
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Mar 30, 2019

An incremental flow theory for crystal plasticity incorporating strain gradient effects

Nellemann, Christopher; Niordson, Christian Frithiof; Nielsen, Kim Lau

Published in:
International Journal of Solids and Structures

Link to article, DOI:
10.1016/j.ijsolstr.2017.01.025

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Nellemann, C., Niordson, C. F., & Nielsen, K. L. (2017). An incremental flow theory for crystal plasticity
incorporating strain gradient effects. International Journal of Solids and Structures, 110-111, 239–250. DOI:
10.1016/j.ijsolstr.2017.01.025

https://doi.org/10.1016/j.ijsolstr.2017.01.025
http://orbit.dtu.dk/en/publications/an-incremental-flow-theory-for-crystal-plasticity-incorporating-strain-gradient-effects(d2ace74d-998b-4323-843a-5d5070d03476).html


An Incremental Flow Theory for Crystal Plasticity
Incorporating Strain Gradient Effects

C. Nellemanna,1,∗, C.F. Niordsona, K.L. Nielsena

aDepartment of Mechanical Engineering, Solid Mechanics, Technical University of
Denmark, DK-2800 Kgs. Lyngby, Denmark

Abstract

The present work investigates a new approach to formulating a rate-independent

strain gradient theory for crystal plasticity. The approach takes as offset re-

cent discussions published in the literature for isotropic plasticity, and a key

ingredient of the present work is the manner in which a gradient enhanced

effective slip measure governs hardening evolution. The effect of both plas-

tic strains and plastic strain gradients are combined into this scalar effective

slip quantity, the energy associated with plastic strain is dissipative (unrecover-

able), while the energy from plastic strain gradients is recoverable (free). The

framework developed forms the basis of a finite element implementation and

is demonstrated on benchmark problems designed to bring out effects such as

strengthening and hardening. Monotonic loading and plane strain deformation

is assumed throughout, but despite this, non-proportional straining is predicted

in the plastic regime even under pure shear conditions. Results of single slip and

symmetric double slip reveal that strengthening and hardening are governed by

the slip system orientation and the material length parameter only.
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1. Introduction

Generalizations of plasticity theories, to account for strain gradient effects,

have been discussed by a number of authors and approached in a variety of dif-

ferent ways. Common to the theories put forward by Fleck et al. (1994); Gud-

mundson (2004); Bardella (2006); Fleck and Willis (2009); Hutchinson (2012);5

Fleck et al. (2014, 2015) is that they include the effect of both plastic strain and

their gradients through a combined plastic strain quantity, commonly referred

to as an enhanced effective plastic strain and it was first suggested by Fleck

et al. (1994) in the case of isotropic strain gradient plasticity. Despite origi-

nating from isotropic theory the effective strain measure has also taken root in10

the framework of strain gradient crystal plasticity, where it has been extended

to describe the plastic strain state on individual slip systems (see e.g. Bardella,

2006; Borg, 2007). An attractive property of the effective plastic strain measure

is that it incorporates strain gradient effects through a flow strength evolution

law, as commonly done in conventional plasticity formulations through the plas-15

tic strains.

In an effort to characterize so-called strengthening and hardening Fleck et al.

(2014) recently investigated the predictions of the theories put forward by Fleck

and Willis (2009) and Hutchinson (2012). In the present work, strengthening

is defined as an apparent delay in plastic flow, whereas hardening refers to the20

combined effect of both conventional strain hardening and hardening due to the

presence of strain gradients. Fleck et al. (2015) extended the work on isotropic

plasticity by Fleck et al. (2014), where it was found that strengthening charac-

teristics are highly dependent on the effective strain measure and its relation to

the plastic strain energy density. However, the issue of strain gradient related25

strengthening is not confined to isotropic strain gradient plasticity, but extends

to theories of strain gradient crystal plasticity (e.g. Bardella, 2006; Gurtin et al.,

2007).

The recent experimental evidence of a strengthening behavior in polycrys-

talline wires under cyclic loading has been reported by Liu et al. (2015), thus30
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highlighting the need for numerical models that incorporate such effects. The

present work formulates a rate-independent strain gradient crystal plasticity

theory which incorporates both strengthening and hardening. The formulation

builds on the findings of Hutchinson (2012), mirroring a number of fundamental

aspects of this isotropic strain gradient plasticity theory through the framework35

of strain gradient crystal plasticity formalized in Gurtin (2000, 2002). The ob-

jectives outlined in Hutchinson (2012) related to generalizing the conventional

J2-theory are adopted, but recast into the framework of crystal plasticity:

• The theory should reduce to the conventional crystal plasticity framework

in the limit of sufficiently small slip gradients.40

• In addition to elastic parameters, the input to the theory should be a

relation between the resolved shear stress and the slip (a flow strength

evolution curve) on the individual slip systems, τ
(α)
0 [γ

(α)
eff ], and a material

length parameter, l, which characterizes the gradient dependence. The

shear relation τ
(α)
0 [γ

(α)
eff ] is arbitrary, but monotonically increasing rep-45

resenting a hardening solid. As in conventional plasticity theory, latent

hardening may be modeled through a latent hardening matrix, but it is

omitted in the following.

• The flow theory and deformation theory must coincide for monotonic and

proportional straining history.50

The first objective implies that when relating the effective strain measure to a

flow strength evolution curve the predictions of the new theory should equal the

conventional crystal plasticity theory as l → 0 (i.e. the effective plastic strain

measure equals the conventional plastic strain measure in the limit of vanishing

l). The second objective is fulfilled by relating the flow strength evolution on55

an individual slip system to the effective plastic strain measure. The presence

of strain gradients increases the plastic work expended in the material, through

the effective plastic strain measure, for the same amount of deformation. The

third objective will not be substantiated in the present investigation because
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a non-proportional straining history is predicted for the problem analyzed (see60

discussion in Section 5).

The effective plastic strain measure in the present formulation is defined in

terms of both a dissipative and a recoverable contribution. Dissipation of plastic

energy follows from the conventional crystal plasticity framework, while gradi-

ents of plastic strain are assumed to build up recoverable (free) energy in the65

material. The effective plastic strain defined in Hutchinson (2012) is formulated

using the Mises equivalent strain measure in order to obtain a scalar quantity.

However, the effective plastic strain measure in the present work is a scalar quan-

tity defined on individual slip systems. Thus, a subtle difference in the definition

of the strain gradient evolution exists between the formulation of Hutchinson70

(2012) and the present work.

For reasons highlighted in the presentation of the theory, the present frame-

work will be restricted to an incremental version which is limited to monotonic

loading. Model predictions for the case of pure shear loading of an infinite

crystalline strip are used to illustrate key features of the theory.75

The structure of the paper is as follows. In Section 2 the mathematical frame-

work is presented. Section 3 presents the numerical discretization procedure and

central aspects of the numerical implementation. In Section 4, the infinite crys-

talline strip problem is presented, while numerical predictions are displayed and

discussed in Section 5. Strengthening and hardening predictions are investigated80

and compared to various models found in literature, both, isotropic strain gradi-

ent theory and strain gradient crystal plasticity theory. The results confirm the

existence of strengthening for the present model, as predicted by Fleck et al.

(2015) for a broader class of theories. Furthermore, both strengthening and

hardening characteristics are quantifiable through their relation to the material85

length parameter. Finally, concluding remarks are given in Section 6.
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2. Theoretical Framework

The general framework is presented in terms of flow theory characteristic

in Section 2.1. The incremental formulation specialized to monotonic loading

follows in Section 2.2. Index notation is adopted and indicated by subscript low-90

ercase Latin letters. Superscript lowercase Greek letters define variables related

to individual slip systems and a superscript (:) is used to indicate all active slip

systems. Repeated lower case Latin indices imply summation, while comma

separation implies spatial derivatives; ∂
∂xi

= (),i. Incremental quantities repre-

senting a variables change with respect to a time like quantity (dimensionless95

parameter increasing monotonically with time) are indicated by (̇), and func-

tions will be indicated by the use of hard brackets e.g. f [∗].

