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Abstract  

Background: Currently, no consensus exists on a model describing endogenous glucose 

production (EGP) as a function of glucagon concentrations. Reliable simulations to 

determine the glucagon dose preventing or treating hypoglycemia or to tune a dual-

hormone artificial pancreas control algorithm need a validated glucoregulatory model 

including the effect of glucagon.  

Methods: Eight type 1 diabetes (T1D) patients each received a subcutaneous (SC) bolus 

of insulin on four study days to induce mild hypoglycemia followed by a SC bolus of 

saline or 100, 200 or 300 µg of glucagon.  Blood samples were analyzed for 

concentrations of glucagon, insulin and glucose. We fitted pharmacokinetic (PK) models 

to insulin and glucagon data using maximum likelihood and maximum a posteriori 

estimation methods. Similarly, we fitted a pharmacodynamic (PD) model to glucose data. 

The PD model included multiplicative effects of insulin and glucagon on EGP. Bias and 

precision of PD model test-fits were assessed by mean predictive error (MPE) and mean 

absolute predictive error (MAPE). 

Results: Assuming constant variables in a subject across non-outlier visits and using 

thresholds of ±15% MPE and 20% MAPE, we accepted at least one and at most three PD 

model test-fits in each of the seven subjects. Thus, we successfully validated the PD 

model by leave-one-out cross-validation in seven out of eight T1D patients.  

Conclusions: The PD model accurately simulates glucose excursions based on plasma 

insulin and glucagon concentrations. The reported PK/PD model including equations and 

fitted parameters allows for in silico experiments that may help improve diabetes 

treatment involving glucagon for prevention of hypoglycemia.   
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Introduction 

The treatment goal for patients with type 1 diabetes is near-normalization of plasma 

glucose levels. Few patients achieve this even with intensive insulin treatment [1]. New 

approaches with automatic glucose controlled insulin and glucagon delivery, known as a 

dual-hormone artificial pancreas (AP), may offer a solution to improve glycemic control 

[2-6]. To design and tune control algorithms for AP devices prior to in vivo tests, a 

validated simulation model capturing the dynamics between glucose, insulin and 

glucagon is needed to perform helpful in silico experiments [7-9].  

Glucagon primarily affects hepatic glucose production by increasing glycogenolysis, 

while the rate of gluconeogenesis seems less affected by changes in both insulin and 

glucagon concentrations [10]. Currently marketed glucagon is approved as a 1 mg rescue-

treatment for severe hypoglycemia, although the interest in mini-dose glucagon is 

increasing [11, 12]. Recent studies proved that the glycemic response to low-dose 

glucagon is dependent on ambient insulin levels [13], but neither on plasma glucose level 

[14, 15] nor on prior glucagon dosing [16]. At high circulating insulin concentrations (50-

60 mIU/l), the endogenous glucose production (EGP) is completely inhibited [17], and at 

insulin levels exceeding ~40 mIU/l the EGP cannot be stimulated by glucagon [13]. 

The ability of insulin to suppress the glycogenolytic response to glucagon at high insulin 

concentration is not reflected in previously published models of glucose-glucagon 

dynamics [18-20]. A comparative study found that a multiplicative relationship was 

needed to describe insulin’s inhibitory effect and glucagon’s stimulating effect on 

glycogenolysis with insulin overriding the effect of glucagon at high concentrations of 

both hormones [21]. Recently, we extended the multiplicative model by incorporating the 

interaction between insulin and glucagon on glycogenolysis [13, 22]. The model 

extension was developed using pre-clinical data from dogs and was fitted to clinical 
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human data in previous studies [23, 24]. In this paper, we aim to validate the 

multiplicative glucose-insulin-glucagon model for simulation studies in humans using 

data from eight patients with type 1 diabetes.  

Methods 

Data Collection 

Clinical data originated from a glucagon dose-finding study in eight well-controlled 

patients with type 1 diabetes (5 females, age range: 19-64 years, BMI range: 20.0-25.4 

kg/m2, HbA1c range: 6.1-7.4 %), who were insulin pump-treated and had no endogenous 

production of insulin [25]. Table S1 summarizes the patient characteristics. In brief, the 

patients completed four similar study days in random order. On each study day, patients 

arrived at the research facility in the morning in a fasting state. A subcutaneous (SC) 

insulin bolus (NovoRapid®, Novo Nordisk A/S, Bagsværd, Denmark) was administered 

via the patient’s insulin pump, aiming to lower plasma glucose to 54 mg/dl if no 

interventions were made. The insulin bolus was calculated based on each patient’s 

individual sensitivity factor, which was determined prior to the first study visit using a 

standard procedure [26]. When plasma glucose reached ≤70 mg/dl, a single SC bolus of 

either 100 µg (visit B), 200 µg (visit C), 300 µg (visit D) glucagon (GlucaGen®, Novo 

Nordisk A/S, Bagsværd, Denmark), or saline (visit A) was administered, see Figure 1. 

