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Highlights 

 

 Analytical detection of toxic polychlorinated biphenyls (PCB) was possible using surface-

enhanced Raman scattering (SERS) spectroscopy. 

 PCB77 compounds were chemically modified with a –SCH3 (PCB77-SCH3) group in 

order to improve the detection limit of PCBs. 

 Our results point towards more efficient path for detecting different PCB congeners from 

real-life samples. 

 

 

Abstract 

We present an improved procedure for analytical detection of toxic polychlorinated biphenyls (PCB) using 

surface-enhanced Raman scattering (SERS) spectroscopy. A gold-capped silicon nanopillar substrate was 

utilized to concentrate PCB molecules within an area of high electromagnetic fields through formation of 

microsized nanopillar clusters, and consequently, so-called “hot spots” can be formed. In order to improve 

PCB detection limit, 3,3',4,4'-tetrachlorobiphenyl (PCB77) compounds were chemically modified with a –

SCH3 (PCB77-SCH3) group. Experimental and numerical analysis of vibrational modes showed only minor 

differences between standard PCB77 and PCB77-SCH3. Consequently, we observe significantly increased 

SERS signals for –SCH3 modified PCB77 while retaining most vibrational modes that characterize standard 

PCB77. Results point towards more efficient path for detecting different PCB congeners from real-life 

samples. We interpret the result as PCB77-SCH3 link to gold surface via sulfur atoms that facilitates 

accumulation of the modified PCB molecules on the metal surface. For similar SERS experimental 

conditions most spectral characteristics of PCB77 are identifiable down to concentrations of ~10-5 M while 

PCB77-SCH3 spectral fingerprint is retained in ~10-8 M range.  
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1. Introduction 

Polychlorinated biphenyls (PCBs) are a group of organic compounds that were manufactured by industry 

back in 1926 [1]. Today it is well known that PCBs cause a number of harmful effects [2] including cancer 

[3]. Although this toxic group of chemicals was banned in the 1970s, they are still frequently found 

worldwide in environment [4, 5], animal-source food [6] and natural waters [7]. 

Conventional PCB detection methods are usually based on gas chromatography (GC) [8, 9] or mass 

spectroscopy (MS) [10] with reported detection limits for single PCB congeners down to 0.05-0.1 ngL-1 

[11]. Even though these methods display excellent PCB discrimination and detection capabilities, they 

require considerable effort and time. 

Recent progress towards new PCB detection schemes include electrochemical impedance sensing using 

a single-walled carbon nanotube [12], electrochemical magneto-immunosensor [13], changes in surface 

photovoltage of porous ZnO [14], assay based on immuno-polymerase chain reaction [15], attenuated total 

reflection Fourier-transform infrared (ATR-FTIR) spectroscopy [16], fluorescence [17, 18] and surface 

plasmon resonances (SPRs) in thin gold films [19, 20]. In terms of detection speed, ease of handling and 

reliability there is still room for better PCB sensors. The aforementioned techniques have either practical 

limitations or target pure PCB congeners instead of realistic PCB mixtures compared to more powerful 

GC/MS methods [9]. On the other hand, the latter techniques require considerable effort, time and have 

limited mobility. Chobtang and co-workers have specifically outlined the need for real-time and on-site 

PCB sensing systems in order to make timely decisions [21]. 
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Surface-enhanced Raman scattering (SERS) [22, 23] spectroscopy has extraordinary potential to 

discriminate target species down to single molecule level [24]. A number of studies have demonstrated that 

SERS-based detection of PCBs is feasible using silver nanorods [25], dendrites [26, 27], nanoparticle 

decorated ZnO nanorods [28] and nanosheet-assembled micro-hemispheres [29]. Zhou et al. showed that 

PCBs can be detected by SERS using Ag nanorods down to 10-8 mol/L [30]. However, since all PCB SERS 

studies utilize pure, isolated PCB compounds results might be different when dealing with real-life samples. 

