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Abstract 

Wastewater management in Canadian Arctic communities is influenced by several geographical factors 

including climate, remoteness, population size and local food harvesting practices. Most communities 

use trucked collection services and basic treatment systems, which are capable of only low-level 

pathogen removal. These systems are typically reliant solely on natural environmental processes for 

treatment and make use of existing lagoons, wetlands and bays. They are operated in a manner such 

that partially treated wastewater still containing potentially hazardous microorganisms is released into 

the terrestrial and aquatic environment at random times. Northern communities rely heavily on their 

local surroundings as a source of food, drinking water and recreation, thus creating the possibility of 

human exposure to wastewater effluent. Human exposure to microbial hazards present in municipal 
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wastewater can lead to acute gastrointestinal illness or more severe disease. Although estimating the 

actual disease burdens associated with wastewater exposures in Arctic communities is challenging, 

waterborne and sanitation related illness is believed to be comparatively higher than in other parts of 

Canada. This review offers a conceptual framework and evaluation of current knowledge to enable the 

first microbial risk assessment of exposure scenarios associated with food harvesting and recreational 

activities in Arctic communities where simplified wastewater systems are being operated. 
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Review Article 

 

Wastewater Treatment and Public Health in Nunavut: A Microbial Risk Assessment Framework 

for the Canadian Arctic 

 

1. INTRODUCTION  

Communities in the Canadian Arctic territory of Nunavut face unique wastewater treatment 

challenges due to climate, remoteness, small populations and local food harvesting practices 

(Bjerregaard et al. 2008; Johnson et al. 2014; Lam and Livingston 2011; Martin et al. 2007). The 

territory has a total population of 34,000 spread across 25 remote communities, varying in population 

from 150 to 7000 (Nunavut Bureau of Statistics 2014).  No roads connect the 25 isolated communities 

to one another or to other communities in Southern Canada. Thus each community requires its own 

municipal public works infrastructure including wastewater treatment facilities. All but three have 

trucked drinking water distribution and wastewater collection services, as opposed to piped conveyance 

or individual on-site systems. Communities use basic wastewater treatment systems that are capable of 

only low levels of pathogen removal (Huang et al. 2014). These systems typically rely exclusively on 

natural environmental processes for treatment such as existing lagoons, wetlands and ocean bays. They 

are operated in a manner such that effluent - partially treated wastewater still containing potentially 

hazardous microorganisms - is released into the terrestrial and aquatic environment at random times.  

Inuit, the indigenous inhabitants of the region whom comprise 84 percent of the territory’s 

population, as well as other residents rely significantly on their local surroundings for food, drinking 

water and recreation.  Inuit were semi-nomadic hunters and gatherers until settlement increased in the 

1950s and traditional fishing, hunting and foraging activities are still ingrained in daily life (Fleming et 

al. 2006; Suk et al. 2004).  These traditional activities increase the risk of human exposure to effluent 

both directly as people move through wastewater treatment areas, and indirectly via the food web. 

Human exposure to microbial hazards present in municipal wastewater can lead to acute 

gastrointestinal illness, more severe infectious enteric disease and longer term chronic illness (Ashbolt 

2004; Prüss et al. 2002). Although estimating the actual disease burden associated with wastewater 

exposures in the remote arctic territories is difficult, waterborne and sanitation related illness in 

northern communities is believed to be comparatively higher than in other parts of Canada (Harper et 

al. 2011a, 2015b; Thomas et al. 2013).  
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Exposure pathways and public health risks associated with sustenance and recreational 

activities in Nunavut communities, where simplified wastewater systems are concurrently being 

operated, have never been systematically assessed. There is limited site-specific data available to 

evaluate the potential risks associated with the basic wastewater treatment systems used in Canadian 

Arctic communities and, in particular, among Inuit populations who access their immediate natural 

environment to harvest food and drinking water. The objective of this paper is to propose a conceptual 

model of the ecological system, thus providing a foundation for a microbial risk assessment of potential 

exposure scenarios related to current wastewater treatment practices. A topical review of literature 

relevant to the hazard identification and exposure assessment steps involved in the risk assessment is 

also included. The intent is to diagram the complexities involved in the ecological system being 

studied, evaluate the current level of scientific evidence available, and to identify the critical 

knowledge gaps and research needed to complete a comprehensive microbial health risk assessment.  

 

1.1 Background and Context 

In 2009, the majority of the Canadian Council of Ministers of the Environment endorsed a 

strategy for a harmonized, Canada-wide management framework of municipal wastewater effluent 

standards (Canadian Council of Ministers of the Environment 2009). This strategy was developed in 

preparation for the country’s first national regulations for wastewater treatment, which were 

commissioned in 2012 (Environment Canada 2015). However, Nunavut did not endorse the strategy 

given the stark differences between conditions in the territory and most of the rest of Canada (Inuit 

Tapiriit Kanatami and Johnson 2008). There was also a very limited base of information regarding the 

potential environmental and human health risks associated with wastewater systems currently in use in 

that territory (Canadian Council of Ministers of the Environment 2009). A grace period was thus 

allotted to Nunavut, as well as to some other northern and remote regions experiencing similar 

circumstances, prior to their having to comply with the regulations (Canadian Council of Ministers of 

the Environment 2014). During this grace period the territorial government of Nunavut launched a 

multi-year research program to evaluate their wastewater systems and management practices in an 

effort to develop adapted performance standards and risk assessment procedures more suitable for 

northern regions (Lam and Livingston 2011). 