Blood was sampled and analyzed for plasma glucose (YSI 2300 STAT Plus, Yellow 

Springs Instrument, Ohio), plasma glucagon [27] and serum insulin aspart (Mercodia AB, 

Uppsala, Sweden). The insulin pump continuously infused insulin as a basal rate during 

the study days. The insulin infusion rate was adjusted before the first study day, to keep 

near constant blood glucose values in the fasting and resting condition. The individual 

insulin infusion basal rates were similar between study visits.  
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Models 

When applying a pharmacokinetic (PK) model, we assume that all increases in insulin 

and glucagon concentrations are due to exogenously dosed drugs so that endogenous 

production is constant or negligible. 

Insulin Pharmacokinetic Model 

Previous studies showed that a simple two-state model with identical time constants for 

absorption and elimination could be used to describe the PK of insulin aspart after SC 

dosing [28]. 

d𝑋1(𝑡)

dt
= 𝑢𝐼(𝑡) −

𝑋1(𝑡)

𝑡𝑚𝑎𝑥
 

d𝑋2(𝑡)

dt
=
𝑋1(𝑡)

𝑡𝑚𝑎𝑥
−
𝑋2(𝑡)

𝑡𝑚𝑎𝑥
 

𝐼(𝑡) =
1

𝑡𝑚𝑎𝑥

𝑋2(𝑡)

𝑊 ∙ 𝐶𝑙𝐹,𝐼
106 + 𝐼𝑏 

Table 1 lists the interpretations of the insulin PK model parameters and their units. The 

insulin concentration in serum is the sum of external rapid acting insulin dosage and basal 

infusion. The model assumes steady state insulin concentration, Ib, maintained by the 

basal infusion when no exogenous rapid acting insulin is dosed.  

Glucagon Pharmacokinetic Model 

A two-state model with different absorption and elimination rate constants can describe 

glucagon PK after SC dosing [23]. 

d𝑍1(𝑡)

dt
= 𝑢𝐶(𝑡) − 𝑘1𝑍1(𝑡) 

d𝑍2(𝑡)

dt
= 𝑘1𝑍1(𝑡) − 𝑘2𝑍2(𝑡) 
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𝐶(𝑡) =
𝑘2𝑍2(𝑡)

𝑊 ∙ 𝐶𝑙𝐹,𝐶
+ 𝐶𝑏 

Table 1 lists the interpretations of the glucagon PK model parameters and their units. The 

glucagon concentration in plasma is the sum of constant endogenous glucagon, Cb, and 

external glucagon dosage. The model does not include an endogenous response to 

hypoglycemia.  

Glucose Pharmacodynamic Model 

The glucose PD model was originally derived by Hovorka et al. [29, 30] and further 

extended by Wendt et al. [23]. 

d𝑄1(𝑡)

dt
= −𝐹01 − 𝐹𝑅 − 𝑆𝑇𝑥1(𝑡)𝑄1(𝑡) + 𝑘12𝑄2(𝑡) + 𝐺𝐺𝐺(𝑡) + 𝐺𝐺𝑁𝐺 

d𝑄2(𝑡)

dt
= 𝑆𝑇𝑥1(𝑡)𝑄1(𝑡) − [𝑘12 + 𝑆𝐷𝑥2(𝑡)]𝑄2(𝑡) 

𝐺𝐺𝐺(𝑡) =
1 − 𝑆𝐸𝑥3(𝑡)

1 − 𝑆𝐸𝐼𝑏
((𝐸𝑚𝑎𝑥 − 𝐺𝐺𝑁𝐺)

𝐶(𝑡)

𝐶𝐸50 + 𝐶(𝑡)
) 

𝐺(𝑡) =
𝑄1(𝑡)

𝑉
 

d𝑥1(𝑡)

dt
= 𝑘𝑎1[𝐼(𝑡) − 𝑥1(𝑡)] 

d𝑥2(𝑡)

dt
= 𝑘𝑎2[𝐼(𝑡) − 𝑥2(𝑡)] 

d𝑥3(𝑡)

dt
= 𝑘𝑎3[𝐼(𝑡) − 𝑥3(𝑡)] 

Table 1 lists the interpretations of the glucose PD model parameters and their units. The 

endogenous glucose production is the sum of glycogenolysis, GGG, and gluconeogenesis, 

GGNG. The gluconeogenesis is fixed at 6 µmol/kg/minute [10]. F01 is constant when 

plasma glucose concentration exceeds 81 mg/dl [30]. The renal glucose clearance is zero 
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when plasma glucose concentrations do not exceed 162 mg/dl [30]. The glucose volume 

of distribution is fixed at 160 ml/kg [29]. 