2.1. General framework

The crystal plasticity framework describes an anisotropic material, with slip,100

γ(α), occurring on a finite number of discrete slip systems. The α’th discrete

crystallographic slip system is defined by a slip direction vector, s
(α)
i , and a vec-

tor which is normal to the slip plane, m
(α)
i . Both these vectors are of unit length.

Thus, the macroscopic plastic strain, defined in terms of the total amount of

slip occurring on all slip systems, is identified as105

εpij =
∑
(α)

γ(α)µ
(α)
ij , with µ

(α)
ij =

1

2

(
s
(α)
i m

(α)
j + s

(α)
j m

(α)
i

)
(1)

with µ
(α)
ij being the Schmid orientation tensor which relates the resolved shear

stress, τ (α), to the Cauchy stress, σij , through τ (α) = σij µ
(α)
ij .

The small strain measure defines the total strain εij = (ui,j + uj,i) /2, through

the spatial gradients of displacements ui,j , with the displacements denoted by

ui. An additive decomposition of the total strain is adopted, with εij = εeij+εpij ,110

where εeij is the elastic strain.

The plastic response of the crystal is quantified phenomenologically through

the density of all dislocations that accumulate during deformation - whether
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the dislocations are statistically stored or geometrically necessary. Dissipation

of energy is associated directly with the accumulation of statistically stored115

dislocations (SSDs), while geometrically necessary dislocations (GNDs) build

up free energy. Inspired by incremental relations in the work of Bardella (2006)

and Borg (2007) the gradient enhanced slip measure employed in the present

work combine the slip and the spatial gradients of slip into the effective slip:

γ
(α)
eff =

√(
γ(α)

)2
+ l2

(
γ
(α)
,i s

(α)
i

)2
(2)

Here, l is a length parameter governing the gradient dependence of the mate-120

rial. The choice of equal length parameters for all crystallographic slip systems

is based on the underlying assumption that gradient effects contribute equally

to dissipation and recoverable energy on all slip systems. Furthermore, the

choice of only accounting for the slip gradient along the slip direction, γ
(α)
,i s

(α)
i ,

implies that only pure edge dislocation densities are accounted for. There is125

no restriction on the sign of the slip increment (i.e. both positive and negative

slip increments occur), thus; γ(α) =
∫ t
0
γ̇(α)dt′, while an accumulated slip mea-

sure is defined by; γ
(α)
acc =

∫ t
0
|γ̇(α)|dt′, which is used to account for the total

plastic slip throughout a general loading history. The choice of allowing both

positive and negative slip increments obviously introduces a dependence on the130

sign of the slip increment, while the positive slip measure |γ(α)| introduces a

dependence on the sign of the slip in the mathematical formulation. Specifically

the mathematical derivation in the present Section will rely on two derivatives,

related to the evolution of the slip measures |γ(α)| and γ
(α)
acc , which are a direct

consequence of considering both positive and negative slip increments. These135

are ∂|γ(α)|
∂γ(α) = sgn[γ(α)], for γ(α) 6= 0 and

∂γ(α)
acc

∂γ(α) = sgn[γ̇(α)], for γ̇(α) 6= 0, with

sgn[∗] denoting the sign function. The evolution of these slip measures and

their derivatives are discussed in Appendix A, for the general loading case.

The contribution from the slip gradient along the slip direction, γ
(α)
,i s

(α)
i , is

assumed to be unrestricted with respect to sign, such that; γ
(α)
,i =

∫ t
0
γ̇
(α)
,i dt′.140

In the equivalent isotropic formulation defined by Hutchinson (2012), the gra-
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dient contribution is defined with an absolute value operator, which would be

expressed as; γ
(α)
,i =

∫ t
0
|γ̇(α)|,i dt′ in the present formulation.

The different slip measures presented above and their relation to the hard-

ening relation assumed throughout the present work will be discussed in order145

to motivate the construction of a theory which applies to the case of general

loading conditions. Thus, three cases will be used in this discussion, the case of

monotonic and positive loading (i.e. deformation theory assuming that the slip

occurs along the direction of the slip direction vector), the case of monotonic

loading (i.e. deformation theory with slip occurring along the direction of the150

slip direction vector or the opposite direction) and the case of general loading

(i.e. flow theory which accounts for history dependence). In the remainder of

the present section, variables associated with the three cases will be indicated

by a subscript ()+ for the case of monotonic and positive loading, ()+|− for

the case of monotonic loading and ()↔ for the case of general loading. Under155

monotonic loading, the effective slip incorporates the effects of SSD (since the

contribution from the slip to the effective slip is always increasing) and GND

associated energy, and a linear relation for the hardening curve is assumed

τ
(α)
0 [γ

(α)
eff ] = τ (α)y

(
1 + k(α) γ

(α)
eff

)
(3)

This curve characterizes the critical resolved shear stress (slip resistance) τ
(α)
0 [γ

(α)
eff ]

on the α’th slip system, through the initial slip resistance, τ
(α)
y and the strength160

coefficient k(α) (a schematic illustration is displayed in Fig. 1).

The work expended in the material is defined as the sum of the elastic and

plastic energy contributions

U [εeij , γ
(:), γ

(:)
,i s

(:)
i ] =

1

2
Leijkl ε

e
kl ε

e
ij +

∑
(α)

(
ϕ(α) + ψ(α)

)
(4)

where Leijkl = G
(

(δikδjl + δilδjk) + 2 ν
1−2ν δijδkl

)
is the isotropic elastic stiffness

tensor, G is the shear modulus, ν is Poisson’s ratio, and δij is the Kronecker165
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delta, while ϕ(α) and ψ(α) are dissipative and recoverable plastic energy contri-

butions, respectively. In the case of monotonic loading the plastic contribution

from the individual slip systems are defined by

(
ϕ(α) + ψ(α)

)
+|−

= Up
(α)

[γ
(α)
eff ] =

∫ γ
(α)
eff

0

τ
(α)
0 [γ′]dγ′ (5)

Thus, at a plastic deformation given by the slip γ(α) and the net Burgers vector

density γ
(α)
,i s

(α)
i , the plastic work expended in the material can be identified as170

the total area under the slip resistance curve in Fig. 1, satisfying the second

objective defined in the introduction. From Eq. (5) it follows that the plastic

energy reduces to that of the conventional crystal plasticity formulation; ϕ
(α)
+ =

Up
(α)

[γ(α)] =
∫ γ(α)

0
τ
(α)
0 [γ′]dγ′, in the limit where gradients of slip are zero

(γ(α) = γ
(α)
eff , dark gray area in Fig. 1) assuming monotonic and positive loading.175

Thus, the plastic energy associated with gradients of slip can be identified by

the plastic energy surplus (light gray area in Fig. 1):

ψ
(α)
+ = Up

(α)

[γ
(α)
eff ]− Up

(α)

[γ(α)] =

∫ γ
(α)
eff

γ(α)

τ
(α)
0 [γ′]dγ′ (6)

A given level of plastic work can be reached in two ways. In the absence of strain

gradients the measure γ
(α)
eff = γ(α) will give rise to a certain level of plastic work,

which can also be reached in the presence of strain gradients, however, at a lower180

γ(α) due to the gradient contribution to γ
(α)
eff , consistent with the notion that

GNDs account for the difference in plastic work between γ(α) and γ
(α)
eff . The

plastic energy contribution given by Eq. (5) is valid for the case of monotonic

loading since the effective slip measure essentially accounts for the absolute

value of the slip, which is not the case for ϕ
(α)
+ . Thus, to account for monotonic185

negative loading the conventional limit of the plastic energy contribution is given

by ϕ
(α)
+|− = Up

(α)