Engineering assessments show that passive wastewater treatment systems are capable of 

reducing the level of Escherichia coli (used as a regulatory indicator of the presence of pathogenic 

organisms) in an arctic climate, but generally not to levels typically achieved with conventional 
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wastewater disinfection systems (Hayward et al. 2014; Krkosek et al. 2012; Krumhansl et al. 2015; 

Ragush et al. 2015; Yates et al. 2012).  However, these assessments do not explicitly consider possible 

human exposures and potential risks to public health. Many northern wastewater effluent management 

policies, although thorough in their definition of receiving environment quality standards, are not 

designed with specific consideration of how human populations interact with receiving environments, 

or how they may be exposed to health hazards. Public health risks associated with exposure to 

wastewater systems have become a higher priority at the community level. For example, in February 

2015 the hamlet of Pond Inlet declared a state of emergency following a chain of mechanical and 

operational failures with the sanitation system that resulted in lengthy service disruptions and raw 

sewage spills near homes (Canadian Broadcast Corporation 2015). Therefore, an assessment 

specifically focused on human health risks is a necessary and timely next step towards a comprehensive 

municipal wastewater treatment strategy for northern and remote regions.  

 

1.2 Model development and literature review sources  

The microbial risk assessment framework proposed in this paper includes a conceptual model of 

exposure pathways and a literature review of public health risks associated with wastewater treatment 

in the Canadian Arctic. The model is an initial visualization of exposure pathways between hazards 

present in wastewater effluent and human receptors. The literature review is a guide to support the 

progression of the unparameterized model into a quantitative risk assessment tool.  

The conceptual model is informed by prior research of the authors (Daley et al. 2015) as well as 

more recent stakeholder meetings with municipal administrators, wastewater treatment employees, 

engineers, health professionals, environmental conservation officers and hunter and trapper 

organizations in Iqaluit, Pangnirtung and Pond Inlet, Nunavut, Canada that took place in September 

2014. 

The literature review was conducted using three academic databases: PubMed, Web of Science, 

and Environmental Science and Pollution Management. A general internet search was also used for 

grey literature. Grey literature reviewed includes policy and guideline documents, trade journals, 

reports, and assessments from government and non-government organizations involved with public 

health, water, and wastewater issues in the Arctic. In all databases, queries were made using 

combinations of terms relevant to the topic such as risk assessment; wastewater; sanitation; arctic; 

Indigenous/Aboriginal health; exposure; and pathogen. Only English literature was included. Search 

results were screened by title and abstract and documents deemed relevant were kept for full reading. 
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Reference lists of these documents were also reviewed manually and relevant citations were added to 

the collection of papers. As these papers were being reviewed, additional searches were conducted as 

needed for more in-depth information of specific subtopics. Traditional ecological knowledge (such as 

Inuit Qaujimajatuqangit) pertaining to the natural environment and health is increasingly, and 

deservedly, becoming more valued and included in scientific and grey literature. This was the case in 

many of the documents reviewed and is therefore duly represented. 

 

2. RISK ASSESSMENT FRAMEWORK   

 

2.1 Human Health Risk Assessment General Considerations 

Risk can be defined as a function of hazard and exposure (Robson and Ellerbusch 2007). 

Human health risk assessment is a process used to identify and evaluate the probability of adverse 

health effects in humans who may potentially be exposed to hazards in contaminated environmental 

media (Bartell 2005; United State Environmental Protection Agency 2012). The purpose of an 

assessment is to determine how best to measure exposures where and when they occur. This helps to 

more fully understand the effect of the contaminant on human health, deem what are acceptable 

concentrations in the environment, and establish monitoring and management practices to mitigate risk 

(Bartell, 2005).  

A risk assessment may involve a single hazard with a single associated health outcome in a 

single exposure scenario such as the case with a chemical contaminant or in an occupational hazard 

assessment. Microbial risks in a community setting typically require a broader assessment as 

contaminated environmental media commonly contain multiple hazards with a range of associated 

health outcomes in individuals of different susceptibilities and numerous direct and indirect exposure 

scenarios (Haas et al. 2014). Therefore, an important first stage is clearly defining the specific problem 

and scope to be addressed in the risk assessment through the creation of a preliminary, conceptual 

model. 

 

2.2 Conceptual Model  

A conceptual model is a depiction of the assumed relationship between hazard sources and 

exposed populations. Such models function as a communication tool between risk assessors and 

stakeholders and are directional guides for organizing and conducting the risk assessment (Suter 1999). 

Figure 1 presents a new conceptual model of potential exposure pathways between microbial pathogens 
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originating from wastewater treatment systems and humans in an Arctic Canadian community. In 

particular, the model reflects an Inuit community in Nunavut which relies heavily on local natural 

resources for food, water, recreation, and livelihood. The model could be tailored to any arctic region 

or community.  