Model Fitting 

All model fitting was executed in R version 3.1.0 Spring Dance using the additional 

packages CTSM-R and numDeriv [31]. Additional data handling was carried out using 

Microsoft Excel 2013. Unless stated otherwise, the results are reported as means with 

95% Wald confidence intervals (CI) derived from the inverse Hessian, which provides 

the curvature of the log-likelihood function [32].  

We fitted the insulin PK model using ordinary differential equations (ODEs) and 

estimated the log-normally distributed observation noise variance using maximum 

likelihood (ML) [33]. Due to missing insulin data around the expected time of maximum 

insulin concentration both tmax and ClF,I were estimated using maximum a posteriori 

(MAP) while Ib was estimated using ML. Prior distributions of tmax and ClF,I were 

reported in [28] and further information regarding tmax was extracted from the product 

monograph on insulin aspart [34]. Table S2 lists the prior parameter distributions. No 

prior correlation between tmax and ClF,I was assumed. 

Insulin PK parameters were optimized on a subject basis to datasets from all four visits (8 

parameter sets reported). Despite SC infusion rates of short acting insulin (i.e. the basal 

rates) were similar per subject for all study visits, the baseline insulin concentration 

varied as evident from the raw data plotted in Figures S1-S7. Therefore, the parameter 

describing the steady state insulin level was estimated separately for each visit. Using the 

subject specific optimized parameters, the insulin PK was simulated every minute and 

used as input to the PD model. 
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We fitted the glucagon PK model for visits B, C, and D using ordinary differential 

equations (ODEs) and estimated the log-normally distributed observation noise variance 

using ML. Plasma glucagon was sampled adequately to perform ML estimation of all 

parameters in the glucagon PK model. There was some uncertainty regarding the exact 

dosing time of the glucagon bolus, which was given after the blood sampling at time zero 

but before the next blood sampling five minutes after. Due to this uncertainty, we 

estimated the dosing time by choosing the discrete dosing time within the five-minute 

interval yielding the fit with the highest likelihood value and kept this updated dosing 

time throughout the data fitting and handling.  

As the absolute elimination rate of glucagon is limited by the absorption rate, glucagon 

exerts flip-flop kinetics [35]. To avoid the flip-flop phenomenon and to reduce the 

population variation in the two time constants, k2 was parameterized such that it was 

greater than k1 in all datasets.  

The glucagon PK parameters were estimated to the datasets from visits with glucagon 

dosing (24 parameter sets, data not shown) and the PK simulated every minute to be used 

as input when fitting the PD model. On a subject basis, the glucagon PK parameters were 

optimized to datasets from all three glucagon visits (8 parameter sets reported). Due to 

the limited amount of data, we assumed the parameters did not differ between the visits.   

The data following administration of saline (visit A) were not fitted to the glucagon PK 

model but described using linear interpolation between measurements. These interpolated 

data were used as inputs to the PD model.  

The PD model was fitted using ordinary differential equations (ODEs) and the log-

normally distributed observation noise variance estimated using ML. The remaining 

parameters (Emax, CE50, F01, k12, ka1, ka2, ka3, SD, SE, ST) were estimated using MAP with 
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priors inspired by literature [22, 29]. We used priors for the time constants rather than 

fixing the four parameters [30]. The time constants and the insulin sensitivities were log-

transformed during the parameter estimation. Table S2 lists the prior PD model parameter 

distributions. The PD model parameters have units yielding a glucose output measured in 

mmol/l, but the output is converted and graphically displayed with units of mg/dl. We 

assumed no prior correlation between parameters. As previously mentioned, glucose 

volume of distribution and gluconeogenesis were both fixed based on literature [10, 29]. 

Ib was fixed for each subject based on their average steady state insulin concentration. 

The final PD model parameters were obtained by optimizing the fit to all non-outlier 

visits by each subject (8 parameter sets reported).  

Pharmacodynamic Model Validation 

To quantify the simulation accuracy of the model on datasets not used for parameter 

optimization, the bias was calculated by the mean prediction error (MPE) and the 

precision calculated by the mean absolute prediction error (MAPE). MPE and MAPE 

were calculated as percentages [36].  

𝑀𝑃𝐸 =
1

𝑁
∑[(

𝑝𝑟𝑒𝑑𝑗 − 𝑜𝑏𝑠𝑗

𝑜𝑏𝑠𝑗
) × 100]

𝑁

𝑗=1

 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑[(

|𝑝𝑟𝑒𝑑𝑗 − 𝑜𝑏𝑠𝑗|

𝑜𝑏𝑠𝑗
) × 100]

𝑁

𝑗=1

 

predj and obsj are the jth predicted and observed value, respectively of a total of N 

observations. If the MPE is less than ±15% and the MAPE is less than 20%, we regard 

the model fit as accurate, precise and suitable for simulations. Cut-off limits were based 

on categorizing some fits in “good”, “medium” and “bad” prior to knowledge of those 

fits’ MPE and MAPE values by two independent raters. The limits were chosen so that all 
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fits categorized as “good” by both raters would be accepted and all fits categorized as 

“bad” by both raters would not meet the acceptance criteria.  