[|γ(α)|] =
∫ |γ(α)|
0

τ
(α)
0 [γ′]dγ′, which results in the plastic energy

associated with gradient of slip in the case of monotonic loading

ψ
(α)
+|− = Up

(α)

[γ
(α)
eff ]− Up

(α)

[|γ(α)|] =

∫ γ
(α)
eff

|γ(α)|
τ
(α)
0 [γ′]dγ′ (7)
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This energy surplus is by definition, in the present model, a recoverable energy

contribution, such that Eq. (7) is also valid in the case of general loading (ψ(α)
↔ =190

ψ
(α)
+|−). Furthermore, the conventional limit of the plastic energy contribution

in the case of general loading must include history dependence beyond that of

the recoverable energy contribution (i.e. account for slip even if the recoverable

energy contribution builds up and decreases back to zero). Thus, in the case of

general loading the conventional limit of the plastic energy contribution must195

depend on the accumulated slip as ϕ(α)
↔ = Up

(α)

[γ
(α)
acc ] =

∫ γ(α)
acc

0
τ
(α)
0 [γ′]dγ′.

τ
(α)
0

γ
′(α)

τ
(α)
y

γ(α) γ
(α)
eff

Conventional
energy

Gradient
energy

Figure 1: Illustration of the slip resistance, τ
(α)
0 , as a function of slip, at a monotonically

increasing and positive load resulting in the plastic deformation given by γ(α) and net Burgers

vector density γ
(α)
,i s

(α)
i . Initial yield has occurred on slip system “α” when the resolved shear

stress reached the value of τ
(α)
y . The crystallographic slip, γ(α), contributes to a conventional

energy (dark gray), while additional recoverable energy (light gray) is stored in the presence

of strain gradients through the effective slip, γ
(α)
eff

(
γ(α) ≤ γ(α)eff

)
.

The general framework for strain gradient crystal plasticity proposed by

Gurtin (2000) will serve as a basis for the remainder of the derivation. Thus, the

incremental strain energy density can be defined in terms of strain quantities

and their work conjugate stress quantities by200
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U̇ [εeij , γ
(:), γ

(:)
,i s

(:)
i ] = σij ε̇

e
ij +

∑
(α)


q(α)︷ ︸︸ ︷

∂Up
(α)

[γ
(α)
eff , γ

(α)
acc ]

∂γ(α)
∂γ(α)

∂t
+

ξ(α)︷ ︸︸ ︷
∂Up

(α)

[γ
(α)
eff , γ

(α)
acc ]

∂
(
γ
(α)
,i s

(α)
i

) ∂
(
γ
(α)
,i s

(α)
i

)
∂t


= σij ε̇

e
ij +

∑
(α)

(
q(α)γ̇(α) + ξ(α)γ̇

(α)
,i s

(α)
i

)
(8)

The strong form of the equilibrium equations are (see Gurtin, 2000)

σij,j = 0 (9)

q(α) − τ (α) − ξ(α),i s
(α)
i = 0 (10)

Here, q(α) is the micro-stress, work conjugate to the slip, and ξ(α) is the higher

order stress, work conjugate to the net Burgers vector density γ
(α)
,i s

(α)
i .

The Cauchy stress is work conjugate to the elastic strain and is given by the

conventional relation205

σij =
∂U

∂εeij
= Leijklε

e
kl (11)

The micro-stress for each slip system can be derived by q(α) = ∂U
∂γ(α) and it

is additively decomposed into a recoverable and a dissipative part as q(α) =

qR(α) + qD(α). In the case of monotonic and positive loading the recoverable

micro-stress is qR(α) =
∂ψ

(α)
+

∂γ(α) while it is

qR(α) =
∂ψ(α)
↔

∂γ(α)
=

(
τ
(α)
0 [γ

(α)
eff ]

γ(α)

γ
(α)
eff

− τ (α)0 [|γ(α)|] sgn[γ(α)]

)
(12)

in the case of general loading. In the case of monotonic and positive loading the210

dissipative micro-stress is qD(α) =
∂ϕ

(α)
+

∂γ(α) , in the case of monotonic loading it is

qD(α) =
∂ϕ

(α)

+|−
∂γ(α) while it is

10



qD(α) =
∂ϕ(α)
↔

∂γ(α)
= τ

(α)
0 [γ(α)acc ] sgn[γ̇(α)]

for γ̇(α) 6= 0 (13)

in the case of general loading. The latter ensures positive dissipation of energy

since the dissipative stress quantity has the same sign as the slip increment

(qD(α)γ̇(α) ≥ 0) and it includes a dependence on the total slip history. An215

implication of this expression is that the dissipative micro-stress may vary dis-

continuously with sgn[γ̇(α)]. The recoverable micro-stress, qR(α), has the same

sign as γ(α), such that the recoverable energy, qR(α)γ(α), is a positive quan-

tity which increases or decreases with the value of |γ(α)| and γ
(α)
eff . Thus, the

micro-stress under general loading conditions is ∂U
∂γ(α) =

∂ψ(α)
↔

∂γ(α) +
∂ϕ(α)
↔

∂γ(α) :220

q(α) =

qR(α)︷ ︸︸ ︷
τ
(α)
0 [γ

(α)
eff ]

γ(α)

γ
(α)
eff

− τ (α)0 [|γ(α)|] sgn[γ(α)] +

qD(α)︷ ︸︸ ︷
τ
(α)
0 [γ(α)acc ] sgn[γ̇(α)]

for γ̇(α) 6= 0 and γ(α) 6= 0 (14)

which describes the plastic energy evolution sketched in Fig. 1 under mono-

tonic loading (|γ(α)| = γ
(α)
acc and sgn[γ̇(α)] = sgn[γ(α)]). Moreover, the dissipa-

tive micro-stress expression accounts for the build up of plastic strains under

general loading conditions, through the accumulated slip, consistent with the

accumulation of SSD associated energy.225

The higher order stress is defined as ξ(α) = ∂U

∂
(
γ
(α)
,i s

(α)
i

) , such that

ξ(α) =
∂ψ(α)
↔

∂
(
γ
(α)
,i s

(α)
i

) = τ
(α)
0 [γ

(α)
eff ] l2

γ
(α)
,i s

(α)
i

γ
(α)
eff

(15)

In the limit l → 0, no gradient dependence exists and the conventional crys-

tal plasticity formulation is recovered, with Eq. (10) simplifying to q(α) =

qD(α) = τ (α) (satisfying the first objective defined in the introduction). In the
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present formulation, the gradient dependence is introduced through the recov-230

erable micro-stress contribution and the higher order stress, which must both

exist to fulfill the higher order equilibrium equation (see Eq. (10)). Further-

more, while this quantity is termed recoverable energy, actual recovery may

not, in general, be possible through mechanical deformation, but the energy is

in principle available through an annealing process.235

2.2. Incremental formulation assuming monotonic loading

In this section, the strain gradient crystal plasticity framework is cast into

incremental form, however, restricted to monotonic loading history. Thus,

|γ(α)| = γ
(α)
acc and sgn[γ̇(α)] = sgn[γ(α)]. This restriction is chosen purely to

simplify the discussion, preserving only the key characteristics relevant to the240

investigation of the present work. The incremental increase of SSDs is asso-

ciated with γ̇
(α)
acc = γ̇(α), while the incremental increase of GNDs is associated

with the increment of the net Burgers vector density γ̇
(α)
,i s

(α)
i . Following the

definition of the effective slip (Eq. (2)) the increment of the effective slip takes

the form245

γ̇
(α)
eff =

γ̇(α)γ(α) + l2 γ
(α)
,i s

(α)
i γ̇

(α)
,j s

(α)
j

γ
(α)
eff

(16)

Increments of the strain quantities follow directly, such that the increments

of total strain are given in terms of increments of displacement gradients, ε̇ij =

1
2 (u̇i,j + u̇j,i), additively decomposed into elastic, ε̇eij , and plastic, ε̇pij , compo-

nents, ε̇ij = ε̇eij + ε̇pij , with the plastic components given by, ε̇pij =
∑
(α)

γ̇(α)µ
(α)
ij .

