elastic bound theory analysis. In a 

recent work, ( Andriollo and Hattel, 2016 ) determined an admis- 

sible domain for the Young’s modulus and Poisson’s ratio of the 

graphite particles by means of homogenization theory for polycrys- 

talline materials. Using both analytical and numerical microme- 

chanical techniques, the implications of adopting nodules’ moduli 

within such admissible domain were investigated in relation to the 

effective elastic constants of a common grade of ductile iron. It was 

found that the predicted effective parameters never match the ref- 

erence experimental values, no matter the choice of the admissible 

nodules’ moduli. Furthermore, this important conclusion still holds 

when the influence of factors like weak interface bonding between 

the matrix and the graphite and local residual stresses arising dur- 

ing manufacturing is taken into account. 

The limitations of the phenomenological approach discussed 

so far motivate the adoption of different strategies to model the 

nodules. As shown in Fig. 1 , another possibility is to use a mi- 

cromechanical approach, where the nodules’ properties are ob- 

tained directly on the basis of their real internal structure. As pre- 

viously mentioned, the latter is composed of graphite platelets ar- 

ranged in a characteristic radial fashion ( Theuwissen et al., 2012 ). 

As the moduli of the graphite hexagonal unit cell are known, the 

elastic response of the entire nodule can in principle be calcu- 

lated without the need of any inverse analyses. To the authors’ 

best knowledge, the only systematic work along this line was car- 

ried out by ( Dryden and Purdy, 1989 ); in their analysis, how- 

ever, a quite rough approximation of the platelets arrangement was 

made in order to solve the problem analytically, which was later 

found to generate unrealistic values for the macroscopic SGI elastic 

properties. 

The aim of the present work is to extend the findings of the 

abovementioned authors by considering a more realistic descrip- 

tion of the nodules’ internal structure according to the most re- 

cent TEM investigations. More specifically, the observed subdivi- 

sion of the graphite particles into conical sectors is taken into ac- 

count. Validation of the proposed model is performed by calculat- 

ing the effective elastic properties of a periodic SGI unit cell con- 

taining a single graphite nodule and comparing them with those 

of a well-known ferritic ductile iron grade. Due to the complexity 

of the underlying 3D geometry, the commercial software ABAQUS 

is used for the purpose. Within this context, a thorough discussion 

regarding the implementation of suitable boundary conditions is 

given, motivating the importance of prescribing both periodic dis- 

placements and tractions along the cell boundaries. 
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Table 1 

Micromechanical modeling of the SGI elastic response: assumed values for the nodules’ isotropic 

elastic moduli. 

Year Authors Young’s modulus (GPa) Poisson’s ratio 

1980 ( Speich et al., 1980 ) 8 .5 0 .29 

1992 ( Era et al., 1992 ) 303 Not specified 

1997 ( Boccaccini, 1997 ) 8 .5 0 .2 

1998 ( Pundale et al., 1998 ) 0 (void) 0 (void) 

2002 ( Cooper et al., 2002 ) 8 .5 0 .2 

2003 ( Gaudig et al., 2003 ) 4 .17 0 .2225 

2004 ( Sjögren and Svensson, 2004 ) ∗ 0 .2 

2005 ( Bonora and Ruggiero, 2005 ) 300–375 Not specified 

2005 ( Collini and Nicoletto, 2005 ) 15 0 .3 

2006 ( Nicoletto et al., 2006 ) 15 0 .3 

2014 ( Carazo et al., 2014 ) ∗ 0 .2225 

2015 (T. Andriollo et al., 2015a, b ) 0–20 0 .15 

2015 ( Fernandino et al., 2015 ) 15 0 .28 

∗ E g = 0.173 • Nodularity + 18.9 → 36.2 GPa for 100% nodularity. 

1
2

3

Fig. 2. Graphite platelet hexagonal unit cell. 

Table 2 

Elastic constants of a single graphite platelet. Entries 

are in GPa. ( Savini et al., 2011 ). 

C11 C44 C12 C13 C33 

1107 4 .4 175 −2 .5 29 

2. Micro-scale material models 

2.1. Basic nodule structure according to TEM investigations 

The characteristic spherical shape of the graphite particles in 

ductile cast iron is normally obtained by adding Mg and, in some 

cases, rare earth elements such as Ce and La to the base liquid 

metal, which combine with S and O to produce a melt of high pu- 

rity. Formation of graphite nodules according to the stable Fe-C-Si 

phase diagram during subsequent solidification is achieved via ad- 

dition of proper inoculants ( Tiedje, 2010 ). 

It seems to be well established now ( Miao et al., 1990 and 

Theuwissen et al., 2012 ) that the basic building blocks forming the 

nodules in the solidified material are graphite platelets consisting 

of graphene layers piled up without any crystallographic defects. 

These structural units have thicknesses in the sub-micrometer 

range and appear to be elongated along the graphene planes. From 

a continuum point of view, they can be described on the basis of 

the hexagonal unit cell reported in Fig. 2 ( Sjogren, 2007 ), where 

the 3-direction is orthogonal to the graphene layers. The elastic 

properties of such hexagonal symmetry may be fully defined in 

terms of 5 independent constants ( Tromans, 2011 ), which are re- 

ported in Table 2 . It can be noticed that the stiffness in the basal 

plane, expressed by C11, is extremely high, above 1 TPa, whereas 

that along the orthogonal direction, associated with C33, is more 

than one order of magnitude smaller. 

The single graphite platelets are arranged into conical sectors, 

which radiate from the nodule center to the outer periphery as 

visible in Fig. 3 (a). Within a sector, the platelets are stacked on 

each other, with the 3-direction constant and oriented approxi- 

mately radially, as schematically shown in Fig. 3 (b). Nevertheless, 

the stacking is not perfect, and rotations about the 3-axis occur 

on an almost regular basis, defining domains of similar orientation 

( Theuwissen et al., 2014 ). 

2.2. Graphite nodule micromechanical models 

2.2.1. Geometry 

Assuming the nodule to have spherical shape, a natural prob- 

lem is its subdivision into conical sectors of similar size. Moreover, 

their overall number must not exceed a few tens, according to the 

experimental data provided by the authors listed in the previous 

section. The simplest way to perform this task is to use orthog- 

onal planes passing through the center of the sphere: this leads 

to the “Type6” and “Type8” nodule models visible in Fig. 4 , where 

the name indicates the number of sectors generated. Models with 

more partitions may be obtained by subdividing each conical sec- 

tor of “Type8” in a qualitatively symmetric fashion, hence creat- 

ing nodules with 32, 48 and 80 sectors respectively. Except for 

“Type6”, the basic features of each different model may be ex- 

pressed in terms of parameters of the related spherical triangles, 

which are defined as the elements of the spherical surface iden- 

tified by a given sector. This information is provided in Table 3 , 

where the distortion index is defined as: 

DI = 

∣∣l 1 − l̄ 
∣∣ + 

∣∣l 2 − l̄ 
∣∣ + 

∣∣l 3 − l̄ 
∣∣

3 ̄l 
, l̄ = 

l 1 + l 2 + l 3 
3 

(1) 

l i , i = 1,2,3 being the spherical triangle side lengths. It may be seen 

that DI is almost always close to zero, indicating a good level of 

symmetry of the underlying partitioning; furthermore, no large 

size differences exist among conical sectors of the same model 

type, in agreement with experimental observations. 

2.2.2. Elastic properties 

On the basis of the real nodule internal structure, each conical 

sector is assigned anisotropic elastic properties according to Table 

2 . The 3-direction is defined as the direction connecting the center 

of the nodule to the centroid of the related spherical triangle. As a 

body exhibiting hexagonal symmetry is transversely isotropic with 

respect to the basal plane (i.e. the graphene layers in this case), 

the other two material directions can be set arbitrarily without af- 

fecting the analysis. 

In order to facilitate the comparison with ( Dryden and Purdy, 

1989 ) findings, an additional model is introduced, where the 
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Fig. 3. (a) Optical micrograph (polarized light) of a graphite spheroid in cast iron showing sectors. Reprinted from ( Theuwissen et al., 2012 ) with permission of Springer. (b) 

2D schematic of the division of a nodule into sectors and orientation of the graphite platelets therein. 

Type6 Type8 Type32 Type48 Type80

Fig. 4. Micromechanical models of a single spherical graphite nodule, with increasing number of conical sectors. 

Table 3 

Parameters of the spherical triangles related to the different nodule models. 

Nodule model Triangle subtype Number Angles (degrees) Area / radius 2 Average side length / radius Distortion index (%) 

Type8 a 8 90 .00 90 .00 90 .00 1 .571 1 .571 0 .00 

Type32 a 24 90 .00 54 .74 54 .74 0 .340 0 .873 13 .33 

b 8 70 .53 70 .53 70 .53 0 .551 1 .047 0 .00 

Type48 a 48 90 .00 45 .00 60 .00 0 .262 0 .873 13 .33 

Type80 a 48 45 .00 54 .74 90 .00 0 .170 0 .641 14 .96 

b 24 70 .53 58 .52 58 .52 0 .132 0 .544 5 .07 

c 8 62 .96 62 .96 62 .96 0 .155 0 .586 0 .00 

3-direction is prescribed parallel to the radius pointwise through- 

out the nodule. The resulting spherically anisotropic model is de- 

noted as “TypeInf”, as it is essentially equivalent to assuming an 

infinite number of conical sectors. 

2.3. Periodic unit cell for SGI 

As pointed out in the introduction, it is generally not possible to 

validate micromechanical models for the nodules against measure- 

ments performed directly on the same graphite particles. There- 

fore, the only way to test the quality of the proposed model is to 

simulate the mechanical response of the overall “composite” SGI 

at the macroscale and compare the results with experimentally ac- 

cessible quantities. 

Today, homogenization methods extensively rely on the concept 

of representative volume element ( Geers et al., 2010 ), which is in- 

tuitively defined as the minimum material element whose behav- 

ior is equivalent to that of a homogeneous fictitious material. De- 

spite the recent application of this approach to SGI ( Carazo et al., 

2014 ), the main disadvantage for the case at hand is that a large 

number of nodules with complex internal geometry should be dis- 

cretized at the same time, making any 3D computation cumber- 

some. In addition, replacement of the nodules with equivalent ho- 

mogeneous isotropic particles to speed up the process is not ad- 

missible in the context of the present analysis, for the reasons dis- 

cussed in ( Andriollo and Hattel, 2016 ). 

As a consequence, a periodic approach is adopted here, assum- 

ing the SGI microstructure to be periodic and generated by the 

spatial repetition of the cubic unit cell depicted in Fig. 5 . The rel- 

ative size of the single nodule is adjusted to give the 11.5% vol- 

umetric graphite concentration typical of GJS-400-15 ductile iron 

( Steglich and Brocks, 1998 ), which is taken as reference material 

throughout the analysis. The surrounding ferritic matrix is consid- 

ered as isotropic linear elastic, with Young’s modulus and Poisson’s 

ratio equal to 205 GPa and 0.29 respectively. For later comparison, 
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Fig. 5. Micromechanical periodic unit cell representing the microstructure of SGI. 

it is useful mentioning here that these values correspond to a bulk 

modulus of 162.7 GPa and to a shear modulus of 79.5 GPa. 

3. Homogenization technique 

3.1. Periodic boundary conditions 

Considering any two equivalent points x and x + d lying on op- 

posite faces of the unit cell and separated by the characteristic pe- 

riodic length d , boundary conditions can be applied as ( Drago and 

Pindera, 2007 ): 

u ( x + d ) = u ( x ) + ε̄ · d 

t ( x + d ) = −t ( x ) 
(2) 

where u and t denote displacement and surface traction. The 2nd 

order tensor ε̄ represents the average of the infinitesimal strain 

over the entire volume, and it is normally an externally imposed 

quantity. Application of the periodic conditions ( 2 ) is sufficient to 

guarantee continuity of the displacements and of the surface trac- 

tions across adjacent unit cells. 

3.2. Averaging relations 

A linear elastic relation between volume averages of the stress 

and strain fields over the unit cell is sought in the form: 

σ̄ = C̄ : ε̄ (3) 

where C̄ is the 4th order effective stiffness tensor. Its independent 

components are determined by prescribing in sequence six inde- 

pendent loadings in the form ε̄ (1) , . . . , ε̄ (6) according to Eq. (2) , and 

recording the resulting average stresses σ̄ (1) , . . . , σ̄ (6) . The result- 

ing linear system of equations can then be solved for the effective 

elastic constants. 

The calculated effective stiffness tensor can be decomposed into 

an isotropic and an anisotropic part as follows: 

C̄ = C̄ 

iso + C̄ 

ani (4) 

The former can be further written as: 

C̄ 

iso = 3 ̄k S + 2 ̄μD (5) 

where S and D are the spherical and deviatoric projection tensors 

( Itskov, 2007 ) , which form an orthogonal basis for isotropic 4th 

order tensors. The quantities k̄ and μ̄ represent the effective bulk 

and shear modulus respectively and may be calculated as: 

k̄ = 

1 

3 

〈
C̄ | S 〉
〈 S | S 〉 , μ̄ = 

1 

2 

〈
C̄ | D 

〉
〈 D | D 〉 (6) 

where 〈· | ·〉 indicates the scalar product between 4th order ten- 

sors. Conversion to effective Young’s modulus and Poisson’s ratio 

is performed via the basic relations: 

Ē = 

9 ̄k ̄μ

3 ̄k + μ̄
, ν̄ = 

3 ̄k − 2 ̄μ

2 

(
3 ̄k + μ̄

) (7) 

Finally, an anisotropy index may be obtained as ( Fernandino 

et al., 2015 ): 

I a = 

( 〈
C̄ − C̄ 

iso | ̄C − C̄ 

iso 
〉〈

C̄ | ̄C 

〉
) 1 / 2 

(8) 

The latter quantity provides an indication of the material degree 

of anisotropy and will be used in Section 5.4 to discuss the validity 

of the periodic unit cell assumption in the context of modeling the 

SGI behavior. 

4. Numerical implementation 

4.1. Setting up periodic boundary conditions in ABAQUS 

In order to gain insight into the meaning of the periodic con- 

ditions ( 2 ), it is useful to write down the finite element system 

of equations for the entire unit cell, within the framework of 

small strain linear elasticity. For convenience, a symmetric mesh 

is assumed. All external boundary degrees of freedom (dofs) are 

grouped into the ordered vectors u 

+ 
b 

and u 

−
b 

, such that the generic 

i-elements of such two vectors correspond to equivalent nodes ly- 

ing on opposite faces of the unit cell, separated by the character- 

istic distance d . The remaining internal dofs are denoted by the 

vector u i . Under these assumptions, the finite element system of 

equations takes the form: ⎡ 

⎣ 

K ii K 

+ 
ib 

K 

−
ib 

K 

+ 
bi 

K 

++ 
bb 

K 

+ −
bb 

K 

−
bi 

K 

−+ 
bb 

K 

−−
bb 

⎤ 

⎦ ·

⎧ ⎨ 

⎩ 

u i 

u 

+ 
b 

u 

−
b 

⎫ ⎬ 

⎭ 

= −

⎧ ⎨ 

⎩ 

0 

f + 
b 

f −
b 

⎫ ⎬ 

⎭ 

(9) 

where the K elements represent submatrices of the global stiffness 

matrix and f + 
b 

and f −
b 

denote the external nodal forces, which are 

initially unknown. The system ( 9 ) is complemented by the periodic 

boundary conditions ( 2 ), which promptly yield the following two 

additional sets of equations: {
u 

+ 
b 

}
= 

{
u 

−
b 

}
+ [ ̄ε ] · { d } {

f + 
b 

}
= −

{
f −

b 

} (10) 

and if the stiffness matrix is non-singular, a unique solution may 

be found. 

The natural method to impose linear constraints of the form 

( 10 ) in ABAQUS is to use the “Linear constraint equations” com- 

mand ( Dassault Systèmes Simulia Corp., 2013a ), which allows en- 

forcing scalar linear relation among dofs of the type: 

a 1 u 1 + a 2 u 2 + . . . + a k u k = 0 (11) 

where u j , j = 1: k are generic displacement dofs and a j , j = 1: k are 

real coefficients. Nevertheless, this approach has two limitations: 

1. the first dof appearing in an equation is always eliminated and 

cannot be used in subsequent relations; 

2. equations can only be formulated in terms of displacement 

dofs, hence imposition of ( 10 b) does not appear as trivial. 

Recently, ( Qi et al., 2015 ) have discussed the simplified ABAQUS 

implementation of only the displacement part of the periodic 

boundary conditions, claiming that ( 10 a) alone was sufficient to 

obtain the desired periodic solution. However, as will be shown 

later in this work, this cannot ensure continuity of the surface trac- 

tions across adjacent unit cells. 
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ABAQUS
Generate periodic unit cell model including:
- 3 reference points, whose displ. components 

correspond to: 1) average normal strains, 2) 
average shear strains 3) rigid body translation 

- fixed displ. BCs at the reference points
- boundary node and element sets
Generate and export stiffness matrix limited to 
boundary elements 

PYTHON SCRIPT-1
Find one-to-one correspondence between nodes 
located on opposite faces of the unit cell
Assemble constraints in matrix format:
- impose periodic displacements
- impose periodic tractions
Re-order the constraint matrix columns: boundary 
dofs first, then remaining internal dofs, finally dofs of 
reference points    
Reduce matrix to echelon form using Gauss-Jordan 
pivoting

PYTHON SCRIPT-2
Create a set for every node giving nodal force 
contribution along the boundary 
Impose constraints as linear equations 
Set the desired average strains and run the analysis

Mesh data + 
stiffness matrix

Linear constraints set in 
echelon matrix form

Fig. 6. Procedure for setting up periodic displacement and traction boundary con- 

ditions in ABAQUS. 

In principle, within the ABAQUS environment, imposition of 

( 10 a) should imply that ( 10 b) is satisfied a priori. The reason is 

that when an equation of the type ( 11 ) is prescribed, ABAQUS gen- 

erates constraint forces (in addition to the internal nodal forces) at 

all dofs involved in the equation, which are proportional to their 

respective coefficients. Then, as the coefficients of the elements of 

u 

+ 
b 

and u 

−
b 

must be set as opposite in view of ( 10 a), it means that 

the related constrained nodal forces are opposite too, which is ex- 

actly what ( 10 b) specifies. 

Nevertheless, in the context of the present work, a procedure 

which explicitly enforces both periodic displacement and periodic 

traction conditions is suggested. The reason is twofold. On the 

one hand, the proposed method is more general and can be used 

in other types of analyses where imposition of relations between 

tractions at the local level is required. On the other hand, a very 

simple way to cope with the first limitation of the “Linear con- 

straint equations” command is given, which is relevant even in sit- 

uations when only ( 10 a) is to be imposed, especially when dealing 

with 3D unit cell geometries. 

The procedure is illustrated in Fig. 6 and it is based on Python 

scripting. It can been seen that, in order to impose the periodic 

traction condition, entries of the global stiffness matrix related to 

the boundary nodal forces are extracted by means of the MATRIX 

GENERATE command ( Dassault Systèmes Simulia Corp., 2013b ). 

Moreover, repetition of dofs already set as first dof in previous 

equations is avoided by prior reduction to echelon form via Gauss- 

Fig. 7. Definition of useful node sets on the unit cell mesh: (a) face internal nodes, 

(b) edge internal nodes, (c) pair of opposite parallel edges along y-direction, (d) 

corner nodes. 

Jordan pivoting of the matrix associated with the set of linear con- 

straints. 

4.2. Avoiding over-constraining 

The choice of the boundaries over which periodic conditions 

have to be imposed deserves special attention. In fact, it is of ut- 

most importance to avoid generating a number of linear indepen- 

dent constraints greater than the number of dofs associated with 

the boundary nodes: if that happens, spurious deformation will oc- 

cur in the unit cell, adversely affecting the quality of the overall 

analysis. 

A simple strategy to deal with the abovementioned issue is pre- 

sented here. With reference to the 3D unit cell mesh of Fig. 7 , the 

following quantities are introduced: 

• n f : number of face internal nodes 

• n e : number of edge internal nodes 

• n c : number of corner nodes 

• n b = n f + n e + n c : number of total boundary nodes 

Periodic displacement boundary conditions are applied consid- 

ering all n b nodes. Constraints are set between all possible pairs of 

equivalent nodes, meaning that a single corner node will be sub- 

jected to 3 linear constraints of the vector type ( 10 )(a), an edge 

node to two, and a face node to one only. The total number of 

linear independent equations C d generated in this way may be de- 

termined as: 

C d = 3 

(
1 

2 

n f + 

3 

4 

n e + ( n c − 1 ) 

)
(12) 

Conversely, periodic traction boundary conditions are imposed 

considering the face internal nodes only, plus the internal nodes 

lying on 3 pairs of opposite parallel edges as shown in Fig. 7 (c), 

one pair for each Cartesian direction. Consequently, the number of 
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Fig. 8. Structure of the set of linear constraint equations associated with the periodic boundary conditions: (a) before and (b) after Gauss-Jordan pivoting. 

independent traction constraints C t created is given by: 

C t = 3 

(
1 

2 

n f + 

1 

4 

n e 

)
(13) 

The overall number of linear independent equations C tot is then: 

C tot = C d + C t + 3 (14) 

where the last term relates to the prescribed motion of a single 

selected node, necessary to avoid rigid body translation. By in- 

serting expressions ( 12 and 13 ) into ( 14 ), it can be easily verified 

that C tot =3 n b , i.e. the number of independent constraints is exactly 

equal to the number of boundary dofs. 

5. Results and discussion 

5.1. Periodic boundary conditions implementation verification 

In order to verify the quality of the ABAQUS implementation 

procedure described in Sections 4.1 and 4.2 , the full set of lin- 

ear constraint equations for a test unit cell with 340 boundary 

nodes has been generated by imposition of the appropriate peri- 

odic conditions. The structure of the associated matrix is shown 

in Fig. 8 (a), where the blue dots indicate the non-zero entries. 

Fig. 8 (b) reports the structure of the same linear system, but af- 

ter Gauss-Jordan pivoting: the number of pivots found is exactly 

1020 = 3 ∗340. It may be noticed that each boundary dof is con- 

strained to the internal dofs of the boundary elements and to the 

dofs of the reference points, which represent the average strains 

imposed to the unit cell. It has to be pointed out, however, that 

the blue area on the right-hand side of Fig. 8 (b) is not as “numeri- 

cally dense” as it might appear. Several entries are a few orders of 

magnitude smaller compared to the pivot coefficient, and some are 

non-zero only due to round-off errors; therefore, they can simply 

be neglected in order to speed up the analysis. 

5.2. Necessity of the periodic boundary traction condition 

The work of ( Qi et al., 2015 ) previously mentioned offers an ex- 

ample of the application of the so-called “Unified displacement- 

difference periodic boundary conditions”, proposed by ( Xia et al., 

2006 ) to model composites with periodical distribution of the re- 

inforcing phase. According to the latter authors, within the frame- 

work of a displacement-based finite element analysis, the condi- 

tion ( 10 a) alone is sufficient to guarantee the uniqueness of the 

solution and the fulfillment of the traction continuity requirement 

along the unit cell boundaries. 

However, it is the present authors’ opinion that such state- 

ment may be misleading. In fact, if the traction condition ( 10 b) 
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Fig. 9. Comparison between 2D plate deformed configurations obtained by either 

enforcing or not the periodic traction condition. 

is neglected, the associated system of equations ( 9 ) is underdeter- 

mined, unless further assumptions are made on the nature of the 

external nodal forces f + 
b 

and f −
b 

, which are of course unknown 

for the problem at hand. Such additional assumptions are to a 

large extent subjective and implementation-dependent, and there- 

fore might lead to non-unique results. 