It is therefore important to also focus on techniques that allow to filter or concentrate PCBs on the metal 

surface. For example, Bantz and co-workers have utilized alkanethiol space-layers to concentrate PCBs at 

the surface of a SERS substrate [31]. Although partition-layers introduce background signal, the authors 

argued that PCB detection and discrimination can be significantly improved. Zhu and co-workers [32] have 

also utilized decanethiol self-assembled monolayers for detection of PCB77 and specifically outlined that 

the detection limit can be further improved if better bonding of PCB77 to the metal surface is achieved.  

For SERS-based PCB detection methods concentration of PCB molecules in the vicinity of the noble 

metal surface is key [32]. The SERS enhancement factor approximately scales as |𝐸𝑝 𝐸0⁄ |
4
, where 𝐸𝑝 is 

the near-field generated by noble metal particles at the position of the molecular emitter, and 𝐸0 is the 

electric component of the incident radiation. Since the SERS effect is a local phenomenon, large inelastic 

scattering signals can only be obtained when the target molecule is situated within narrow gaps between 

plasmonic particles - the so-called hot spots [33]. In this contribution, we suggest a procedure to effectively 

concentrate PCB molecules at a noble metal surface. In order to enhance affinity of PCB77 molecules 

towards nanostructured gold surface, the molecules were modified with a –SCH3 group. We compare 

strikingly similar spectral characteristics of standard PCB77 and modified PCB77 molecules and analyze 

vibrational modes using density functional theory (DFT) computational modelling method, which is in good 

agreement with the experimentally recorded spectra. We investigate evidence for formation of PCB77-

SCH3 molecular layers on the Au metal surface using gold-capped silicon nanopillar SERS substrates. 

Results indicate that it is considerably easier to detect –SCH3 modified PCB77 molecules compared to 
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standard PCB77 when acquiring SERS spectra under identical experimental conditions. We show that the 

PCB detection limit can be significantly improved, which is of high practical importance not only for 

detecting different PCB congeners using SERS, but also for the development of new types of label-free 

nanoplasmonic sensors. 

 

 

  

2. Experimental 

2.1. Synthesis of PCB77–SCH3 

First, we aim to employ a method to perform a controlled substitution of one –Cl by the –SCH3 group. This 

is important in order to systematically evaluate the obtained molecule using both theoretical and 

experimental methods. Due to this we synthesized a building block already containing this SMe-group and 

perform a coupling to obtain the PCB77-SCH3. This molecule was isolated in pure form and structure was 

investigated and confirmed by NMR prior to Raman and SERS analyses. Modified PCB77 molecules in 

this work were synthesized using 4-chloro-3-methylthioiodobenzene and 3,4-dichloroboronic acid blocks, 

see illustration in Figure 1(a). 4 g – 0.0141 Mol 4-chloro-3-methylthioiodobenzene, 3 g – 0.0155 Mol 3,4-

dichloroboronic acid and 4.1 g – 0.0388 Mol Na2CO3 were dissolved in 22 ml of water, 22 ml of methanol 

and 90 ml of toluene. After 10 min under N2-atmosphere 0.9 g – 0.00078 Mol 

tetrakis(triphenylphospin)palladium (Pd(PPh3)4) was added and stirred for 30 h at 80°C. After cooling down 

this mixture was poured into 200 ml of water and extracted 3x with ethyl acetate (EtOAc). Organic phase 

was washed with 5% NaHCO3, water and NaCl solution. After drying over Na2SO4 and removal of all 

solvents the residue was purified by chromatography using silica gel and hexane as eluent to get 4,4 ,́3´-

trichloro-3-methyltiobiphenyl as white crystals. Sublimation at 88°C. Yield: 3.3 g = 77 %. 1H NMR 

(CDCl3): δ = 7.61 (d, J = 2.0 Hz, 1H), 7.51 (d, J = 8.3 Hz, 1H), 7.41 (d, J = 8.3 Hz, 1H), 7.36 (dd, J = 8.4, 