The PD model validation was carried out as a 4-fold leave-one-out cross-validation 

leaving all data from one visit out per fold. As each subject participated in four visits, 

each subject had four training datasets comprised of data from three visits and four 

corresponding test datasets with data from one visit: 

 Training: B-C-D, Test: A 

 Training: A-C-D, Test: B 

 Training: A-B-D, Test: C 

 Training: A-B-C, Test: D 

Thus, all four visits were used for testing once without being used for optimization during 

that fold. If the MAPE of a test-fit exceeded 50 %, the test visit was considered an outlier 

and removed from further analysis. After removal of the outlier dataset another round of 

leave-one-out was performed on the remaining three datasets. To validate the PD model 

in a subject, we required that at least one PD model test-fit of a dataset from a glucagon 

visit (B, C or D) was accepted. 

Results 

Table 2 lists the estimated insulin PK model parameters. The fasting steady state insulin 

concentration had day-to-day variation within patients of up to 6 mU/l and ranged from 

3.0 mU/l to 22.6 mU/l between subjects. The mean of all steady state insulin 

concentrations was 9.7 mU/l. The time to maximum concentration ranged from 40.8 to 

68.5 minutes and the apparent clearance ranged 14.8-26.8 ml/kg/minute. 
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Table 3 lists the estimated glucagon PK model parameters and the calculated time to 

maximum concentration. The fasting steady state glucagon concentrations were similar in 

the range 7.6-11.6 pg/ml for all patients except patient 8 who had a concentration of 19.0 

pg/ml. The absorption and elimination time constants ranged from 0.022-0.058 minute-1 

and 0.058-0.28 minute-1, yielding a calculated time to maximum concentration of 7.5-

19.1 minutes. The apparent clearance ranged from 91 to 200 ml/kg/minute.  

Table 4 provides an overview of the leave-one-out cross-validation procedure of the PD 

model.  The MPE and MAPE for the test-fits are listed together with a dichotomous 

decision of acceptance or not using the criteria outlined in section “Pharmacodynamic 

Model Validation”. Based on the MAPE during leave-one-out, we excluded four outlier 

datasets from further analysis and these four patients had a second round of leave-one-out 

including the remaining three datasets. Overall, the test-fit was accepted two to three 

times out of three in three patients, and one to two times out of four in four patients. In 

patient 8 we did not accept any of the test-fits even after removal of an outlier dataset. 

Figure 2 presents examples of PD model test-fits and corresponding MPE and MAPE 

values of the test-fits both passing and violating the acceptance criteria. In summary, the 

PD model successfully predicted unseen glucose data at least once in seven patients and 

therefore we regard the PD model as validated and suitable for simulation studies of these 

seven type 1 diabetes patients.  

Table 5 lists the PD model parameters optimized to all non-outlier visits in each patient 

with mean parameter values and 95% CI. The parameter describing the maximum EGP at 

steady state insulin concentration, Emax, ranged 56-84 µmol/kg/minute. The glucagon 

concentration at which the effect is half maximum, CE50, ranged 141-436 pg/ml. 

Extrapolated to zero insulin and at basal glucagon concentration, the EGP ranged 7-13.3 

µmol/kg/minute. According to the inverse of the parameter describing the insulin 
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sensitivity to EGP, SE, the calculated insulin concentration at which the effect of 

glucagon shuts off ranged 22-71 mU/l. Figures 3 and S1-S7 provide simulations of 

patient optimized PD model fits and data. 

Discussion 

We fitted simple PK models of serum insulin and plasma glucagon after SC bolus 

administrations of the hormones. The simulated concentrations of insulin and glucagon 

were used as inputs to the PD model. We sought to validate the PD model for simulations 

in eight type 1 diabetes patients and succeeded in seven. Finally, we estimated the 

patient’s individual PD model parameters. 

The fitted insulin PK model assumes that all changes in serum insulin concentration are 

due to SC insulin dosing. This is a valid assumption as no patients had measureable 

endogenous insulin secretion after glucagon stimulation [25]. Patients’ insulin levels are 

at steady state when no insulin bolus is administered. 

The clinical study focused on generating data describing the effect of glucagon on 

glucose, and therefore only few data points describing the insulin PK were obtained. The 

insulin PK data were sampled very sparsely around the expected time of maximum 

concentration. The missing data did not allow for ML estimation of the insulin PK model. 

However, using literature informed prior distributions of both tmax and ClF,I and 

optimizing for all four visits simultaneously we obtained reasonable fits by MAP 

estimation [28, 34].  