For instance, the constraints ( 10 a) could be handled by intro- 

ducing a corresponding number of Lagrange multipliers, which 

would essentially correspond to f + 
b 

, while implicitly enforcing f −
b 

to zero. To appreciate the implications of this particular choice on 

the finite element solution, a simple 100 by 150 μm rectangular 

plate subjected to plane strain conditions is analyzed. The plate 

has Young’s modulus and Poisson’s ratio equal to 205 GPa and 0.29 

respectively. Moreover, a central circular graphite inclusion of ra- 

dius 40 μm is present, with the graphene planes having the elas- 

tic properties listed in Table 2 and oriented at 45 °. The solution 

to the finite element system of equations is calculated in Matlab, 

which offers a simpler interface to set up customized linear con- 

straints. This can be achieved by generating the full stiffness matrix 

in ABAQUS first, by means of the MATRIX GENERATE command, 

and then exporting it to Matlab. Fig. 9 shows the deformed config- 

uration of the plate subjected to an average shear strain of 0.1%, at 

a scaling factor of 50. On the same figure, the deformed configura- 

tion obtained by applying both constraints ( 10 a and b) at the same 

time is plotted. It is seen that a large difference exists between the 

two solutions, despite both satisfy the displacement part of the pe- 

riodic boundary conditions. 
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Fig. 10. Orientation of nodule model “Type8” with respect to the unit cell axes expressed in terms of the three angles θ , φ, β . 

5.3. Effect of nodule orientation relative to the unit cell axes 

After having verified the correct implementation of the peri- 

odic boundary conditions and before comparing numerical predic- 

tions to experiments, the focus is turned to the role played by the 

nodule orientation relative to the unit cell axes. In principle, this 

aspect should be discussed for all different models introduced in 

Section 2.2 except for “TypeInf”, as conditions of spherical symme- 

try no longer exist due to nodule partitioning into a finite num- 

ber of conical sectors. However, as the aim here is to find out 

whether or not the relative orientation has a significant impact on 

the effective elastic properties, the presentation can be restricted 

to “Type8” only, which will be shown later to be characterized by 

the largest value of the anisotropy index. 

With reference to Fig. 10 , the nodule orientation may be spec- 

ified in terms of the three angles θ , φ, β . The first two give the 

direction of the nodule local Cartesian axis e 1 
′ with respect to the 

unit cell axes e 1 , e 2 , e 3 , whereas the last one specifies the nodule 

rotation about e 1 ’ . When all θ , φ, β are set to zero the unit cell 

axes coincide with those defined locally on the nodule, i.e. e 1 
′ = e 1 , 

e 2 
′ = e 2 and e 3 

′ = e 3 . 

Due to symmetry considerations, the dependence of the effec- 

tive isotropic elastic constants on the nodule relative orientation 

can be analyzed limiting θ and φ to the range[0, π /2]. In order to 

represent the results graphically, it is also useful to introduce the 

β-average of a generic quantity q ( θ , φ, β) as: 

q β ( θ, φ) = 

1 

2 π

2 π
∫ 
0 

q ( θ, φ, β) dβ (15) 

and the β-range as: 

	q β ( θ, φ) = max { q ( θ, φ, β) | β ∈ [ 0 , 2 π ] } 
− min { q ( θ, φ, β) | β ∈ [ 0 , 2 π ] } (16) 

The β-average of the effective isotropic Young’s modulus 

Ē β ( θ, φ) and the corresponding β-range 	Ē β ( θ, φ) for nodule 

model “Type8” are plotted in Fig. 11 (a and b) respectively. It is 

seen that by changing the nodule orientation with respect to the 

unit cell axes only variations within less than 1 GPa are recorded. 

Changes in the effective Poisson’s ratio are even less pronounced 

and bounded by the interval 0.278–0.279. Therefore, it is concluded 

that nodule orientation is perfectly negligible within the context of 

the present work and henceforth, zero value of the θ , φ, β angles 

is always assumed. 

5.4. Effective isotropic elastic constants for SGI 

Numerical calculations of the elastic properties of the 3D unit 

cell reported in Fig. 5 have been carried out using trilinear hex- 

ahedral elements and approximately 20 0 0 boundary nodes. Local 

mesh refinement has been performed in both the nodule and the 

matrix nearby the material discontinuity interface, in order to cap- 

ture strong gradients arising in this region. Results in terms of all 

four effective isotropic elastic constants and anisotropy index are 

reported in Table 4 . Besides the nodule models with increasing 

number of sectors introduced previously, the case of graphite re- 

placed by a spherical void is also considered; in addition, reference 

elastic values for GJS-400-15 ductile iron are given to allow com- 

parison with experimental findings. 

In general, it is immediately clear that all models largely over- 

estimate the overall material stiffness. If Young’s modulus and 

Poisson’s ratio are chosen to describe the elastic properties of SGI, 

the latter quantity is in quite good agreement with experimental 

measurements, but the former is constantly 20 to 30 GPa above 

the admissible range, no matter the number of sectors considered. 

The discrepancy with the reference values is so large that even the 

voided material model provides a better approximation as regards 

macroscopic elastic properties of SGI at room temperature, despite 

being inadmissible from a physical point of view because in con- 

trast with some experimental observations, as mentioned in the 

introduction. 

Fig. 12 (a and b) offer a more direct interpretation of the de- 

pendence of the isotropic constants on the number of partitions 

the nodule is divided into. The higher this number, the greater 

Poisson’s ratio and the lower Young’s modulus, despite a sort of 

plateau seems to be present for this last quantity when the num- 

ber of sectors is increased beyond 32. Conversely, the effective 

shear modulus steadily decreases, indicating a progressive reduc- 

tion in shear resistance of the unit cell with increasing number of 

partitions. The only non-monotonic behavior is shown by the bulk 

modulus, which achieves a minimum value in correspondence of 

the “Type48” nodule model. 

From a physical perspective, the reason for the very high stiff- 

ness exhibited by the unit cell is the particular spatial arrangement 

of the graphite platelets in the nodule. Fig. 13 shows stress con- 

tours taken over the x-y mid-section of the unit cell for an ex- 

ternally imposed average volumetric strain of ε̄ 11 = 0.05%, with the 

other average strain components set to zero. It can be noticed that, 

independently of the number of conical sectors, the normal stress 

component perpendicular to the graphite platelets, reported in Fig. 

13 (c and d), is more than five times smaller than the maximum 

principal stress, visible in Fig. 13 (e and f), which lies in the plane 

of the graphenes. In addition, only the more external layers of the 

nodule are mechanically loaded, whereas the central region is al- 

most stress-free. This suggests that the nodule behaves similar to 

a rigid shell: the very high hoop stiffness, which is more than 30 

times larger than the radial one according to Table 2 , prevents any 

stress transmission from the surface to the bulk of the graphite 

particle. Not surprisingly, this phenomenon is more pronounced in 
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Fig. 11. Calculated effective Young’s modulus as a function of the nodule orientation with respect to the unit cell axes, for “Type8” model. (a) Average value for a given e 1 ’ 

direction. (b) Variation range due to nodule rotation around local e 1 ’ axis. Values are in GPa. 

Table 4 

Effective isotropic elastic constants and anisotropy index calculated for different nodule models. Values for the case of graphite replaced by 

a spherical void are also given, as well as the reference experimental values for GJS-400-15 ductile iron. 

Nodule model Bulk modulus (GPa) Shear modulus (GPa) Young’s modulus (GPa) Poisson’s ratio Anisotropy index (%) 

Void 122 .9 63 .7 163 .1 0 .279 1 .32 

Type6 150 .1 79 .1 201 .8 0 .276 3 .12 

Type8 149 .3 77 .8 198 .9 0 .278 3 .31 

Type32 148 .7 75 .9 194 .7 0 .282 0 .05 

Type48 148 .6 75 .8 194 .3 0 .282 0 .31 

Type80 148 .8 75 .7 194 .1 0 .283 0 .09 

TypeInf 150 .8 75 .6 194 .3 0 .285 0 .04 

Exp. GJS–400–15 126 .5 ÷ 128.7 65 .2 ÷ 66.4 167 .0 ÷ 170.0 0 .280 –

Fig. 12. Effective elastic constants for nodule models with increasing number of conical sectors, expressed as (a) Young’s modulus and Poisson’s ratio, (b) bulk modulus and 

shear modulus. 

“TypeInf” rather than in “Type8’, the former being characterized by 

a higher level of spherical symmetry. 

Fig. 13 (e and f) also indicate that unrealistic stress values, in the 

order of several hundred MPa, are generated in the nodule external 

layers for effective strain levels which are not sufficient to promote 

yielding of the material at the macroscale. Indeed, if the experi- 

mental isotropic constants for SGI are used to calculate the effec- 

tive stress tensor for the loading configuration under examination, 

an equivalent von Mises stress of only 75 MPa is obtained, which 

is approximately 1/3 the macroscopic yield strength. This suggests 

that localized inelastic deformation either in the matrix or in the 

graphite probably occurs while ductile iron is still “macroscopi- 

cally” in the elastic regime. The incapability of the present model 

to take into account the inelastic behavior of the SGI constituents 

might explain its excessively high effective stiffness compared to 

the measured one. 

Concerning analogies with previous works in the field, the only 

partial comparison can be done with the analytical findings of 

( Dryden and Purdy, 1989 ). Considering a graphite platelets arrange- 

ment equivalent to the “TypeInf” model discussed in the present 

analysis, the previous authors came up with the following simple 

mathematical expressions for the dependence of the effective bulk 

and shear moduli on the graphite volume fraction c g :. 

k̄ = k m 

( 1 − 0 . 43 c g ) 
μ̄ = μm 

( 1 − 0 . 83 c g ) 
(17) 
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Fig. 13. Stress contours over the x-y mid-section of the periodic unit cell, for an imposed average volumetric strain of ε̄ 11 = 0.05%, with the other ε̄ i j components set to zero. 

(a)(b) Von Mises stress in the matrix. (c)(d) Normal stress component perpendicular to the graphite platelets. (e)(f) Maximum principal stress recorded in the graphite. 

where k m 

and μm 

denote the bulk and shear moduli for the ma- 

trix. By inserting in the last formulas the values reported in Section 

2.3 for the specific SGI grade under consideration, effective elastic 

properties corresponding to a Young’s modulus of 186.8 GPa and to 

a Poisson’s ratio of 0.299 are obtained. They are respectively 3.9% 

lower and 4.9% greater than what predicted with the present unit 

cell approach. The difference might be due to the “dilute” assump- 

tion made by ( Dryden and Purdy, 1989 ), which, as stated by the 

same authors, is inaccurate if the graphite phase occupies a vol- 

ume fraction greater than or equal to 10%. 

Before concluding this section, a few remarks regarding the in- 

trinsic anisotropy degree exhibited by the unit cell have to be 

made. 

Table 4 shows that the calculated anisotropy index spans the 

range 0.04% to 3.31%, with the lower limit corresponding to the 

“TypeInf” nodule model and the upper one to the “Type8” model. 

These low anisotropy levels fully justify the initial assumption of 

modeling the macroscopically isotropic SGI microstructure with a 

simplified 3D periodic unit cell model. 

In order to get more insight into the meaning of the actual 

anisotropy index values, it is useful to look at the dependence 

of the apparent effective Young’s modulus on the θ , φ angles, 

which is graphically represented in Fig. 14 . The apparent Young’s 

modulus is here defined as the ratio between the normal stress 

applied in a certain direction (the other stress components be- 

ing zero) and the corresponding induced longitudinal strain. It is 

seen that with an anisotropy index of 0.04% (“TypeInf” model) only 

variations within 0.4 GPa are observed. On the other hand, when 

the anisotropy is increased to 3.31% (“Type8” model), a difference 

of almost 20 GPa between the most stiff and the most compliant 
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Fig. 14. Apparent Young’s modulus as a function of the φ angle, for selected values of the θ angle. (a) Nodule model “TypeInf” and (b) nodule model “Type8”. 

direction is recorded. For the sake of comparison, it is worth re- 

marking here that a common ferrite single crystal shows a varia- 

tion from 130 to 280 GPa. The considerably larger spatial variation 

observed for the “Type8” model is associated with its lower de- 

gree of spherical symmetry compared to the “TypeInf” model. In- 

deed, in the former case the nodule contributes to the overall unit 

cell stiffness in different amount according to the particular spa- 

tial direction considered. Conversely, when the number of conical 

sectors grows and eventually tends to infinite, the nodule mechan- 

ical response becomes less and less dependent on the choice of the 

θ and φ angles. 

5.5. Weak nodule-matrix interface 

According to a number of experimental observations ( Dong 

et al., 1997 ; Cooper et al., 2002 and Di Cocco et al., 2014 ), debond- 

ing between the nodules and the matrix is often observed during 

tensile testing of SGI, indicating a weak bonding between the two 

phases. In order to investigate the influence of this aspect on the 

elastic properties of the unit cell, a frictionless contact interface is 

introduced between the graphite and the surrounding ferrite. How- 

ever, as contact opening could add a substantial amount of non- 

linearity to the model, the nodule is initially “pre-compressed” by 

simulating part of the cooling process occurring during manufac- 

turing. The reason behind this is that, as pointed out by ( Bonora 

and Ruggiero, 2005 ), the average thermal expansion coefficient of 

graphite is much lower compared to ferrite, meaning that the nod- 

ules are subjected to a sort of hydrostatic compression during solid 

state cooling. If the arising residual stresses are sufficient to keep 

the interface closed during subsequent loading, the linear structure 

of relation (3) between volume averages of the applied strains and 

volume averages of the induced stresses can be retained. Moreover, 

linearity of the equations governing thermo-elasticity implies that 

the calculated effective stiffness tensor (4) is independent of the 

residual stress magnitude. As a consequence, the choice of the ini- 

tial cooling temperature is somehow arbitrary, provided that it suf- 

fices to avoid any contact opening. 

The variation in the effective Young’s modulus and Poisson’s 

ratio calculated using the frictionless contact condition in place 

of the perfect bonding assumption is shown in Fig. 15 . For the 

sake of clarity, it is worth mentioning that the employed val- 

ues for the thermal expansion coefficient were 12 x 10 −6 °C −1 for 

the ferrite ( Touloukian and Lafayette, 1975 ) and 25 x 10 −6 °C −1 

and −1 x 10 −6 °C −1 for the graphite platelets along the 3- and 1-, 

2-direction respectively ( Steward et al., 1960 ). A generalized de- 

crease in Young’s modulus and an increase in Poisson’s ratio com- 
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Fig. 15. Variation in the effective elastic constants due to introduction of a friction- 

less contact interface between the nodule and the matrix. 

pared to the data presented in Table 4 may be observed, except for 

the “TypeInf” model, which exhibits the opposite behavior. Never- 

theless, the recorded variations in the elastic properties are by far 

quite limited, meaning that a weak nodule-matrix interface is not 

enough to explain the existing discrepancy with the experimental 

results. 

6. Conclusions 

In the present work, a micromechanical approach to model 

the intrinsic elastic anisotropy of the graphite particles in ductile 

iron has been described. The constitutive behavior is directly de- 

rived from the nodule characteristic internal structure, composed 

of graphite platelets arranged into conical sectors. In this way, 

the large uncertainty traditionally associated with local mechani- 

cal measurements is eliminated. 

In order to validate the proposed anisotropic description, a unit 

cell model has been introduced to simulate the overall SGI elastic 

behavior. An explicit procedure to enforce both periodic displace- 

ment and periodic traction boundary conditions in ABAQUS has 

been presented, and the importance of fulfilling the traction conti- 

nuity conditions at the unit cell boundaries has been discussed. 

The effective isotropic elastic stiffness of the unit cell turns out 

to be 20–30 GPa larger compared to reference experimental val- 

ues for SGI, no matter the number of sectors the nodule is di- 

vided into. Introduction of a weak interface between the graphite 
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particle and the ferritic matrix does not change the results signif- 

icantly. The mismatch between numerical predictions and experi- 

ments is probably due to the incapability of the present model to 

account for localized inelastic deformation of the SGI constituents. 

References 

47th Census of World Casting Production, 2013., MODERN CASTING - A publication 
of the American Foundry Society. 

Andriollo, T., Hattel, J., 2016. On the isotropic elastic constants of graphite nodules 
in ductile cast iron: analytical and numerical micromechanical investigations. 

Mech. Mater. 96, 138–150. doi: 10.1016/j.mechmat.2016.02.007 . 

Andriollo, T. , Thorborg, J. , Hattel, J. , 2015. The influence of the graphite mechanical 
properties on the constitutive response of a ferritic ductile cast iron – a mi- 

cromechanical FE analysis. In: Proceedings of the XIII International Conference 
on Computational Plasticity, Fundamentals and Applications, pp. 632–641 . 

Andriollo, T. , Thorborg, J. , Tiedje, N. , Hattel, J. , 2015. Modeling of damage in duc- 
tile cast iron - the effect of including plasticity in the graphite nodules. 14th 

International Conference on Modeling of Casting. Welding and Advanced Solid- 
ification Processes (MCWASP) . 

Boccaccini, A.R. , 1997. Young’s modulus of cast-iron as a function of volume con- 

tent, shape and orientation of graphite inclusions. Zeitschrift Fuer Met. Res. Adv. 
Tech. 88, 23–26 . 

Bonora, N., Ruggiero, A., 2005. Micromechanical modeling of ductile cast iron incor- 
porating damage. Part I: ferritic ductile cast iron. Int. J. Solids Struct. 42, 1401–

1424. doi: 10.1016/j.ijsolstr.2004.07.025 . 
Brocks, W. , Hao, S. , Steglich, D. , 1996. Micromechanical modelling of the damage 

and toughness behaviour of nodular cast iron materials. J. Phys. IV 6, 43–52 . 

Carazo, F.D., Giusti, S.M., Boccardo, A.D., Godoy, L.A., 2014. Effective properties of 
nodular cast-iron: a multi-scale computational approach. Comput. Mater. Sci. 

82, 378–390. doi: 10.1016/j.commatsci.2013.09.044 . 
Collini, L., Nicoletto, G., 2005. Determination of the relationship between mi- 

crostructure and constitutive behaviour of nodular cast iron with a unit cell 
model. J. Strain Anal. Eng. Des. 40, 107–116. doi: 10.1243/030932405X7692 . 

Cooper, C.A., Elliott, R., Young, R.J., 2002. Investigation of elastic property relation- 

ships for flake and spheroidal cast irons using Raman spectroscopy. Acta Mater. 
50, 4037–4046. doi: 10.1016/S1359- 6454(02)00202- 1 . 

Dassault Systèmes Simulia Corp., 2013a. Abaqus 6.13, Abaqus Analysis User’s Guide 
section 35.2.1 . 

Dassault Systèmes Simulia Corp., 2013b. Abaqus 6.13, Abaqus Analysis User’s Guide 
section 10.3.1 . 

Di Cocco, V., Iacoviello, F., Rossi, A., Iacoviello, D., 2014. Macro and microscopical 

approach to the damaging micromechanisms analysis in a ferritic ductile cast 
iron. Theor. Appl. Fract. Mech. 69, 26–33. doi: 10.1016/j.tafmec.2013.11.003 . 

Dong, M.J., Tie, B., Béranger, A.S., Prioul, C., François, D., 1997. Damage effect on the 
fracture toughness of nodular cast iron. Adv. Mater. Res. 4-5, 181–188. doi: 10. 

4028/www.scientific.net/AMR.4-5.181 . 
Drago, A., Pindera, M., 2007. Micro-macromechanical analysis of heterogeneous ma- 

terials: macroscopically homogeneous vs periodic microstructures. Compos. Sci. 

Technol. 67, 1243–1263. doi: 10.1016/j.compscitech.2006.02.031 . 
Dryden, J.R., Purdy, G.R., 1989. The effect of graphite on the mechanical properties 

of cast irons. Acta Metall. 37, 1999–2006. doi: 10.1016/0001- 6160(89)90084- 9 . 
Ductile Iron Society. Ductile Iron data for design engineers [WWW Document] URL 

(accessed 10.10.15) . 
Era, H. , Kishitake, K. , Nagai, K. , Zhang, Z.Z. , 1992. Elastic modulus and continuous 

yielding behaviour of ferritic spheroidal graphite cast iron. Mater. Sci. Technol. 

8, 257–261 . 
Fernandino, D.O., Cisilino, A.P., Boeri, R.E., 2015. Determination of effective elastic 

properties of ferritic ductile cast iron by computational homogenization, mi- 
crographs and microindentation tests. Mech. Mater. 83, 110–121. doi: 10.1016/j. 

mechmat.2015.01.002 . 
Gaudig, W., Mellert, R., Weber, U., Schmauder, S., 2003. Self-consistent one-particle 

3D unit cell model for simulation of the effect of graphite aspect ratio on 
Young’s modulus of cast-iron. Comput. Mater. Sci. 28, 654–662. doi: 10.1016/j. 

commatsci.2003.08.021 . 

Geers, M.G.D., Kouznetsova, V.G., Brekelmans, W.A.M., 2010. Multi-scale compu- 
tational homogenization: trends and challenges. J. Comput. Appl. Math. 234, 

2175–2182. doi: 10.1016/j.cam.2009.08.077 . 
Grimvall, G., 1997. Cast iron as a composite: conductivities and elastic properties. 

Adv. Mater. Res. 4-5, 31–46. doi: 10.4028/www.scientific.net/AMR.4-5.31 . 

Harding, J.W. , Sneddon, I.N. , 1945. The elastic stresses produced by the indentation 
of the plane surface of a semi-infinite elastic solid by a rigid punch. Proc. Camb. 

Philol. Soc. 41, 16–26 . 
Hervas, I., Bettaieb, M.B., Hug, E., 2013. Damage mechanisms evolution of ductile 

cast irons under thermomechanical loadings. Int. J. Mater. Prod. Technol. 47, 23. 
doi: 10.1504/IJMPT.2013.058963 . 

Hütter, G., Zybell, L., Kuna, M., 2015. Micromechanisms of fracture in nodular cast 
iron: From experimental findings towards modeling strategies – A review. Eng. 

Fract. Mech. 144, 118–141. doi: 10.1016/j.engfracmech.2015.06.042 . 

Itskov, M., 2007. Tensor Algebra and Tensor Analysis for Engineers. Springer Berlin 
Heidelberg, Berlin, Heidelberg doi: 10.1007/978- 3- 540- 36047- 6 . 

Kuna, M., Sun, D.Z., 1996. Three-dimensional cell model analyses of void growth in 
ductile materials. Int. J. Fract. 81, 235–258. doi: 10.10 07/BF0 0 039573 . 

Labrecque, C. , Gagne, M. , 1998. Review ductile iron: 50 years of continuous devel- 
opment. Can. Metall. Q. 37, 343–378 . 

Miao, B., Fang, K., Bian, W., Liu, G., 1990. On the microstructure of graphite 

spherulites in cast irons by TEM and HREM. Acta Metall. Mater. 38, 2167–2174. 
doi: 10.1016/0956-7151(90)90084-T . 

Nicoletto, G., Collini, L., Kone ̌cná, R., Riva, E., 2006. Analysis of nodular cast iron 
microstructures for micromechanical model development. Strain 42, 89–96. 

doi: 10.1111/j.1475-1305.20 06.0 0259.x . 
Oliver, W.C. , Pharr, G.M. , 1992. An improved technique for determining hardness and 

elastic modulus using load and displacement sensing indentation experiments. 

J. Mater. Res. 7, 1564–1580 . 
Pundale, S.H. , Rogers, R.J. , Nadkarni, G.R. , 1998. Finite element modeling of elastic 

modulus in ductile irons: effect of graphite morphology. Trans. Am. Foundry- 
men’s Soc. 106, 99–105 . 