Within the model, we have divided the system being studied into five categories of primary 

factors: pathogen source, physical environment, biological environment, human activities, and 

transmission routes. Each category is subdivided into several processes or environmental pathways. As 

pathogens move from the source towards potential human receptors, the model illustrates the chain of 

events that could result in exposure.  Tracing pathogen pathways through the model is a way to begin 

understanding the complexities involved, prioritizing potential exposures, and defining risk scenarios 

(Beaudequin et al. 2015). Ultimately, the tracing exercise increases the accuracy and practical utility of 

the microbial risk assessment. When conducting the actual assessment for a given pathway, each 

subcategory is expanded into a process model and quantified using an appropriate mathematical 

equation. Following the risk assessment framework section of this paper, the processes or human-

environment interactions conceptualized in each of the five categories are discussed in the review 

section. The reader is encouraged to refer to this model when prompted in the text.  
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Figure 1: A Conceptual Model of Potential Wastewater Effluent Exposure Pathways in Arctic 

Canadian Communities through Five Categories of Factors 

 

2.3 Quantitative Microbial Risk Assessment 

Quantitative microbial risk assessment (QMRA) is a structured, systematic, science-based 

approach that quantitatively estimates the level of exposure to microbial hazards and resulting risk to 

human health (Haas et al. 2014). It is particularly useful for evaluating background or endemic risk at 

low levels of exposure when health outcome end points or surveillance data is generally lacking (Haas 

et al. 2014). In cases with limited site-specific evidence, QMRA uses mathematical models to best 

estimate the probability of infection from existing databases and literature associated with human 

exposure experiments. The outputs are the attributed risk of infection or disease for each defined 

exposure and can be expressed in individual or population terms. Depending on data availability, one 

of two modelling techniques can be used: point or stochastic. In point models each parameter is 

represented by a single value, whereas in stochastic models, probability functions quantifying 

uncertainty about spatially and temporal varying processes are used. Stochastic models are theoretically 

superior for this reason (Haas et al. 2014).  

QMRA research does not generate new empirical evidence on health effects in a manner similar 

to that of epidemiology or toxicology. Rather, it synthesizes estimates using existing scientific evidence 

and judgement (Bartell 2005). Although the assessments involve the use of assumptions, resulting in 

quantifications with a large range of variation, this approach is seen as useful for ranking risks and 

comparing possible interventions or controls (Sales-Ortells and Medema 2014; United States 

Environmental Protection Agency 2012). QMRA has been applied to drinking water systems, grey 

water and wastewater reuse, food safety, recreational water safety and evaluation of new engineering 

controls for treatment (Beaudequin et al. 2015; Ferrer et al. 2012; Haas et al. 2014; Murphy et al. 

2016a, b; Schoen and Ashbolt 2010; Westrell et al. 2004). QMRA has also been shown as an 

appropriate approach to study health risks in settings with limited data and resources (Howard et al. 

2006; Yapo et al. 2014). 

Conducting a QMRA involves four steps: 1) hazard identification; 2) exposure assessment; 3) 

dose-response assessment; and 4) risk characterization (Haas et al. 2014). Hazard identification is the 

selection of the relevant agent(s) and associated health effect(s) for assessment. Exposure assessment is 

a function of the type, magnitude, duration and timing of human exposure to the agent of interest. 

Measuring the true exposure is quite difficult as it requires the simultaneous presence of a defined 
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concentration of contaminant and a human receptor in the same microenvironment. Often assessors rely 

on default assumptions about media contact such as water ingestion or contact rates. These rates are 

combined with human activity pattern estimations or scenarios to arrive at types and levels of exposure. 

The dose-response assessment describes the quantitative relationship between exposure and health 

outcome. A mathematical model is selected that predicts the relationship of health effect, or response, 

for any dose. Trusted dose-response curves for many microorganisms have already been developed 

(Center for Advancing Microbial Risk Assessment 2016).  The risk characterization step combines 

information from the other three steps to estimate levels of response for the identified health effect to 

the agent of interest at the specific level of exposure in the defined population. The output is often, but 

not exclusively, expressed in terms of a distribution of attributed risk estimates or a disease burden 

measure such as disability-adjusted life years (DALYs). During risk characterization, the strength of all 

evidence, assumptions used, and any uncertainties with the estimate should be discussed. A sensitivity 

analysis of the assessment may be conducted to identify which inputs were most strongly correlated 

with the final health risk estimates and which variables are most responsible for high levels of 

uncertainties (Haas et al. 2014). 

QMRA can serve as a suitable exploratory tool for early or screening-level assessment of health 

risks, prior to more detailed studies, environmental monitoring or public health surveillance (Ashbolt et 

al. 2013; Sales-Ortells and Medema 2014).  For the Arctic communities described in this paper, the 

pathogen removal capability of typical wastewater treatment systems has recently been characterized 

(Hayward et al. 2014; Huang et al. 2014; Ragush et al. 2015; Yates et al. 2012) and serves as a starting 

point, allowing the corresponding range of risks of infection to be estimated for assumed exposures. 

The following section is a discussion of the evidence that is best suited and currently available to 

inform the hazard identification and exposure assessment steps of such a QMRA of the public health 

risks associated with wastewater treatment systems in Nunavut, Canada. The majority of information is 

relevant to communities across the Canadian North and other arctic regions. The final two QMRA 

steps, dose-response assessment and risk characterization, are not included in this review.  Although 

there are several inherent data limitations involved, such as differences in dose potencies resulting in 

illness among people of different ages and immune status, they are general in nature and are not unique 

to an arctic context.  