As the insulin PK model was fitted to in-hospital sedentary patients, its application in 

patients with type 1 diabetes outside the hospital setting may be limited due to numerous 

factors affecting insulin absorption rate, sensitivity and bioavailability. Such factors could 

be accounted for by introducing time-variant model parameters, which was beyond the 
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scope of this work [9, 37, 38]. Especially, differences in insulin absorption could explain 

the observed intra-patient variation in steady state insulin concentration despite equal 

basal rates at all four visits.  

Patients with type 1 diabetes have a blunted glucagon response to hypoglycemia 

compared to healthy subjects [39]. The fitted glucagon PK model assumes that all 

changes in plasma glucagon concentration are due to SC dosing and that the endogenous 

production is constant or negligible. To verify this assumption, we determined the size of 

the endogenous glucagon response to hypoglycemia during the saline day and compared 

it to simulations of glucagon PK in each of the eight subjects (data not shown). We found 

that exogenous glucagon doses of 1-10 µg would equal the plasma glucagon increase to 

hypoglycemia. Since the endogenous glucagon response to hypoglycemia was at most 

one tenth of the administered dose during the glucagon days, this confirmed that the 

endogenous response during these days was negligible compared to the exogenous dosed 

glucagon. However, the endogenous response was not negligible during the saline day 

and therefore the glucagon PK model was not applicable to those datasets. 

The glucagon PK fit was challenged by the short time to maximum concentration 

combined with the uncertainty of the exact dosing time of glucagon. This could 

potentially result in an error in time to maximum concentration of up to ±4 minutes. 

However, this possible deviation has minor impact on the PD model fit when the 

glucagon PK fit is used as an input. Despite the dosing time uncertainty, the calculated 

times to maximum concentration are within reasonable range of population averages 

reported in the literature [28, 40]. In the model by Haidar et al. [28], the glucagon 

absorption rate and elimination rate were identical which we only observed in patient 4. 

In the remaining seven patients, the elimination rate was significantly higher than the 

absorption rate. Moreover, having different absorption and elimination rate constants we 
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observed a higher clearance rate. Compared to Haidar et al., we found lower basal 

concentration of glucagon, which could be attributed to differences in the assays for 

analysis of plasma glucagon concentration [26]. 

Despite using informed priors for all PD model parameters, some optimized parameters 

are very different from the population mean and vary considerably more than originally 

listed in Hovorka et al. [29]. However, the original reference is based on a population of 

only six subjects, which makes it unlikely that all true population variations were 

captured, and we believe, therefore, that our parameter estimates are still valid. Similarly, 

with a population of eight subjects, we did not fit a population model but focused on 

estimating parameters for each subject individually. 

The limited human data on EGP response to glucagon are consistent with data from dogs 

[22]. As the human response to high glucagon concentrations has not been thoroughly 

investigated, the dog data provide best guesses of the human values. The maximum EGP 

due to glucagon and glucagon concentration at half-maximum effect at basal insulin 

average around 60 µmol/kg/minute and 300 pg/ml in dogs [22]. Our results match the 

reference values and therefore seem plausible.  

We found that EGP at zero insulin and basal glucagon is somewhat lower than previous 

publications, which state 10-20 µmol/kg/minute [29] and ~30 µmol/kg/minute [22]. This 

might be due to the fixation of gluconeogenesis at 6 µmol/kg/minute [10], which is 

increased in subjects with poorly controlled type 1 diabetes compared to the present well-

controlled patients or healthy subjects [25, 41]. Assuming the proposed model of EGP is 

correct, the insulin concentration at which the glycogenolysis, hence the effect of 

glucagon, shuts off is reasonable compared to the limited publications showing 

glycogenolysis at various insulin concentrations [22, 42]. Rizza et al. found that the 

glucose production was suppressed by insulin beyond approximately 60 mU/l [17]. El 
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Youssef et al. found that at serum insulin concentrations beyond 40 mU/l glucagon 

concentrations below 450 pg/ml did not stimulate EGP [13]. Further clinical studies are 

needed to investigate whether high insulin concentrations completely suppress the effect 

of glucagon or whether the maximum EGP is still attainable though at higher glucagon 

concentrations. 

A major limitation to some of the previously published models describing the effect of 

glucagon on glucose production is lack of validation [18, 21]. We were able to mimic 

never-before-seen glucose data at least once and at most three times in seven of the eight 

subjects using the presented glucose PD model. We did not expect to accept the test-fit of 

all non-outlier datasets in each subject as the visits often described complimentary 

dynamics of the glucose-insulin-glucagon relationship; for instance the placebo day had 

very limited information on how different glucagon concentrations affects EGP as 

glucagon levels were changing very little. On the contrary, the placebo datasets were rich 

in information about the effects of insulin on plasma glucose. Some glucagon datasets 

had few observations of the effects of insulin on EGP as the plasma glucose some days 

reached the bolus threshold of 70 mg/dl quickly e.g. in subject 2 and 7 shown in Figure 