The elastic relation defines the conventional stress increments as follows250

σ̇ij = Leijkl

ε̇kl −∑
(β)

γ̇(β)µ
(β)
kl

 (17)

The increment of resolved shear stress is given by τ̇ (α) = σ̇ijµ
(α)
ij . The micro-

stress defined in Eq. (14) reduces to; q(α) =
∂ϕ

(α)

+|−
∂γ(α) +

∂ψ
(α)

+|−
∂γ(α) = τ

(α)
0 [γ

(α)
eff ] γ

(α)

γ
(α)
eff

under monotonic loading, and thus, the incremental micro-stress is given by

12



q̇(α) = h(α)[γ
(α)
eff ]γ̇

(α)
eff

γ(α)

γ
(α)
eff

+ τ
(α)
0 [γ

(α)
eff ]

(
γ̇(α)

γ
(α)
eff

− γ̇(α)eff

γ(α)

γ
(α)2

eff

)
(18)

Here, the hardening moduli defined by h(α)[γ
(α)
eff ] =

∂τ
(α)
0 [γ

(α)
eff ]

∂γ
(α)
eff

only accounts for

self-hardening, neglecting the effects of latent hardening. The incremental slip255

resistance follows from the differentiation of Eq. (3) as; τ̇
(α)
0 = h(α)[γ

(α)
eff ] γ̇

(α)
eff ,

which can be identified as part of the first term in Eq. (18).

The incremental higher order stress follows from Eq. (15) and is given by

ξ̇(α) = l2s
(α)
i

(
h(α)[γ

(α)
eff ]γ̇

(α)
eff

γ
(α)
,i

γ
(α)
eff

+ τ
(α)
0 [γ

(α)
eff ]

(
γ̇
(α)
,i

γ
(α)
eff

− γ̇(α)eff

γ
(α)
,i

γ
(α)2

eff

))
(19)

The principle of virtual work, on incremental form, for a body with volume

V and surface S is given by260

∫
V

σ̇ijδε̇ij +
∑
(α)

(
q̇(α) − τ̇ (α)

)
δγ̇(α) +

∑
(α)

ξ̇(α)s
(α)
i δγ̇

(α)
,i

 dV =

∫
S

Ṫiδu̇i +
∑
(α)

ṙ(α)δγ̇(α)

 dS (20)

Here, δ refers to a variational quantity, Ṫi represents the increments of the

surface tractions, work conjugate to displacements, and ṙ(α) represents the in-

crements of higher order tractions, work conjugate to slips. The tractions on

the boundaries are given by; Ṫi = σ̇ij nj and ṙ(α) = ξ̇(α) s
(α)
j nj , with nj being

the outward unit normal.265

The assumption of monotonic loading simplifies the numerical solution pro-

cedure, when based on the finite element method, as it excludes the need for

evaluation of elastic unloading. However, a yield criterion is still needed. As dis-

cussed by Hutchinson (2012), in relation to isotropic plasticity, only the Cauchy

stress, σij , is assumed to change during elastic deformation. Thus, initial yield270
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on the α’th slip system is in the present work defined as in the case of conven-

tional crystal plasticity when τ (α) = τ
(α)
0 [0] = τ

(α)
y .

3. Numerical Method

The mathematical notation in this section relies on superscript upper-case

Latin letters that identify elements in one and two-dimensional arrays, except275

the letter T which is used to indicate the transpose of a matrix.

3.1. Finite element discretization

The numerical formulation follows from the discretization of Eq. (20), where

increments of displacement and increments of slip are free variables. The vari-

ational quantities and field quantities are discretized using polynomial interpo-280

lation functions. In this case, a plane strain formulation is employed, with 8

node quadratic isoparametric elements used to discretize displacement associ-

ated quantities. Thus, the shape functions NM
i are used to interpolate incre-

ments of nodal displacements, ḋM , such that a total of 16 shape functions are

used to approximate increments of displacements and increments of strains in285

two dimensions

u̇i =

16∑
M=1

NM
i ḋM and ε̇ij =

16∑
M=1

EMij ḋ
M (21)

Here, EMij = 1
2 (NM

i,j+NM
j,i ) is the strain-displacement matrix. The slip quantities

are discretized by 4 node bilinear elements using isoparametric shape functions

MN , and their derivatives MN
,i . Thus, a total of 4 shape functions are used to

approximate increments of slip and their spatial gradients from the nodal slips,290

ġ(α)N , as

γ̇(α) =

4∑
N=1

M (α)N ġ(α)N and γ̇
(α)
,i =

4∑
N=1

M
(α)N
,i ġ(α)N (22)

Discretization of Eq. (20) results in a system of equations which takes the form
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[
Ke

] [
K

(α)
ep

]
[
K

(α)
ep

]T [
K

(α,β)
p

]


{
ḋ

}
{
ġ(α)

}
 =


{
F1

}
{
F

(α)
2

}
 (23)

with the three matrices
[
Ke

]
,
[
K

(α)
ep

]
and

[
K

(α,β)
p

]
identified as

(i) The conventional elastic stiffness matrix

[
Ke

]MN

=

∫
V

LeijklE
M
kl E

N
ij dV (24)

(ii) Elastic-plastic matrices which couple nodal increments of displacements295

and nodal increments of slip

[
K

(α)
ep

]MN

= −
∑
(α)

∫
V

Leijklµ
(α)
kl M

(α)MENij dV (25)

(iii) Slip system matrices which couple nodal increments of slip, either on an

individual slip system (α = β) or across two distinct slip systems (α 6= β)

[
K

(α,β)
p

]MN

=
∑
(α)

∑
(β)

(∫
V

µ
(α)
ij L

e
ijklµ

(β)
kl M

(β)MM (α)NdV

+ δαβ

∫
V

(((
h(α)[γ

(α)
eff ]−

τ
(α)
0 [γ

(α)
eff ]

γ
(α)
eff

)
γ(α)

2

γ
(α)2

eff

+
τ
(α)
0 [γ

(α)
eff ]

γ
(α)
eff

)
M (α)MM (α)N

)
dV

+ δαβ

∫
V

(
h(α)[γ

(α)
eff ]−

τ
(α)
0 [γ

(α)
eff ]

γ
(α)
eff

)
γ(α)

γ
(α)2

eff

l2 γ
(α)
,i s

(α)
i s

(α)
j M

(α)M
,j M (α)N dV

+ δαβ

∫
V

(
h(α)[γ

(α)
eff ]−

τ
(α)
0 [γ

(α)
eff ]

γ
(α)
eff

)
γ(α)

γ
(α)2

eff

l2 γ
(α)
,i s

(α)
i M (α)Ms

(α)
j M

(α)N
,j dV

+ δαβ

∫
V

(h(α)[γ(α)eff ]−
τ
(α)
0 [γ

(α)
eff ]

γ
(α)
eff

) (
l2 γ

(α)
,i s

(α)
i

)2
γ
(α)2

eff

+ l2
τ
(α)
0 [γ

(α)
eff ]

γ
(α)
eff

 s
(α)
j M

(α)M
,j s

(α)
k M

(α)N
,k dV


(26)
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The right-hand side of Eq. (23) contains two contributions;
{
F1

}
related to

conventional tractions, and
{
F

(α)
2

}
related to higher order tractions. These are300

defined by

{F1}N =

∫
S

ṪiN
N
i dS (27){

F
(α)
2

}N
=

∑
(α)

∫
S

ṙ(α)M (α)NdS (28)

In the case of single slip (α = β = 1), the combined element matrix in

Eq. (23) comprises of; (i) the elastic stiffness matrix (16 x 16 in size), (ii) the

elastic-plastic coupling matrix (4 x 16), and (iii) the slip system matrix (4 x 4).