 

3. WASTEWATER HAZARDS AND EXPOSURE PATHWAYS IN CANADIAN ARCTIC 

COMMUNITIES  
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3.1 Hazard Identification 

The hazard identification stage of a QMRA involves identification of the microbial agents of 

concern, the contexts in which they are found, and the associated range of illnesses and diseases. 

Currently, there are no studies of associations that quantitatively link uptake of wastewater pathogens 

and health effects in an arctic community setting. However, related epidemiological studies 

investigating water-borne disease in the region are discussed. 

From a public health perspective, the primary aim of wastewater treatment processes is the 

removal or inactivation of pathogenic microorganisms and parasites.  The reduction or removal of 

organic materials, toxic metals and nutrients (nitrogen and phosphorus) is also important to mitigate 

human health risks (Bitton 2005). However, the focus of this assessment is on microbial risks as they 

represent the more immediate health concern in the context being considered. Numerous bacterial, 

viral, and protozoan microbial pathogens are present in domestic wastewater (Leclerc et al. 2002). The 

major pathogenic bacteria that can be transmitted directly or indirectly by the waterborne route are 

Salmonella, Shigella, Vibrio cholera, Campylobacter, Helicobacter pylori and pathogenic strains of 

Escherichia coli. Human exposure to these pathogens can cause salmonellosis, cholera, shigellosis, or 

other enteric infections affecting the gastrointestinal tract. Some human enteric virus groups include 

Enteroviruses, Rotaviruses, and norovirus (Caliciviridae). Viruses may result in a range of diseases 

including gastroenteritis, fever, skin rash, and respiratory infections. Specific viruses found in a 

particular community’s wastewater reflect infections among the human population. The most common 

waterborne protozoan parasites affecting human health are Giardia lamblia and Cryptosporidium. Both 

affect the gastrointestinal tract resulting in diarrhea, nausea, fatigue, and weight loss. It is estimated that 

millions of cases of giardiasis occur annually worldwide, though it is rarely fatal (Bitton 2005). 

Cryptosporidium oocysts may persist in the environment for longer periods and is potentially fatal in 

sensitive populations such as with immunodeficient patients (Bitton 2005).  

 

3.1.1 Types of wastewater treatment in Nunavut: mechanical and passive systems 

Wastewater may be treated through a combination of physical as well as biological and 

chemical processes (Conceptualized in Figure 1 – Category 1). The types of treatment are classified 

into a sequence of steps that increase in effectiveness and complexity: preliminary; primary; secondary; 

and tertiary (Bitton 2005). Preliminary treatment is the basic screening of large debris and solids. 

Primary treatment involves sedimentation of the influent to remove suspended solid waste and aid the 
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breakdown of organic material present in the wastewater. Secondary treatment incorporates biological 

and chemical processes designed to remove soluble organic materials and provide some level of 

pathogenic inactivation. Tertiary or advanced treatment is any process implemented beyond the 

previous steps in effort to further disinfect and remove contaminants or specific pollutants (Bitton 

2005). Presently, most systems in Nunavut are classified as primary treatment with low levels of 

pathogen removal. 

Twenty-one of the twenty-five communities in Nunavut use passive wastewater treatment 

systems typically consisting of either stabilization ponds and/or wetlands (Krkosek et al. 2012). 

Wastewater is continuously deposited into the ponds, where it remains frozen for the winter which lasts 

from approximately September to June. In June, as conditions warm, the wastewater influent begins to 

melt and a period of natural treatment occurs for two to four months depending on the location of the 

community (Ragush et al. 2015). These passive treatment systems result in sedimentation and 

microbial decomposition as well as some pathogen inactivation due to ultra violet irradiation during the 

arctic daylight hours (Smith 1996). At the end of the treatment season, many of the wastewater ponds 

are then decanted into an adjoining natural wetland. This is typically done at a scheduled time to 

maximize the treatment period and controlled manually using a pump. However, in some instances 

wastewater intermittently decants in an uncontrolled manner through a gravel berm into the wetland. 

Further sedimentation, filtration and other natural processes may occur in the wetland continuing to 

treat the wastewater to some degree (Crites and Tchobanoglous 1998). The final receiving 

environments, after the effluent passes through the wetlands, are aquatic estuaries and ocean waters. In 

one Nunavut community, wastewater is discharged directly to a marine outfall without passing through 

a wetland. Passive treatment systems can reduce contaminant concentrations in an arctic climate 

(Chouinard et al. 2014; Doku and Heinke 1995; Hayward et al. 2014; Ragush et al. 2015; Schmidt et al. 

2016; Yates et al. 2012). As noted by Hayward et al. (2014) and Yates et al. (2012), however, E. coli 

concentrations in the wetlands are highly variable over the treatment season.  

