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Abstract 

Contact angle measurements is a fast and simple way to measure surface properties and is therefore widely 

used to measure surface energy and quantify wetting of a solid surface by a liquid substance. In common 

praxis contact angle measurements are done with sessile drops on a horizontal surface fitted to a drop 

profile derived from the Young-Laplace equation. When measuring the wetting behaviour by tilting 

experiments this is not possible since it involves moving drops that are not in equilibrium. Here we present 

a fitting technique capable of determining the contact angle of asymmetric drops with very high accuracy 

even with blurry or noisy images. This we do by splitting the trace of a drop into a left and right part at the 

apex and then fit each side to an ellipse.  
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Measurements of contact angles between liquids and solids are widely used to determine properties of 

either the liquid or the solid. [1] When measuring the contact angle it is only the chemical properties of a 

few of the outermost atomic layers in the solid that affects the liquid, this makes contact angles a very 

simple way to measure surface properties. [2] The simplest and most used method to measure the contact 

angles of a drop is by depositing a drop of liquid on a solid surface and acquire a digital image of the drop in 

profile. [3] The image is then analysed to extract the coordinates for the drop profile and determine the 

position of the solid-liquid interface. To extract the contact angle from the obtained data the drop profile is 

fitted to an equation, which is evaluated at the triple-line. For a drop sitting on a horizontal and 

homogeneous surface, we can assume that the drop is axisymmetric around the vertical axis and the drop 

shape is therefore completely described by the hydrostatic Young Laplace equation. Fitting to the Young 

Laplace equation is called axisymmetric drop shape analysis (ADSA) and was at first limited to drops where 

the apex of the drop was visible[4] and have later been improved to be able to fit drops with only parts of 

the drop shape being  visible (ADSA-No Apex). [5] It is widely accepted within the field of measuring contact 

angles that fitting to the Young Laplace equation provides measurements with the highest possible 

accuracy and improvements to the technique only concerns the fitting algorithm, the determination of the 

baseline and the exact position of the drop perimeter. An example of a different approach to fit the 

acquired image to the Young Laplace equation is Theoretical Image Fitting Analysis (TIFA) [4, 6] where 

theoretical images are generated and compared to the acquired image, thereby circumventing the need for 

an edge detection algorithm. The validity of the Young Laplace equation is however limited to symmetric 

drop shapes. This means that for measurement of the dynamic contact angles by tilting experiments there 

is a need for a different equation to fit the drop perimeter to. Several examples of this are derived 

approximations to the Young Laplace equation assuming some out of plane shape of the drop[7] or purely 

arbitrary equations like, cubic splines[8] or polynomials.[9, 10]  

 

When choosing fitting algorithm there are two important properties that should be considered; firstly, the 

amount of data-points that can be fitted to the equation. This usually involves both a minimum number of 

points to achieve the desired precision and a maximum number of points where the equation is a good 

approximation to the drop shape. Secondly, the ability to extrapolate the drop shape outside the region of 

fitted data points, since optical distortions at the triple-point require the fitted equation to be extrapolated 

down to the baseline. 

 



For the axisymmetric case, the Young-Laplace based fitting methods are able to use the whole perimeter of 

the drop while being very accurate at extrapolating the drop shape since it is derived from the physical 

properties of the drop. For tilted drops, the most commonly used method is polynomial fitting due to its 

simplicity. According to Weierstrass approximation theorem polynomials can be as good a fit to a 

continuous function on a closed interval as desired, [11] this means that polynomials always will be able to 

fit parts of the drop shape, even for oddly shaped drops impacting a surface or under influence of electric 

fields etc. Polynomials are usually used as interpolants, where higher order or piecewise polynomials in 

general can be used to get results that are more accurate. For fitting drop shapes and measuring contact 

angles, the polynomial will however be used to extrapolate the drop shape making the degree of 

polynomial a trade-off between the maximum amount of points that can be used for the fit and the 

accuracy on the extrapolated drop shape. This makes polynomial fitting very sensitive to noise in the image 

and especially to blurry edges or optical defects at the contact point. In order to be able to fit to all data 

points on the drop perimeter we have found that fitting advancing and receding sides of the drop 

separately with two ellipses gives very accurate results for most real drops. This can be seen as a 

generalization of the concept presented by El Sherbini et.al. [7] where they fit a vertically inclined drop to 

two circular segments divided at the apex of the drop. 