In the case of multiple active slip systems, additional coupling matrices appear,305

compared to the case of single slip, and the combined element matrix in Eq. (23)

then comprises of additional; (ii) elastic-plastic coupling matrices and (iii) slip

system coupling matrices. Correspondingly, 4 additional nodal slip variables

and 4 additional right-hand side components appear for each additional slip

system.310

3.2. Numerical implementation

The discretized equations have been implemented into an in-house finite el-

ement code. Numerical integration follows the conventional Gauss quadrature

rule. Full integration of the 8 node element implies 3 × 3 Gauss points, which

is also used for the 4 node element.315

Evaluation of initial yield is carried out on Gauss point basis, such that the

element stiffness may consist of both elastic and elastic-plastic contributions. In

non-active plastic Gauss points,
[
K

(α)
ep

]
and

[
K

(α,β)
p

]
are set equal to zero when

evaluating the combined element stiffness matrix. However, if a slip system is

inactive in all Gauss points belonging to a specific element the stiffness matrix320

contributions from
[
K

(α,β)
p

]
, for α = β, are set equal to the identity matrix

multiplied by a sufficiently large value (in the present work 107×G). This pro-

cedure is essentially a penalty method approach ensuring no slip on elements
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where a slip system is inactive.

Special attention should be paid to several terms of Eq. (26) because of their325

singular nature at initial yield. The approach chosen to overcome this numer-

ical issue is to start calculations with a small value of initial slip throughout

the analyzed body. The effect of this initial starting value on the final solution

is investigated in Appendix B. For completeness, it is noted that the finite

element implementation utilizes the external package SuiteSparse (Davis et al.,330

2014) through the framework PETSc (Balay et al., 2015) for solving the sparse

linear system of equations.

4. Problem formulation

Investigation of the model predictions is carried out by examining an infi-

nite strip of crystalline material, which is sandwiched between rigid platens.335

The strip is subjected to monotonic pure shear loading conditions under the

assumption of plane strain deformation. A crystalline strip of height H and

width W is sketched in Fig. 2. The sketch describes a material with two

slip systems inclined by the angle θ(1) = −θ(2) = θ, with respect to the x1-

axis. In terms of conventional boundary conditions the pure shear problem340

is constrained, in the direction parallel to the x2-axis, on the entire bound-

ary (u2 = 0 on x2 = ±H/2 and x1 = ±W/2). Prescribed displacements,

∆/2, act in opposite directions parallel to the x1-axis, on x2 = ±H/2, such

that u1 = ∆x2/H = ±∆/2. Periodicity of displacements is prescribed on

x1 = ±W/2, with respect the x2-coordinate (u1[−W/2, x2] = u1[W/2, x2]).345

Higher order boundary conditions consist of micro-hard boundaries enforced on

x2 = ±H/2: γ(α) = 0 for l > 0. Furthermore, periodicity of the slip is enforced

on x1 = ±W/2: γ(α)[−W/2, x2] = γ(α)[W/2, x2]. The shear load increment is

monotonically prescribed in steps of equal amplitude. A single column of 1000

square elements over the height H is used to obtain results, and the load is350

prescribed in 10000 displacement increments in order to ensure convergence of

the solution.
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H

W

∆/2

∆/2

x2

x1
θ(1)

θ(2)

Figure 2: Illustration of a crystalline strip of height H and width W subjected to pure shear

loading conditions. The material is elastic-plastic, with two slip systems (indicated by dashed

lines) inclined by the angle θ(1) = −θ(2) = θ with respect to the x1-axis. Micro-hard boundary

conditions, blocking the motion of dislocations, are applied onto the top and the bottom of the

strip, which are displaced the distance ∆/2 in the horizontal direction (indicated by arrows).

The material is characterized by the ratio of the yield stress to the shear mod-

ulus τy/G = 0.0104. The value of the normalized conventional strain hardening

parameter is h/G = 0.2, unless otherwise stated. Furthermore, a reference strain355

measure, γy, is defined in terms of the initial yield stress through τy = Gγy.

Both single slip (in this case θ = 90◦) and symmetric double slip (θ = 15◦

and 30◦, respectively) will be investigated in Section 5. The Cauchy stress com-

ponents σ12 = σ21 are the only nonvanishing conventional stress components

for these configurations of slip systems and boundary conditions. Essentially360

this problem is a one dimensional boundary value problem for the slip variables

and the horizontal displacements, given in terms of the constant resolved shear

stress imposed on the strip (see Bittencourt et al., 2003, for details).
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5. Results and discussion

Different terminology is used in the literature when defining plastic flow char-365

acteristics. In the present work, strengthening is defined as an apparent delay

in plastic flow, whereas hardening refers to the combined effect of both conven-

tional strain hardening and hardening due to the presence of strain gradients.

It is noted that strengthening behavior associated with the present theory arises

due to a delay in plastic flow predictions beyond the initial yield stress, as dis-370

cussed by Fleck et al. (2015) in the case of rate-independent isotropic strain

gradient plasticity theory.

From here on all parameters related to plasticity are presented without su-

perscript Greek letter slip system identifier since both are assumed equal in the

case of symmetric double slip and only one exists in the case of single slip. The375

distinction between individual parameters for several slip system orientations

are presented by the use of a subscript θ, representing the different slip system

orientation angles.

5.1. Single slip380

Model predictions for the case of single slip, with the slip system orientation

angle specified by θ = 90◦, are presented in Figs. 3 - 9. The resolved shear

stress response for varying values of the normalized length parameter l/H is

shown in Fig. 3, for several values of l/H from 0 to 1.6. The results reveal both

increased strengthening and increased hardening for increasing values of l/H,385

while the conventional limit is obtained as l/H → 0. Furthermore, in spite of

the prescribed linear strain hardening a slight curvature of the response curves is

seen for l/H > 0, and this effect becomes more evident as l/H increases. Figure

4 presents the slip profile amplitude as a function of overall shear strain ∆/H.

The relationship between the amplitude and the overall shear strain is non-linear390

in the plastic regime for values of l/H > 0 and this non-linearity increases with

l/H. The non-linear relationship is an indication of a non-proportional straining

history, as discussed by Hutchinson (2012).
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Figure 3: Normalized resolved shear stress to the imposed overall shear strain ∆/H for single

slip (θ = 90◦), for various values of the normalized length parameter l/H. The normalized

conventional strain hardening parameter is h/G = 0.2.

Figure 5 shows the predictions of the slip at the final stage of deformation.

The results clearly reflect the presence of strain gradients, both in the sense of395

a non-uniform slip profile distribution and in the sense of an overall decrease in

slip profile amplitude due to increased hardening for increasing values of l/H.

Furthermore, a distinct change in profile shape is predicted as l/H becomes

small but larger than zero, with an almost uniform slip distribution predicted

through most of the strip height. In the limit, the slip profile converges to that of400

the conventional material response where the gradient terms disappear and the

micro-hard boundary condition can not be enforced (Bittencourt et al., 2003).

The normalized net Burgers vector density, l γ,2 s2, predictions associated with

the slip profiles of Fig. 5 are shown in Fig. 6. The result obtained for l/H = 0.01

shows a highly localized distribution at the boundaries, whereas the curves for405

values between 0.1 and 0.4 predict a decreasing localization of the distribution.
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Figure 4: Slip profile amplitude to the imposed overall shear strain ∆/H for single slip (θ =

90◦), for various values of the normalized length parameter l/H. The normalized conventional

strain hardening parameter is h/G = 0.2.