Qi, L., Tian, W., Zhou, J., 2015. Numerical evaluation of effective elastic properties of 
composites reinforced by spatially randomly distributed short fibers with cer- 

tain aspect ratio. Compos. Struct. 131, 843–851. doi: 10.1016/j.compstruct.2015. 

06.045 . 
Rabold, F., Kuna, M., 2005. Cell model simulation of void growth in nodular cast iron 

under cyclic loading. Comput. Mater. Sci. 32, 4 89–4 97. doi: 10.1016/j.commatsci. 
2004.09.016 . 

Savini, G., Dappe, Y.J., Öberg, S., Charlier, J.C., Katsnelson, M.I., Fasolino, A., 2011. 
Bending modes, elastic constants and mechanical stability of graphitic systems. 

Carbon 49, 62–69. doi: 10.1016/j.carbon.2010.08.042 , N.Y . 

Shirani, M., Härkegård, G., 2011. Casting defects and fatigue behaviour of ductile cast 
iron for wind turbine components: a comprehensive study. Materwiss. Werkst- 

tech. 42, 1059–1074. doi: 10.1002/mawe.201100911 . 
Sjogren, T. , 2007. Influences of the Graphite Phase on Elastic and Plastic Deforma- 

tion Behaviour of Cast Irons PhD Thesis. Linköping University . 
Sjögren, T., Svensson, I.L., 2004. Modelling the effect of graphite morphology on the 

modulus of elasticity in cast irons. Int. J. Cast Met. Res. 17, 271–279. doi: 10.1179/ 

136404604225022694 . 
Speich, G.R. , Schwoeble, A.J. , Kapadia, B.M. , 1980. Elastic moduli of gray and nodular 

cast iron. Trans. ASME. J. Appl. Mech. 47, 821–826 . 
Steglich, D., Brocks, W., 1998. Micromechanical modeling of damage and fracture of 

ductile materials. Fatigue Fract. Eng. Mater. Struct. 21, 1175–1188. doi: 10.1046/j. 
1460-2695.1998.0 0 078.x . 

Steward, E.G. , Cook, B.P. , Kellet, E.A. , 1960. Dependence on temperature of the inter- 
layer spacing in carbons of different graphitic perfection. Nature 187, 1015–1016 . 

Theuwissen, K., Lacaze, J., Véron, M., Laffont, L., 2014. Nano-scale orientation map- 

ping of graphite in cast irons. Mater. Charact. 95, 187–191. doi: 10.1016/j.matchar. 
2014.06.021 . 

Theuwissen, K., Lafont, M.-C., Laffont, L., Viguier, B., Lacaze, J., 2012. Microstructural 
characterization of graphite spheroids in ductile iron. Trans. Indian Inst. Met. 

65, 627–631. doi: 10.1007/s12666- 012- 0162- 5 . 
Tiedje, N.S., 2010. Solidification, processing and properties of ductile cast iron. 

Mater. Sci. Technol. 26, 505–514. doi: 10.1179/026708310X12668415533649 . 

Touloukian, Y.S. , Lafayette, I. , 1975. Thermophysical properties of matter. The TPRC 
data series. A comprehensive compilation of data by the Thermophysical Prop- 

erties Research Center (TPRC). 12: thermal expansion. Metallic Elements and Al- 
loys. IFI/Plenum. Purdue university . 

Tromans, D. , 2011. Elastic anisotropy of hcp metal crystals and polycrystals. Int. J. 
Res. Rev. Appl. Sci. 6 . 

Xia, Z., Zhou, C., Yong, Q., Wang, X., 2006. On selection of repeated unit cell model 

and application of unified periodic boundary conditions in micro-mechanical 
analysis of composites. Int. J. Solids Struct. 43, 266–278. doi: 10.1016/j.ijsolstr. 

2005.03.055 . 
Zhang, K.S., Bai, J.B., François, D., 1999. Ductile fracture of materials with 

high void volume fraction. Int. J. Solids Struct. 36, 3407–3425. doi: 10.1016/ 
S0 020-7683(98)0 0157-7 . 

http://dx.doi.org/10.1016/j.mechmat.2016.02.007
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0002
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0002
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0002
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0002
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0003
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0003
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0003
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0003
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0003
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0004
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0004
http://dx.doi.org/10.1016/j.ijsolstr.2004.07.025
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0006
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0006
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0006
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0006
http://dx.doi.org/10.1016/j.commatsci.2013.09.044
http://dx.doi.org/10.1243/030932405X7692
http://dx.doi.org/10.1016/S1359-6454(02)00202-1
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0010
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0011
http://dx.doi.org/10.1016/j.tafmec.2013.11.003
http://dx.doi.org/10.4028/www.scientific.net/AMR.4-5.181
http://dx.doi.org/10.1016/j.compscitech.2006.02.031
http://dx.doi.org/10.1016/0001-6160(89)90084-9
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0016
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0017
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0017
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0017
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0017
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0017
http://dx.doi.org/10.1016/j.mechmat.2015.01.002
http://dx.doi.org/10.1016/j.commatsci.2003.08.021
http://dx.doi.org/10.1016/j.cam.2009.08.077
http://dx.doi.org/10.4028/www.scientific.net/AMR.4-5.31
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0022
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0022
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0022
http://dx.doi.org/10.1504/IJMPT.2013.058963
http://dx.doi.org/10.1016/j.engfracmech.2015.06.042
http://dx.doi.org/10.1007/978-3-540-36047-6
http://dx.doi.org/10.1007/BF00039573
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0027
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0027
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0027
http://dx.doi.org/10.1016/0956-7151(90)90084-T
http://dx.doi.org/10.1111/j.1475-1305.2006.00259.x
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0030
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0030
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0030
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0031
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0031
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0031
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0031
http://dx.doi.org/10.1016/j.compstruct.2015.06.045
http://dx.doi.org/10.1016/j.commatsci.2004.09.016
http://dx.doi.org/10.1016/j.carbon.2010.08.042
http://dx.doi.org/10.1002/mawe.201100911
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0036
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0036
http://dx.doi.org/10.1179/136404604225022694
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0038
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0038
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0038
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0038
http://dx.doi.org/10.1046/j.1460-2695.1998.00078.x
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0040
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0040
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0040
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0040
http://dx.doi.org/10.1016/j.matchar.2014.06.021
http://dx.doi.org/10.1007/s12666-012-0162-5
http://dx.doi.org/10.1179/026708310X12668415533649
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0044
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0044
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0044
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0045
http://refhub.elsevier.com/S0020-7683(16)30272-4/sbref0045
http://dx.doi.org/10.1016/j.ijsolstr.2005.03.055
http://dx.doi.org/10.1016/S0020-7683(98)00157-7


T. Andriollo et al. / International Journal of Solids and Structures 100–101 (2016) 523–535 535 

Tito Andriollo is a third year Ph.D. student at the Technical University of Denmark. He holds a master degree in Materials Engineering from the University of Padova and 
a master degree in Manufacturing Engineering from the Technical University of Denmark. He is currently working on modeling the effects of the manufacturing process on 

the final mechanical properties of ductile iron components. 

Jesper Thorborg studied at the Technical University of Denmark, where here got a master degree in mechanical engineering. During his subsequent Ph.D. project he worked 
in the field of solid mechanics and constitutive modeling of high temperature processes. He joined the development group at MAGMA GmbH in 2004 and today he is 

working as a developer on the MAGMAstress module. 

Jesper H. Hattel, born in Copenhagen, Denmark 1965, obtained his M. Sc . in structural engineering in 1989 and his Ph.D. in mechanical engineering in 1993 both from 

the Technical University of Denmark (DTU). He currently holds a full professorship in modeling of manufacturing processes at the Department of Mechanical Engineering, 

DTU. His research interests are modeling of processes like casting, joining, composites manufacturing and additive manufacturing in materials such as metals and polymers. 
Applications range from microelectronics over automotive industry to large structures like wind turbines. 



 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 

Appendix D 
PAPER IV 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 



1

Modelling and Simulation in Materials Science and Engineering

A micro-mechanical analysis of  

thermo-elastic properties and local residual 

stresses in ductile iron based on a new 

anisotropic model for the graphite nodules

Tito Andriollo1,3, Jesper Thorborg1,2, Niels Tiedje1  

and Jesper Hattel1

1 Department of Mechanical Engineering, Technical University of Denmark,  
DK-2800 Kgs. Lyngby, Denmark
2 MAGMA GmbH, D-52072 Aachen, Germany

E-mail: titoan@mek.dtu.dk

Received 2 March 2016, revised 27 April 2016
Accepted for publication 9 May 2016
Published 6 June 2016

Abstract
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the manufacturing process of a typical ferritic ductile iron grade, and the 
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the micro scale is used to shed light on common failure modes reported for the 
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1. Introduction

Ductile iron represents today a modern engineering material offering a unique combination 
of castability, high ductility and strength at lower prices compared to traditional low carbon 
steels [1, 2]. Its high technological importance is confirmed by recent market growth analyses 
[3], indicating that as many as 25% of the castings currently produced worldwide are made 
of ductile iron. Typical applications include small and medium sized heavily loaded parts 
with high demands for consistent quality for the automotive sector and very large industrial 
components with extreme demands for mechanical properties, particularly fatigue strength 
and fracture toughness [4].

From a metallurgical standpoint, ductile iron is a ternary Fe–C–Si alloy with ‘composite’ 
microstructure [5, 6], consisting of graphite nodules embedded in a metallic matrix which, in 
most engineering applications, may be either ferritic, pearlitic or a mixture of the two. The 
very high degree of nodularity of the secondary phase particles has justified the alternative 
designation of spheroidal graphite iron (SGI), to emphasize the difference with other members 
of the cast iron family where the graphite is present in more irregular forms.

Despite a large number of investigations carried out in the past decades, a complete descrip-
tion of the mechanical behavior of the individual SGI constituents at the micro scale is still 
missing in the published literature [7]. This represents a major obstacle towards obtaining a 
thorough understanding of those properties which are intimately related to the local thermo-
mechanical interactions arising among the different microstructural elements. For instance, 
fatigue crack propagation in the ferritic matrix has been experimentally shown to be strongly 
affected by the presence of the graphite particles [8], and cannot be explained on the basis of 
classical theoretical models which consider the material as homogeneous [9].

As discussed in [10], the lack of reliable constitutive data is more critical for the nodules 
rather than for the matrix, probably because their reduced size has always challenged mechan-
ical characterization based on direct techniques. A detailed literature survey has shown that 
all micromechanical models for ductile iron proposed so far may be roughly listed under three 
different categories, according to the assumption made for the nodules’ mechanical properties.

A first possibility is to simply consider the graphite particles as voids, indeed reducing SGI 
to a metallic material with high degree of porosity. Several researchers have followed this 
approach to investigate damage and ductile fracture occurring during uniaxial tensile testing, 
e.g. [9, 11, 12]. The main justification for completely neglecting the nodules in the analysis 
is the early debonding between the matrix and such graphitic morphologies observed already 
at early deformation stages on the lateral surface of a tensile test specimen. Needless to say, 
this assumption is not justifiable under different loading conditions, as experimental evidence 
exists for the capability of the nodules to oppose compressive stresses [13].

A second option, adopted by the major part of the authors, is to assume an isotropic linear 
elastic description of the nodules. The main problem in this case is the choice of suitable 
values for the elastic constants, especially Young’s modulus, which is usually taken in the 
range 4–25 GPa [6]. These values are macroscopically consistent in the sense that they allow 
recovering the global elastic properties of ductile iron according to common micromechani-
cal homogenization procedures [14]. Furthermore, they are also in fairly good agreement 
with nano-indentation tests [15, 16] performed according to the Oliver–Pharr method [17]. 
Nevertheless, the validity of such measurements is quite disputable as graphite is highly aniso-
tropic at the nanoscale, meaning that the concept of nano-indentation based Young’s modulus 
loses its significance. In addition, it has been argued by Bonora and Ruggiero [18] that the 
sharp indenter usually employed could simply separate the graphite layers without creating 
any elastic deformation at all. In contrast, the latter authors have proposed much higher values, 
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in the order of 300–375 GPa, on the basis of an inverse analysis in which the influence of the 
manufacturing process was taken into account for one of the very first times in literature. On 
the other hand, it was subsequently shown that values greater than approximately 100 GPa are 
inadmissible, as the elastic properties of common grades of ductile iron cannot be retrieved 
due to excessive plastification of the matrix during the initial cooling stage [19, 20]. Whatever 
the ‘correct’ Young’s modulus, the main drawback of the isotropy assumption is that it cannot 
be justified using elastic bound theory analysis, assuming a statistically homogeneous distri-
bution of the graphite platelets throughout the individual nodules [10]. This means that even 
if the macroscopic properties may be retrieved under particular loading conditions, there is no 
guarantee that the predicted stress and strain fields be accurate at the micro scale.

Finally, a third group of authors have considered an elastic anisotropic description of the 
nodules [21, 22], in an attempt to take their internal structure into account. However, the latter 
one was reproduced with a low fidelity level, due to the scarce experimental knowledge avail-
able at that time and the intrinsic limitations of the analytical approach adopted. As a result, 
the macroscopic ductile iron stiffness turned out to be over predicted.

In conclusion, a reliable theoretical model for predicting the graphite particles’ mechanical 
behavior does not seem to be currently available. Hence, it is the aim of the present paper to 
propose a new thermo-elastic anisotropic formulation on the basis of the most recent transmis-
sion electron microscopy investigations of the nodules’ internal structure, able to provide a 
realistic description of the stress & strain field existing at the microstructural level. The model 
is initially validated by performing a homogenization analysis to verify its consistency with 
the room-temperature elastic behavior of SGI at the macro scale. Subsequently, it is used to 
investigate the formation of local residual stresses in the ductile iron matrix by simulating the 
manufacturing process of a typical ferritic SGI grade, and the results are compared with pre-
liminary measurements using synchrotron x-rays [23]. Last but not least, thermomechanical 
arguments stemming from the analysis are put forth to cast light on common failure modes 
reported for the nodules and on some peculiar properties observed at both the micro and macro 
scale.

2. Theory

Figure 1(a) shows the microstructure of a typical grade of ferritic ductile iron, constituted by 
graphite nodules of high nodularity dispersed in a matrix of Si-rich ferrite. From a chemical 
perspective, each nodule is made of a small nucleus containing complex oxides and sulfides, 
which served as nucleation site during solidification [24], and a much thicker outer shell of 
graphitic nature, which represents the major part of the nodule by volume. As shown by elec-
tron microscopy investigations [25], the latter one, which will be the focus of the present 
analysis, may be schematically subdivided into two parts (figure 1(b)): a bulk region, con-
stituted by oriented graphite crystals arranged into conical sectors radiating from the nodule 
center to the outer periphery, and a superficial graphite layer, characterized by smaller grains 
with high misorientation.

It seems to be well established now that the basic building blocks forming the conical 
sectors in the internal region are graphite platelets consisting of graphene layers piled up 
with only few crystallographic defects [26, 27]. These structural units have thicknesses in the 
sub-micrometer range and appear to be elongated along the graphene planes. From a con-
tinuum point of view, they can be described on the basis of the hexagonal unit cell reported in  
figure 1(c) [28], where the c-direction is orthogonal to the graphene layers. Within a sector, the 
platelets are stacked on each other, with the c-direction constant and oriented approximately 
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radially. Nevertheless, the stacking is not perfect, and rotations about the c-axis occur on an 
almost regular basis, defining domains of similar orientation [29].

In contrast, only a few investigations have been reported in literature so far regarding the 
nature of the superficial structure of the nodules. Monchoux et al [25] described a micro-
crystalline, highly disorientated layer approximately 1.5 μm thick over an overall diameter 
of approximately 30–40 μ, giving a powder-like diffraction diagram; later, the presence of 
microcrystalline areas at the extreme outer periphery of the nodules was also observed by 
Theuwissen et al [30]. According to the former authors, the existence of this surface layer 
would be connected to the amount of graphite which precipitates during solid state cooling, 
due to the reduced carbon solubility in the metallic matrix. This hypothesis is also supported 
by the extensive work of Di Cocco et al [31–33], who, in order to justify some experimental 
results, speculated on the existence of a gradient of mechanical properties within the nodules 
connected to the different stages of growth during solidification. On the basis of thermody-
namic calculations, they suggested a value for the thickness of the layer associated with solid 
state cooling of 10% the final nodule radius, which is in very good agreement with Monchoux 
et al findings. However, the reason for the different structure of the graphite crystals in this 
region compared to the bulk of the nodule remains unclear.

3. Modeling and simulation

3.1. Nodules

On the basis of the experimental studies presented in the previous section, a new anisotropic 
micromechanical model for the nodules is proposed here, which is physically consistent with 
their intrinsic structure. Each graphite particle is assimilated to a sphere composed of two 
concentric regions: an internal core and an external shell with thickness equal to 10% the 
radius. The former is additionally subdivided into a progressive number of conical sectors by 
means of sectioning with orthogonal planes passing through the sphere center. In this way, 
internal regions with 8, 48 and 80 partitions are obtained, as shown in figure 2(a), which quali-
tatively cover the range of values suggested by the experimental investigations. The sectors 
are assigned the elastic properties characteristic of rhombohedral graphite reported in table 1, 
as this was the graphene layer arrangement primarily observed inside the single platelets [27]. 

Figure 1. Nodules’ structure at different scales. (a) Micrograph of ferritic ductile iron. 
(b) Schematic of the division of a nodule into an oriented internal bulk region and an 
external surface layer. (c) Platelets arrangement within a single sector and hexagonal 
graphite unit cell.
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Within each conical partition, the c-direction is associated with the axis connecting the center 
of the sphere to the centroid of the related spherical triangle, which is formally defined as the 
element of the spherical surface identified by a given sector. As a body exhibiting hexagonal 
symmetry is transversely isotropic with respect to the basal plane (i.e. the graphene layers in 
this case), the other two principal material directions can be set arbitrarily without affecting 
the analysis. It has to be remarked that if the c-direction is prescribed parallel to the radius 
pointwise throughout the entire nodule core, a spherically anisotropic description is obtained, 
which is essentially equivalent to assuming an infinite number of conical sectors. For the 
external shell instead, which is supposed to be representative of the superficial layer of the 
nodule, a linear elastic isotropic behavior is assumed. This is motivated by the much smaller 
size of the crystallites in that region and their high degree of misorientation. As a consequence, 

Figure 2. Micromechanical modeling. (a) Subdivision of the internal spherical nodule 
core region into 8, 48 and 80 sectors respectively. (b) Nodule model embedded in the 
3D periodic unit cell representing the SGI microstructure. (c) Middle cross-section of 
a meshed unit cell in ABAQUS, assuming 8 conical sectors. The different colors of the 
elements represent the matrix, the nodule surface layer and the nodule core.

Table 1. Elastic constants of rhombohedral graphite [34].

C11 C44 C12 C13 C33

1107 4.4 175 −2.5 29

Note: Entries are in GPa.
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the elastic properties are assumed to be equal to those of commercial grades of fine grain iso-
tropic graphite, reported in table 2. In particular, a variation of Young’s modulus between 9.7 
and 10.9 GPa is considered, associated with the uncertainty on the real size of the crystallites. 
Regarding Poisson’s ratio, a sharp value of 0.2 is chosen instead, as preliminary investigations 
showed a limited influence of this quantity on the numerical results.

3.2. Ductile iron microstructure

In order to assess the impact of the proposed model for the graphite nodules on the macro-
scopic elastic properties and simulate the formation of local residual stresses in the matrix, the 
microstructure of ductile iron is modeled using a periodic unit cell approach [36]. Therefore, a 
single nodule embedded in a cubic cell of ferrite is considered, as shown in figure 2(b), whose 
relative size is adjusted to provide the 11.5% graphite volume fraction typical of GJS-400-15 
ferritic SGI, which is taken as reference material throughout the analysis. A study similar to 
the one presented in [37] has shown a very limited influence of the nodule core orientation on 
the results (less than 1% on the calculated effective properties). As a consequence, the nodule 
core main axes ′ ′ ′e e e, ,1 2 3 visible in figure 2(a) can be assumed to be aligned with the principal 
unit cell axes e e e, ,1 2 3 without significant loss of generality.

Concerning the ferritic matrix, it is assumed to be isotropic, with Young’s modulus and 
Poisson’s ratio equal to 205 GPa and 0.29 respectively [38]. The former value is slightly lower 
than that of a traditional low carbon steel, and it is due to the presence of silicon, which exerts 
a non-negligible effect at concentrations of a few points percent in mass [39].

An example of unit cell discretization in ABAQUS is given in figure 2(c). It has to be 
pointed out that more advanced methods are currently available to simulate the macroscopic 
behavior of materials with composite internal structure, which are primarily based on the 
concept of representative volume element (RVE) [40]. Nevertheless, the main disadvantage 
for the case at hand is that a large number of nodules with complex internal geometry should 
be discretized at the same time to produce a realistic RVE, making any 3D computation 
cumbersome.

3.3. Manufacturing process

The accurate thermomechanical analysis of all different stages involved in the manufacturing 
process is simplified by the fact that the particular SGI grade considered is normally used in 
the as-cast state, without any additional heat treatment.

Figure 3 shows a schematic of the Fe–C–Si phase diagram corresponding to a silicon con-
centration of 2.4 wt.%. Under the assumption of thermodynamic equilibrium, which suffices 
for the present purposes, it may be assumed that solidification of a hypereutectic melt pro-
ceeds as dictated by the red dashed arrow. The nodules form first; soon after, the eutectic 

Table 2. Physical properties of commercial grades of fine grain isotropic graphite 
produced by Asbury Carbons [35].

Type Fine grain
Super 
fine grain Ultra fine grain

Grade IPG IPG15 IPG19
Average grain size (micron) 25 8 4
Young’s modulus (GPa) 9.7 10.1 10.9
Compressive strength (MPa) 79 106 135
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reaction occurs, which leads to the formation of the austenite grains. At this point, the radius 
of the nodules is already equal to approximately 90% of its final value [32]. As cooling con-
tinues in the austenitic field, the nodules expand another 5%, while the surrounding metallic 
phase undergoes thermal contraction. Nevertheless, it seems reasonable to assume that during 
this stage the volume mismatch is compensated by plastic flow of the soft austenitic matrix, 
and any tension is released almost instantaneously due to its very low flow stress, probably in 
the order of a few MPa [41].

The situation becomes more complicated when the eutectoid interval is reached, as on the 
one hand the matrix transforms into ferrite, hence increasing in volume and creating more 
space for the graphite particles, but on the other hand the nodules expand too, due to carbon 
migration from the metallic phase. It is clear that modeling the complex thermo-mechanical 
interactions between all phases involved would in principle require simulating the nucleation 
and growth of the single ferritic grains. As the interest here is only in capturing the global 
effect, a simplified analysis is performed, as schematically shown in figure 4(a). It is assumed 
that the eutectoid reaction takes place simultaneously throughout the matrix at a fixed point, 
which may correspond to either the upper TU or the lower TL eutectoid temperature.

In the first case, the austenite containing 0.5 wt% carbon transforms into supersaturated 
ferrite at TU, with a resulting volume expansion ΔV. Subsequently, the ferrite gradually 
releases the excess of carbon until the equilibrium concentration of 0.02% is achieved at TL. 
Meanwhile, the nodule radius increases of approximately 5%, which is far more than the ΔV 
associated with the austenite–ferrite transformation. Therefore, no ‘clearance’ between the 
nodule and the matrix remains at the end of the process.