Three communities in Nunavut, including the capital of Iqaluit (population ca. 7, 600), use 

some form of a conventional mechanical wastewater treatment system. Treatment typically consists of 

preliminary screening of large debris and basic sedimentation tanks. These systems continuously 

discharge into aquatic waters such as tidal bays bordering the community. Retention time within the 

treatment system before discharge into the receiving environment is dictated by the volume of influent 

entering the system and the carrying capacity of the system itself. Most of these systems provide 

preliminary or primary treatment and a low level of pathogen removal (Bitton 2005) thus leading to 
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local pollution problems. Similar issues have also been observed in Greenland when untreated 

wastewater was released into areas with limited natural water exchange occurring in the receiving 

waters (Gunnarsdottir et al. 2013). An environmental assessment that examined benthic invertebrates as 

indicators of wastewater effluent impact upon receiving waters showed significant variation between 

communities (Krumhansl et al. 2015). In smaller communities (populations less than 2,000), impacts to 

benthic communities generally occurred less than 200 metres from the effluent discharge point. In 

contrast, significant impacts were detected up to 500 metres from the effluent discharge point in the 

larger community of Iqaluit. The total volume and duration of effluent being discharged were 

suggested as the most important factors influencing the level of environmental impact.  

In pond-wetland and mechanical wastewater treatment systems effluent discharge schedules are 

likely to have a significant influence on the spatio-temporal variability of pathogens in the natural 

environment and subsequent human exposures. For example, in one study of selected bodies of water 

that receive inadequately treated effluent, but are used for drinking, recreation and agriculture were 

estimated to pose a daily combined risk of infection by enteric pathogens above the World Health 

Organization limit of 10-4 (Teklehaimanot et al. 2015). Moreover, uncontrolled or continuous releases 

of effluent theoretically present less predictable occurrences of exposure and greater risk than 

controlled or scheduled intermittent releases.  

Surveillance and monitoring programs related to gastrointestinal illness, specific food- and 

waterborne diseases and other sanitation related health outcomes in the Arctic are limited (Harper et al. 

2011b); making it difficult to accurately estimate of the burden of disease associated with wastewater 

exposures in Canada’s Arctic. Studies of the prevalence of several waterborne pathogens present in 

human fecal samples from cases of acute gastrointestinal illness (AGI) and enteric diseases in arctic 

communities were unable to determine an association with wastewater exposure (Goldfarb et al. 2013; 

McKeown et al. 1999; Messier et al. 2012; Pardhan-Ali et al. 2012a, 2012b, 2013). Although AGI is 

associated with many food- and water-borne pathogens as well as being transmissible person-to-person, 

it may be the most relevant health outcome to use for a risk assessment of wastewater systems in the 

region at this time given the absence of pathogen-specific data. AGI and enteric diseases related to 

waterborne pathogens often manifest in stomach flu-like symptoms that may not be recounted to front 

line clinicians or public health officials. Thus, endemic AGI rates in Inuit and other arctic communities 

may be higher than officially reported (Dudarev et al. 2013; Harper et al. 2015b). Based on self-

reporting, the incidence of AGI in these communities is higher than the Canadian average and 

comparable with some developing nations (Harper et al. 2015a). These associations may be further 
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complicated by climate change already evident in arctic communities. Continued warming in the region 

could further threaten food and water security and increase the prevalence of infectious diseases 

(Hedlund et al. 2014; Hennessy and Bressler, 2016; Nickels et al. 2005; Parkinson et al. 2014). 

 

3.2 Exposure Assessment  

The exposure assessment stage determines the types and levels of human exposure to the agent. 

The multiple potential pathways from the contaminant point source to contact with a human receptor 

are described, often using scenarios. Creating scenarios involves consideration of human population 

characteristics such as behaviours, patterns of consumption and knowledge of hazards. The fate and 

transport of the agent from the point source through the environment must also be assessed to predict 

the concentration, viability and/or infectivity of microorganisms and the probability of their occurrence 

in water or food at the time of exposure (Haas et al. 2014). In this section, determinants of pathogen 

fate and transport in the natural environment are discussed. Northern populations, communities and 

activities are described as the basis for suggesting environmental reservoirs and exposure pathways that 

may be priorities for risk scenarios to be fully assessed.   

 

3.2.1 Indicator organisms  

The direct detection of pathogenic bacteria, protozoa and viruses within the environment is 

resource intensive in terms of cost, time and expertise. Therefore, indicator organisms that are more 

easily detected are selected to infer the occurrence of fecal contamination. Microbial indicators are not 

necessarily human pathogens themselves, but if detected, indicate potential presence of enteric 

pathogens (Verhille 2013)  Criteria for selecting a fecal indicator organism stipulate that the organism 

should be: part of the intestinal microflora of warm-blooded animals; present when enteric pathogens 

are present and absent in uncontaminated samples; at least as or equally resistant to environmental 

stresses and disinfection as the contaminating pathogen; and, relatively easy to detect (Bitton 2005). 

Several indicators are used to detect fecal contamination including total coliforms, fecal coliforms, 

coliphages, Clostridium perfringens, enterococci and Escherichia coli; however, no single ideal 

indicator meets all criteria (Bitton 2005). Depending on the pathogens of interest, specific and multiple 

detection tests may be necessary to characterize the fate and transport of wastewater contamination in 

the receiving environment. 