S2 and Figure 3, respectively. As an example, this difference in data sampling can 

explain why it was not possible to validate the model using subject 2’s visit B as the test 

dataset. For this particular patient, the placebo visit was stopped early and therefore does 

not contain much information about the insulin dynamics. Moreover, the insulin only 

phase of visit B lasted nearly five hours and only two hours during visit C and D. Leaving 

visit B out of the training dataset does not provide the model with enough information to 

predict the insulin dynamics present in visit B. We noted that in most cases when the test-

fit was not accepted there was a monotone bias in the residuals yielding almost equal 

values of absolute MPE and MAPE, see Table 4. This bias indicates that the test-fit 
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would either over- or undershoot compared to data and thus both insulin and glucagon 

dynamics of the test dataset were not well described by the training datasets. Analyzing 

the PD model parameters during leave-one-out in Tables S3-S10, we observed that when 

a test-fit could not be accepted, usually one or more parameters were outside the CI 

obtained when fitting to all non-outlier data. Therefore, failing to accept the test-fit 

during a fold is not necessarily a sign of an incorrect model structure. Rather it could 

emphasize that the test dataset contains unique information about the dynamics, which 

are not present in any of the training datasets [43]. However, in four patients one dataset 

was so different from the other three datasets that it had to be excluded from the final PD 

model estimation as it would otherwise affect the parameters and yield bad fits for all 

four study days.  

Simulation models are rarely validated on unseen data. The only glucose model including 

glucagon that is currently validated and FDA approved has undisclosed parameter values 

and can only be accessed by payment [19, 44]. We believe that this paper is a step 

towards more openly sharing simulation models that will allow more research groups to 

test dual-hormone dosing strategies and control algorithms for managing diabetes before 

carrying out expensive simulations or clinical trials. 

Conclusion 

We have successfully validated a model describing the glucose-insulin-glucagon 

dynamics in seven type 1 diabetes subjects using leave-one-out cross-validation. We have 

reported model parameter sets with uncertainties for each subject, which could be used 

for in silico experiments. Simulations could also aid in optimizing treatment for type 1 

diabetes patients such as glucagon dosing strategies for preventing hypoglycemia and 

tuning control strategies for an AP. 
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Tables 

Table 1: Interpretation of insulin PK (top rows), glucagon PK (middle rows) and glucose 

PD (bottom rows) model parameters and their units. 

Parameter Unit Interpretation 

X1(t) U insulin mass due to exogenous dosing, in SC tissue 

X2(t) U insulin mass due to exogenous dosing, in serum 

uI(t) U/minute insulin dose 

tmax minutes time from dose to maximum serum concentration 

W kg body weight 

ClF,I ml/kg/minute apparent insulin clearance 

Ib mU/l steady state insulin concentration 

I(t) mU/l insulin concentration in serum 

Z1(t) pg glucagon mass due to exogenous dosing, in SC tissue 

Z2(t) pg glucagon mass due to exogenous dosing, in plasma 

uC(t) pg/minute glucagon dose 

k1 minute-1 absorption rate constant 

k2 minute-1 elimination rate constant 

ClF,C ml/kg/minute apparent glucagon clearance 

Cb pg/ml steady state glucagon concentration 

C(t) pg/ml glucagon concentration in plasma 

Q1(t) µmol/kg glucose mass per W in the accessible compartment 

Q2(t) µmol/kg glucose mass per W in the non-accessible compartment 

x1(t) mU/l remote effects of insulin on glucose transport 

x2(t) mU/l remote effects of insulin on glucose disposal 
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x3(t) mU/l remote effects of insulin on glycogenolysis 

G(t) mmol/l glucose concentration in plasma 

GGG(t) µmol/kg/minute glucose production due to glycogenolysis 

GGNG µmol/kg/minute glucose production due to gluconeogenesis  

F01 µmol/kg/minute insulin independent glucose flux 

FR µmol/kg/minute renal glucose clearance 

ST minute-1/(mU/l) insulin sensitivity of glucose transport  

SD minute-1/(mU/l) insulin sensitivity of glucose disposal 

SE l/mU insulin sensitivity on glycogenolysis 

k12 minute-1 transfer rate constant from the non-accessible to the 

accessible compartment 

ka1 minute-1 insulin deactivation rate constant 

ka2 minute-1 insulin deactivation rate constant 

ka3 minute-1 insulin deactivation rate constant 

Emax µmol/kg/minute maximum EGP at basal insulin concentration 

CE50 pg/ml glucagon concentration yielding half of maximum EGP 

V ml/kg glucose volume of distribution 
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Table 2: Summary of insulin PK model parameters for simulation with range of means 

and 95% CI or mean and 95% CI. 