In the interval of l/H between 0.4 and 0.8, very little change in the distribution

is predicted. However, as l/H is increased from 0.8 the distribution is seen to

decrease in value throughout the strip, with a distinctly different distribution

compared to values of l/H < 0.4.410

The effects associated with the conventional strain hardening parameter are

presented in Figs. 7 - 9, for the normalized length parameter l/H = 0.4. Figure

7 displays the effect of varying h/G on the resolved shear stress response. The re-

sults clearly reflect a large change in hardening predictions, with h/G = 5×10−4

predicting an almost ideally plastic response. The conventional strain hardening415

parameter is seen to govern the hardening response, since no hardening is seen

for h/G = 5× 10−5 despite a non-zero value of the length parameter. However,

the strengthening response is seen to be independent of the conventional strain

hardening parameter as all curves in Fig. 7 transition to the elastic-plastic
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Figure 5: Slip profile, γ, at imposed overall shear strain ∆/H = 0.086 for single slip (θ = 90◦),

for various values of the normalized length parameter l/H. The normalized conventional strain

hardening parameter is h/G = 0.2.

regime at the same resolved shear stress level. The relationship between the420

length parameter and both the strengthening response and the hardening slope

are further investigated and discussed in Section 5.2. The effect of varying h/G

on the slip profile distribution is shown in Fig. 8. The predicted slip profiles

reflect the decrease in h/G through an overall increase in slip profile ampli-

tude. The results obtained for h/G = 5 × 10−4 and h/G = 5 × 10−5 predict425

very sharp boundary layers in combination with a slight decrease in the slip

profile amplitude, compared to the result for h/G = 5 × 10−3. The effect of

conventional strain hardening on the slip profile is also examined by Bittencourt

et al. (2003). Their results, which are obtained using a rate-independent strain

gradient crystal plasticity formulation, similarly reveal that conventional strain430

hardening (slip system dissipative hardening in their terminology) has a strong
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Figure 6: Normalized net Burgers vector density profile, l γ,2 s2, at imposed overall shear

strain ∆/H = 0.086 for single slip (θ = 90◦), for various values of the normalized length

parameter l/H. The normalized conventional strain hardening parameter is h/G = 0.2.

effect on the slip profile distribution for the case of pure shear loading. Figure

9 shows the normalized net Burgers vector density predictions associated with

the slip profiles in Fig. 8. The data plotted is restricted to the interval between

l γ,2 s2 = −0.5 and l γ,2 s2 = 0.5, such that a visual comparison is possible. The435

cut-off interval excludes determination of the peak values for h/G = 5 × 10−4

and h/G = 5× 10−5, which are 1.432 and 3.932, respectively. The distribution

is seen to increase near the boundaries for decreasing values of h/G, with a very

sharp peak predicted for values of h/G ≤ 5 × 10−3. Furthermore, an overall

decrease in magnitude is predicted away from the boundaries for these low val-440

ues of h/G. A comparison of the normalized net Burgers vector density profiles

associated with various values of l/H and h/G (Fig. 6 and Fig. 9) indicates

that a highly localized distribution is predicted at the boundaries for low values
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Figure 7: Shear stress response to the imposed overall shear strain ∆/H for single slip (θ =

90◦), for various values of the normalized conventional strain hardening parameter h/G. The

value of normalized length parameter is l/H = 0.4.

of both length parameter and conventional strain hardening parameter.

5.2. Comparison between single slip and double slip445

The strengthening and hardening characteristics for different slip system ori-

entations are comparable through relatively simple relationships. To illustrate

these relationships the average slip is defined by γ̄ = 1
H

∫H/2
−H/2 γ[x2]dx2 and a

normalized length parameter by 2 lθs2θ/H. The slip direction vector component

s2θ is constant for a given choice of slip system orientation and lθ is the slip450

system orientation dependent length parameter. Furthermore, it is noted that

any discussion of the slip system orientation θ = 90◦ only refers to single slip

and all other values of θ refers to symmetric double slip.

The resolved shear stress on the two slip systems for the pure shear problem

is given by; τ = 2σ12 µ12θ, where the Schmid orientation tensor component,455

µ12θ, depends on the slip system orientation (see Eq. (1)). Thus, for compar-
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Figure 8: Slip profile, γ, at imposed overall shear strain ∆/H = 0.086 for single slip (θ = 90◦),

for various values of the normalized conventional strain hardening parameter h/G. The value

of normalized length parameter is l/H = 0.4.

ison of results (between single slip and symmetric double slip), strengthening

predictions are shown in Fig. 10 using the slip system orientation specific nor-

malized resolved shear stress expression τ/(2 τy µ12θ). The figure shows the

slip system specific normalized resolved shear stress as a function of the aver-460

age slip for three slip system orientations (θ = 15◦, 30◦ and 90◦, respectively)

and two values of normalized length parameter, 2 lθs2θ/H = 0.5 and 1. It is

seen that the chosen normalization of the resolved shear stress, predicts compa-

rable strengthening which is dependent on the value of the normalized length

parameter. The hardening predictions are not comparable using the chosen nor-465

malization, but by plotting the results using the normalized resolved shear stress

τ/h the hardening predictions become comparable and dependent only on the

normalized length parameter. Predictions of strengthening are shown in Fig.

11 for a wide range of length parameters. In the case of the present theory, the
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Figure 9: Normalized net Burgers vector density profile, l γ,2 s2, at imposed overall shear

strain ∆/H = 0.086 for single slip (θ = 90◦), for various values of the normalized conventional

strain hardening parameter h/G. The value of normalized length parameter is l/H = 0.4. A

zoom of the results near the lower boundary is included.

results are obtained using one specific conventional strain hardening parameter470

(h/G = 0.2), but it has been confirmed to be independent of h/G. Hence, the

predicted strengthening is independent of conventional strain hardening. Three

sets of markers representing discrete data points, for the slip system orienta-

tions (θ = 15◦, 30◦ and 90◦, respectively) are plotted together with dashed lines

which are linear interpolations between points. Two additional sets of mark-475

ers are included, one set is obtained with the rate-dependent isotropic strain

gradient plasticity theory proposed by Gudmundson (2004) and investigated

by Niordson and Legarth (2010) and the other set is presented in Fleck et al.

(2015). The predictions of Niordson and Legarth (2010) are obtained for an

elastic-perfectly plastic material under pure shear loading and show strength-480
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ening (increase in effective yield strength in their terminology) as a function of

a normalized dissipative length parameter. These results plotted in Fig. 11,

are scaled by a factor of 2/
√

3 on the normalized length parameter axis to al-

low for a direct comparison with the results of the present theory. The scaling

factor is necessary due to the definition of the effective plastic strain measure485

in the theory proposed by Gudmundson (2004), which is defined without the

Mises strain factor of 2/3. Furthermore, the results of Niordson and Legarth

(2010) are representative of the rate-dependent strain gradient crystal plastic-

ity formulation presented by Niordson and Kysar (2014). The strengthening

predictions of Fleck et al. (2015) are obtained for the case of tensile stretching490

of a plastically passivated layer, using a power law relation for plasticity, and

they present strengthening (elastic loading gap in their terminology) as a func-

tion of a normalized recoverable length parameter. A scaling of the results is

unnecessary due to the definition of the effective strain measure in Fleck et al.

(2015). Furthermore, their results are obtained using a formulation which is495

closely related to the formulation presented by Hutchinson (2012). Common

to all results plotted in Fig. 11 is a slow increase in strengthening for small

values of length parameter, while an almost linear relationship is predicted for

larger values of the length parameter. However, while the results of Fleck et al.

(2015) are almost qualitatively equivalent to the results of the present theory, a500

qualitative difference is seen in the results of Niordson and Legarth (2010).