 

3.2.2 Fate and transport in physical environments  
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In order to elicit a disease outcome, pathogens released from the wastewater treatment system 

and transmitted through the natural environment (terrestrial or aquatic) must survive long enough to 

come into contact with another susceptible host. Fate and transport models are used to estimate the 

distribution patterns and inactivation of pathogens as they travel though the various environmental 

media (conceptualized in Category 2 – Figure 1).  Within general models, the environmental fate of 

pathogens is largely related to ambient temperature, biotic activity and sunlight (Nevers and Boehm 

2011). Common parameters used in fecal indicator models of transport in surface water include rainfall, 

wave and current action, tidal stage, wind direction and turbidity (Nevers and Boehm 2011). The 

strength and pressure of the initial wastewater plume will also influence the environmental mobility of 

pathogens contained in the effluent being released. 

Given that temperature and sunlight are among the most important influences, it should be 

considered that fate and transport processes in an arctic environment may be unique (Simon et al. 

2013).  Temperatures in the region remain consistently below freezing for up to nine months per year, 

which has the potential to reduce the concentration of microorganisms in wastewater (Gunnarsdottir et 

al. 2012). Rates of pathogen inactivation by sunlight may also differ as arctic summers include several 

weeks of 24-hour daylight at higher latitudes. These periods are countered by periods of minimal 

daylight during the mid-winter. Modeling the fate and transport of specific pathogens in the Arctic 

environment requires parameterizing these factors.  

 

3.2.3 Reservoirs  

As pathogens are released from wastewater treatment plants and migrate through the immediate 

surroundings, there is also potential for deposition, storage and concentration in reservoirs and 

biological organisms (Conceptualized in Figure 1 – Category 3). Indirect exposure to pathogens via 

recreational and occupational activities or food consumption (e.g. hunting, fishing) may also lead to 

potential illness or disease in humans. Attributing adverse health impacts to wastewater point sources 

via indirect exposures such as these by use of epidemiological studies is difficult unless several cases or 

an outbreak has occurred and an investigation can link the infected cases to a shared exposure. 

However, discharging wastewater effluent in close proximity to recreational and food harvesting areas 

is likely to increase risk of human health effects associated with these activities (Holeton et al 2011).  

Bottom sediment of aquatic environments receiving effluent can serve as storage reservoirs for 

microbial pathogens. Accumulation leads to higher concentrations of pathogens in the sediment than in 

the overlying waters (Bitton 2005). Fecal coliform indicator organisms may be 100 – 1000 times more 
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concentrated in such sediment (Ford 2005; Van Donsel and Geldreich 1971). Pathogen loaded 

sediments can become disrupted and resuspended by rain and tides or aerosolized by breaking waves, 

creating potential exposure risks during recreational or occupational activities such as swimming, 

boating, or fishing (Bitton 2005). 

Waterborne agents may also concentrate in fish or shellfish. Shellfish are particularly 

significant vectors of pathogens because they live in estuarine environments, which often receive 

sewage effluent. Filter feeding bivalve mollusks, such as mussels, clams, oysters, scallops, and cockles, 

have the potential to accumulate pathogens because they filter between 4-20 l/hr of water while feeding 

(Bitton 2005; Kay et al. 2008). The main environmental factors influencing shellfish contamination are 

season, water temperature, tidal cycle and rainfall (Lee and Morgan 2003). Furthermore, shellfish is 

often eaten raw or undercooked. Infectious disease outcomes resulting from eating shellfish with 

concentrated fecal contaminants include campylobacteriosis, salmonellosis, cryptosporidiosis, and 

cholera (Ford 2005). Less is known about the potential human health risks of handling and consuming 

fish that live in marine water receiving wastewater effluent (Holeton et al. 2011). Loomer et al. (2008) 

reported increased concentrations of fecal coliforms on the skin of two species of fish, smelt (Osmerus 

mordax) and mummichog (Fundulus heteroclitus), collected at sites near wastewater outfalls in Saint 

John Harbour, New Brunswick, Canada. Water samples also collected from the sites showed a broad 

range of fecal coliform levels from a low of 21 to a high of 1.5 × 107 colony forming units (CFU)/100 

mL, the latter being well above recreational water quality guidelines of ≤ 200 CFU/100 mL (Health 

Canada 2012). The role of marine and land mammals as well as fowl as reservoirs and carriers of 

human fecal inference organisms is also not well understood, as many enteric pathogens such as 

Salmonella species are natural inhabitants of the intestinal tracts of warm-blooded animals and water 

fowl (Fallacara et al. 2001; Ford 2005; Messier et al. 2007).  

 

3.2.4 Inuit Population and Arctic Community Activities  

Many aspects of life in Arctic communities center on the natural environment. However, 

activities such as hunting, fishing, trapping, foraging and consuming untreated drinking water place 

Inuit populations and other Arctic residents at elevated risk of exposure to pathogenic agents (Fleming 

et al. 2006; Suk et al. 2004). It is necessary to take the details of these activities into consideration to 

accurately define exposure pathways and risk scenarios (Conceptualized in Figure 1 – Category 4).  

Many Inuit collect raw surface water from rivers and lake or melt ice as a preferred source of 

drinking water. The link between this practice and increased risk of gastroenteric diseases has been 
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previously investigated in Inuit communities (Harper et al. 2011a; Martin et al. 2007). Results showed 

that the source water quality was impacted by rainfall and snow melt events (Harper et al. 2011a). Also, 

the storage containers used to collect water were contaminated in some instances (Martin et al. 2007). 