 

To be able to compare our elliptical fitting method to the more common polynomial fitting we have 

implemented a polynomial fitting algorithm together with the elliptical fitting method. In this way, we can 

ensure that the extracted drop perimeter and baseline detection is the same and that the difference in 

results only comes from the difference in fitting method. In our implementation of polynomial fitting we 

rotate and translate the data points for each side of the drop so that the curve of data points (𝑥𝑥,𝑦𝑦)  fulfil 
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= 0 and 〈𝑥𝑥〉 = 0. In this way we have good conditions for the polynomial fit regardless of the 

contact angle of the drop and thereby circumvent the difficulty in fitting polynomials to nearly vertical 

profiles for drops with a contact angle close to 90°. For implementation of polynomial fitting, it is required 

to select the degree of the polynomial and the amount of points used in the fit. We choose this by 

simulating points on circular segments with a small scatter and fitting the points to polynomials of various 

degrees. We found that fourth order polynomials are good for extrapolation of the slope while still being 

able to fit a large arc of the segment with high accuracy. These simulations are explained in detail in 

supplementary materials.  

 

The drop shape analysis has been implemented in MATLAB (R2016a) and can be broken down into a series 

of steps, each shown in Figure 1. Step a), extract the perimeter of the drop. This is done using the algorithm 



and script presented by Trujillo-Pino  et al.. [12] The method of Trujillo-Pino et.al. provides edge detection 

with subpixel accuracy that is very similar to those obtained by sigmoidal fitting[10] of the edges while 

being computationally faster and more accurate at points where edges are close to each other, e.g. at the 

triple-line for very high or very low contact angles. Step b), determine the baseline by finding the reflection 

and then calculating the intersection between linear fits made to the data points just above and below the 

reflection. This should preferably be done on several recorded frames and then averaged to obtain a 

precise positioning of the baseline. Step c), if using polynomial fit, we need to select the amount of points 

needed for the fit. For this, we use a geometric relation for circular drops, that the arc between apex and 

contact point equals the contact angle. To select s out of n data points on the perimeter of the drop 

corresponding to an arc 𝛼𝛼 with a drop contact angle 𝐶𝐶𝐶𝐶, we use the relation 𝑠𝑠 = 𝑛𝑛 ∙ 𝛼𝛼
𝐶𝐶𝐶𝐶

. If the selected arc is 

smaller than the contact angle, all data points from apex to triple-line are used. For all polynomial fits 

presented in this paper we use data points in an arc of 𝛼𝛼 = 60°, see supplementary material for details. 

Step d) fit the obtained data to the function of choice. We show both polynomial and elliptic fits. 

Polynomials are fitted using standard linear least squares fitting whereas ellipses are fitted using the direct 

elliptic fitting method proposed by Fitzgibbon et al..[13]  Step e), evaluate the slope of the fitted function at 

the intersection between fit and baseline. From this, the contact angle is calculated.  

 

Figure 1 Step-by-step implementation of the contact angle fitting algorithm. (a) Edge detection. (b) Baseline 

detection. (c) Selection of data points used in polynomial fit. (d) Elliptic and polynomial fit. (e) Evaluation of 

fit at the intersection with baseline to obtain the contact angle. 

 



To evaluate the implementation of both the double-sided elliptic and the polynomial fitting algorithm we 

have constructed a series of synthetic images. We constructed all synthetic images to resemble images 

obtained by our goniometer (Attension theta, Biolin Scientific) but with well-defined contact angles. After 

validating the numeric implementation of the fitting algorithms, we use the generation of synthetic images 

to determine the sensitivity of the algorithms to different kinds of distortions. Each synthetic image is 

generated by plotting circular segments with a smooth transition from black (drop) to white (open space). 

This is implemented by calculating the position of centre of the circular segment corresponding to a specific 

contact angle, in Figure 2 we have sketched a synthetic drop where the centre of the circular segment is 

positioned in (0,𝐷𝐷) where 𝐷𝐷 = −𝑅𝑅 cos𝐶𝐶𝐶𝐶, the radius R is chosen so the drop can fit into the image. The 

drop edge is generated by evaluating a cumulative distribution function of a Gaussian distribution 

𝐹𝐹(𝑠𝑠) = 1
2
�1 + erf �𝑠𝑠−𝑅𝑅

𝜎𝜎√2
�� where s is the distance to C, R is the radius of the drop and 𝜎𝜎 is the standard 

deviation describing the width of the greyscale transition. By analysing the goniometer images presented in 

this paper we find that the average width of the transition is 𝜎𝜎 = 0.85 ± 0.19 pixel, and unless otherwise 

stated we have used  𝜎𝜎 = 0.85 pixel to generate the synthetic images.  

 

Figure 2 Schematic drawing of the geometry used to generate synthetic images. 