Figure 12 presents the normalized average effective hardening modulus, heff/h =

(τ − τy)/(γ̄h), as a function of normalized length parameter. Due to a slight

initial curvature of the response curves (similar to those seen in Fig. 10) the

effective hardening modulus is calculated using data points at 90 % and 100505

% of the imposed overall shear strain. The data plotted is obtained using the

normalized conventional strain hardening parameter (h/G = 0.2), but results

have been shown to be independent of non-zero values of h/G. The markers

on the curve are discrete data points, for three values of slip system orientation

(θ = 15◦, 30◦ and 90◦, respectively), and the solid line is plotted using a fitted510

second order polynomial; 2.6110 (2 lθs2θ/H)
2

+ 0.5773 (2 lθs2θ/H) + 1.0. The

27



γ̄
0 0.01 0.02 0.03 0.04 0.05 0.06

τ
/(
2
τ y

µ
12
θ
)

0

1

2

3

4

5

6

90◦

θ = 30◦

15◦

90◦

30◦15◦

2 lθs2θ/H = 0.5
2 lθs2θ/H = 1.0

Figure 10: Slip system dependent normalized resolved shear stress as a function of average

slip. The choice of normalization captures the equivalent strengthening for three different slip

system orientations (θ = 15◦, 30◦ and 90◦, respectively) at two different values of normalized

length parameter 2 lθs2θ/H.

coefficient of determination for the fitted polynomial is R2 = 0.9966. Niordson

and Legarth (2010) investigated the effective hardening modulus as a function of

their energetic length parameter and obtained a quadratic relationship (similar

to Fig. 12, but with a vanishing linear term). Furthermore, their results are515

supported by an analytical expression based on a rate-independent and perfectly

plastic material behavior.

6. Concluding remarks

An extension of the conventional rate-independent crystal plasticity frame-

work, which incorporates gradient of slip has been presented. The extension520

builds on the underlying ideas by Hutchinson (2012) of extending conventional
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Figure 11: Effect of normalized length parameter 2 lθs2θ/H on strengthening predictions.

Points represent solution values obtained numerically for three different slip system orien-

tations (θ = 15◦, 30◦ and 90◦, respectively), while the dashed lines are linear interpolations

between points. Furthermore, points representing solution values obtained by Niordson and

Legarth (2010) and Fleck et al. (2015) are also included.

isotropic J2-theory to account for strain gradient effects. Following Hutchinson

(2012) three objectives related to the extension are defined. The first objec-

tive has been highlighted through the single slip results, where the theory has

been shown to reduce to the conventional crystal plasticity framework in the525

limit l → 0. The second objective is enforced throughout the presented theory

by restricting parameters that govern material behavior to the shear modulus,

Poisson’s ratio, a hardening relation between resolved shear stress and slip, and

a material length parameter that scales the gradient effect. This objective de-

fines the main assumption that is used to govern the evolution of plastic flow,530

which is incorporated by relating the gradient enhanced effective plastic strain

measure to a shear relation between resolved shear stress and slip in the plastic
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Figure 12: Effect of normalized length parameter 2 lθs2/H on the normalized average effective

hardening moduli heff/h = (τ − τy)/(γ̄h), for three different values of slip system orientation

angle (θ = 15◦, 30◦ and 90◦, respectively), and the value of the normalized conventional strain

hardening parameter is h/G = 0.2. The solid line is a fitted second order polynomial given

by; 2.6110 (2 lθs2θ/H)2 + 0.5773 (2 lθs2θ/H) + 1.0, with the coefficient of determination for

the fitted polynomial: R2 = 0.9966.

regime. The shear relation must increase monotonically, and no further restric-

tions on the hardening law exist in the framework presented. The present work

takes as offset linear hardening, but more complex hardening laws could readily535

be incorporated into the formulation. The definition of the plastic work is in the

present formulation based on the assumption that the work related to gradients

of slip is recoverable, while the work related to slip is a combination of both

dissipative and recoverable energy contributions. The present theory relates the

effective strain to both terms of the shear hardening curve, and this is of critical540

importance to the strengthening predictions of the present theory, as discussed

by Fleck et al. (2015) for isotropic plasticity. The third objective by Hutchin-
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son (2012) states that flow theory and deformation theory must coincidence

in the case of proportional straining history. This objective is not fulfilled for

the examined problem of pure shear loading where a slightly non-proportional545

straining is predicted (see Fig. 4). However, the overall trends of the results

seem to indicate that model predictions converge towards proportional straining

in the plastic regime as the effects due to strengthening become negligible.

The incremental formulation presented is derived based on an assumption

of monotonic loading to simplify the implementation procedure, while preserv-550

ing the characteristics of strengthening and hardening behavior. The results of

single slip in the case of pure shear loading are used to quantify these charac-

teristics. Strengthening is shown to increase for increasing values of the length

parameter, while it is predicted to be independent of the conventional strain

hardening parameter. The distribution of slip is shown to depend on both the555

conventional strain hardening parameter and the length parameter, such that a

concentration in the net Burgers vector density is predicted at the boundaries

for low values of either the length parameter or the conventional strain harden-

ing parameter. Predictions similar to these have recently been the focus of an

investigation performed by El-Naaman et al. (2016). Their findings relate these560

slip gradient distributions to experimentally observed dislocation arrangements

of individual grains of crystalline materials, known as wall and cell structures.

Slip system dependent strengthening and hardening predictions of the model

is also presented in the present work. Two slip systems oriented symmetrically

with respect the x1-axis (see Fig. 2) predict results comparable to those of sin-565

gle slip. The normalized length parameter 2 lθs2θ/H is shown to characterize

both strengthening and hardening predictions. Results are compared to the iso-

topic strain gradient formulation investigated in Niordson and Legarth (2010)

(equal results would be predicted by the crystal plasticity formulation inves-

tigated in Niordson and Kysar, 2014), and despite several differences between570

the formulations strengthening and hardening predictions show similar trends.

Furthermore, model predictions of the strengthening behavior are almost qual-

itatively equivalent to the recent findings of Fleck et al. (2015).
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Lastly, the monotonic loading assumption excludes investigation of unloading

and reverse loading. Recently the work of Liu et al. (2015) which presents cyclic575

torsion experiments of micron diameter copper and gold wires has revealed size

dependent strengthening and a Bauschinger effect. In light of these results, a

very interesting extension of the present model is the case of general loading,

which would permit investigation of strengthening and hardening characteristics

of unloading and cyclic loading.580
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Appendix A.

In Section 2 the derivatives ∂|γ(α)|
∂γ(α) = sgn[γ(α)], for γ(α) 6= 0 and

∂γ(α)
acc

∂γ(α) =

sgn[γ̇(α)], for γ̇(α) 6= 0 are defined, where sgn[∗] denotes the sign function. This

appendix presents and discusses details related to the evolution of these deriva-590

tives and the slip measures γ(α), |γ(α)| and γ
(α)
acc through a general loading his-

tory. The evolution of the slip is given by γ(α) =
∫ t
0
γ̇(α)dt′, while the evolution

of the slip related to conventional strain hardening (the monotonicaly increas-

ing slip measure) follows the accumulated slip defined in the rate-dependent

theory presented by Kuroda and Tvergaard (2006). Thus, the accumulated595

slip measure is given by; γ
(α)
acc =

∫ t
0
|γ̇(α)|dt′, which is used to account for the

total plastic slip throughout a general loading history. The presented theory

defines the slip as being work conjugate to the micro-stress, as is the case for

conventional rate-independent crystal plasticity where Eq. (10) simplifies to

qD(α) = τ (α) (as discussed in Section 2). Thus, the two derivatives are needed600
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to derive the micro-stress under a general loading history (given by Eq. (14)).

The superscript (α) is omitted in the remainder of this appendix.