Conversely, in the second case the austenite cools down without transforming from TU to 
TL, gradually loosing carbon. During this stage, the nodule expands to almost its final size, 
promoting plastic flow in the matrix. This should not look unrealistic, as Hervas et al [13] have 

Figure 3. Schematic slice of the ternary Fe–C–Si phase diagram for a silicon 
concentration of 2.4 wt%. Data taken from [42].
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shown that at temperatures close to the eutectoid transformation the compressive strength of 
the graphite particles is much larger compared to that of the matrix. Subsequently, the low-
carbon austenite transforms into ferrite at TL with an associated ΔV.

The main difference between the two scenarios just described is that in the first one no 
differential expansion between the nodules and the matrix remains, whereas in the second 
one a differential volume change is produced. This is equal to the ΔV of the austenite–ferrite 
transformation, which, for pure iron, is of approximately 1% at 910 °C [43]. The main duc-
tile iron allying elements, namely C and Si, affect this volume variation in two ways: by 
increasing/decreasing the transformation temperature and by changing the lattice parameter 
to a different extent in the ferrite and in the austenite. As explained by Cockett and Davis [44], 
silicon increases the transformation temperature, therefore reducing the associated ‘jump’ 

Figure 4. (a) Schematic of the volume variations occurring during the eutectoid 
transformation. (b) Specific volume as a function of temperature for pure iron [44], with 
indication of the effects of C and Si. Double arrows indicate a stronger effect compared 
to single arrows.

Figure 5. (a) CTE for graphite [47] and SGI matrix [48]. (b) Equivalent CTE calculated 
for the nodule model with different number of internal conical sectors subjected to free 
cooling without external matrix constraints. The error bars indicate the spread due the 
variation in the surface layer Young’s modulus between 9.7 and 10.9 GPa. The fact that 
they almost collapse to a point indicates the reduced influence of the former quantity 
on the results.

T Andriollo et alModelling Simul. Mater. Sci. Eng. 24 (2016) 055012



9

between the specific volume curves shown in figure 4(b). At the same time, it also promotes 
a larger lattice contraction in ferrite than in austenite: both factors contribute to reduce ΔV. 
Carbon instead generates exactly the opposite effect. Cockett and Davis measured ΔV for an 
iron alloy with 0.005 wt% C and increasing Si content, concluding that the primary variable 
controlling ΔV was the transformation temperature. For instance, with 1.45 wt% Si, the phase 
change occurred at 1020 °C with a ΔV of 0.79%, which is exactly the value that may be cal-
culated from the curves for pure iron of figure 4(b) assuming the transformation to take place 
at the same temperature. Hence, assuming TL to be equal to 700 °C for the case at hand, ΔV 
may be estimated as 1.4%.

In conclusion, according to the first hypothesis no differential expansion would take place 
during the eutectoid transformation, whereas according to the second one the matrix would 
expand locally 1.4% more than the nodules in volume. As what happens in reality is prob-
ably something in between the two extremes, an average value of 0.7% is considered in the 
calculations.

Finally, from 700 °C down to room temperature the carbon mass contained in the nodules 
is assumed to remain constant. On the other hand, thermomechanical interactions with the 
matrix still arise from the mismatch in the values of the thermal expansion coefficient (CTE), 
reported in figure 5(a). Regarding this point, the data for the matrix are taken equal to those 
of a commercial grade of electrical steel, due to close similarities in the chemical composition 
[45]. As no information is available for the CTE of the nodules’ surface layer, an average value 
among the three principal graphite directions is considered.

3.4. Mechanical loading: elastic homogenization

In the following, a suitable elastic homogenization procedure is described in order to verify 
the consistency of the proposed micromechanical model with the room-temperature behavior 
of ductile iron at the macro scale. Between any two equivalent points x and +x d lying on 
opposite faces of the unit cell of figure 2(b) and separated by the characteristic periodic length 
d, the following periodic boundary conditions are applied:

( ) ( )
( ) ( )

ε+ = + ⋅
+ = −

u x d u x d
t x d xt
 (1)

where u and t denote displacement and surface traction and the 2nd order tensor ε represents 
the average of the infinitesimal strain over the entire cell volume. A detailed discussion of the 
implementation of the conditions (1) in the software ABAQUS is given by the authors in [37].

A linear elastic anisotropic relation between volume averages of the stress and strain fields 
over the unit cell is sought in the form:

Cσ ε= : (2)

where C is the 4th order effective stiffness tensor. Its components are determined by prescrib-
ing in sequence six independent loadings in the form ( ) ( )ε ε…, ,1 6  according to expression (1), 
and recording the resulting average stresses ( ) ( )σ σ…, ,1 6 . The linear system of equations gen-
erated in this way can then be solved for the effective elastic constants. Once C is determined, 
values for the effective bulk k  and shear μ  moduli are obtained as:

μ=
|

|
=

|

|

C S
S S

C D
D D

k
1

3
,

1

2
  (3)

T Andriollo et alModelling Simul. Mater. Sci. Eng. 24 (2016) 055012



10

where S and D are the spherical and deviatoric projection tensors [46], which form an orthogo-
nal basis for isotropic 4th order tensors, and ⋅ |⋅  indicates the associated scalar product. 
Conversion to effective Young’s modulus  E  and Poisson’s ratio ν  is performed via the basic 
relations:

( )
μ
μ
ν

μ
μ

=
+

=
−
+

E
k

k

k

k

9

3
,

3 2

2 3
 (4)

Values calculated from the latter expressions can be directly compared with those determined 
experimentally by means of e.g. uniaxial tensile tests, provided that the anisotropy index [14]:

μ=
− | −

|
= +

C C C C

C C
C S D

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟I k, 3 2a

iso iso 1 2

iso 

/

 (5)

is � 1. Among all simulations performed, the maximum recorded value of Ia was only 1.5 %. 
This indicates that the unit cell model is suitable to represent the well-known isotropic elastic 
behavior of ductile iron at the macro-scale to a sufficient degree of approximation.

An important observation is to be made regarding the experimental values to be compared 
with those delivered by equation (4). As shown by Sjögren and Svensson [6], the graphite 
morphology strongly affects the macroscopic Young’s modulus of SGI, meaning that a cor-
rection for the non-perfect spherical nodule shape of the material under investigation is neces-
sary. Löhe et al [38] thoroughly investigated this issue for grades of composition similar to 
the SGI considered in the present work and same graphite volume fraction, 11.5%. From their 
findings, it seems that a limit value of approximately 175  ±  2 GPa is attained for SGI with 
perfect spherical nodules. As this is also the value suggested in [2], it will be taken as refer-
ence value through the rest of the analysis.

4. Results

4.1. Equivalent CTE for the nodules

A preliminary set of finite element simulations have been performed considering one nodule 
alone, without the presence of the surrounding matrix. Figure 5(b) shows numerical values for 
an equivalent CTE calculated on the basis of the average volume contraction during cooling 
according to the formula:

=
V

V

T
CTE

1

3

d

d
eq (6)

By comparing with figure 5(a), it may be noticed that the average thermal contraction of the nod-
ule is always smaller than that of the ferritic matrix over the entire temperature range examined, 
independently of the number of sectors. From a physical point of view, this indicates the existence 
of a driving force for the formation of local residual stresses during the manufacturing process, 
as the free shrinkage of the ferrite is hindered by the presence of the embedded graphite particles.

In addition, it can also be observed in figure 5(b), that the larger the number of conical 
sectors, the smaller the corresponding equivalent CTE. This is because the graphite in the 
core region contracts almost only in the c-direction, which is oriented approximately radi-
ally. However, the contraction towards the nodule center is opposed by the high in-plane 
stiffness of the graphite platelets with different orientation located in the neighboring sectors. 
Obviously, this effect becomes more pronounced when the distance between adjacent parti-
tions is decreased, or, equivalently, the number of sectors is increased. When this number 
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tends to infinity, the nodule core behaves as a sort of shell with high tangential stiffness, sub-
jected to a negative internal pressure which builds up progressively as the temperature dimin-
ishes. In section 5, the consequence of this particular loading configuration will be discussed 
more thoroughly in relation to some experimental findings.

4.2. Thermo-elastic properties at the macro scale

A fundamental requirement for the nodules model is the capability of providing properties 
at the macro scale which are in agreement with experimental measurements for ductile iron. 
As visible in figures 6(a) and (b), the elastic homogenization procedure of the 3D unit cell 
provides effective values for Young’s modulus at room temperature and average CTE in the 
interval 700 ÷ 20 °C which are in excellent agreement with experiments, according to the 
assumed range 9.7–10.9 GPa for the nodule surface layer stiffness. Within this range, it may 
also be seen from the error bars that a variation in the number of conical sectors from a mini-
mum of 8 up to plus infinite produces a change in the effective Young’s modulus of 2–3 GPa. 

Figure 6. Effective SGI thermo-elastic properties predicted by the model, as a function 
of the superficial nodule layer Young’s modulus ((a) and (b)) and thickness ((c) and (d)). 
In ((a) and (b)) the thickness is fixed at 10% of the nodule radius, whereas in ((c) and 
(d)) the Young’s modulus is set at 10 GPa. In all plots the error bars denote the spread 
due the variation in the number of conical sectors contained in the nodule core region. 
The hatched intervals indicate reference exp. values for the SGI grade considered; the 
avg. CTE interval is defined by the values given in [2] and [49].
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This is related to the increment in the nodule core stiffness associated with the tendency of 
the graphite platelets to form a rigid shell as the number of sectors increases, as explained 
previously. Regarding the third and last effective isotropic thermo-elastic quantity, namely 
Poisson’s ratio, calculated values turn out to be always in the range 0.278–0.280. Again, there 
is a very good match with experimental measurements, which have been reported between 
0.275 and 0.280 according to different sources [2, 49]. Finally, figures 6(c) and (d) provide 
an indication of the sensitivity of the predicted effective elastic properties to variations of the 
surface layer thickness, for the particular choice made of the other model parameters. It is seen 
that in order to match the experimental Young’s modulus, the former quantity has to have a 
value of approximately 10% the nodule radius, which is in agreement with the TEM observa-
tions and thermodynamic calculations discussed in section 2.

4.3. Residual stresses

Having verified the consistency of the proposed model with the macroscopic thermo-elastic 
properties of ductile iron, the attention is now turned to the residual stress prediction at the 
microscopic scale. In general, it is observed that very large hoop stresses are generated during 
cooling at the extreme outer periphery of the nodule core, as visible in figure 7, due to the high 
in-plane stiffness of the graphite platelets in that region, which strongly opposes the compres-
sive action generated by the matrix. In particular, extremely high compressive stresses, above 
1 GPa, are recorded at the points of contact between two or more conical sectors. These values 
are probably unrealistic, as local buckling and/or fracture of the single platelets are likely 
to occur. Nevertheless, as inelastic deformation is not considered in the present model, the 
stresses arising at these concentration points propagate through the nodule surface layer into 
the matrix. In order to diminish their unphysical impact on the overall analysis, results for 
the residual stresses in the matrix are presented not in terms of the maximum stress recorded, 
but by using an average criterion. More specifically, two average values are considered: one 
related to a fictitious shell enveloping the nodule and another one associated with the unit cell 
external boundary layer, both having a thickness of 10% the nodule radius. They are assumed 
to be representative of the overall stress state in the matrix regions closest to and most distant 
from the nodule respectively. In this way, a global indication of the residual stress gradient 
existing in the metallic phase of ductile iron can be obtained.

Figure 7. (a) Radial, (b) circumferential and (c) meridional residual stress components 
on the outer part of a nodule core with 8 internal sectors, for a surface layer Young’s 
modulus of 10 GPa and thickness of 10% the nodule radius. The spherical coordinate 
system used has the origin in the nodule center and the zenith direction points upward. 
Units are Pa. The upper contour limits have been artificially reduced to avoid the 
spurious influence of a few elements close to the contact points between 4 sectors.
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From an analysis of the related data reported in figures 8(a) and (b), two major observations 
can be made. First of all, the mean von Mises stress is approximately one order of magni-
tude larger close to the nodule than at the unit cell boundary, but, at the same time, the mean 
hydrostatic stress shows almost negligible variations between these two different regions. The 
reason is that near the interface the matrix is compressed along the nodule radial direction, 
while it is stretched tangentially, hence generating stress components which are primarily 
deviatoric. Accordingly, a steep gradient in the von Mises stress is recorded. In addition, a 
strong influence of the nodule core partitioning is observed: it appears that by varying the 
number of conical sectors from 8 to 48, a 50% increment in the values of both deviatoric and 
hydrostatic mean stresses is obtained, followed by another 50% increase when their number 
tends to infinite. This effect is simply due to the increased CTE mismatch between the matrix 
and the nodule which arises from the reduced thermal contraction of the latter one, already 
pointed out in connection with figure 5.

Figure 8. Mean hydrostatic and von Mises residual stresses in the matrix as a function 
of the number of conical sectors in the nodule core ((a) and (b)) and the graphite particles 
volume fraction ((c) and (d)). In ((a) and (b)) the volume fraction is 11.5%, whereas in 
((c) and (d)) the number of sectors is 8. The nodule-adjacent region is identified as the 
matrix shell enveloping the nodule with a thickness of 10% its radius. Similarly, the 
outer boundary region corresponds to the 10% thick unit cell boundary layer. In all plots 
the error bars indicate the spread due the variation in the surface layer Young’s modulus 
between 9.7 and 10.9 GPa.
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Finally, figures 8(c) and (d) show how the mean residual stresses in the matrix are affected 
by a variation of the graphite volume fraction within the range 7.0–13.0%. This interval is 
representative of values found in typical grades of ductile iron, obtained by minor changes in 
the composition, solidification parameters, etc. Not surprisingly, it is seen that by increasing 
the nodule relative volume, the surrounding stress field increases accordingly. Nevertheless, 
while the other mean stress quantities almost double throughout the considered interval, the 
mean von Mises stress around the nodule, which is by far the most critical in terms of absolute 
values, exhibits only a modest 3% variation.

5. Discussion

5.1. Local residual elastic strains: predictions versus experiments

The results presented in figure 8 suggest that local residual stresses of magnitudes close to the 
matrix yield strength might develop around the nodules during manufacturing. To verify this, 
experimental investigations are currently being carried out to determine the lattice parameter 
of the neighboring ferritic grains using the synchrotron x-rays technique described in [23], 
and will be presented in detail in a future work [50]. In the context of the present paper, it is 
important to say that a preliminary measurement of the radial residual elastic strain comp-
onent in the matrix showed a continuous decrease in its compressive magnitude with increas-
ing distance from the nodule, as predicted by the numerical model, even though the simulated 
gradients and absolute values seemed somewhat overestimated by a factor 2.

Considering the thermo-elastic nature of the proposed anisotropic model for the nodules 
and the limited mechanical data available, which makes any inelastic description out of reach, 
the good agreement between theoretical predictions and measurements is surprisingly good. 
A possible explanation is that inelastic deformation does take place in the outer part of the 
nodule core during solid-state cooling, but it somehow remains localized to a region of limited 
thickness, without propagating to the entire graphite particle. In this way, the pressure exerted 
by the surrounding matrix is partially relieved, and the residual gradients smoothed out, but 
at the same time the overall material elastic stiffness remains almost unaffected. This hypoth-
esis could justify the over prediction of the residual elastic strains, while at the same time 
explaining the excellent agreement obtained in terms of SGI macroscopic elastic properties 
(see figure 6). In addition, one should keep in mind that other important sources of error are 
present. In fact, a quite rough approximation of the eutectoid transformation is considered in 
the analysis, and any kind of high-temperature creep mechanism in the matrix, which could 
partly relieve the elastic strains, is ignored. Moreover, the anisotropy of the single ferritic 
grains is also neglected. Given the microscopic scale considered, including in the simulation 
some crystallographic information of the region around the nodule would probably improve 
the results. Finally, the periodic unit cell approach also constitutes a limitation, especially in 
relation to the accuracy of the calculated local stress and strain fields.

5.2. Link with nodules failure modes

As just mentioned, at the outer periphery of the nodules’ core the predicted stress state is 
likely inaccurate, due to the probable occurrence of inelastic deformation. Nevertheless, out-
side that region the global pattern might still be quite trustworthy, at least from a qualitative 
point of view. Therefore, it makes sense to try to use such information to shed light on some 
typical failure modes observed experimentally for the graphite particles.
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In the series of works cited in section 2, Di Cocco et al described the presence of an internal 
form of damage in the nodules, which was referred to as ‘disgregation’ [33]. It was character-
ized by the formation of cracks originating from the center of the particles and propagating 
radially. The fact that this type of failure was detected during both tensile and fatigue testing 
suggests that it is, to a certain extent, independent of the specific loading condition applied. 
Rather, it could be related to the presence of a specific residual stress state in the nodules, 
representing the main driving force for fracture.

More specifically, it was observed during tensile testing of SGI that the nodules tend to 
separate from the matrix [9], hence becoming mechanically ‘isolated’. Nevertheless, a non-
negligible stress field probably still exists inside them, associated with the anisotropic thermal 
deformation of the graphite occurring during manufacturing. As explained in section 4.1, the 
free contraction in the c-direction of the platelets located in a given sector is hindered by the 
presence of the adjacent partitions with different orientations. This implies that during cooling 
tensile stresses locally develop perpendicularly to the graphite platelets, as shown in figure 9(a). 
The predicted stresses are particularly high in the center of the nodule and along the interfaces 
between different sectors, where, additionally, a weaker mechanical bonding probably exists. It 
is not difficult to realize that the local change in orientation of these tensile forces could have a 
‘tearing’ action in the latter regions, at the same time promoting the formation of a ‘void’ in the 
center of the particle. As long as a nodule remains fully embedded in the ferrite, the superposed 
compressive action of the matrix probably prevents any crack opening, but when debonding  
begins, the probability of having this ‘disgregation’ mechanism increases. By comparing  
figure 9(b), which schematically shows the expected failure mode for a debonded particle, with 
figure 9(c), taken from the work of Di Cocco et al support for the argument is found.

Another peculiar form of damage seems to be revealed by Cooper et al [51], associated 
with radial cracks located on the surface of nodules which had debonded from the matrix 
during tensile testing. The depth of these cracks, visible in figure 10(a), was approximately 
of 10% the nodule radius, suggesting that they were fully localized in the microcrystal-
line surface layer. Figures 10(b) and (c) present the distribution of the circumferential and 
meridional residual stress components on the surface of a nodule with 48 internal sectors, 
subjected to cooling without the presence of the surrounding matrix, to simulate the elastic 
deformation existing in a debonded particle at room temperature. It is seen that the stress 
pattern is highly affected by the partitioning of the inner core, and high tensile stresses are 
predicted along the continuation of the junctions between the conical sectors. Clearly, these 

Figure 9. ‘Disgregation’ mechanism in the bulk of a nodule. (a) Stress component 
locally orthogonal to the graphite platelets, over the middle section of a nodule core 
with 8 sectors, in Pa, after cooling neglecting the presence of the SGI matrix. (b) 
Schematic of the expected failure mode. (c) Radial cracks propagating from the nodule 
center after tensile loading in a partially debonded nodule, reprinted from [33] with 
permission from Elsevier.
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could play an important role in the formation of the type of cracks observed in the work of 
the previous authors.

Finally, it should also be remarked that while performing heat treatment, Monchoux et al 
[25] detected preferential radial diffusion paths in the nodule surface layer, coinciding with 
the continuation of the boundary between sectors. This is also in agreement with the discus-
sion above, as areas subjected to high tensile stresses are known to favor atom diffusion.

5.3. Potential consequences of the nodule-matrix interaction

In this last section, the thermo-mechanical interaction arising between the nodules and the fer-
ritic matrix during manufacturing is discussed in relation to potential changes in the material 
properties at both the macro and micro scale.

5.3.1. Ductile iron mechanical performance. The present results indicate that the graphite 
particles drive the formation of high deviatoric residual stresses in the surrounding matrix 
which strongly increase in magnitude as the number of conical sectors grows. Considering 
the model overestimation, discussed in section  5.1, a variation of at least 50 MPa in their 
magnitude close to the nodule is expected when the number of core partitions is varied from 
8 to 48. This is approximately 1/3 of the maximum stress amplitude that can be applied to 
the SGI grade under investigation in order to achieve a target fatigue life of 2.5 million cycles 
under axial loading [52]. An obvious question then arises with regard to the factors control-
ling such number. Intuitively, one would expect that larger nodules contain a higher number of 
partitions. This seems to find confirmation in several experimental works on the subject [27, 
29, 30, 53], where some sectors appear to branch at a certain distance from the nodule center, 
even though this could be an artificial effect due to sectioning of a 3D geometry with a plane. 
However, if confirmed, it would suggest the presence of a material size-effect, i.e. a non-scal-
ing relation between particle size and magnitude of the surrounding residual stresses, which 
could provide additional justification for the observed link between SGI fatigue resistance and 
dimensions of the graphite spheroids [54, 55]. Further experimental investigations would be 
useful to verify this potential connection and its relative importance compared to other factors.

5.3.2. Nodules’ internal structure. During solid-state cooling the matrix exerts compressive 
stresses on the nodules, which can realistically be of up to 100–200 MPa. These values are 

Figure 10. (a) Micrograph of the surface layer of a debonded nodule, reprinted from [51] 
with permission from Elsevier. The red arrows mark radial cracks. (b) Circumferential 
and (c) meridional normal residual stress components on the surface of a nodule with 
48 internal sectors, after cooling neglecting the surrounding matrix. In ((b) and (c)) a 
spherical coordinate system is used, where the origin is the nodule center and the zenith 
direction points upward. Units are Pa.
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not too far from the compressive strength of the isotropic graphite which the nodules’ surface 
layer is assumed to be made of, reported in table 2. Moreover, the actual strength is probably 
higher, because compression tests are usually performed without lateral confining pressure, 
whereas in ductile iron the nodules are confined in all directions by the presence of the matrix. 
From this point of view, it might be that the variation in the graphite crystal structure between 
the surface and the bulk of the nodules be related to the increasing pressure exerted by the 
matrix during cooling. Oku et  al [56] investigated the effects of compressive pre-stresses 
on fine-grain isotropic graphite, and found that upon subsequent compression the material 
Young’s modulus was reduced, whereas its strength was increased. The changes were more 
pronounced at high temperatures and were connected to rotation and cracking of the single 
crystallites, which tended to assume a low-energy configuration with the stiff basal planes 
oriented perpendicularly to the applied stress. These findings suggest that something similar 
could happen during the manufacturing process of ductile iron. As long as the nodules are not 
subjected to significant external pressure, i.e. until the end of solidification, graphite keeps 
growing in conical sectors. However, when tangential stresses start building up in the outer 
nodule layers due to contraction of the surrounding solid matrix, this growing condition is no 
longer energetically favorable. As a consequence, smaller crystallites with different orienta-
tion form, hence generating the surface layer observed by the authors cited in section 2.

6. Conclusions

The present paper proposes a new thermo-elastic anisotropic micro-mechanical model for the 
spheroidal graphite particles contained in ductile iron. Its main features are:

  it is consistent with the most recent TEM investigations of the nodules’ internal structure;
  it yields homogenized values for the ductile iron elastic properties at the macro scale in 

agreement with experiments;
  it describes correctly the overall local residual elastic strain pattern existing in the ferritic 

matrix after manufacturing, whereas absolute values seem to be somewhat over predicted, 
but within a factor 2 only. A reason for such overestimate is probably the inelastic defor-
mation which is likely to occur in the outer part of the nodule internal core, due to the 
formation of high hoop stresses during solid-state cooling.