 

By generating synthetic images with contact angles ranging from 10° to 170° and fitting the images with 

both polynomial- fitting and elliptical fitting we obtain the data presented in Figure 3. From this, we see 

that the rotation of the drop boundary for polynomial fits ensures high accuracy also for contact angles 

near 90°. When comparing the performance of our implementation of polynomial fit with the results 

presented by Chini et al. [10] we see slightly worse performance for our program for the synthetic image 

resolution used; this can be improved by generating synthetic images with higher resolution (see the 



Supplementary Material). Instead, we choose to evaluate the accuracy of our fitting technique by 

generating as realistic drop images as possible in bitmaps with a resolution of 512x337 pixels and a black to 

white transition width of 0.85 pixels. For almost all contact angles, the elliptic fit determines the contact 

angle more accurate that the polynomial fit, this is to be expected since the synthetic drops are generated 

as circular segments that are fitted perfectly by ellipses. The seemingly stochastic variation of the error on 

the determined contact angle is directly related to the chosen resolution of the synthetic image. When 

generating the synthetic images there will be a loss of information due to digitizing of the geometric shape 

into pixels. The error due to this information loss is directly linked to the exact digitizing of the drop and will 

therefore be different for different resolutions (see the Supplementary Material). 

 In the generation of synthetic images, it is directly possible to vary the sharpness of drop edges and add 

noise to the generated image. By changing the width of the greyscale transition in the image generation, 

we evaluate the error introduced by blurry images, for instance if the drop profile is taken slightly out of 

focus. We have varied the width of the greyscale transition from 0 pixels (completely sharp) to 3 pixels 

(blurry to the naked eye) of a drop with a contact angle of 140° and presented the error in contact angle in 

Figure 3b). For most synthetic drop shapes in the parameter space investigated, except for very low contact 

angles, where the elliptic fits are very sensitive to choice of the drop centre, and very noisy images, we see 

that the elliptic contact angle measurement is more accurate than the polynomial fit. It is, however, also 

apparent that the two graphs follow the same trend (on a log scale) indicating that the main error arises 

from the profile extraction that is the same for both drops. The minimum error for both fitting methods 

around 𝜎𝜎 = 0.5 is a consequence of the edge detection algorithm that utilizes the greyscale values in a 

black-to-white transition to determine the true edge. When digitizing the drop geometry using 𝜎𝜎 = 0 there 

resulting image is purely black and white and the edge detection will be more inaccurate compared to 

images with a narrow greyscale transition. For 𝜎𝜎 = 0.5 the edge detection algorithm returns sub-pixel 

locations that are very close to the real drop perimeter, thereby resulting in a very low fitting error. 

All synthetic drops presented until now had realistic blurry edges but were otherwise noise free. In order to 

verify that our algorithm is able to produce correct results when including the noise from real images we 

have added Gaussian noise to the synthetic images. This is done by adding/subtracting Gaussian distributed 

numbers to all pixel values where the mean of the Gaussian is zero and the standard deviation is µ and pixel 

values range from 0 (black) to 1 (white). We have increased the standard deviation of the Gaussian noise 

from µ = 0 (noise free) to µ = 0.12 (noisy) and plotted the resulting error on the contact angle in Figure 

3c).  



  

Figure 3 Evaluation of absolute error on the contact angle estimation using synthetic images. (a) The 

absolute error in contact angle vs. the true contact angle from 10° to 170°. The curves results from fitting 

500 drops with a one pixel gaussian distributed position of the drop centres. (b) The effect of varying the 

width of the black to white transition at the drop edge, simulating blurry images. (c) The effect of adding 

noise to the synthetic images.  

 

In order to evaluate the performance of real images of drops we have captured drop profiles of seven 

sample drops shown in Figure 4. The structured surfaces  for drops  (3), (4), (6), and (7) in Figure 4., are: (3) 

randomly structured PP substrate, [14] (4) FDTS coated Si substrate fabricated by same method as in 

Søgard et al. [15] but with hierarchical pillar structures with 2% resulting surface coverage, (6) same 



substrate as (3), and (7) same substrate as (4). These images are chosen to test a wide range of contact 

angles and some have been tilted in order to measure contact angle hysteresis. To get the range in contact 

angles the liquid and solid have been combined in the following way: 1) oleic acid on flat polypropylene, 2) 

water on flat ABS, 3) water on micro structured polypropylene, 4) water on micro and nano structured 

silicon surface coated with perfluorodecyltrichlorosilane (FDTS), 5-7) same as 2-4) ,tilted until onset of 

movement by 49.5°, 32.8° and 8.3° respectively. The drop in image 1, figure 4, does not start moving for 

any tilting value and is therefore not shown. For most of the drop images, there is excellent agreement 

between the contact angles calculated by elliptic and polynomial fitting, only for the drop on the micro and 

nano structured silicon surface there are significant deviations. For micro structured surfaces where the 

drop is resting on top of the asperities in the so called Cassie-Baxter state it has been shown that the real 

advancing contact angle is 180° due to the physical transition between the tops of asperities.[16]It is per se 

not problematic that the fitting algorithms undershoots this value since we know the true value but it 

shows the difficulties in determining very high contact angles. [17]  