Environmental monitoring of the collection sites was recommended as well as strategic collection of 

health information at the local health clinic (Harper et al. 2011a; Martin et al. 2007). Shellfish 

harvesting is common in many Inuit communities, including some that currently use mechanical 

wastewater treatment systems that continuously discharge into tidal areas. A study of the microbial 

quality of blue mussels (Mytilus edulis) in six Inuit communities in Nunavik, Quebec (Canada) found 

the mussels examined to be of good microbiological and viral quality but did detect the presence of the 

potentially pathogenic protozoa Giardia duodenalis and Cryptosporidium spp. (Lévesque et al. 2010). 

Near-shore fishing in marine waters by rod and net is also common among Inuit in the spring and fall 

seasons. Marine mammals are another important food sources for Inuit. Another study in the Inuit 

region of Nunavik, which found high prevalence of G. duodenalis in ringed and bearded seals, 

hypothesized sewage runoff into the marine environment as a potential source of the infection (Dixon 

et al. 2008). Furthermore, a relatively higher prevalence of the protozoan pathogen observed in younger 

seals, may be associated with their summer habitat near the shore, which is likely more contaminated 

with pathogens from wastewater than are offshore habitats (Dixon et al. 2008). This scenario represents 

another potential set of pathways for zoonotic transmission to Inuit who consume raw or aged seal meat 

that may have come into contact with the intestinal contents during the butchering process. Although 

swimming is rare, other shore based activities where low and intermediate exposure may occur include 

launching and anchoring small boats which can involve wading into the water, and general recreational 

play by children whom tend to be very active along the shore in the long daylight periods.  

The three routes of exposure by which humans come into contact with a waterborne or 

foodborne pathogen are ingestion, inhalation and absorption (Conceptualized in Figure 1 – Category 5). 

Most human health risk assessments assume default contact rates, such as an ingestion rate of 2 L of 

water per day for example. However, using consumption distributions, if available, that account for 

climatic, dietary and urban-rural differences in populations lead to more accurate estimations (Hynds et 

al. 2012; Mons et al. 2007). This is an important consideration for Inuit populations as their diet 

includes a considerable amount of raw meat and fish. Amounts are likely far greater than the average 

consumption frequencies for raw foods used in many QMRAs (Ralson 1995). Once suitable case 

specific information regarding potential exposure pathways and exposure routes has been obtained, 

these pieces of information can be combined to create risk scenarios, which are the situations that are 
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actually quantitatively assessed. Tailored scenarios such as these were used in a human health risk 

assessment of exposures related to contaminated military operations sites in the Arctic (Jacques 

Whitford Limited 2005) 

 

4. SUGGESTED RESEARCH AND DATA TO ADDRESS GAPS AND SUPPORT QMRA 

Based on the reviewed literature, this section outlines the current state of knowledge as it relates 

to parameterizing variables for each category of the original conceptual model. In Table 1 the evidence 

base for each category is labeled with a status of ‘strong’, ‘moderate’, or ‘weak’. The labels correspond 

to the strength and suitability of the applicable input for a quantitative microbial risk assessment. 

Additional studies, environmental monitoring, and health surveillance activities are suggested in areas 

where knowledge gaps are identified. Data from which can be used to underpin more comprehensive 

risk assessments in the future. 

 

Table 1: State of knowledge and data needs for a QMRA of potential wastewater effluent exposure 

pathways in Inuit communities 

 

 State of  
Knowledgea 

Suggested Research and Data to Address Knowledge Gaps 
 

Category   
1. Pathogen Source Strong  Infectious pathogens that are present in domestic wastewater 

are documented in general literature (Bitton 2005; Leclerc et 
al. 2002). Additional pathogens of particular interest in 
northern communities, although not amongst the most 
commonly monitored general suite, could also be considered. 
For instance, there is evidence of high prevalence of some 
antibiotic resistant bacteria such as methicillin resistant 
Staphylococcus aureus (MRSA) (Daloo et al. 2008; Golding et 
al. 2010).The general process of removing pathogens using 
mechanical or passive systems is well established (Crites and 
Tchobanoglous 1998; Bitton 2005).  

 Data characterizing minimally engineered treatment systems 
performance in arctic conditions is available in published 
literature (Chouinard et al. 2014; Doku and Heinke 1995; 
Gunnarsdottir et al. 2013; Hayward et al. 2014; Krkosek et al. 
2012; Ragush et al. 2015; Schmidt et al. 2016; Yates et al. 
2012).Additional treatment performance data of a more basic 
nature such as influent volumes, discharge schedules and 
discharge point E.coli levels, may be available from municipal 
or territorial public works departments.  

2. Physical Moderate  Fate and transport modeling of wastewater pathogens in arctic 
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Environment  environments requires a comprehensive research program. 
Studies on the viability and survival patterns of specific 
pathogens under arctic conditions have been proposed (Simon 
et al. 2013). 

 Until more comprehensive water monitoring and analysis 
capacity becomes available in the region, E. coli is a suitable 
fecal indicator in the Arctic; despite its limitations. Detection 
of E. coli indicates the presence of fecal material from warm-
blooded animals. Agriculture is not widely practiced in the 
Arctic, so humans are the only significant source. However, 
caribou, sled dogs and waterfowl such as geese may also have 
to be investigated as potential sources in some communities.  
E. coli have a survival pattern similar to bacterial pathogens 
but are less resistant to disinfection than viruses and protozoa 
(Bitton 2005). Since most treatment systems in the Canadian 
Arctic lack a disinfection stage, this is only a minor limitation.  