In addition, the proposed model seems to provide theoretical explanation for several exper-
imental facts. First of all, it gives reason for some typical failure modes reported in literature for 
the graphite particles. Secondly, it predicts higher stresses in the matrix for nodules with a larger 
number of internal partitions. If the latter quantity were found proportional to the particles’ 
dimension, as experiments seem to suggest, then a material size-effect would arise, which could 
provide additional justification for the observed link between SGI fatigue resistance and nod-
ules’ dimensions. Finally, the different graphitic structure of the superficial layer of the nodules 
might be explained by the observed tendency of the graphite crystallites to rotate and fragment 
under compressive forces, which are demonstrated to be present during solid-state cooling.
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Abstract 

In this paper a thorough analysis of the equivalent indenter concept applied to nano-indentation is carried out, 

motivated by the fact that previous works in the field have not considered the requirement of a consistent relation 

between contact depth and projected contact area. Dimensional analysis is initially used to prove that the shape 

of the axisymmetric equivalent indenter can be regarded as a material property, provided that size-effects are 

negligible. Subsequently, it is shown that such shape can effectively be employed to describe the nano-

indentation unloading stage by means of Sneddon’s elastic solution which is formally valid only for indentation 

into a flat surface. This allows for formulating the problem of extracting Young’s modulus from the unloading 

curve as an optimization problem. However, it is proved that the latter does not have a unique solution, due to 

the particular mathematical structure of the underlying equations; hence, additional constraints are needed to set 

restrictions on the admissible equivalent indenter shapes. An example of such constraint is hidden in some 

apparent inconsistencies of the well-known Oliver-Pharr method, which is demonstrated to be based on an 

equivalent conical indenter whose semi-apical angle depends on the ratio between residual and total penetration. 

Specifically, this angle tends to 90 degrees when the material exhibits extensive inelastic deformation, whereas it 

reduces to the one characteristic of the real indenter for a perfectly elastic material. This provides a new physical 

explanation for the relatively good accuracy of the method even in presence of a non-negligible residual contact 

impression on the sample. 
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1. Introduction 

Instrumented nano-indentation is a well-established technique which is widely used for probing mechanical 

properties of materials at length scales in the sub-micrometer range. Its high scientific relevance combined with 

a relatively simple experimental setup have attracted the attention of many researchers in the last decades, and 

several dedicated review papers exist which offer extensive accounts of the subject, e.g. (Fischer-Cripps, 

2006)(Oliver and Pharr, 2004)(Cheng and Cheng, 2004).  

In essence, a nano-indentation test consists in pressing a 3-sided pyramidal Berkovich indenter onto the surface 

of the sample under investigation and recording the resulting applied force vs penetration curve (figure 1-a). The 

main difference compared to traditional indentation techniques performed at the micron or millimeter scale is 

that the area of the residual impression left on the material is normally not measured, due to its much reduced 

size. For this reason, mechanical properties are usually estimated on the basis of the loading and unloading 

characteristics alone. Concerning this, a number of methods have been proposed so far which allow deriving 

parameters related to elastic and plastic material behavior, fracture toughness, creep, impact resistance, etc., a 

full list of which has recently been given in a comprehensive monograph (Fischer-Cripps, 2011). 

 

(a) 
 

(b) 

Figure 1: Nano-indentation test. (a) Recorded load vs penetration curve. (b) Definition of the main geometrical quantities 
for axisymmetric conical indentation: 𝛼𝛼 is the indenter semi-apical angle, ℎ is the total indenter penetration, ℎ𝑐𝑐  is the 
contact depth and 𝑎𝑎 is the contact radius. 
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Focusing in particular on the determination of the isotropic elastic constants from nano-indentation data, the 

main analysis procedures available at the present time can be roughly classified into three distinct categories. 

The first one comprises methods which make use of additional experimental quantities, for instance 

measurements of the residual surface profile using the atomic force microscope (Li et al., 2002)(Mata and 

Alcala, 2003) or of the contact area at maximum load using electrical resistance techniques (Poon et al., 2008a). 

Despite delivering very precise results, the application of these procedures has been limited somehow by the 

much higher degree of experimental complexity they involve, which seems in contrast to the conceptual 

simplicity of a nano-indentation test. In order to keep the experimental burden to a minimum, a second group of 

methods has been devised which only require knowledge of the force-penetration curve. The latter is analyzed 

on the basis of a set of dimensionless functions which are constructed from a large number of finite element 

simulations of the indentation process, as done in e.g. (Dao et al., 2001)(Cheng and Cheng, 1998)(Cheng et al., 

2002). An intrinsic limitation in this case is the range of validity of the derived dimensionless relations, which 

are typically obtained under specific assumptions for the material inelastic behavior during loading. As a 

consequence, they should be used with caution for materials whose constitutive response is either completely 

unknown or remarkably different from the one employed in the numerical simulations. Finally, the third 

category refers to methodologies which rely on exact analytical solutions to the so-called Boussinesq’s problem 

of indentation into an elastic half-space (Boussinesq, 1885). The well-known technique proposed by (Doerner 

and Nix, 1986) and later extended and improved by (Oliver and Pharr, 1992) belongs to this group, and it is still 

widely adopted in the scientific community for its simplicity combined with relatively good accuracy. 

How purely elastic solutions developed for axisymmetric indenters (Love, 1939)(Harding and Sneddon, 

1945)(Sneddon, 1948)(Segedin, 1957)(Sneddon, 1965) can effectively be used to analyze nano-indentation data, 

which is normally affected by an appreciable amount of inelastic deformation, is a matter which indeed deserves 

a special comment. The very first point to note is that the Oliver-Pharr method considers only the unloading part 

of a nano-indentation test, which is assumed to be an entirely elastic process. Furthermore, the force-penetration 

curve produced by the pyramidal Berkovich indenter is supposed to be the same as that generated by a conical 

indenter with the same area-to-depth ratio. Extensive finite element calculations and experimental investigations 

have confirmed that these two assumptions are either fully satisfied, or lead to negligible errors in almost all 

practical cases (Dao et al., 2001)(Pharr and Bolshakov, 2002)(Poon et al., 2008a)(Sakharova et al., 2009).  

Besides the points just discussed, another critical aspect exists which relates to the applicability of solutions 

obtained for indentation into a perfectly flat half-plane to the description of the unloading stage, which involves 

contact with a surface containing a residual impression. In principle, this particular contact condition can be 

described by the equivalent indenter concept (Bolshakov et al., 1995), whose profile is determined pointwise by 
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the vertical distance between the real indenter and the profile of the sample surface after unloading, as 

schematically shown in figure 2. That is, the elastic solutions previously mentioned can be effectively used to 

model the unloading stage provided that the equivalent indenter geometry is entered into the equations.  

According to (Woirgard and Dargenton, 1997)(Woirgard et al., 1998a)(Pharr and Bolshakov, 2002), the Oliver-

Pharr method is intrinsically based on the equivalent indenter concept. This justifies the relative good accuracy 

of the method, achieved even when the residual impression left on the sample is actually not negligible. In 

particular, the dependency on the equivalent geometry is reflected in the value of the parameter 𝜖𝜖 appearing in 

the formula  

 ℎ𝑐𝑐 = ℎ − ϵ
𝑃𝑃
𝑃𝑃′

 (1) 

which allows calculating the contact depth ℎ𝑐𝑐  from knowledge of the applied load 𝑃𝑃 , the total downward 

displacement ℎ of the indenter tip relative to the undeformed sample surface and the slope 𝑃𝑃′ of the unloading 

curve. Figure 1-b provides the geometrical definition of these quantities. 

It is the present authors’ opinion, however, that there are two aspects of the Oliver-Pharr method which do not 

appear to be fully consistent with the equivalent indenter concept, at least apparently. The first one is the way the 

projected contact area 𝐴𝐴 (equal to 𝜋𝜋𝑎𝑎2 in figure 1-b) is estimated after ℎ𝑐𝑐 has been calculated from equation (1). 

Indeed, an expression based on the real indenter geometry is assumed to hold, which, neglecting tip rounding 

effects, has the form 

  𝐴𝐴 = 𝐴𝐴𝑟𝑟(ℎ𝑐𝑐) = 𝜋𝜋(tan(𝛼𝛼)ℎ𝑐𝑐)2 (2) 

where 𝛼𝛼 = 70.30  is the semi-apical angle of the conical punch with the same area-to-depth ratio of the 

Berkovich indenter. Within the equivalent indenter framework, one would expect the contact area to be 

 

 
(a)                                                                   (b) 

Figure 2: Definition of the equivalent indenter concept. (a) Real conical indenter after unloading. (b) Equivalent indenter 
geometry. 
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determined by means of the relation 𝐴𝐴 = 𝐴𝐴𝑒𝑒𝑒𝑒(ℎ𝑐𝑐) proper to the equivalent indenter instead. Clearly, it should be 

recognized that the relation 𝐴𝐴 = 𝐴𝐴𝑒𝑒𝑒𝑒(ℎ𝑐𝑐) is generally unknown, as can be realized easily from figure 2. In fact, it 

depends on the shape of the residual impression left on the sample, which in turn is determined by the 

mechanical properties of the material under investigation.  

The second aspect of the Oliver-Pharr method which is seemingly in contrast to the equivalent indenter concept 

is the particular value of ℎ used in equation (1). In fact, as previously said, ℎ is assumed to represent the total 

downward displacement of the indenter tip. At first glance, according to the geometrical construction of figure 2 

it would appear more logical to assume ℎ to represent only the recoverable part of the penetration, i.e. the total 

minus the residual. In the standard Oliver-Pharr procedure, equation (1) is evaluated only at maximum load. 

Nevertheless, by assuming the equivalent indenter concept to hold, the elastic relations describing the unloading 

stage should be satisfied for any value of the load, and so should equation (1). However, it is easily seen that 

when the indenter separates from the sample at the end of the unloading stage, meaning that ℎ𝑐𝑐 = 0, ℎ is equal to 

the residual penetration ℎ𝑝𝑝 indicated in figure 1-a. But then, to satisfy the equation, some load 𝑃𝑃 ≠ 0 should still 

be transmitted across the contact surface, which is non-physical.  

For the sake of clarity, it is useful to say at this point that with a value for the projected contact area at hand, the 

reduced Young’s modulus 𝐸𝐸∗ can be found via the well-known relation between 𝐴𝐴, 𝐸𝐸∗ and 𝑃𝑃′ as 

 𝐸𝐸∗ =
√𝜋𝜋
2𝛽𝛽

𝑃𝑃′

√A
 (3) 

where 𝛽𝛽 is a correction factor which normally takes the value of ≈ 1.05 (Oliver and Pharr, 2004). Subsequently, 

the standard Young’s modulus 𝐸𝐸 can be eventually calculated on the basis of the relation 

 𝐸𝐸∗ =
𝐸𝐸

1 − 𝜈𝜈2
 (4) 

assuming that the Poisson’s ratio 𝜈𝜈 of the material being indented is known. 

In light of the arguments put forth so far, it appears that the Oliver-Pharr method does not seem to be fully 

consistent with the equivalent indenter concept. This raises two questions. First of all, what would happen if a 

fully consistent method were used? Would it provide better results? Secondly, how to explain the relatively good 

accuracy of the Oliver-Pharr method then, since it does not satisfy the equivalent indenter assumptions? In other 

words, why does this method work anyway? 

In order to clarify these points, it is the aim of the present paper to re-examine the application of the equivalent 

indenter concept to the Young’s modulus estimation from nano-indentation unloading curves by means of classic 

analytical solutions to the Bousinnesq’ problem. Initially, the latter will be reviewed and re-formulated at the 

same time in a more convenient dimensionless form. Subsequently, the validity of the equivalent indenter 
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concept for the description of the contact condition with a deformed surface will be tested, emphasizing the level 

of accuracy which can be possibly obtained. After that, the inverse problem (Dao et al., 2001) will be defined 

and critically analyzed within a rigorous and consistent framework. Finally, solution strategies will be discussed, 

eventually establishing a link with the traditional Oliver-Pharr method and showing that its apparent 

inconsistencies are in reality associated with a concealed, convenient choice of the equivalent indenter profile. 

2. Theory 
In this section, the most common solutions available in the literature for axisymmetric indentation into an 

isotropic elastic half-space are presented and reformulated for convenience in a dimensionless format. The main 

geometrical parameters considered are shown in figure 1-b. 

2.1 General solution by Sneddon 

Let us assume that the axisymmetric profile of a rigid indenter is given by a smooth monotonic function 

 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) ⇒ 𝑦𝑦 = 𝑓𝑓(𝑎𝑎𝑥𝑥�) (5) 

where 𝑎𝑎 is the contact radius and 𝑥𝑥� = 𝑥𝑥/𝑎𝑎 is a normalized x-coordinate. According to (Sneddon, 1965), the load 

𝑃𝑃 and penetration ℎ corresponding to a certain value of 𝑎𝑎 are given by  

 ℎ = �
𝑓𝑓𝑥𝑥�′(𝑎𝑎𝑥𝑥�)
√1 − 𝑥𝑥�2

𝑑𝑑𝑥𝑥�
1

0
,           𝑃𝑃 = 2𝐸𝐸∗𝑎𝑎�

𝑥𝑥�2𝑓𝑓�̅�𝑥′(𝑎𝑎𝑥𝑥�)
√1 − 𝑥𝑥�2

𝑑𝑑𝑥𝑥�
1

0
 (6) 

where the symbol 𝑓𝑓𝑥𝑥�′ indicates the derivative of 𝑓𝑓 with respect to 𝑥𝑥� 

 𝑓𝑓𝑥𝑥�′ =
𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥�

=
𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥

𝑑𝑑𝑥𝑥
𝑑𝑑𝑥𝑥�

= 𝑓𝑓′𝑎𝑎 (7) 

and 𝐸𝐸∗ is the reduced Young’s modulus defined in equation (4). It is worth mentioning that if the indenter were 

not perfectly rigid, equation (4) could be easily modified to include an additional dependency on the elastic 

constants of the latter, as discussed in (Fischer-Cripps, 2006).  

The normalization with respect to the contact radius is somewhat inconvenient, as this quantity is usually an 

unknown for the problem. Therefore, it is useful to introduce a normalization based on a length scale which is 

directly available from an indentation test, for instance the maximum penetration ℎ𝑚𝑚, which will be indicated 

with the symbol ( � ). Accordingly, relations (6) take the form 

 ℎ� = �
𝑓𝑓′(ℎ𝑚𝑚�̅�𝑥)

�1 − (�̅�𝑥/𝑎𝑎�)2
𝑑𝑑�̅�𝑥

𝑎𝑎�

0
,           𝑃𝑃 = 2𝐸𝐸∗ℎ𝑚𝑚2 �

�̅�𝑥2𝑓𝑓′(ℎ𝑚𝑚�̅�𝑥)
√𝑎𝑎�2 − �̅�𝑥2

𝑑𝑑�̅�𝑥
𝑎𝑎�

0
 (8) 

Note that as 𝑓𝑓′ is dimensionless, with this formulation the integrals appearing in the last two equations turn out 

to be dimensionless as well. 
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2.2 Segedin’s formulas and extensions 

Let us assume that the function 𝑓𝑓 in equation (5) is given by the following expression 

 𝑦𝑦 = �𝑏𝑏𝑛𝑛𝑥𝑥𝑛𝑛
𝑁𝑁

𝑛𝑛=1

 (9) 

Normalization provides 

 𝑦𝑦� = �𝑏𝑏�𝑛𝑛�̅�𝑥𝑛𝑛
𝑁𝑁

𝑛𝑛=1

,        𝑏𝑏�𝑛𝑛 = 𝑏𝑏𝑛𝑛ℎ𝑚𝑚𝑛𝑛−1 (10) 

By introducing the coefficients 

 𝑐𝑐�̅�𝑛 = √𝜋𝜋
𝛤𝛤 �𝑛𝑛2 + 1�

𝛤𝛤 �𝑛𝑛2 + 1
2�
𝑏𝑏�𝑛𝑛 (11) 

where 𝛤𝛤  denotes the gamma-function, it is possible to demonstrate that the relation between normalized 

penetration depth ℎ� and contact radius 𝑎𝑎� can be written in closed-form as 

 ℎ� = �𝑐𝑐�̅�𝑛𝑎𝑎�𝑛𝑛
𝑁𝑁

𝑛𝑛=1

 (12) 

Similarly, the expression for the load 𝑃𝑃 becomes 

 𝑃𝑃 = 2𝐸𝐸∗ℎ𝑚𝑚2 �
𝑛𝑛

𝑛𝑛 + 1
𝑐𝑐�̅�𝑛𝑎𝑎�𝑛𝑛+1

𝑁𝑁

𝑛𝑛=1

 (13) 

The last two equations are commonly attributed to Segedin (Segedin, 1957).  

Expressions (12) and (13) allow for deriving other useful relations. The load derivative with respect to 

normalized penetration is given by 

 𝑃𝑃′ =
𝑑𝑑𝑃𝑃
𝑑𝑑ℎ�

=
𝑑𝑑𝑃𝑃
𝑑𝑑𝑎𝑎� �

𝑑𝑑ℎ�
𝑑𝑑𝑎𝑎��

−1

= 2𝐸𝐸∗ℎ𝑚𝑚2 ��𝑛𝑛𝑐𝑐�̅�𝑛𝑎𝑎�𝑛𝑛
𝑁𝑁

𝑛𝑛=1

� ⋅ ��𝑛𝑛𝑐𝑐�̅�𝑛𝑎𝑎�𝑛𝑛−1
𝑁𝑁

𝑛𝑛=1

�

−1

= 2𝐸𝐸∗ℎ𝑚𝑚2 𝑎𝑎� (14) 

It is important to point out that the last relation, which justifies equation (3), can be obtained directly from the 

general relations (6), as demonstrated in (Pharr et al., 1992).  

Finally, the elastic work 𝑊𝑊 done during indentation can be calculated as 

 𝑊𝑊 = � 𝑃𝑃
ℎ

0
𝑑𝑑ℎ = � 𝑃𝑃

𝑎𝑎�

0

𝑑𝑑ℎ
𝑑𝑑𝑎𝑎�

𝑑𝑑𝑎𝑎� =  

8 

 



 = 2𝐸𝐸∗ℎ𝑚𝑚2 � ��
𝑛𝑛

𝑛𝑛 + 1
𝑐𝑐�̅�𝑛𝑎𝑎�𝑛𝑛+1

𝑁𝑁

𝑛𝑛=1

��ℎ𝑚𝑚�𝑛𝑛𝑐𝑐�̅�𝑛𝑎𝑎�𝑛𝑛−1
𝑁𝑁

𝑛𝑛=1

�
𝑎𝑎�

0
𝑑𝑑𝑎𝑎� =  

 = 2𝐸𝐸∗ℎ𝑚𝑚3 � � �
𝑛𝑛𝑛𝑛

𝑛𝑛 + 1
𝑐𝑐�̅�𝑛𝑐𝑐�̅�𝑠𝑎𝑎�𝑛𝑛+𝑠𝑠

𝑁𝑁

𝑛𝑛,𝑠𝑠=1

�
𝑎𝑎�

0
𝑑𝑑𝑎𝑎� =  

 = 2𝐸𝐸∗ℎ𝑚𝑚3 �
𝑛𝑛𝑛𝑛

(𝑛𝑛 + 𝑛𝑛)(𝑛𝑛 + 1)
𝑐𝑐�̅�𝑛𝑐𝑐�̅�𝑠𝑎𝑎�𝑛𝑛+𝑠𝑠+1

𝑁𝑁

𝑛𝑛,𝑠𝑠=1

 (15) 

The last expression will come useful to formulate experimentally accessible dimensionless functions which are 

independent of 𝐸𝐸∗.  

2.3 Special case 

If only one term is retained in the expansion (9), the following direct relation between load and penetration may 

be obtained by combining equations (12) and (13) together: 

 𝑃𝑃 = 2𝐸𝐸∗ℎ𝑚𝑚2
𝑛𝑛

(𝑛𝑛 + 1)𝑐𝑐�̅�𝑛1/𝑛𝑛 ℎ�
1+1/𝑛𝑛 (16) 

Furthermore, for a conical indenter 𝑛𝑛 = 1 and the last expression reduces to 

 𝑃𝑃 =
𝐸𝐸∗ℎ𝑚𝑚2

𝑐𝑐1̅
ℎ�2 (17) 

 Equation (11) then yields 

 𝑐𝑐1̅ = √𝜋𝜋
𝛤𝛤 �1

2 + 1�

𝛤𝛤 �1
2 + 1

2�
𝑏𝑏�1 = √𝜋𝜋

√𝜋𝜋/2
1

𝑏𝑏�1 =
𝜋𝜋
2
𝑏𝑏�1 (18) 

By inserting the latter result with 𝑏𝑏�1 = cot (𝛼𝛼) into equation (17) one obtains 

 𝑃𝑃 = 𝐸𝐸∗ℎ𝑚𝑚2
2

𝜋𝜋cot (𝛼𝛼)
ℎ�2 (19) 

which represents the traditional load-penetration formula for a conical indenter of semi-apical angle 𝛼𝛼, originally 

derived by Love (Love, 1939).  

3. Material and methods 
3.1 Numerical simulations 

It seems logical to test the validity of the equivalent indenter concept for indented surfaces with realistic 

geometries. To avoid direct experimental measurements, which would require a huge investment of time and 

resources, nano-indentation tests are simulated via the finite element software ABAQUS. In this way, a large 
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number of residual impression profiles can be generated without resorting to atomic force microscope 

profilometry.  

As already explained in the introduction, previous investigations have demonstrated that the Berkovich 

indentation process can be analyzed by means of the simplified axisymmetric geometry depicted in figure 3-a, 

where the semi-apical angle of the conical indenter is set to 𝛼𝛼 = 70.3° (Oliver and Pharr, 2004). The latter is 

represented in ABAQUS by an analytic rigid surface, whereas the sample is assumed to be made of a generic 

metallic material whose behavior is considered to be isotropic elasto-plastic. A standard large-strain J2-flow 

plasticity formulation is adopted and the material parameters are chosen as follows: Poisson’s ratio is set to 

𝜈𝜈 = 0.3, Young’s modulus to 𝐸𝐸 = 100 𝐺𝐺𝑃𝑃𝑎𝑎 and the yield stress 𝜎𝜎𝑦𝑦 is varied in the range 1𝑥𝑥10−4𝐸𝐸 ÷ 2𝑥𝑥10−2𝐸𝐸, 

which should be sufficiently wide to cover values for all common metals (Ashby et al., 2010). Concerning 

hardening, following (Larsson et al., 1996) and (Bolshakov and Pharr, 1998) an isotropic linear law is used, with 

three different values for the hardening modulus 𝐾𝐾: 0.05𝐸𝐸, 0.01𝐸𝐸 and 0.002𝐸𝐸.  

The interaction between the cone and the sample surface is realized via a finite sliding, surface-to-surface 

contact discretization with zero friction, as previous studies have reported a minor influence of this last 

parameter on the results (Larsson et al., 1996)(Sakharova et al., 2009). In addition, in all simulations a maximum 

indentation depth of 1 micron is used, which is sufficiently deep to ensure that indenter tip rounding effects, 

often observed during real nano-indentation tests, do not need to be taken into account (Oliver and Pharr, 2004). 

Accordingly, the height and radius of the cylindrical sample are both set to 100 microns following the criterion 

proposed by (Poon et al., 2008b), which guarantees fulfillment of the “infinite” half-space assumption, common 

to all analytical solutions presented in the previous section.  