Patient Ib 

[mU/l] 

tmax 

[min] 

ClF,I 

[ml/kg/min] 

1 6.6-7.8 (6.0-8.3) 57.6 (50.9-64.3) 18.9 (17.3-20.6) 

2 10.0-11.2 (9.1-12.0) 57.3 (48.8-65.9) 18.5 (16.1-21.2) 

3 10.3-13.4 (9.7-14.0) 40.8 (37.6-44.0) 14.8 (13.6-16.1) 

4 7.8-9.4 (7.4-9.9) 67.9 (63.5-72.2) 17.4 (16.6-18.3) 

5 5.2-8.2 (4.8-8.8) 48.5 (44.7-52.4) 17.3 (15.7-19.0) 

6 3.0-8.5 (2.3-9.4) 46.5 (41.7-51.3) 24.6 (22.9-26.3) 

7 16.8-22.6 (15.6-23.6) 68.5 (60.6-76.4) 23.7 (21.3-26.4) 

8 4.7-9.1 (4.4-9.6) 55.4 (49.6-61.2) 26.8 (24.8-29.0) 
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Table 3: Summary of glucagon PK model parameters for simulation with mean and 95% 

CI. 

Patient Cb 

[pg/ml] 

k1 

[min-1] 

k2 

[min-1] 

ClF,C 

[ml/kg/min] 

tmax 

[min] 

1 10.7  

(9.4-12.0) 

0.042  

(0.036-0.048) 

0.14 

(0.10-0.22) 

94 

(83-105) 

12.2 

2 7.6  

(6.9-8.3) 

0.056 

(0.052-0.062) 

0.26 

(0.18-0.38) 

106 

(96-116) 

7.5 

3 7.6  

(5.9-9.3) 

0.022 

(0.018-0.028) 

0.10 

(0.06-0.17) 

114 

(96-132) 

19.1 

4 10.9  

(9.2-12.6) 

0.058 

(0.011-0.313) 

0.058 

(NA) 

159 

(133-184) 

17.3 

5 8.7  

(7.7-9.8) 

0.038 

(0.032-0.044) 

0.19 

(0.13-0.29) 

200 

(176-223) 

10.7 

6 8.9  

(7.8-10.0) 

0.035 

(0.031-0.040) 

0.28 

(0.19-0.41) 

125 

(111-138) 

8.6 

7 11.6  

(10.1-13.0) 

0.035 

(0.030-0.041) 

0.25 

(0.16-0.39) 

136 

(120-152) 

9.2 

8 19.0  

(16.1-22.0) 

0.052 

(0.037-0.072) 

0.090 

(0.04-0.26) 

91 

(78-105) 

14.5 
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Table 4: PD model validation using leave-one-out cross-validation. Initially, data from 

three visits are used for training the model, i.e. optimizing model parameters, and data 

from the fourth visit is used for testing the model with the optimized parameters. *A test-

fit with MPE or MAPE exceeding 50% is considered an outlier. The outlier dataset is 

removed and another round of leave-one-out cross-validation is performed on the 

remaining three visits. 

Patient Training visits Test visit MPE, % MAPE, % Accept? (Y/N) 

1 

BCD A -25.0 25.0 N 

ACD B -11.3 13.7 Y 

ABD C 78.8 78.8 N* 

ABC D 3.3 25.5 N 

BD A -10.3 11.1 Y 

AD B 10.4 13.1 Y 

AB D 4.0 21.3 N 

2 

BCD A 29.1 29.8 N 

ACD B -18.2 18.7 N 

ABD C -6.3 7.5 Y 

ABC D 6.3 10.0 Y 

3 

BCD A 10.3 17.4 Y 

ACD B -2.3 8.6 Y 

ABD C 23.4 24.6 N 

ABC D -20.1 20.1 N 

4 

BCD A -17.3 18.9 N 

ACD B -9.4 11.1 Y 

ABD C -23.6 23.7 N 

ABC D 38.2 38.4 N 

5 

BCD A -13.4 13.4 Y 

ACD B -30.0 30.4 N 

ABD C -16.3 21.3 N 

ABC D 74.6 74.6 N* 

BC A -1.7 4.5 Y 
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AC B -9.8 14.1 Y 

AB C -7.5 17.4 Y 

6 

BCD A -23.5 24.2 N 

ACD B -4.5 12.0 Y 

ABD C 59.0 59.0 N* 

ABC D -8.6 16.3 Y 

BD A -13.7 16.9 Y 

AD B 16.7 17.5 N 

AB D 4.7 15.8 Y 

7 

BCD A 43.0 43.3 N 

ACD B -19.0 19.0 N 

ABD C -2.9 19.0 Y 

ABC D 6.0 8.0 Y 

8 

BCD A -8.0 12.4 Y 

ACD B -32.9 33.0 N 

ABD C -14.5 24.2 N 

ABC D 174.1 174.1 N* 

BC A -26.2 26.2 N 

AC B -24.6 24.6 N 

AB C 42.5 42.5 N 
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Table 5: Summary of PD model parameters for simulation with mean and 95% CI.  