 

Figure 4 Calculated contact angles of 7 drops spanning from very low contact angles to very large, image 1-

4 are resting on a horizontal surface while in image 5-7 the substrate have been tilted with the camera to 

obtain asymmetric drops. Except for contact angles above 160°, there is good agreement between the 

elliptic and polynomial fitting method. 

We demonstrate the strength of the elliptic fitting method by measuring the dynamic contact angles in a 

tilting experiment. In this experiment we place a drop on the surface and tilt surface and camera until the 

drop slides or rolls off. During the experiment, the drop shape is captured by the camera and saved with 

the corresponding tilt value. 

 

In our experimental setup the sample is placed on an x-y-z stage, which introduces slight mechanical 

instability, this makes the stage follow a slightly different trajectory than the camera. The different 

trajectory of stage and camera results in the image of the drop being shifted and rotated during the 

experiment. In order to subtract this mechanical shift we have recorded a calibration grid during a tilting 



experiment. By tracing the calibration grid while tilting, we can obtain the shift and rotation of the stage in 

the camera view as a function of tilt angle. When analysing the frames captured during the experiment, the 

drop profiles are first extracted and then transformed to the coordinate system of the first frame by shift 

and rotation. This enables us to average baseline positions from all frames to determine the baseline with 

high accuracy. By having all drop profiles transformed to the same coordinate system, it is also possible to 

get precise information on the movement of the triple-line.  

 

In Figure 5 we have plotted data obtained for a tilting experiment using a micro- and nanostructured silicon 

surface coated with FDTS with a 10 µl drop of 24% ethanol and 76% deionized water. The sample was tilted 

with 0.5°/s and captured with a framerate of 1 frame per second. With the information from the moving 

triple-line, we can see that the drop initially spreads by advancing on the left (downhill) side while being 

stuck on the right (uphill) side. At 10.8° tilt the right triple-line starts moving and the contact angles in this 

frame are taken as respectively the advancing and the receding contact angle. The slight negative 

movement of the right triple line just before the onset of movement is due to the optical distortions on the 

drop edge influencing the determination of the position of the triple-line. Without the information of the 

triple-line movement one could easily use the wrong frame resulting in erroneous roll-off and dynamic 

contact angles. After the onset of drop movement, it takes the drop several seconds with increasing 

inclination before the drop completely rolls off the surface. During this time there is a zipping like 

detachment process where the drop detaches individual pillars one a time.[18] 

 

Figure 5 Displacement of the right and left triple line together with the contact angles measured by 

polynomial and elliptic fitting during tilt experiment.  



 

During the tilting of the sample, we measure the same contact angle on the left side and a decreasing 

contact angle on the right side. This confirms that the contact angle hysteresis and the roll-off angle of 

drops in the Cassie-Baxter state are solely governed by the receding contact angle.[15]  

 

 

Figure 6 Fitting of the drop tilted 10°from the sequence presented in figure 5 

 

In the region just before drop movement starts, there is significant difference in the result between 

polynomial and elliptical fitting. The difference in determined contact angle arises due to lens effects in the 

drop producing white areas on the right side of the drop, especially close to the triple-line. An example of 

such optical distortion is shown in figure 6. Since the polynomial fitting is more sensitive to optical 

distortions it produces significant error in the contact angle whereas elliptical fitting is much more stable 

and shows a smooth decrease of the contact angle as a function of tilting angle. Since the lens effects often 

occur just before the onset of movement, it is crucial to use a method with the stability of our elliptic fit to 

measure the correct contact angle.  

 

In conclusion, we have presented a new method for fitting and measuring contact angles by the tilting 

method. This we have done by fitting ellipses to left and right sides of the drop profile. The double-sided 

elliptical fitting method has been compared to the well-known polynomial fitting, and the implementation 

of both algorithms has been validated using realistic synthetic images. By using double sided elliptical fitting 

it is possible to achieve much higher tolerance for optical distortions of the drop profile. Finally, we have 

shown that this is crucial in tilting experiments where lens effects in the drop distort the receding side of 

the drop profile, particularly around the triple-line.  
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