The adopted mesh, visible in figure 3-b, consists of approximately 2000 axisymmetric quadrilateral hybrid 

elements CAX4H. To avoid excessive distortion close to the indenter tip during loading, an Arbitrary 

Lagrangean-Eulerian (ALE) adaptive technique is employed (Dassault Systèmes Simulia Corp., 2013). The 

quality of the mesh is sufficient to ensure a precision of 1 % on the slope of the recorded 𝑃𝑃 vs ℎ curves. 
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(a)  

(b) 

Figure 3: Finite element model for nano-indentation. (a) Geometry of the indenter and of the sample. (b) Mesh adopted. 
Dimensions are in microns. 

3.2 Determination of the equivalent indenter profile 

From each ABAQUS simulation, the shape of the residual impression after unloading is extracted in the form of 

a function 𝑢𝑢𝑟𝑟(𝑥𝑥), which describes the permanent downward displacement of the sample surface relative to the 

Cartesian coordinate system (𝑥𝑥,𝑦𝑦) shown in figure 1-b. 

The shape of the equivalent indenter profile turns out to be naturally defined by the function 

 𝑓𝑓𝑒𝑒𝑒𝑒(𝑥𝑥) = 𝑢𝑢𝑟𝑟(𝑥𝑥)− �ℎ𝑝𝑝 − 𝑥𝑥cot(𝛼𝛼)� (20) 

where ℎ𝑝𝑝 is the recorded residual plastic penetration, visible in figure 1-a, and 𝛼𝛼 is the semi-apical angle of the 

conical indenter. For convenience, the last expression can be re-cast in dimensionless form as follows: 

 𝑓𝑓�̅�𝑒𝑒𝑒(�̅�𝑥) = 𝑢𝑢�𝑟𝑟(�̅�𝑥) − �ℎ�𝑝𝑝 − �̅�𝑥 cot(𝛼𝛼)� (21) 

In order to obtain a representation for the function 𝑓𝑓�̅�𝑒𝑒𝑒(�̅�𝑥) which can easily be used in combination with the 

analytical solutions presented in section 2, the following polynomial approximation is introduced: 

 𝑓𝑓�̅�𝑒𝑒𝑒(�̅�𝑥) ≈ �𝑏𝑏�𝑛𝑛�̅�𝑥𝑛𝑛
𝑁𝑁

𝑛𝑛=1

 (22) 

The optimal choice of the coefficients appearing at the right-hand-side of the last expression depends on the 

extension of the domain considered for 𝑓𝑓�̅�𝑒𝑒𝑒(�̅�𝑥). In the present work, two possible options are investigated: 
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• The “contact” domain, suggested by (Pharr and Bolshakov, 2002): �̅�𝑥 ∈ [0,𝑎𝑎�𝑚𝑚] , where 𝑎𝑎�𝑚𝑚  is the 

normalized value of the contact radius at maximum load. 

• The “extended” domain: �̅�𝑥 ∈ [0,5], which is approximately double the size of the previous one. 

Figure 4 shows an example of the function 𝑢𝑢�𝑟𝑟(�̅�𝑥) extracted from ABAQUS, with indication of the two different 

domains mentioned above.    

3.3 Young’s modulus calculation 

The 𝑏𝑏�𝑛𝑛 coefficients determined according to equation (22) can be employed to find analytical estimates for the 

sample Young’s modulus using the simulated force-penetration curves as starting point. In fact, the two 

functions 𝑃𝑃(𝑡𝑡) and ℎ�(𝑡𝑡) recorded during the elastic unloading stage can be extracted from ABAQUS and used 

together with the 𝑏𝑏�𝑛𝑛 to solve the system of equations (11)-(12)-(13) for the function 𝐸𝐸∗(𝑡𝑡), where 𝑡𝑡 indicates the 

relative time-coordinate with respect to the entire unloading process. Subsequently, conversion to the standard 

Young’s modulus 𝐸𝐸(𝑡𝑡) may be easily performed by means of equation (4), assuming that Poisson’s ratio is 

known.  

The function 𝐸𝐸(𝑡𝑡) determined in this way turns out to be defined over 100 points, which simply correspond to 

the ABAQUS increments the unloading step is subdivided into. An average value of 𝐸𝐸(𝑡𝑡)  may then be 

calculated on the basis of the upper 50 % of the unloading data. The lower 50 % is discarded for three main 

reasons. Firstly, it is affected by an artificial lack of smoothness due to the fact that the number of mesh elements 

in contact with the indenter reduces quickly, eventually becoming zero at 100 % unloading. Secondly, as will be 

explained in the next section, it is sometimes necessary to correct the equivalent indenter profile close to the 

indenter tip. While this does not sort any significant effect on the top part of the unloading curve, it might 

adversely affect the results when the contact area becomes very small. Thirdly, in this way the analysis becomes 

more similar to a real nano-indentation test, in which it is common practice to consider only the upper part of the 

unloading curve for the calculation of the Young’s modulus. 

For the sake of clarity, it is important to remark that only the elastic part of the indenter tip penetration is entered 

in the analytical expressions presented in section 2, i.e. the difference between the absolute penetration relative 

to the original undeformed sample surface and the residual plastic penetration ℎ�𝑝𝑝. Unless stated otherwise, ℎ�(𝑡𝑡) 

and ℎ� will always denote this elastic part of the indenter penetration throughout the rest of the analysis. 
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Figure 4: Example of residual impression profile extracted from ABAQUS, with indication of the two different domains 
considered to approximate the function 𝑓𝑓�̅�𝑒𝑒𝑒(�̅�𝑥). The data refer to a simulation run using 𝜎𝜎𝑦𝑦/𝐸𝐸 = 𝐾𝐾/𝐸𝐸 = 1%. 

4. Results and Discussion 
4.1 Functional dependence of the equivalent indenter shape 

Before attempting any description of the relation between force and penetration during unloading using the 

equivalent indenter concept, it is essential to examine whether or not the analytical form of the function 𝑓𝑓�̅�𝑒𝑒𝑒(�̅�𝑥) 

defined in (21) can be considered as a material property. 

The first step to clarify this point is to write down explicitly the functional dependence of the function 𝑢𝑢𝑟𝑟 

appearing in (20), which gives the shape of the residual impression. It is not difficult to realize that the variables 

influencing 𝑢𝑢𝑟𝑟 are the maximum penetration achieved during loading, the elastic and plastic material parameters 

and obviously the coordinate 𝑥𝑥: 

 𝑢𝑢𝑟𝑟 = 𝑢𝑢𝑟𝑟(ℎ𝑚𝑚,𝐸𝐸, 𝜈𝜈,𝜎𝜎𝑦𝑦,𝐾𝐾, 𝑥𝑥) (23) 

The dimension matrix associated with the latter expression has a rank equal to 2. As there are 7 physical 

quantities involved, Buckingham’s Pi Theorem (Barenblatt, 1996) indicates that it can be rewritten in terms of  

7 − 2 = 5 dimensionless variables. For the sake of convenience, the following dimensionless groups are chosen: 

 𝑢𝑢�𝑟𝑟 =
𝑢𝑢𝑟𝑟
ℎ𝑚𝑚

, �̅�𝑥 =
𝑥𝑥
ℎ𝑚𝑚

, 𝜈𝜈,
𝜎𝜎𝑦𝑦
𝐸𝐸

,
𝐾𝐾
𝐸𝐸

     (24) 

so that (23) becomes 

 𝑢𝑢�𝑟𝑟 = 𝛱𝛱1(𝜈𝜈,𝜎𝜎𝑦𝑦/𝐸𝐸,𝐾𝐾/𝐸𝐸, �̅�𝑥) (25) 
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Similar arguments may be used to show that the normalized residual penetration ℎ�𝑝𝑝 has to be function of the last 

three dimensionless groups appearing in (24) (Dao et al., 2001): 

  ℎ�𝑝𝑝 = 𝛱𝛱2(𝜈𝜈,𝜎𝜎𝑦𝑦/𝐸𝐸,𝐾𝐾/𝐸𝐸) (26) 

By inserting relations (25) and (26) into (21) one obtains 

 𝑓𝑓�̅�𝑒𝑒𝑒(�̅�𝑥) = 𝛱𝛱1 �𝜈𝜈,
𝜎𝜎𝑦𝑦
𝐸𝐸

,
𝐾𝐾
𝐸𝐸

, �̅�𝑥� − 𝛱𝛱2 �𝜈𝜈,
𝜎𝜎𝑦𝑦
𝐸𝐸

,
𝐾𝐾
𝐸𝐸
� + �̅�𝑥 tan(𝛼𝛼) (27) 

The latter relation proves that the shape of the equivalent indenter, i.e. the analytical form of the function 𝑓𝑓�̅�𝑒𝑒𝑒(�̅�𝑥), 

depends only on dimensionless combinations of the material parameters and it is hence unaffected by the 

particular choice of the maximum indentation depth. This guarantees that the results are insensitive to the 

arbitrary values of ℎ𝑚𝑚 and 𝐸𝐸 employed in the present numerical simulations. 

Another important observation can be made regarding the 𝑏𝑏�𝑛𝑛 coefficients defined in (22), which are used to 

approximate 𝑓𝑓�̅�𝑒𝑒𝑒(�̅�𝑥). From a mathematical point of view, they can be seen as provided by an operator which 

accepts 𝑓𝑓�̅�𝑒𝑒𝑒(�̅�𝑥) and its domain size as input. In the context of the present analysis, the latter is either fixed or 

defined by the upper limit 𝑎𝑎�𝑚𝑚  as explained in section 3.2. However, straightforward application of 

Buckingham’s Pi Theorem can show that the normalized value 𝑎𝑎�𝑚𝑚 of the contact radius at maximum load is also 

uniquely determined in terms of material properties (Cheng and Cheng, 1999). As a consequence, the 𝑏𝑏�𝑛𝑛 

coefficients turn out to be material parameters as well. 

4.2 Shape of the equivalent indenter profile from finite element simulations 

Figure 5 shows the equivalent indenter profiles calculated for selected values of the plastic material parameters 

according to the procedure described in section 3.2. As the “contact” domain assumption is considered, all 

curves are interrupted in correspondence to the point where �̅�𝑥 = 𝑎𝑎�𝑚𝑚 . As already pointed out by (Pharr and 

Bolshakov, 2002), it can be seen that the function 𝑓𝑓�̅�𝑒𝑒𝑒(�̅�𝑥) is not linear, and the deviation from linearity is larger 

for higher values of the 𝜎𝜎𝑦𝑦/𝐸𝐸 ratio. On the other hand, in contrast to the observations of the previous authors, the 

function 𝑓𝑓�̅�𝑒𝑒𝑒(�̅�𝑥) determined from the present simulations is not always monotonic. For large 𝜎𝜎𝑦𝑦/𝐸𝐸 values a small 

initial decrease is visible, where 𝑓𝑓�̅�𝑒𝑒𝑒(�̅�𝑥)  becomes negative. The reason is that during the final part of the 

unloading stage, the area of the sample in contact with the indenter gradually shrinks to a point which does not 

coincide with the indenter tip. As this local lack of monotonicity in 𝑓𝑓�̅�𝑒𝑒𝑒(�̅�𝑥) near �̅�𝑥 = 0 would preclude the 

application of the general Sneddon’s equations (8), the equivalent profiles featuring this characteristic are 

modified by “flattening” their tips as shown in figure 6-a. It must be emphasized that since the maximum 

negative value of 𝑓𝑓�̅�𝑒𝑒𝑒(�̅�𝑥) is always small in comparison to the equivalent indenter size, less than 1% of the 
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contact radius at maximum load, this shape modification does not sort any significant effects on how the upper 

part of the unloading curve is described by the equivalent indenter. 

The varying curvature of the profiles shown in figure 5 suggests seeking an approximation to 𝑓𝑓�̅�𝑒𝑒𝑒(�̅�𝑥) based on a 

3rd order polynomial. This means that only the first three terms are retained in equation (22). Moreover, 

preliminary analyses showed that the quadratic term did not play a major role, so that it can be neglected in order 

to keep the number of fitting parameters as low as possible. Consequently, the following expression is used to 

approximate 𝑓𝑓�̅�𝑒𝑒𝑒(�̅�𝑥): 

 𝑓𝑓�̅�𝑒𝑒𝑒(�̅�𝑥) ≈ 𝑏𝑏�1�̅�𝑥 + 𝑏𝑏�3�̅�𝑥3 (28) 

Figure 6-b shows an example of equivalent indenter profile fitted using the formula above. 

 
(a) 

 
(b) 

Figure 5: Calculated equivalent indenter profiles for selected values of the ratio 𝜎𝜎𝑦𝑦/𝐸𝐸, considering the “contact” domain. In 
(a) the ratio 𝐾𝐾/𝐸𝐸 is 0.2 %, whereas in (b) it is 5.0 %. 
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 (a) 

 
(b) 

Figure 6: Analysis of the equivalent indenter profile corresponding to 𝜎𝜎𝑦𝑦/𝐸𝐸 = 1% and 𝐾𝐾/𝐸𝐸 = 0.2%. (a) Correction for 
local lack of monotonicity close to the indenter tip. (b) Third-order polynomial fitting of the equivalent indenter profile. 

4.3 Validity of the equivalent indenter concept 

On the basis of the 𝑏𝑏�𝑛𝑛 coefficients determined using equation (28), the procedure described in section 3.3 can be 

carried out to obtain estimates for the sample Young’s modulus, which can then be compared with the reference 

value given as input to the finite element simulations. The agreement between the two provides a quantitative 

indication of the capability of the equivalent indenter geometry to describe the contact condition with a surface 

containing a residual impression. 

Results obtained in this way are reported in figure 7-a. It can be noticed that a consistent overestimation of the 

Young’s modulus (calculated on the basis of the upper 50 % of the unloading data) seems to be present. 

Nevertheless, the maximum relative deviations from the reference value are limited to 10 ÷ 15 % for all 

combinations of material parameters tested. In addition, the associated standard deviation, shown in figure 7-b, is 

always below 1.5 %. This is important, as in principle the same value of Young’s modulus should be obtained 

independently of the particular point along the force-penetration curve considered for the calculation, i.e. the 

particular pair of (𝑃𝑃,ℎ) values.  
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(a) 

 
(b) 

Figure 7: Results for third-order polynomial fitting of the equivalent indenter profile over the “contact” domain. (a) Mean 
value of the Young’s modulus and (b) associated standard deviation.  

The consistent Young’s modulus overestimation can be explained, at least partly, by the fact that all analytical 

solutions presented previously neglect the radial displacement of the material points in contact with the 

axisymmetric indenter. This issue was thoroughly addressed in the work of (Hay et al., 1999), where it was 

shown that Sneddon’s equations are formally correct only for Poisson’s ratio equal to 0.5. Conversely, when a 

certain amount of material compressibility is introduced, a progressive error builds up, which leads to a Young’s 

modulus overestimation of about 8 % for a Poisson’s ratio of 0.25. The relevance of this aspect for the present 

analysis is made clear in figure 8, which shows results obtained for different values of the latter parameter. It can 

be noticed that the deviation from the reference value of Young’s modulus decreases as 𝜈𝜈  tends to 0.5, in 

agreement with the considerations of the former authors. As a consequence, by implementing correction factors 

in the analytical solutions which take into account the influence of Poisson’s ratio, such as the ones proposed in 

(Hay et al., 1999), the 10 ÷ 15 % error bound could probably be reduced by a considerable amount. This means 

that the equivalent indenter concept is actually very suitable to model the particular contact problem arising 

during the unloading part of a nano-indentation test, provided that a sufficiently good approximation to the 

function 𝑓𝑓�̅�𝑒𝑒𝑒(�̅�𝑥) is available. 
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Figure 8: Effect of the Poisson’s ratio on the calculated mean value of the Young’s modulus using third-order polynomial 
fitting over the “contact” domain. A value of 𝐾𝐾/𝐸𝐸 = 0.2 % is assumed. 

Regarding this last point, previous works in the field have adopted almost exclusively power-law approximations 

to the equivalent indenter profile, of the type 𝑓𝑓�̅�𝑒𝑒𝑒(�̅�𝑥) = 𝑏𝑏�𝑛𝑛�̅�𝑥𝑛𝑛  (Pharr and Bolshakov, 2002; Woirgard and 

Dargenton, 1997). The main advantage compared to a polynomial approximation is that the elastic analytical 

relation between load and penetration assumes the simple form of equation (16), implying that the following 

connection should exist between the exponent 𝑛𝑛, which describes the shape of the equivalent indenter, and the 

exponent 𝑚𝑚, which describes the power-law relation between load and penetration: 

 𝑚𝑚 = 1 + 1/𝑛𝑛 (29) 

The results reported in figure 9-a, based on the present simulations, indicate that this relation is to some extent 

satisfied, even though deviations as large as 50 % are seen for some combinations of the material parameters. In 

addition, figure 9-b suggests that the accuracy of the power-law approximation is lower compared to the one 

associated with expression (28), despite both mathematical formulations possess the same number of fitting 

parameters. Therefore, low-order polynomials seem to be a better option for describing the shape of the 

equivalent indenter. 
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(a) 

 
(b) 

Figure 9: Results for power-law fitting of the equivalent indenter profile over the “contact” domain. (a) Comparison 
between the power-law exponents derived from fitting either the equivalent indenter profile or the load-penetration curve 
during the unloading stage. (b) Mean value of the Young’s modulus. 

Before leaving this section, a few considerations on the choice of the domain over which 𝑓𝑓�̅�𝑒𝑒𝑒(�̅�𝑥) is approximated 

need to be made as well. When the “contact” domain is replaced by the “extended” domain visualized in figure 

4, the number of terms considered in equation (22) has to be increased, in order to follow the more complex 

shape of the residual impression beyond the point of contact at maximum load. However, it was observed that 

the accuracy of the Young’s modulus calculation does not improve significantly compared to figure 7, for all 

combinations of material parameters tested. This indicates that, concerning the description of the elastic contact 

between the real indenter and the surface containing a residual impression, the information contained in the 

shape of the 𝑢𝑢�𝑟𝑟 function beyond 𝑎𝑎�𝑚𝑚 does not probably play a major role.  

4.4 Definition of the inverse problem 

The previous section indicates that the equivalent indenter concept does indeed provide a way to describe the 

elastic unloading stage by means of analytical solutions which are formally valid only for indentation into a flat 

surface. The following paragraphs discuss how to use this result to extract information about the sample elastic 

constants from a real nano-indentation test. 

Let us assume that the curves 𝑃𝑃(𝑡𝑡) and ℎ�(𝑡𝑡) have been recorded during unloading, with 𝑡𝑡 denoting the time 

variable. The inverse problem consists in finding an equivalent indenter profile 𝑓𝑓�̅�𝑒𝑒𝑒(�̅�𝑥) and a value for the 

reduced Young’s modulus 𝐸𝐸∗ such that relations (8) can be satisfied at any instant 𝑡𝑡 for a smooth monotonic 

function 𝑎𝑎�(𝑡𝑡). 
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On the basis of the previous findings, an expression of the type (28) is sufficient to approximate 𝑓𝑓�̅�𝑒𝑒𝑒(�̅�𝑥). 

Therefore, only 2 coefficients are needed to characterize the equivalent indenter profile. This means that the 

inverse problem could in principle be formulated as an optimization problem where suitable values for the 3 

scalar unknowns 𝑏𝑏�1,   𝑏𝑏�3 and 𝐸𝐸∗ have to be determined, which provide values for 𝑃𝑃(𝑡𝑡) and ℎ�(𝑡𝑡) according to 

Segedin’s equations (11) – (13) which are as close as possible to those recorded experimentally. This 

formulation looks particularly attractive because any deviation of the real indenter from the ideal conical 

geometry could be naturally taken into account without the need for any area-function calibration. 

The number of unknowns can be reduced by one if the following dimensionless function: 

 𝛷𝛷(𝑡𝑡) =
𝑊𝑊(𝑡𝑡)
𝑃𝑃(𝑡𝑡)ℎ𝑚𝑚

 (30) 

is employed. It should be noted that experimental values for 𝛷𝛷 are easily calculated, as the work 𝑊𝑊(𝑡𝑡) can be 

obtained from a nano-indentation curve via integration. By inserting (15) and (13) into the latter expression, one 

obtains 

 𝛷𝛷�𝑐𝑐1̅, 𝑐𝑐3̅,𝑎𝑎�(𝑡𝑡)� = � �
𝑛𝑛𝑛𝑛

(𝑛𝑛 + 𝑛𝑛)(𝑛𝑛 + 1) 𝑐𝑐�̅�𝑛𝑐𝑐�̅�𝑠𝑎𝑎�
𝑛𝑛+𝑠𝑠+1

𝑛𝑛,𝑠𝑠=1,3

�× � �
𝑛𝑛

𝑛𝑛 + 1
𝑐𝑐�̅�𝑛𝑎𝑎�𝑛𝑛+1

𝑛𝑛=1,3

�
−1

 (31) 

where the 𝑐𝑐�̅�𝑛 coefficients are uniquely related to the 𝑏𝑏�𝑛𝑛  via equation (11). Furthermore, relation (12) can be 

inverted by means of common formulas for the roots of third-order polynomials. If the obtained expression 

𝑎𝑎� = 𝑟𝑟(ℎ�, 𝑐𝑐1̅, 𝑐𝑐3̅) is inserted into (31), the original system reduces to the single equation 

 

𝛷𝛷 �𝑐𝑐1̅, 𝑐𝑐3̅,ℎ�(𝑡𝑡)� = � �
𝑛𝑛𝑛𝑛

(𝑛𝑛 + 𝑛𝑛)(𝑛𝑛 + 1) 𝑐𝑐�̅�𝑛𝑐𝑐�̅�𝑠𝑟𝑟�ℎ
�, 𝑐𝑐1̅, 𝑐𝑐3̅�

𝑛𝑛+𝑠𝑠+1

𝑛𝑛,𝑠𝑠=1,3

� × 

� �
𝑛𝑛

𝑛𝑛 + 1
𝑐𝑐�̅�𝑛𝑟𝑟(ℎ�, 𝑐𝑐1̅, 𝑐𝑐3̅)𝑛𝑛+1

𝑛𝑛=1,3

�
−1

 

(32) 

A standard optimization algorithm could then be used to determine values for 𝑐𝑐1̅, 𝑐𝑐3̅  which minimize the 

deviation with the experimental values of 𝛷𝛷 over the range of ℎ� considered. After that, the reduced Young’s 

modulus 𝐸𝐸∗could be easily calculated from either (13) or (15) just replacing 𝑎𝑎� with 𝑟𝑟(ℎ�, 𝑐𝑐1̅, 𝑐𝑐3̅). 