2.1 Hz, 1H), 7.25 (s, 1H), 7.21 (dd, J = 8.4, 2.1 Hz, 1H), 2.53 (s, 3H) ppm.  
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In Figure 1(b) we suggest another, a more practical procedure that can be potentially used with real life 

samples. In this procedure the treatment of PCB77 with large excess of MeSNa under harsh conditions is 

shown. Note, it is not clear at this point how many and which chlorine atoms can be substituted. In order to 

establish this, one needs to perform a purification and analysis of the mixture which is beyond the scope of 

this work. We suggest the following process guidelines for working with real life samples: a mixture of e.g. 

3,3,4,4-tetrachlorobiphenyl and MeSNa (~3.5:1) in sulfolane, heated up to ~110 ºC for 10-20 h under N2 

atmosphere. After cooling down, the mixture can be poured into water and filtrated to get a crystalline 

powder.  

2.2. Fabrication of SERS substrates 

Gold metal coated silicon nanopillars were fabricated following the protocol in ref. [34]. The SERS 

substrate is produced using maskless lithography and the fabrication process essentially involves only two 

fabrication steps. First, silicon nanopillars were produced using SF6 and O2 reactive ion etching process. 

After the silicon etching cycle, the surface was further treated with the O2-plasma to remove fluorine and 

sulfur related products [41]. Second, 200 nm thick gold film was deposited using electron beam evaporation 

and the surface exhibited dark red color. Inspection in a scanning electron microscope (SEM) showed that 

the SERS substrate consisted of ~500 nm in height gold-capped nanopillars that are roughly perpendicular 

to the silicon surface, see Figure 4(c). The gold cap is approximately ellipsoidal with average dimensions a 

≈ 300 nm and b ≈ 100 nm in height and width, respectively.  

 

2.3. UV-Vis, Raman and SERS measurements 

PCB No 77 compound (3,3 ,́4,4 -́tetrachlorobiphenyl, analytical standard) utilized in all the PCB77 

related experiments was purchased from Sigma-Aldrich. The UV-Vis absorption spectra of PCB77 and 

PCB77-SCH3 compounds were recorded in the range of 200-400 nm using Shimadzu UV-1800 UV-Vis 

spectrophotometer. Both PCB samples were prepared in isopropanol (IPA, C3H8O) in the concentration of 

10 µM. A baseline correction was made for both sample and reference cells, and the obtained UV-Vis 

spectra were normalized to unity for comparison, see results in Figure 1(c). 
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Raman and SERS measurements were performed using Thermo Scientific DXR Raman Microscope. An 

optical microscope is coupled to a single grating spectrometer that delivers 5.0 cm-1 FWHM spectral 

resolution and 2.0 cm-1 accuracy. Frequency-stabilized single mode diode laser operated at 780 ± 0.2 nm. 

All solid-state Raman and SERS spectra were recorded using 10x long working distance objective and laser 

powers of 5 mW (~70 kW/cm2) and 0.1 mW (~1.3 kW/cm2), respectively. Signal collection time was set to 

5 seconds, unless stated otherwise. Solid-state Raman spectra were recorded from randomly oriented 

powdered samples deposited on a glass slide. For SERS measurements both PCB77 and PCB77-SCH3 

compounds were dissolved in IPA using magnetic stirring (12 h). The PCB concentrations ranged from 5 ×

10−3 down to 5 × 10−8. The SERS substrates were then immersed into different PCB solutions of varying 

concentrations for 3 h, rinsed with IPA and left for drying.  

IPA solvent drying groups Au nanopillars together into microsized clusters which is important for 

obtaining high SERS signals [34], see schematic illustration and corresponding SEM images in Figure 4. 

Since larger Au nanopillar clusters increase SERS signal intensity [41], IPA solvent was found to be more 

effective in clustering Au nanopillars compared to e.g. tetrahydrofuran (THF) which is an organic liquid 

with lower viscosity. However, PCB77 molecules were also dissolved in THF for comparison (1 mM) and 

the recorded SERS spectral features were similar to the ones obtained using IPA.  