In Fig. A.13 a graphical interpretation of the derivatives are given based on

the evolution of the slip increment, γ̇, and the slip measures γ, |γ| and γacc. The

loading history varies according to Fig. A.13 (a), otherwise the details leading605

to the evolution of the plastic deformation are undefined. Figure A.13 (a)

shows the γ̇ axis with the evolution of slip increment given by the (pseudo time)

increments ti. The evolution of the slip through the increments ti are shown in

Fig. A.13 (b) and (c), versus |γ| and γacc, respectively. Initial yield occurs at

the increment leading up to t1, such that γ̇[t1] = γ[t1] = |γ|[t1] = γacc[t1] = 1.610

The following increment results in γ̇[t2] = 2 and γ[t2] = |γ|[t2] = γacc[t2] = 3.

The increment t3 results in γ̇[t3] = 1 and γ[t3] = |γ|[t3] = γacc[t3] = 4, thus, the

derivatives evaluated in the interval t1 to t3 are ∂|γ|
∂γ = ∂γacc

∂γ = sgn[γ] = sgn[γ̇] =

1. The following increment results in γ̇[t4] = 0 (i.e. no plastic deformation),

thus, γ[t4] = |γ|[t4] = γacc[t4] = 4 and ∂|γ|
∂γ = sgn[γ] = 1, but ∂γacc

∂γ is undefined615

since γ̇[t4] = 0. However, since no plastic deformation has occurred no change

in the micro-stress arises, and the value of the derivative ∂γacc
∂γ is not needed.

The following increment results in γ̇[t5] = −1, with γ[t5] = |γ|[t5] = 3 and

γacc[t5] = 5, thus, reversal of the sign of the load results in ∂|γ|
∂γ = sgn[γ] = 1

and ∂γacc
∂γ = −1. The increment t6 results in γ̇[t6] = −2 , with γ[t6] = |γ|[t6] = 1620

and γacc[t6] = 7. The following increment results in γ̇[t7] = −1, with γ[t7] =

|γ|[t7] = 0 and γacc[t7] = 8. As seen γ and |γ| retain no information about

the previous loading at this stage of the deformation, while γacc accounts for

the previous loading history. The derivative ∂γacc
∂γ = sgn[γ̇] = −1, while the

derivative ∂|γ|
∂γ is undefined since γ[t7] = 0. However, viewed from a numerical625

point of view, it will be practically impossible to encounter the exact value of

γ = 0. The increment t8 results in γ̇[t8] = −2, with γ[t8] = −2, |γ|[t8] = 2,

γacc[t8] = 10, ∂|γ|
∂γ = sgn[γ] = −1 and ∂γacc

∂γ = sgn[γ̇] = −1. The following

increment results in γ̇[t9] = 0, thus, γ[t9] = −2, |γ|[t9] = 2, γacc[t9] = 10,

∂|γ|
∂γ = sgn[γ] = −1 and ∂γacc

∂γ is undefined. Lastly, the increment t10 results in630

γ̇[t10] = 1, with γ[t10] = −1, |γ|[t10] = 1, γacc[t10] = 11, ∂|γ|
∂γ = sgn[γ] = −1 and
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∂γacc
∂γ = sgn[γ̇] = 1. From this example it is evident that sgn[γ] and sgn[γ̇] are

equal when γ increases in magnitude (when |γ| increases in value), while they are

opposite in sign when γ decreases in magnitude. The derivative ∂|γ|
∂γ is undefined

in the case of γ = 0 and ∂γacc
∂γ is undefined in the case of γ̇ = 0, however, the635

practical consequences of the derivatives being undefined at certain instances

during a general loading are shown to be negligible. Furthermore, while the

derivative ∂γacc
∂γ = sgn[γ̇] is governed by γ̇ the evolution of γacc depends on the

evolution of the slip γ, as is the case of the slip measure |γ| and its derivative ∂|γ|
∂γ .

Thus, only the micro-stress measure related to conventional rate-independent640

crystal plasticity theory, qD(α), depends on the slip increment.

Appendix B.

In section 3 the existence of initially (at the onset of yield) unbounded terms

of the stiffness matrix is noted. Thus, a numerical solution is not available when

γ = 0 at initial yield. To overcome this issue, results presented in the present645

work are obtained using a small initial value of the slip; γ = γeff = ω[l/H] γy,

which is defined in terms of the yield strain, γy, and the scaling parameter,

ω[l/H]. Figure B.14 presents the influence of ω[l/H] on the deviation between

slip profile amplitudes at the final stage of deformation. The slip profile ampli-

tude is defined as A[ω[l/H]] = max(γ[ω[l/H]]) and the deviation in % between650

the slip profile amplitude and a reference value of the slip profile amplitude,

A[ωo[l/H]], is determined by A[ω[l/H]]−A[ωo[l/H]]
A[ωo[l/H]] 100%. Here, ωo[l/H] refers to

the lowest possible values at which a numerical solution is obtained for that

specific normalized length parameter. Results are presented for the case of sin-

gle slip (θ = 90◦) with γy = τy/G = 0.0104 for three choice of normalized655

length parameter l/H = 0.1, 0.8, and 1.6, using the normalized conventional

strain hardening parameter h/G = 0.2. The markers on the curves represent

discrete data values, solid lines are linear interpolations between points, while

the dashed line indicates the value of ω[l/H] (being 2×10−3) used to obtain the

results presented in Figs. 3 - 12. Figure B.14 shows that for increasing values of660
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l/H a solution can be obtained for decreasing values of ω[l/H], with the differ-

ence between ω[0.1] and ω[1.6] being above an order of magnitude. The lowest

possible values are obtained using ωo[0.1] = 2 × 10−6, ωo[0.8] = 7 × 10−6, and

ωo[1.6] = 7 × 10−5, respectively. Furthermore, as seen the deviation increases

for increasing values of l/H at a specific value of ω[l/H]. The largest deviation665

in the slip profile amplitude is below 1 % for ω = 2 × 10−3 (corresponding to

the initialization value γeff = 2.08 × 10−5), confirming that this value leads

to reasonable precision for the slip system orientation angle θ = 90◦. The pre-

sented theory is phenomenologically based, however, it is worth mentioning that

Eq. (2), and the relation for the net Burgers vector density ρGNDb = γ
(α)
,i s

(α)
i ,670

leads to a γ
(α)
eff = 10−3, when using the material parameters; an initial disloca-

tion density of a single crystal ρ ∼ 1012 m−2, a Burgers vector magnitude of

b ∼ 10−9 m and a material length parameter of l ∼ 10−6 m, which are all within

an order of magnitude of regularly reported values.
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Figure A.13: Evolution of the plastic strain measures; γ̇, γ, |γ|, γacc and the derivatives

∂|γ|/∂γ and ∂γacc/∂γ during a loading history from t0 to t10. (a) Shows the evolution of

the slip increment γ̇ during the loading history indicated below the γ̇ axis. (b) Shows the

absolute value of the slip versus the slip and the slope of the curves (∂|γ|/∂γ) during the

loading history indicated below the γ axis. (c) Shows the accumulated slip versus the slip

and the slope of the curves (∂γacc/∂γ) during the loading history indicated above the plot.
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Figure B.14: Effect of initialization parameter ω[l/H] on the deviation in %,

A[ω[l/H]]−A[ωo[l/H]]
A[ωo[l/H]]

100%, of the slip profile amplitude, A[ω[l/H]], and a reference slip pro-

file amplitude, A[ωo[l/H]], at the prescribed overall shear strain value ∆/H = 0.086. The

results are obtained for the case of single slip (θ = 90◦), for three values of the normalized

length parameter l/H = 0.1, 0.8 and 1.6, and the conventional strain hardening parameter is

h/G = 0.2. The dashed line indicates the value, ωFE = 2× 10−3, which is used to obtain the

results presented in Figs. 3 - 12.
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