 It is assumed that the inactivation or dilution of E. coli in 
either a treatment system or the environment can be used to 
conservatively predict the reduction of specific pathogenic 
bacteria (Nevers and Boehm 2011). Therefore if the 
concentration reduction rates of E. coli are available, based on 
differences between influent and effluent, those rates can be 
applied to typical values of actual pathogens that would be 
present in raw sewage to generate estimates of pathogen 
concentrations in the environment at different locations 
(Schoen and Ashbolt 2010). Additional distinctions will be 
necessary to account for the differences in degradation rates 
within the physical environment between bacterial pathogens, 
viruses and protozoans.   

3. Biological 
Environment 

Weak  Information about the levels of pathogens present in specific 
wildlife and fish is necessary to build accurate probability 
distributions for human exposure. 

 With the exception of shellfish, there is a lack of data about the 
uptake, latency and transmission of wastewater pollution by 
animals that are common in the Inuit diet (Lévesque et al. 
2010).  

 Studies and environmental monitoring of the microbiological 
quality of specific fish and animals that are favoured as a food 
source, are present near treatment areas, and may be vectors 
are recommended.  

 Currently, conservative estimates based on general values or 
uptake ratios that are available in human health risk 
assessment guideline documents must be used (United States 
Environmental Protection Agency 2012).   

4. Human Activity Strong  Human activities that allow for exposure pathways may be 
unique to each region and community in the Arctic. 
Consultation with community stakeholders, both via 
qualitative research methods or more informally, can help to 
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narrow the broad list of possible exposures presented in the 
conceptual model and identify the most probable (Guyot et al. 
2006). Most communities in Nunavut have local hunters and 
trappers organizations that are very knowledgeable in these 
matters.    

 Territorial environmental health officers and epidemiologists 
are also an important source. Although the collection of 
surveillance data on gastroenteric disease at the community 
level is limited, these officials may provide direction on 
emerging food- and waterborne illness and suspected 
pathogens. 

 Spatial and temporal details of food harvesting and other 
activities can be used to create and prioritize risk scenarios. 

5. Transmission 
Routes 

Moderate  High-priority risk scenarios must be further developed with the 
addition of contact rates and exposure frequencies. 

 Default ingestion, inhalation and absorption values can be 
found in available literature (United States Environmental 
Protection Agency 2012). However, these values may need to 
be adjusted using a proportional or corrective factor to be 
appropriate for Inuit populations; particularly relating to raw 
food consumption.  Health Canada provides some 
supplemental guidance on human health risk assessment of 
locally harvested food (2010).  

 Community stakeholder consultation combined with human 
intake data from government food harvesting records may 
provide more accurate estimations. 

aLegend for state of knowledge 
Strong: Sufficient data currently available to support QMRA including general parameter values  from 

established literature as well as context-specific studies. 
 
Moderate: Some data currently available to support QMRA such as general parameter values from 
 established literature, but minimal context-specific information. Tailored studies are needed to 
 improve understanding of localized conditions.  
 
Weak: Limited data currently available to support QMRA. Considerable knowledge gaps within 
 established literature to inform parameter values resulting in high levels of uncertainty and use
  of conservative assumptions.  
 

5. CONCLUSION  

While it appears that passive treatment systems are appropriate for Arctic regions, the human 

health risks associated with their use in this setting are yet to be assessed. We have proposed a 

framework for a screening-level QMRA of wastewater management in Canadian Arctic communities. 

In the supporting literature review, we evaluated the current strength of available evidence for each 

category of information necessary to begin developing the unparameterized model into a practical risk 
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assessment tool.   The state of knowledge pertaining to wastewater treatment systems (pathogen 

source), fate and transport of pathogens in the physical environment, and potential exposure pathways 

(human activities and transmission routes) are all moderate to strong. Information about the level of 

pathogens present in wildlife and fish (biological environment) is weak; however, we recommend the 

use of conservative estimates based on literature values until context-specific information becomes 

available. The Arctic is a distinct ecosystem and the data sets, models and assumptions that are 

necessary to evaluate most types of environmental health risks in this context will likely always be 

trademarked by relatively high degrees of uncertainty. Overall, despite the limitations noted, we 

conclude that the current state of available data regarding wastewater treatment in Arctic communities 

is substantive enough to be applied in a predictive manner to assess the nature and size of associated 

public health risks. 

 QMRA can serve as a compliment to customary epidemiological, ecological, and engineering 

studies on public health and wastewater treatment in any rural and remote areas where data is 

extremely limited. This is particularly important in the Arctic wherein basic sanitation techniques are 

being used by a population who rely on their local environment as a source of water, food, recreation, 

and livelihood. Our approach also allows for the inclusion of social and cultural aspects of life in 

Indigenous and other arctic communities by tailoring exposure pathways and scenarios based on local 

input. Ultimately, a fully-developed QMRA will aid decision-makers in selecting appropriate 

wastewater treatment system designs, quantifying and prioritizing public health risks, and comparing 

relative benefits of various risk mitigation options.  
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