 

2.4. Computational methods 

All numerical calculations were performed using the program package Gaussian 09 [36]. The vibrational 

frequencies and Raman intensities were obtained numerically. The ground-state molecular structures were 

optimized utilizing density functional theory (DFT) calculations using the hybrid functional B3LYP [35, 

37, 38] and the standard 6-31G* basis set. In order to correct for systematic errors, all computed frequencies 

were scaled by a factor of 0.9614 according to ref. [39]. The GaussSum 3.0 program was used to produce 

theoretical spectra [40]. 

 

3. Results and discussion 
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3.1. UV-Vis absorption and Raman scattering of PCB77 and PCB77-SCH3 

The obtained UV-Vis absorption spectra of PCB77 and modified PCB77-SCH3 are shown in Figure 1(c). 

Both PCBs display characteristic UV-Vis spectra dominated by a main-band at 𝜆1,𝑚𝑎𝑥 = 213 nm which is 

attributed to resonance in the aromatic ring, i.e. the benzenoid skeleton, and is generally observed for all 

209 PCB congeners [42]. The second strong absorption band found at 𝜆2,𝑚𝑎𝑥 = 261 and 288 nm for PCB77 

and PCB77-SCH3, respectively. The band is attributed to conjugation between the phenyl groups and the 

position of the band varies for different PCB congeners. The ~30 nm shift is consistent with UV-Vis spectral 

changes observed for adjacent PCB congeners, e.g. compare absorption spectra of PCB76 and PCB77 in 

ref. [42].  

Before we analyze vibrational modes of modified PCB77 molecule, it is worthwhile to identify six 

distinct experimentally observed bands of PCB77 in the 1600-600 cm-1 spectral region. The calculated and 

experimental Raman spectra of standard PCB77 are shown in Figure 2(a) and the insets show molecular 

structures. Results are in good agreement with the previously published data [31]. The 400-700 cm-1 spectral 

region mainly contains Raman modes associated with C-Cl stretch and relative motions of two benzene 

rings, where the strongest band is at 676 cm-1. Based on our calculations, this experimentally observed band 

is dominated by deformation of benzene rings and C-Cl bond stretching. The 1030 cm-1 band is related to 

motions of benzene rings (ring breathing), the 1136 and 1245 cm-1 are dominated by C-H bending motions, 

and 1297 cm-1 band is attributed to biphenyl C-C bridge stretching motion. The strongest vibrational mode 

at 1597 cm-1 is related to symmetric in-plane stretching of benzene rings, see calculated vibrational 

amplitudes and frequencies in Figure 3. 

Whereas PCB77 molecule has been studied experimentally and theoretically [31, 41], to the best of our 

knowledge there are no previous Raman investigations of –SCH3 modified PCB77 that enables link to the 

noble metal surface via sulfur atoms. As can be seen from Figure 2(b), the experimental solid state spectrum 

of PCB77–SCH3 shows no pronounced differences in comparison to standard PCB77. In the 1600-400 cm-

1 spectral region all vibrational modes characteristic to PCB77 are preserved. One noticeable change is the 

reduced relative intensity of the Raman band at 1297 cm-1 (biphenyl C-C bridge stretching) which is also 
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well reflected in the calculated spectrum. In the 1600-400 cm-1 range, positions of the most intense Raman 

bands of PCB77 and PCB77-SCH3 are within ~3 cm-1, Figure 2. Our calculations show that the 400-700 

cm-1 region of PCB77-SCH3 molecule is dominated by deformation of benzene rings, C-Cl and C-S (643 

cm-1) bond stretching motions. Specifically, the experimentally observed 677 cm-1 band is related to 

deformation of one benzene ring and C-Cl bond stretching, see Figure 2(b). In case of PCB77 molecule, 

the 676 cm-1 mode involves deformation of both benzene rings and C-Cl stretching. The 1031 and 1134 cm-

1 bands are attributed to stretching motions of benzene rings, and the atomic displacement in these modes 

is similar to the standard PCB77. The 1242 and 1297 cm-1 vibrational patterns are also comparable to 

PCB77, and are dominated by C-H wagging and biphenyl C-C bridge stretching motions. Finally, the most 

pronounced vibrational band at 1595 cm-1 is attributed to symmetric stretching of benzene rings, and the 

motion is particularly dominated by one benzene ring, see summarized data in Figure 3(c). 