ID Data CE50 

[pg/ml] 

Emax 

[µmol/kg/min] 

F01 

[µmol/kg/min] 

k12*10-4 

[min-1] 

ka1*10-4 

[min-1] 

ka2*10-4 

[min-1] 

ka3*10-4 

[min-1] 

SD*10-4 

[min-1/(mU/l)] 

SE*10-4 

[(mU/l)-1] 

ST*10-4 

[min-1/(mU/l)] 

1 

ABD 436 

(355-517) 

56.4 

(51.1-61.8) 

14.2 

(12.9-15.5) 

244 

(181-330) 

16 

(7-35) 

522 

(221-1233) 

215 

(59-778) 

1.5 

(0.6-3.3) 

155 

(83-289) 

23 

(16-31) 

2 
ABCD 405 

(339-471) 

67.4 

(59.3-75.5) 

13.8 

(12.8-14.7) 

285 

(223-363) 

15 

(7-35) 

495 

(236-1039) 

231 

(137-389) 

1.2 

(0.6-2.3) 

334 

(232-481) 

19 

(15-25) 

3 
ABCD 401 

(327-475) 

57.4 

(49.8-65.0) 

15.5 

(14.2-16.8) 

397 

(277-568) 

18 

(8-42) 

548 

(268-1121) 

327 

(168-638) 

1.4 

(0.7-2.5) 

237 

(183-308) 

25 

(17-36) 

4 

ABCD 285 

(226-344) 

84.4 

(73.9-94.8) 

12.8 

(11.3-14.4) 

213 

(157-289) 

18 

(9-36) 

437 

(183-1044) 

68 

(42-113) 

2.0 

(1.0-3.8) 

415 

(347-496) 

18 

(13-25) 

5 

ABC 339 

(251-427) 

65.4 

(53.8-77.1) 

12.0 

(10.6-13.5) 

281 

(194-406) 

15 

(7-32) 

517 

(223-1201) 

235 

(95-586) 

1.1 

(0.4-2.6) 

229 

(127-415) 

31 

(20-47) 

6 

ABD 424 

(333-515) 

60.1 

(46.3-74.0) 

13.1 

(11.7-14.5) 

238 

(172-330) 

10 

(4-22) 

353 

(102-1221) 

74 

(23-232) 

2.6 

(1.1-6.2) 

404 

(185-882) 

21 

(14-32) 

7 
ABCD 141 

(96-187) 

78.0 

(68.9-87.1) 

14.2 

(12.2-16.1) 

358 

(252-509) 

49 

(23-105) 

624 

(319-1221) 

178 

(69-459) 

4.4 

(3.2-6.0) 

140 

(99-199) 

21 

(16-29) 

8 

ABC 307 

(228-386) 

75.3 

(61.5-89.1) 

13.4 

(11.4-15.4) 

289 

(197-424) 

37 

(18-75) 

518 

(203-1324) 

154 

(68-348) 

4.2 

(2.8-6.5) 

463 

(377-569) 

29 

(20-42) 
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Figures 

 

Figure 1: Schematic design of the study days. Baseline blood samples were taken at time 

–(X+Y). An insulin bolus was given after Y minutes. In a few cases, multiple insulin 

boluses had to be administered to lower the plasma glucose sufficiently. When the plasma 

glucose measured below 70 mg/dl, a saline or glucagon bolus was given depending on 

the study day. At 180 or 240 minutes after the saline/glucagon bolus the experiment was 

stopped. Basal insulin infusion continued throughout the experiment. From t=–x to t=0, 

plasma glucose was measured every 15-30 minutes, while plasma glucagon and serum 

insulin were measured every 60 minutes. Plasma glucose was measured every 5 minutes 

from t=0 to t=60, every 10 minutes from t=60-120 and then every 15 minutes. Plasma 

glucagon and serum insulin were measured every 5 minutes from t=0 to t=15, every 15 

minutes from t=15 to t=60, every 30 minutes from t=60 to t=120, and then every 60 

minutes. 

 

 

 

  



page 33 of 34 

 

 

 

Figure 2: Examples of validation PD model fits with “good”, “medium” and “bad” MPE 

and MAPE. Top graph is test of patient 2’s visit C (accepted). Middle graph is test of 

patient 1’s visit B (accepted). Bottom graph is test of patient 8’s visit B (not accepted).   
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Figure 3: Data from all patient 7’s visits (left to right: visit A to D) with insulin PK model 

fits (top row, logarithmic y-axes) and glucagon linear interpolation or PK model fits 

(middle row, logarithmic y-axes) both used as inputs to the glucose PD model for 

simulation built with data from all four visits (bottom row). The triangles indicate dose 

time of the insulin and glucagon boluses, respectively.  