4.5 Non-uniqueness of the solution 

Unfortunately, the particular structure of the general equations (8) implies that the inverse problem previously 

formulated is not well-posed, in the sense that it does not have a unique solution. In fact, let us assume that a 

solution 𝑓𝑓𝑒𝑒𝑒𝑒,1(𝑥𝑥), 𝐸𝐸1∗, 𝑎𝑎�1(𝑡𝑡) has been found, where normalization of the first quantity is ignored momentarily for 

convenience. An infinite set of solutions can then be constructed as: 
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 𝑓𝑓𝑒𝑒𝑒𝑒,𝑘𝑘(𝑥𝑥) = 𝑓𝑓𝑒𝑒𝑒𝑒,1(𝑘𝑘𝑥𝑥),       𝐸𝐸𝑘𝑘∗ = 𝑘𝑘𝐸𝐸1∗,     𝑎𝑎�𝑘𝑘(𝑡𝑡) = 𝑎𝑎�1(𝑡𝑡)/𝑘𝑘        (33) 

with 𝑘𝑘 being a real number. To prove this, let us write Sneddon’s equations (8) corresponding to the 1-solution: 

 ℎ� = �
𝑓𝑓𝑒𝑒𝑒𝑒,1
′ (ℎ𝑚𝑚�̅�𝑥)

�1 − (�̅�𝑥/𝑎𝑎�1)2
𝑑𝑑�̅�𝑥

𝑎𝑎�1

0
,           𝑃𝑃 = 2𝐸𝐸1∗ℎ𝑚𝑚2 �

�̅�𝑥2𝑓𝑓𝑒𝑒𝑒𝑒,1
′ (ℎ𝑚𝑚�̅�𝑥)

�𝑎𝑎�12 − �̅�𝑥2
𝑑𝑑�̅�𝑥

𝑎𝑎�1

0
 (34) 

By inserting the relations (33) for 𝐸𝐸1∗ and 𝑎𝑎�1 into (34) one obtains 

 ℎ� = �
𝑓𝑓𝑒𝑒𝑒𝑒,1
′ (ℎ𝑚𝑚�̅�𝑥)

�1 − �̅�𝑥2/(𝑘𝑘𝑎𝑎�𝑘𝑘)2
𝑑𝑑�̅�𝑥

𝑘𝑘𝑎𝑎�𝑘𝑘

0
,           𝑃𝑃 = 2

𝐸𝐸𝑘𝑘∗

𝑘𝑘
ℎ𝑚𝑚2 �

�̅�𝑥2𝑓𝑓𝑒𝑒𝑒𝑒,1
′ (ℎ𝑚𝑚�̅�𝑥)

�𝑘𝑘2𝑎𝑎�𝑘𝑘2 − �̅�𝑥2
𝑑𝑑�̅�𝑥

𝑘𝑘𝑎𝑎�𝑘𝑘

0
 (35) 

Noticing that 

 𝑓𝑓𝑒𝑒𝑒𝑒,1
′ (𝑥𝑥) =

𝑑𝑑𝑓𝑓𝑒𝑒𝑒𝑒,1(𝑥𝑥)
𝑑𝑑𝑥𝑥

=
𝑑𝑑𝑓𝑓𝑒𝑒𝑒𝑒,𝑘𝑘(𝑥𝑥/𝑘𝑘)

𝑑𝑑𝑥𝑥
=

𝑑𝑑𝑓𝑓𝑒𝑒𝑒𝑒,𝑘𝑘

𝑑𝑑(𝑥𝑥/𝑘𝑘)
𝑑𝑑(𝑥𝑥/𝑘𝑘)
𝑑𝑑𝑥𝑥

=
1
𝑘𝑘
𝑓𝑓𝑒𝑒𝑒𝑒,𝑘𝑘
′ (𝑥𝑥/𝑘𝑘) (36) 

Substituting into (35) gives 

 ℎ� = �
𝑓𝑓𝑒𝑒𝑒𝑒,𝑘𝑘
′ (ℎ𝑚𝑚�̅�𝑥/𝑘𝑘)

𝑘𝑘�1 − �̅�𝑥2/(𝑘𝑘𝑎𝑎�𝑘𝑘)2
𝑑𝑑�̅�𝑥

𝑘𝑘𝑎𝑎�𝑘𝑘

0
,           𝑃𝑃 = 2

𝐸𝐸𝑘𝑘∗

𝑘𝑘
ℎ𝑚𝑚2 �

�̅�𝑥2𝑓𝑓𝑒𝑒𝑒𝑒,𝑘𝑘
′ (ℎ𝑚𝑚�̅�𝑥/𝑘𝑘)

𝑘𝑘�𝑘𝑘2𝑎𝑎�𝑘𝑘2 − �̅�𝑥2
𝑑𝑑�̅�𝑥

𝑘𝑘𝑎𝑎�𝑘𝑘

0
 (37) 

Finally, by making the dummy variable substitution �̅�𝑥/𝑘𝑘 = 𝑧𝑧̅ in the integrals appearing in the last formulas one 

obtains 

 ℎ� = �
𝑓𝑓𝑒𝑒𝑒𝑒,𝑘𝑘
′ (ℎ𝑚𝑚𝑧𝑧̅)

�1 − (𝑧𝑧̅/𝑎𝑎�𝑘𝑘)2
𝑑𝑑𝑧𝑧̅

𝑎𝑎�𝑘𝑘

0
,           𝑃𝑃 = 2𝐸𝐸𝑘𝑘∗ℎ𝑚𝑚2 �

𝑧𝑧̅2𝑓𝑓𝑒𝑒𝑒𝑒,𝑘𝑘
′ (ℎ𝑚𝑚𝑧𝑧̅)

�𝑎𝑎�𝑘𝑘2 − 𝑧𝑧2
𝑑𝑑𝑧𝑧̅

𝑎𝑎�𝑘𝑘

0
 (38) 

which confirms that the 𝑘𝑘-solution is also a solution. 

From a physical point of view, equation (33) states that if the indenter profile is made shallower (resp. steeper) 

by a scaling transformation, the elastic force-penetration relation does not change if the reduced Young’s 

modulus is increased (resp. decreased) correspondingly by the same scaling factor. What is interesting to note, 

however, is that the contact depth is the same for all 𝑘𝑘-solutions: 

 ℎ𝑐𝑐,𝑘𝑘 = 𝑓𝑓𝑒𝑒𝑒𝑒,𝑘𝑘(ℎ𝑚𝑚𝑎𝑎�𝑘𝑘) = 𝑓𝑓𝑒𝑒𝑒𝑒,1(𝑘𝑘ℎ𝑚𝑚𝑎𝑎�𝑘𝑘) = 𝑓𝑓𝑒𝑒𝑒𝑒,1(ℎ𝑚𝑚𝑎𝑎�1) = ℎ𝑐𝑐,1 (39) 

independently of the specific value of 𝑘𝑘. 

4.5.1 Application to polynomial expansion 

To demonstrate an application of the previous theorem, we consider the case of 𝑓𝑓𝑒𝑒𝑒𝑒(𝑥𝑥) given by the polynomial 

expansion (9). If we have a solution to the inverse problem, i.e. a set 𝐸𝐸1∗, 𝑏𝑏�1𝑛𝑛 such that Segedin’s equations (12)-

(13) are satisfied 
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 ℎ� = �𝑐𝑐1̅𝑛𝑛𝑎𝑎�1𝑛𝑛
+∞

𝑛𝑛=1

, 𝑃𝑃 = 2𝐸𝐸1∗ℎ𝑚𝑚2 �
𝑛𝑛

𝑛𝑛 + 1
𝑐𝑐1̅𝑛𝑛𝑎𝑎�1𝑛𝑛+1

+∞

𝑛𝑛=1

           (40) 

with the 𝑐𝑐1̅𝑛𝑛 given by (11), then another solution can be found by setting 

 𝐸𝐸2∗ = 𝑘𝑘𝐸𝐸1∗,       𝑐𝑐2̅𝑛𝑛 = 𝑐𝑐1̅𝑛𝑛(𝑘𝑘)𝑛𝑛 (41) 

with 𝑘𝑘 arbitrary. In fact, by inverting the last relations and inserting them into (40), simple algebra provides 

 ℎ� = �𝑐𝑐2̅𝑛𝑛(1/𝑘𝑘)𝑛𝑛𝑎𝑎�1𝑛𝑛
+∞

𝑛𝑛=1

, 𝑃𝑃 = 2
𝐸𝐸2∗

𝑘𝑘
ℎ𝑚𝑚
2 �

𝑛𝑛
𝑛𝑛 + 1

𝑐𝑐2̅𝑛𝑛(1/𝑘𝑘)𝑛𝑛𝑎𝑎�1𝑛𝑛+1
+∞

𝑛𝑛=1

   

 ℎ� = �𝑐𝑐2̅𝑛𝑛𝑎𝑎�2𝑛𝑛
+∞

𝑛𝑛=1

, 𝑃𝑃 = 2𝐸𝐸2∗ℎ𝑚𝑚2 �
𝑛𝑛

𝑛𝑛 + 1
𝑐𝑐2̅𝑛𝑛𝑎𝑎�2𝑛𝑛+1

+∞

𝑛𝑛=1

 (42) 

were we have set 𝑎𝑎�2 = 𝑎𝑎�1/𝑘𝑘 in the last passage. 

4.6 Additional constraints 

In order to remove the non-uniqueness affecting the inverse problem identified by equation (32), additional 

assumptions have to be introduced, which somehow pose limitations on the equivalent indenter shape. It is worth 

noticing that the addition of only one scalar condition of the type 

 𝑔𝑔�𝑏𝑏�1, 𝑏𝑏�3� = 0 (43) 

would be sufficient to single out a particular solution in equation (41). In principle, the function 𝑔𝑔 should be 

universal, i.e. independent of the material parameters. However, it seems more realistic to be able to construct 

one such function which depends on one or more experimentally accessible quantities which are related to the 

material properties. On the other hand, if the chosen 𝑔𝑔 turned out to be dependent on more than one parameter, 

the overall idea of using an analytical solution combined with the equivalent indenter concept would break 

down, as Dao et al. (Dao et al., 2001) showed that the reduced Young’s modulus itself can be expressed as a 

function of two indentation parameters: 

 𝐸𝐸∗ =
𝑃𝑃𝑚𝑚
ℎ𝑚𝑚2

𝛱𝛱3 �
𝑃𝑃𝑚𝑚′ ℎ𝑚𝑚
𝑃𝑃𝑚𝑚

,ℎ�𝑝𝑝�  (44) 

where the subscript “m” denotes evaluation of the physical quantity at maximum load. Fortunately, it seems to 

be actually possible to find 𝑔𝑔 functions which depend on less than two parameters and, at the same time, allow 

solving the inverse problem to a sufficient level of accuracy in most practical cases. An example of this is given 

in the next section. 
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4.7 The Oliver-Pharr method 

In the following, it will be shown that the classic Oliver-Pharr method can be considered as an example of an 

inverse problem in the sense discussed in section 4.4, where very specific assumptions are made for the 

analytical form of the function 𝑓𝑓�̅�𝑒𝑒𝑒(�̅�𝑥) and the constraint (43). Remarkably, it turns out that these assumptions are 

intrinsically embedded in the apparent inconsistencies of the method which were pointed out in connection with 

expressions (1) and (2). 

To begin with, it has to be noted that the latter of these relations can be rewritten in dimensionless form as   

 𝑎𝑎� = ℎ�𝑐𝑐 tan(𝛼𝛼) (45) 

due to the fact that �̅�𝐴 = 𝜋𝜋𝑎𝑎�2. It is also useful to re-cast equation (1) in the following form 

 ℎ�𝑐𝑐,𝑂𝑂𝑂𝑂 = ℎ� + ℎ�𝑝𝑝 − ϵ
𝑃𝑃
𝑃𝑃′

 (46) 

We emphasize that now the symbol ℎ�  appearing in the last expression denotes only the elastic part of the 

penetration, i.e. the difference between the total penetration recorded and the plastic residual penetration ℎ�𝑝𝑝, 

both normalized by the total maximum penetration ℎ𝑚𝑚. Hence, ℎ� + ℎ�𝑝𝑝 corresponds to the total penetration. 

The first step to unveil the underlying assumptions of the method is to note that the factor 𝑃𝑃/𝑃𝑃′ appearing at the 

right-hand-side of equation (46) was derived in (Oliver and Pharr, 1992) from the original Sneddon’s solution 

for a conical indenter, equation (19). By differentiating that expression, one can easily see that 𝑃𝑃/𝑃𝑃′ = ℎ�/2. This 

result holds also for indenters with power-law profiles, as can be easily checked by taking the derivative of 

equation (16). By inserting it into (46) one obtains 

 ℎ�𝑐𝑐,𝑂𝑂𝑂𝑂 = ℎ�𝑝𝑝 + (1 − ϵ/2)ℎ� (47) 

As mentioned in the introduction, in the Oliver-Pharr method this formula is used only at maximum load. 

Consequently, it is possible to use the identity ℎ� + ℎ�𝑝𝑝 = 1 to rewrite it as 

   ℎ�𝑐𝑐,𝑂𝑂𝑂𝑂 = �
ℎ�𝑝𝑝

1 − ℎ�𝑝𝑝
+

2 − ϵ
2 �ℎ� (48) 

Finally, equations (45) and (48) can be combined together to obtain 

 ℎ� = cot(𝛼𝛼)�
ℎ�𝑝𝑝

1− ℎ�𝑝𝑝
+

2 − ϵ
2 �

−1

𝑎𝑎� (49) 

The last expression represents a linear relation between contact radius and elastic penetration. By comparing it 

with equation (12), it is immediately realized that the constant multiplying 𝑎𝑎� at the right-hand-side corresponds 

to the 𝑐𝑐1̅ coefficient for an equivalent indenter with linear profile, whose slope is delivered by equation (18) as 
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 𝑏𝑏�𝑂𝑂𝑂𝑂 =
2
𝜋𝜋
𝑐𝑐1̅ =

2 cot(𝛼𝛼)
𝜋𝜋 �

ℎ�𝑝𝑝
1 − ℎ�𝑝𝑝

+
2 − ϵ

2 �
−1

 (50) 

and whose semi-apical angle 𝛼𝛼𝑂𝑂𝑂𝑂 turns out to be 

 𝛼𝛼𝑂𝑂𝑂𝑂 = 𝜋𝜋/2 − atan�𝑏𝑏�𝑂𝑂𝑂𝑂� (51) 

A few crucial observations can be made at this point. First of all, the Oliver-Pharr method can be considered as 

entirely based on the equivalent indenter concept, without any inconsistencies. Secondly, such equivalent 

indenter is assumed to be conical a priori. Thirdly, the associated semi-apical angle turns out to be given by 

equations (50)-(51), where the former simply represents the particularization of the 𝑔𝑔 constraint (43). 

Concerning this last aspect, figure 10-a shows the dependence of 𝛼𝛼𝑂𝑂𝑂𝑂  on ℎ�𝑝𝑝 . Two different values for the 

constant ϵ are considered: 0.72, which is typical of a conical indenter, and 0.75, which relates to a paraboloid but 

is often used in practice as it seems to provide better results (Oliver and Pharr, 2004). It can be noted that when 

the material is perfectly elastic, i.e. ℎ�𝑝𝑝 = 0, 𝛼𝛼𝑂𝑂𝑂𝑂 reduces to 𝛼𝛼 = 70.30, the semi-apical angle of the real indenter. 

This happens exactly for 𝜖𝜖 = 0.72, whereas a small deviation is seen for 𝜖𝜖 = 0.75. Conversely, when the 

material exhibits extensive plastic deformation and ℎ�𝑝𝑝 tends to one, 𝛼𝛼𝑂𝑂𝑂𝑂 approaches 90 degrees, independently 

of the 𝜖𝜖 value. This is sensible, as during loading the material conforms perfectly to the real indenter shape, 

which is retained during subsequent unloading due to negligible elastic recovery. A reason for the big success of 

the Oliver-Pharr method could be this concealed convenient choice of the equivalent indenter profile, which 

explains why the underlying elastic equations describe the unloading stage relatively well even in the presence of 

a non-negligible residual impression on the sample.  

The present analysis is also useful to re-examine the predictive capabilities of the Oliver-Pharr method under a 

different perspective. As extensively discussed in the literature (Bolshakov and Pharr, 1998)(Hay et al., 

1999)(Poon et al., 2008a) errors above 10 % are likely when ℎ�𝑝𝑝 grows beyond 0.7, due to extensive plastic flow 

with associated pile-up, and these are usually larger for materials showing little amount of work-hardening. This 

seems to be the case also for the present findings, reported in figure 10-b. The visible strong influence of the 

hardening parameter indicates that, for a given value of ℎ�𝑝𝑝, multiple values of the equivalent indenter angle 𝛼𝛼𝑂𝑂𝑂𝑂 

would be required to match the theoretical value of Young’s modulus. As a consequence, to further improve the 

accuracy of the method, equation (50), which represents the 𝑔𝑔 constraint (43), should be modified somehow to 

include a dependency on some other experimentally accessible quantities related to work-hardening. 

Nevertheless, this would make the method less attractive compared to other procedures suggested in the 

literature, for the reason explained in the last paragraph of section 4.6. 
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(a) 

 
(b) 

Figure 10: The Oliver-Pharr method. (a) Semi-apical angle of the implicitly assumed equivalent conical indenter as a 
function of the ratio between residual and maximum penetration. (b) Young’s modulus predictions using the data of the 
present simulations. 

5. Conclusions 

In this paper, a thorough analysis of the equivalent indenter concept applied to nano-indentation was carried out, 

motivated by the fact that previous works in the field were apparently incomplete, having neglected the 

requirement of a consistent relation between contact depth and projected contact area. Dimensional analysis was 

initially used to prove that the shape of the axisymmetric equivalent indenter can be considered as a material 

property, provided that size-effects are negligible. Subsequently, it was shown that such shape can effectively be 

employed to describe the nano-indentation unloading stage by means of elastic analytical solutions which are 

formally valid only for indentation into a flat surface. This intermediate result was then used to formulate the 

problem of extracting Young’s modulus from the unloading curve as an optimization problem. However, it was 

also proved that the latter does not have a unique solution, due to the particular mathematical structure of 

Sneddon’s equations, and additional constraints are needed to set limitations on the admissible equivalent 

indenter shapes. An example of such constraint is hidden in the apparent inconsistencies of the Oliver-Pharr 

method, which was demonstrated to be based on an equivalent conical indenter whose semi-apical angle depends 

on the ratio between residual and total penetration. Specifically, this angle tends to 90 degrees when the material 

exhibits extensive inelastic deformation, whereas it reduces to the one characteristic of the real indenter for a 

perfectly elastic material. This offers a new physical explanation for why the elastic equations on which the 
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method is based on, which are formally valid for contact with a perfectly flat surface only, describe the 

unloading stage relatively well even in the presence of a non-negligible residual impression on the sample. 
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a b s t r a c t

A synchrotron technique, differential aperture X-ray microscopy (DAXM), has been applied to charac-
terize the microstructure and analyze the local mesoscale residual elastic strain fields around graphite
nodules embedded in ferrite matrix grains in ductile cast iron. Compressive residual elastic strains are
measured with a maximum strain of ~6.5e8 � 10�4 near the graphite nodules extending into the matrix
about 20 mm, where the elastic strain is near zero. The experimental data are compared with a strain
gradient calculated by a finite element model, and good accord has been found but with a significant
overprediction of the maximum strain. This is discussed in terms of stress relaxation during cooling or
during storage by plastic deformation of the nodule, the matrix or both. Relaxation by plastic defor-
mation of the ferrite is demonstrated by the formation of low energy dislocation cell structure also
quantified by the DAXM technique.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Ductile cast iron (DCI) is an attractive engineering material, as it
has strength and toughness very similar to steel, and the machin-
ability advantages make it very cost effective [1]. An example of
industrial applications is the heavy components for wind turbine,
e.g. the main shaft. One design requirement for such components is
good fatigue resistance, as the fatigue failure is a main failure mode
during their service life [2].

From a microscopic point of view, DCI is a composite material,
consisting of graphite nodules embedded in a metal matrix which,
in most engineering applications, can be either ferrite, or pearlite or
a mixture of the two [1]. The differences in the thermal expansion
coefficients between themetal matrix and the graphite nodules can
lead to local thermal residual stresses in the composites during
cooling from the processing temperature to room temperature
[3,4]. Due to the presence of the local residual elastic stresses, fa-
tigue cracks may be initiated at the nodules because of overstrain,

as the local residual stresses may be larger than the flow stress of
the metal matrix. But they may also be lower as they may relax by
plastic deformation of the nodules or the surrounding volume [5].
In the past many studies have been conducted to quantify and
model the residual stresses in metal matrix composites containing
particles that are harder than the metal matrix, e.g. SiC or Al2O3

reinforced aluminum matrix composite [6,7] and Al/W metal ma-
trix composite [8]. For a system like DCI, where the particles
(graphite nodules) are considerably softer than the metal matrix,
there has however not been much knowledge about the local re-
sidual stress. Many researchers believed the local residual stresses
to be minor, considering the fact that graphite is soft; and the local
residual stresses were neglected in most micromechanical models
[9]. However, recently the formation of residual stress comparable
to the material yield stress has been predicted by finite element
models in DCI [10]. To optimize design and processing of DCI
components, themagnitude of the local mesoscale residual stresses
must therefore be known.

It is however a challenging task to quantify local residual
stresses experimentally. Recently, the development of new exper-
imental characterization techniques has given promising possibil-
ities. For example, a novel synchrotron X-ray technique, the so-
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called differential aperture X-ray microscopy (DAXM), has been
developed during the last 15e20 years for non-destructive 3D
characterization of microstructure and local elastic strains [11,12].
With DAXM, local elastic strain distribution inside individual grains
has been measured in e.g. deformed bicrystal Ni [13] and NiAl-
Cr(Mo) composite [14]. The use of focused microbeam offers
spatial resolutions of sub-micrometers [15].

In this study, we use DAXM to characterize the microstructures
and local residual strains/stresses in matrix grains surrounding
graphite nodules in a DCI sample. The objective of the study is to
answer the following questions: i) are the matrix grains plastically
deformed? ii) what is the magnitude of the residual elastic stress
and is it comparable with the flow stresses of the cast iron? iii) how
the residual elastic stress distributes? and iv) how residual stress
relaxes? A DCI sample is chosen based on a previous study, where
the fatigue properties of the sample are already available in a large
data base. The results on the local residual stresses will provide a
new aspect to evaluate the obtained fatigue properties.

2. Material and methods

2.1. Materials

Metal mold DCI was chosen for the study. A specimen was
extracted from the head of a sample that has been fatigue tested to
failure after ~5 million cycles under stress level 5.5 as described in
Ref. [16]. It therefore was considered as not affected by the fatigue
test. The sample consists of almost spherical graphite nodules and
a metal matrix with a relatively homogeneous structure, being
mainly ferrite with a small fraction of perlite (~5%). The graphite
nodules were distributed relatively homogeneously in the metal
matrix (see Fig. 1a). The mean size (equivalent circle diameter)
and volume fraction of the graphite nodules were ~30 mm and
11.5%, respectively. The mean distance between nodules and the

Fig. 1. Microstructures of the DCI showing the graphite nodules and metal matrix. (a) Scanning electron microcopy image and (b) EBSD map. In (a) dark regions are graphite nodules
and the rest is metal matrix, while in (b) the black particles are graphite nodules and the colored grains are the metal matrix. The colors of the matrix grains correspond to the
crystallographic orientation along the specimen surface normal direction (ND) (see the insert).

Table 1
Chemical composition of the sample (mass%).

C Si Mn P S Cr Ni Co Cu Ti V Mg Ce Se

3.68 2.30 0.22 0.015 0.011 0.027 0.048 0.024 0.016 0.017 0.014 0.11 0.042 0.043

Fig. 2. Sketches showing a side view of the detailed scanning positions relative to the
selected nodules. The selected nodules are marked by A, B and C. Specimen surface
normal direction (ND) is marked by the black arrow. The white lines represent the
projections of the mapping planes illuminated by the incoming X-rays, which are along
the Z direction.

Table 2
Sizes and positions of the selected three nodules.

Graphite nodule Diameter (mm) Depth (mm)a

A 50 40
B 72 10
C 63 78

a Depthmeans the perpendicular distance from the center-of-mass of the nodules
to the sample surface.
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maximum nodule size are both ~70 mm. The ferrite matrix has an
average grain size of ~30 mm (Fig. lb), measured by electron
backscattered diffraction in a Zeiss Supra 35 scanning electron
microscope using a Channel 5 software from HKL Technology. The
chemical composition of the sample is listed in Table 1.