 

3.2. SERS of PCB77 and PCB77-SCH3 

In Figure 4(a)-(b) the SERS detection principle utilizing gold-capped silicon nanopillars for standard and 

-SCH3 modified PCB77 is schematically illustrated. In the PCB77 case, the metal molecule link is not 

expected to occur, and therefore microsized clusters of Au nanopillars encapsulate fewer random PCB77 

molecules, Figure 4(a). SERS spectra of PCB77 are shown in Figure 5. The largest difference due to the 

presence of the gold metal surface was observed for the Raman mode at 1297 cm-1. In the case of SERS 

measurements, the mode is now found at 1280 cm-1 (~17 cm-1 shift), see Figure 3(c) for comparison. The 

SERS measurements using different concentrations of PCB77 ranging from 5 × 10−3 to 5 × 10−6 M show 

that the Raman spectral characteristics diminish and are essentially not visible in the µM concentration 

range. Due to low solubility of PCB77 in IPA, we have verified the result using a moderately polar THF 

solvent [31] that can be used to effectively dissolve PCB77. SERS spectra of PCB77 and detection limit 

using THF were similar to the result shown in Figure 5. 

For the modified PCB77 case, the -SCH3 group is expected to improve the PCB affinity towards the Au 

metal film, see schematic illustration in Figure 4(b). An increased SERS signal can be observed because 
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higher number of PCB molecules are now concentrated within the high electromagnetic field area, i.e. close 

to the Au metal surface. The SERS spectra of PCB77-SCH3 with concentrations varying from 5 × 10−3 

down to 5 × 10−8 M are presented in Figure 6 and are very similar to the solid state vibrational pattern 

shown in Figure 2. Contrary to the PCB77 case, the entire molecular fingerprint of PCB77-SCH3 is 

preserved down to the ~10-8 M regime. Chemical stability of the modified PCB77 molecule on the gold 

surface was verified by monitoring SERS spectra for 3 min prior to acquiring the signal. No significant 

signs of transient effects similar to the ones observed e.g. for 2,2′:5′,2”-terthiophene [34,37] were identified. 

Comparison of the scattering intensity evolution of most intense Raman bands for standard (1589 cm-1) 

and modified PCB77 (1586 cm-1) are shown in Figure 7. The 1586 cm-1 PCB77 band is rapidly decreasing 

in intensity and the detection limit for current experimental conditions is ~10-6 M. For the same 

concentration range the PCB77-SCH3 Raman band displays ~4 times higher intensity and all 6 characteristic 

vibrational modes are clearly identifiable, see Figure 6. A slight dip in the SERS intensity is observed for 

modified PCB77 at ~10-3 M, see Figure 7. This is probably due to a reduced Au NP leaning which decreases 

the SERS signal intensity. Similar effect was observed for multilayer folic acid surface coverages using Ag 

NP structures [43]. Results from Figure 7 indicate that by modifying PCB77 with –SCH3 group the 

detection limit can be significantly improved, and is close to ~10-8 M which is due to a more effective 

concentration of PCB molecules on the noble metal surface.  

 

4. Conclusions 

According to the present study, an improved procedure based on a gold-capped silicon nanopillar 

substrate could be successfully employed for detecting toxic polychlorinated biphenyls (PCB) using 

surface-enhanced Raman scattering (SERS) spectroscopy. Upon binding of S-CH3 modified PCB, the Au-

PCB77 interaction significantly increases the SERS signal intensity in comparison to unmodified PCB77. 

We interpret this as an effective concentration of analyte molecules within the high electromagnetic field 

area, i.e. hot spots. A complete molecular fingerprint of PCB77-SCH3 was preserved down to ~10-7 M. The 
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estimated detection limit is ~10-8 M while using the same experimental setting the detection limit for 

standard PCB77 was ~10-6 M.  

The detection limit of standard PCB77 can of course be further improved by optimizing the experimental 

conditions or employing SERS signal mapping techniques [40]. However, these kind of techniques should 

also further improve the detection limit of PCB77-SCH3 in comparison to PCB77. Herein we employed a 

simple experimental set-up for comparison and to demonstrate straightforward PCB detection benefits 

when forming a PCB-metal link. It is of practical importance to develop on-site PCB detection method 

capable of concentrating different PCB types because real-life samples contain mixtures of PCB congeners 

(209 in total). We suggest one PCB modification procedure that can be adopted to simultaneously target 

different PCB congeners in real-life samples, see process guidelines in the experimental methods section 

and Figure 1(b). Real-life PCB-containing samples can have several appearances. Due to this an individual 

workup is required and solids must be powdered. For example, rubberlike material can be powdered using 

liquid nitrogen treatment, and in general all samples should be extracted with hydrocarbons e.g. in a Soxhlet 

apparatus with hexane. Removal of solvent gives crude material which can be treated with MeSNa without 

any further purification. The method could potentially be used on-site to extract different PCBs from 

relevant samples prior to SERS measurements. The SERS measurements could be performed using hand-

held Raman spectrometers that progressively are becoming smaller, better and cheaper [44]. 
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Figure captions 

Fig. 1. (a) Illustration of PCB77-SCH3 synthesis steps. In (b) an alternative method for working 

with real-life samples is suggested. PCB77 reaction with sodiummethanethiolate is shown where 

one or more chlorine groups can be substituted with –SCH3 groups.  

(c) UV-Vis absorption spectra of PCB77 (10-5 M) and PCB77-SCH3 (10-5 M), obtained using the 

method shown in (a)).  

Fig. 2. Experimental and calculated Raman spectra for PCB77 (a) and –SCH3 group modified 

PCB77 molecules, (b). Insets show the corresponding molecular structures. 

Fig. 3. Comparison of calculated vibrational frequencies (cm-1) and amplitudes for the observed 

Raman active PCB77 and PCB77-SCH3 modes, (a) and (b) respectively. Optimized molecular 

structures were calculated at the B3LYP/6-31G* level. In (c) the most intense Raman modes of 

PCB77 and PCB77-SCH3 in the solid state, SERS and in theory are shown. 

Fig. 4. Schematic comparison of the SERS-based PCB detection principles utilizing ~500 nm tall 

gold-capped Si nanopillars on 200 nm thick gold film. Average pillar head dimensions are ~300 

and ~100 nm in height and width, respectively. Solvent drying forms nanopillar clusters and 

encapsulates standard PCB77, (a), and –SCH3 modified PCB77 molecules, (b). In (c) 

representative SEM images illustrate the clustering step of gold-capped silicon nanopillars. 

Fig. 5. Representative SERS spectra of PCB77 at concentrations of 5x10-3 – 5x10-6 M. The spectra 

were recorded for 5s at a laser power of 0.1 mW. All spectra have been vertically offset. 

Fig. 6. Representative SERS spectra of gold metal surface bonded PCB77-SCH3 at concentrations 

of 5x10-3 – 5x10-8 M. The spectra were recorded for 5s at a laser power of 0.1 mW. All spectra 

have been vertically offset. 
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Fig. 7. Comparison of integrated intensities of Raman active modes at varying concentrations for 

PCB77 (1589 and 1137 cm-1) and PCB77-SCH3 (1586 and 1128 cm-1). Each data point 

corresponds to an averaged intensity from 10 different measurement positions. All spectra were 

recorded for 5s at a laser power of 0.1 mW. 
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