2.2. Lattice parameter

It is known that the ferrite lattice parameter depends on the
amount of solute elements [17]. For the present material, the main
alloying elements, i.e. C, Si, and Mn, were considered for the
calculation of the lattice parameter. The resulting ferrite lattice
parameter was calculated using a function that was deduced based
on various publications [17]:

a0 ¼ aFe þ
�
3a2Fe

��1 �
h
ðaFe � 0:001297wCÞ2ðaFe

þ 0:011606wCÞ � a3Fe
i
� 0:0006wSi þ 0:0006wMn (1)

where aFe ¼ 2:8664�A is the lattice parameter of pure ferrite, andwx

is the weight percentage of x element (x ¼ C, Si and Mn). For the
present sample, the Si and Mn contents listed in Table 1 and a
maximum solubility of 0.005 wt% of C in ferrite at room tempera-
ture were used as wSi, wMn and wC, respectively. The lattice
parameter for the current ferrite was calculated to be a0 ¼ 2.8653 Å
using Eq. (1).

2.3. X-ray tomography

To assist the synchrotron measurements, the 3D distribution of
the graphite nodules was characterized by X-ray tomography using
a Zeiss Xradia 520 Versa micro-CT system. For the CT scan, a
polychromatic conical beamwith X-ray energies up to 140 keV and
1401 image projections over a rotation of 360� were used. For the
present study, two nodules with size �50 mm were selected for
residual stress measurements: one nodule beneath the specimen
surface, defined as nodule A, and one nodule exposed to the
specimen surface, defined as nodule B, see Fig. 2. Nodule A repre-
sents a bulk nodule, while nodule B represents a surface nodule.
Part of another nodule, defined as nodule C, which was neighboring
to nodule B, has also been illuminated. Some of the results around
this nodule are included in the analysis. The distance of center-of-
mass between nodules B and C is about 95 mm. Nodule A is about
400 mmaway from nodule B/C. The sizes and distances between the
center-of-mass of the selected nodules and the specimen surface
are given in Table 2.

2.4. DAXM experiment

The differential aperture X-ray microscopy (DAXM) was per-
formed at beam line 34-ID-E at the Advanced Photon Source (APS),
Argonne National Laboratory [18]. In the DAXM experiment, the X-
rays were focused at the specimen using two non-dispersive

Fig. 3. Illustration of orientation indexing based on white beam Laue diffraction patterns and determination of crystallographic plane spacing. (a) and (b) show two examples of
indexed depth-resolved Laue diffraction patterns. (a) and (b) are from the grains marked by white boxes in Fig. 4a and b, respectively. The crosses in dashed lines in (a) and (b) mark
the diffraction center. (c) The diffraction vector, Q, as a function of depth for one wire energy scan corresponding to the (�3 2 5) Laue spot in (a). (d) Fitted intensity distribution for
the (�3 2 5) Laue spot for the depth marked by the black vertical line at the frame in (c). The center of the fitted Q-distribution, QC, is used for determination of the crystallographic
plane spacing. The dashed line in (d) marks the Q value for d0 of the (�3 2 5) crystallographic plane determined based on the lattice parameter in Section 2.2.
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Kirkpatrick-Baez (K-B) focusing mirrors. The resulting microbeam
has a Lorentzian profile and a full-width half maximum of ~0.5 mm.
The specimen was mounted on an inclined holder at a 45� inci-
dence angle to the incoming X-ray beam, and was scanned hori-
zontally by moving the specimen stage with a step size of 1 mm.
Two sections through the selected nodules were scanned. The
detailed scanning position relative to the selected nodules is
sketched in Fig. 2. The Laue diffraction patterns from the whole
volume within the incident microbeam were recorded on a flat
panel detector (409.6 � 409.6 mm2, 2048 � 2048 pixels) mounted
in 90� reflection geometry 510.3 mm above the specimen. The
detector's geometry with respect to the incident beam was cali-
brated using a standard strain-free silicon single crystal. To resolve

the diffraction pattern from each volume element at different
depths, a Pt-wire of 50 mm diameter was used as a differential
aperture and scanned at a distance of ~200 mm from the specimen
surface. The Laue patterns at each depth were reconstructed by ray-
tracing algorithm using the LaueGo software available at APS
beamline 34-ID-E [19]. The reconstructions were conducted to a
depth of about 100 mm into the specimen with a step size of 1 mm.

Two beam modes were used in the present study: first a poly-
chromatic beam was used to determine the orientations of the
matrix grains; then a monochromatic beam was used for deter-
mining absolute lattice parameters of selected grains in the map-
ped sections. Two examples of depth-resolved Laue diffraction
patterns for two probed grains from polychromatic scans are
shown in Fig. 3a and b. The patterns were indexed, fromwhich the
hkl indices of individual spots as well as their corresponding X-ray
energies were determined [19]. Based on the energies and spot
positions, a Laue spot with high intensity and diffraction vector
approximately parallel to the specimen surface normal direction,
was chosen for the monochromatic energy scan for each selected
grain. From this energy scan, the intensity distributions as a func-
tion of the diffraction vector Q ¼ 2p/d (Q-distribution) were
determined for the selected diffraction Laue spot at all depths, see
for example Fig. 3c, whichwas obtained from the Laue spot (�3 2 5)
shown in Fig. 3a. At each depth, the Q-distribution was fitted using
a Gaussian function and the center of the distribution, QC, was used
to determine the absolute diffraction plane spacing, d (see Fig. 3d).

3. Results

3.1. Depth-dependent grain orientation distribution from
polychromatic scans

The depth-dependent 3D grain orientation distributions ob-
tained from DAXM around the selected nodules are shown in Fig. 4.
Here the ferrite matrix around the selected nodules is shown in
color and the graphite nodules are shown as black sphere-like
blocks. The three selected nodules are marked by A, B and C. Two

Fig. 4. Microstructures of the DCI near selected nodules characterized using white beam DAXM. (a) and (b) showing microstructures around the selected graphite nodules A and B/
C, respectively. In the maps, dislocation boundaries with misorientation angles in the range of 0.1e1�, 1e3� , and >3� are shown in thin white, thin black and thick black lines,
respectively. The colors of the matrix grains correspond to the crystallographic orientation along the specimen surface normal direction in the specimen coordinate system (XHF
system in Fig. 2). The color code is the same as that in the insert in Fig. 1b. The two white boxes mark regions where monochromatic energy scans were conducted. The numbers
mark grains, which are nearly deformation-free. The two black lines in (a) were caused by a technical fault during the Pt-wire scans, and the data were not recorded for that two
positions. The black individual pixels in the matrix away from the nodules are non-indexed.

Fig. 5. Average dislocation density as a function of distance from interface. The
dislocation densities are calculated from the dislocation boundaries with misorienta-
tion angles in the range 0.1e3� [21]. The error bars were estimated based on the
variations in the distances between the dislocation boundaries, reflecting the differ-
ences between matrix grains.
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neighboring graphite nodules are also partly seen. In the matrix
grains, a critical angle of ~0.1� is used for revealing the detailed
boundary structure, and a critical angle of 3� is used for defining
individual grains in the matrix. It is evident that most of the grains
are deformed containing dislocation boundaries with misorienta-
tion angles below 1�, and the dislocation boundaries are organized

in a cell structure. Only a few grains with relatively small sizes
(<25 mm) are nearly deformation-free (see the numbered grains in
Fig. 4). This may be related to an effect of grain orientations [20].

The grains around nodule B contain evidently more dislocation
boundaries as well as more boundaries with misorientation be-
tween 1 and 3� (seen as thin black lines) than those around nodules
A and C. To quantify the local plastic strains in the matrix grains
around the nodules, the average dislocation densities grouped
within cell-wall dislocation boundaries at different distances from
the nodule/matrix interface are calculated based on the micro-
structure using the following equation [21],

r ¼ K=Dc$qc=b; (2)

where K is a number typically equal to 3, Dc is the average spacing
between dislocation boundaries, qc is the average misorientation
angle across the dislocation boundaries, and b is Burgers vector. All
dislocation boundaries with misorientation angles in the range
0.1e3� are included for the calculation, i.e. the grain boundaries are
not included. The results are shown in Fig. 5. It is found that the
average cell-wall dislocation densities are large at places close to
the nodules, and decrease with increasing distance from the
nodule/matrix interface. The maximum cell-wall dislocation den-
sity around nodule B is ~6.4 � 1012 m�2, which is about twice of
those around nodules A and C. The cell-wall dislocation density in
the matrix away (>20 mm) from nodule is in the range 1.2e1.6 �
1012 m�2.

3.2. Monochromatic energy scans

Two grains marked by the white boxes in Fig. 4 were chosen for
the monochromatic energy scans to determine the absolute crys-
tallographic lattice plane spacings. Diffraction from the (�3 2 5)
and (-3 -3 4) planes was used for the grains around nodules A and
B/C, respectively, as their normals are nearly parallel to the spec-
imen normal direction (see Fig. 3a and b), with deviation angles of
~3.5� and ~3�, respectively. Based on the measured absolute crys-
tallographic plane spacings and the lattice parameter specified in
Section 2.2, the strains along the selected crystallographic di-
rections (roughly perpendicular to the nodule/matrix interface)
were determined. For the areas around nodules A and B/C, a step
size of 1 mm and 2 mm, respectively, was used.

The results are shown in Fig. 6. For the grain around nodule A,
compressive strains are observed for most part of the grain, and
they are higher at regions close to the interface than in the interior
volume. For the grain in-between nodules B and C, compressive

Fig. 6. Maps colored according to the strains determined based on the monochromatic
energy scans. The strains in (a) and (b) are calculated along the [-3 2 5] and [-3 -3 4]
directions for the grains marked by the white boxes in Fig. 4a and b, respectively.

Fig. 7. Comparison between the experimental and modeling results. (a) distribution of s33 component at a X-Z section equivalent to that marked by white line in Fig. 2 for nodule A,
calculated assuming linear elastic behavior of the matrix. (b) The ε33 profiles from experiments and modeling. The experimental profiles are converted from the data in Fig. 6a, each
curve corresponds to each vertical line. The modeling profiles are averaged over 9 lines geometrically equivalent to those in Fig. 6a.
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strains are observed at regions close to the nodule/matrix interface,
while nearly zero strains are seen in themiddle of the characterized
area of the grain. The compressive strains at the interface around
nodule C are generally larger than those around nodule B. The
maximal compressive strain is �8 � 10�4 and �6.3 � 10�4 for the
grains around nodules A and B/C, respectively. It should be noted
that the maximal compressive strain is found at the interface for
nodule C but about 2e5 mm away from the interface for nodule A.
Within the grains, strains change rather smoothly, and no abrupt
change is seen at the dislocation boundaries (see the microstruc-
ture within the white boxes in Fig. 4).

4. Discussion

The present study demonstrates that DAXM is a powerful and
unique technique for non-destructive 3D characterization of both
microstructure and local residual strain at the mesoscale for the
ferrite matrix grains within a 3D volume in the present DCI. By
using focused microbeam with size of 0.5 � 0.5 mm2, a spatial
resolution of 1 mm in all directions is obtained. With the poly-
chromatic beammode of DAXM, the local dislocation cell structures
around the nodules are revealedwith an angular resolution of ~0.1�.
With the monochromatic energy scan of DAXM, the local elastic
strains are measured for the two selected grains with a resolution
of 1 � 10�4. To the best knowledge of the authors, no other tech-
niques can provide such good combination of depth-dependent
spatial, angular and strain resolutions within a local volume of
1 mm3.

With these techniques, the results have shown evidently that
ferrite matrix grains at the nodules are plastically deformed, most
at large nodules. The plastic deformation is reflected in the for-
mation of a dislocation structure at or near the nodules. The dis-
locations are stored in cell wall boundaries with lowmisorientation
angles, showing that the plastic strain has not been high. The plastic
strains are different between matrix grains around the same
nodule. This difference may be due to the fact that the grains have
different crystallographic orientations, and their plastic properties
and deformation microstructure will therefore depend on their
orientations [20]. It may also be due to the complex stress pattern
around the nodule (see for example Fig. 7a in Section 4.2). To
investigate the details of this nodule/matrix interaction may be
possible by a local crystal plasticity analysis also encompassing the
strain gradient in thematrix, which will be performed in the future.

Both plastic and elastic strain gradients are seen in the matrix
grains at the nodules. In the following, the existence of the residual
elastic strain gradients and their formation mechanism will be
discussed. For the latter, a finite element model of residual elastic
strain developed in a previous publication [10] is used to calculate
the residual stress/strain distribution. The last three questions
raised in the Introductionwill be addresses based on the discussion.

The effects of nodule sizes as well as specimen surface on the re-
sidual strains/stresses, and their roles in the material fatigue
properties are discussed in the end.

4.1. Residual elastic strain gradients in the matrix grains
surrounding nodules

The measured elastic strains depend on the lattice parameter,
which according to Eq. (1) varies with variations in local chemical
contents. The present monochromatic energy scan shows that
there are significant compressive strains along directions nearly
perpendicular to the nodule/matrix interface, with maximum of
6.5e8 � 10�4 and a gradient of 5e6 � 10�4 over a distance of
~20 mm (see Fig. 6). Although the strain resolution is 1 � 10�4, one
may speculate that the measured strain gradients are just a
reflection of gradients of chemical contents in the matrix. This
speculation is not inurbane, as it is well known that during solidi-
fication process of DCI, certain alloying elements segregate,
including the main alloying elements C, Si and Mn in the present
DCI [22]. This possibility can however be ruled out by the following
analysis.

During solidification Si is generally segregated at the first so-
lidification region around graphite nodules, leading to a high Si
content there, and a low Si content at the last solidification region,
i.e. at the joints of eutectic cells. Mn segregates in a reverse way, i.e.
low Mn content close to the nodules and high content within the
eutectic zones [22]. Our measurements were conducted within
matrix grains that neighbor the graphite nodules directly. Therefore
it is very likely that the characterized region is within the first so-
lidification region, especially for the grain in-between nodules B
and C. The Si/Mn contents there should be higher/lower than the
average Si/Mn contents in the material. If we assume that the Si/Mn
contents were ~20% higher/lower within the characterized region
than the average percentage of the sample, i.e. 2.76% and 0.18% for
Si and Mn, respectively, the measured compressive strain will
reduce only about 1 � 10�4, which is much smaller than the
observed strains. Moreover, it has to be noted that the chemical
difference considered here is between the first solidification region
and the last solidification regions. The chemical variation within
the first solidification region should be even less than that [23].
According to Eq. (1), a strain difference of 5e6 � 10�4 requires
Si þ Mn variation of 2.5e3%, which is almost more than the total
average chemical contents of Si þMn in the material. It is therefore
almost impossible that such large chemical variations can exist
within the two characterized matrix grains.

Additionally, C is anothermain element in DCI that can affect the
lattice parameter. In the present paper, we assumed the C content
to be the maximum C solubility (0.005%) in ferrite at room tem-
perature. From Eq. (1), it can be seen that in order to reduce the
lattice parameter, and thus reduce the observed compressive strain,

Fig. 8. Residual stresses calculated based on the measured strains from the monochromatic energy scans as a function of distance from interface for nodules. (a)e(c) are for the
strains measured in the matrix grains near nodules AeC. The line profiles are calculated based on the strain data shown in Fig. 6, each curve corresponds to each vertical line.
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the C content should be even less. However, in total the 0.005% C
content changes only the strain about 5 � 10�5.

Last but not least, a similar magnitude of compressive strains
and a slightly larger strain gradient are also seen in the deviatoric
ε33 map for the marked grain around nodule A (see Fig. S3a in the
supplementary materials). As the determination of the deviatoric
strains does not depend on the input lattice parameter, the
measured strain gradient therefore must be real. Based on this
evidence and the analysis of chemical contents, it can be concluded
that the observed compressive strains and strain gradients over the
20 mm distance from the interface are not simply due to chemical
variations. To further analyze the formation of the local residual
strains, finite element modeling is conducted and described in the
following section.

4.2. Finite element model

Several analytical models [3] are available in the literature to
predict the formation of thermal residual stresses in materials
containing secondary-phase particles, where Eshelby's equivalent
inclusion method [24] is central, assuming homogeneity of the
material constituents at the micrometer scale. In DCI, however, this
assumption does not hold, due to the heterogeneous and aniso-
tropic nature of the graphite nodules [25]. To overcome this limi-
tation, Andriollo et al. [10] have recently proposed a new finite
element model where the nodules' internal structure is explicitly
taken into account. This model was applied to the present ductile
iron assuming a graphite volume fraction of 11.5% and 48 conical
partitions in the nodule. Time-independent plastic deformation in
the matrix, neglected in the original version of the model, was here
simulated via a standard J2-flow formulation, considering two sets
of properties: strain-stress curve at room temperature [26], and
temperature-dependent flow stress [27].

The patterns of the predicted residual elastic stresses/strains in
the matrix around the graphite nodule are complex, having a cubic
symmetry in the specimen coordinate system (XHF) and with each
strain component varying along both the circumferential and radial
directions. As an example, the predicted s33 component at a section
equivalent to that marked by the white line in Fig. 2 for nodule A is
shown in Fig. 7a. The stress component is symmetrical with respect
to the vertical Z axis but not to the horizontal X axis. This is mainly
because the plane normal to the selectedmapping section (see Fig. 2)
is rotated about 45� from the specimen surface normal direction. For
the comparison to the experimental elastic strain data, only profiles
of the ε33 component (in the XHF system) within the region that is
equivalent to the white box in Fig. 4a are considered. Comparison
with the results based on the monochromatic energy scans around
nodule A (Fig. 6a) is reported in Fig. 7b, where the measured strains
are plotted as line profiles, with each curve corresponding to one
vertical line marked in Fig. 6a. It can be seen that the general ten-
dency of the measured compressive strains to decrease with
increasing distance from the interface is captured by the model.
However, the maximum compressive strain close to the nodule and
the corresponding decreasing rate are over-predicted by a factor ~2.

There could be several reasons that the experimentally
measured maximum compressive strains are smaller than those
predicted by the model. Firstly, some plastic deformation in the
matrix grains is seen for the selected nodules (see Figs. 4 and 5). The
plastic strain predicted by the model is about 2.5 � 10�4 (Fig. 7b),
which is relatively small compared to the differences between the
measured and modeled strains. At the same time, when a material
is plastically deformed and kept at a constant strain, stress relax-
ation occurs [28]. This mechanism can contribute also to the
observed reduction in the measured residual strains. Secondly, it is
assumed in the model that no plastic deformation occurs in the

nodule. In reality, this assumption may not hold. Moreover, high-
temperature creep could also reduce the elastic strain. And in the
model, an isotropic matrix is used, while in reality the anisotropy of
the individual ferrite grains may also induce some strain variations
(see Figs. S1 and S2 in the supplementary materials).

Another inconsistency between the model and experimental
results is that the peak positions of the measured maximum re-
sidual strains along each line are not as model predicted at the
interface, but at a distance of 2e5 mm from the interface for nodule
A. The compressive strains drop about 5 � 10�5 e 3 � 10�4 in this
range for all lines. This strain drop is however not observed for
nodule C (see Fig. 8c), i.e. it may not be a typical phenomenon. It
could be due to some local microstructural variations in 3D that
have not been captured by the present characterizations.

4.3. Size and surface effects on the residual stresses

By combining the DAXM with the X-ray m-CT, it is possible to
evaluate the effect of the nodule size on the residual stresses. To
compare the results at different nodules, the residual stresses were
estimated from the measured residual strains by means of the
direction-dependent Young's moduli. The Young's moduli along the
two crystal directions, [-3 2 5] and [-3 -3 4], are calculated to be 220
and 270 GPa, respectively, using the elastic constants for pure iron
[29].

The calculated stresses as a function of distance from interface
along vertical lines are shown in Fig. 8. A similar maximum
compressive stresses are seen for the grains around nodules A and
C, while relatively small compressive stresses are seen for the grain
around nodule B. The 3D sizes of nodules A and C are similar (see
Table 2). It is thus reasonable that the compressive stresses around
nodules A and C are similar. Nodule B is bigger than the other two
nodules. It is therefore interesting that the compressive stresses in
the matrix grains are smaller around nodule B than around nodules
A and C.

Twomajor possibilities should be considered. Firstly, as shown in
Fig. 5, the average cell-wall dislocation density in the matrix grains
around nodule B is higher than those around nodule A. The residual
stresses are relaxed more by plastic deformation in the matrix grain
around nodule B than those around nodule A. Secondly, nodule B is
exposed at the specimen surface. The residual stresses at the
interface around nodule B are compressive stresses along the
specimen normal direction. When nodule B was completely inside
the bulk material (i.e. before polishing), the compressive stresses at
one side of the interface were counterbalanced by the compressive
stresses at the opposite side, and the local compressive stresses
could be maintained. However, when nodule B is exposed to free
surface, the compressive stresses opposite to the side we measured
were released. The compressive stresses at the inner interface are
then pushing the nodule out of the surface, and are consequently
reduced. The free surface releases not just the stresses at the
interface. The stresses in the middle of the characterized grain be-
tween nodules B and C (~15e20 mm from the two interfaces) seem
also to be affected, for a relatively small magnitude of compressive
stresses are seen at that position compared to those away from
nodule A (>15 mm from the interface).

Large nodules are selected for the present study, as they are the
critical ones for the fatigue behavior [30]. The maximum residual
stress at the selected nodules is about half of the yield stress of the
matrix, which is about 297 MPa [27]. The residual stresses in the
matrix grains therefore cannot be neglected for the material fatigue
properties. The strength increase due to cell-wall dislocation
structure in the matrix grains is maximum ~35 MPa for the largest
nodule [21]. Altogether, the residual stresses are still not so critical
for the fatigue properties, and that might be a reason for the high
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fatigue cycles for this DCI [16]. For other DCI, where the largest
nodule size can be > 200 mm, the resulting residual stresses may be
critical for the fatigue life [16]. However, the large nodule size forms
typically due to slow cooling rates, which at the other hand can
reduce the residual stresses. How these two factors are balanced
needs to be analyzed. At the same time, other factors as the nodule
connectivity and shape as suggested in the previous study may also
be critical for the material fatigue properties [16]. The effects of
these factors on the residual stresses (thus on the fatigue proper-
ties) are planned to be examined in the future.

5. Conclusions

1. The DAXM technique is suitable for characterization of both
local plastic and elastic residual strains in the present ductile
cast iron. With this technique, an angular resolution of 0.1�, a
spatial resolution of 1 mm, and an elastic strain resolution of
1 � 10�4 have been obtained.

2 The ferrite matrix grains at nodules have been plastically
deformed as a result of the local stresses, which develop due to
the interaction between the nodules and the matrix during
cooling. The plastic deformation introduces dislocations which
are stored as dislocation boundaries with low misorientations
angles in the range 0.1e1�, and organized in a cell structure.

3 Compressive residual elastic strains along specimen surface
normal direction are observed at interfaces that are approxi-
mately perpendicular to the specimen surface normal direction.
The residual elastic strains have shown gradients with
maximum of 6.5e8 � 10�4 near the graphite nodules extending
into the matrix about 20 mm, where the strains are near zero.
These gradients are not caused by local chemical variations.

4 The finite element modeling captures the general trend that the
elastic residual strain decreases as a function of the distance
from the matrix/nodule interface. However, the maximum
compressive strain close to the nodule and the corresponding
decreasing rate are over-predicted by a factor ~2. These differ-
ences are mainly originated in relaxation processes reducing the
strain at the nodules by plastic deformation of the matrix.

5 The free specimen surface releases some of the compressive
residual elastic stresses along the surface normal direction. The
maximum residual stresses in thematrix grains are about half of
the yield stress of the matrix, which suggests that the local re-
sidual stresses cannot be neglected for the fatigue properties of
ductile cast iron.
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