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Fatigue Load Sensitivity Based Optimal Active
Power Dispatch For Wind Farms

Haoran Zhao, Qiuwei Wu, Shaojun Huang, Mohammad Shahidehpour, Qinglai Guo and Hongbin Sun

Abstract—This paper proposes an optimal active power dis-
patch algorithm for wind farms based on Wind Turbine (WT)
load sensitivity. The control objectives include tracking power
references from the system operator and minimizing fatigue loads
experienced by WTs. The sensitivity of WT fatigue loads to
power references is defined which simplifies the formulation of
the optimal power dispatch problem. Since the sensitivity value
is calculated at the local WT controller, the computation burden
of the central wind farm controller is largely reduced. Moreover,
explicit analytical equations of the fatigue load sensitivity are
derived, which significantly improves the computation efficiency
of the local WT controller. The proposed algorithm can be
implemented in different active power control schemes. Case
studies were conducted with a wind farm under balance control
for both low and high wind conditions. By comparing the rainflow
cycles and Damage Equivalent Load (DEL), the efficacy of the
proposed algorithm is verified.

Index Terms—Fatigue load, load sensitivity, optimal active
power dispatch, wind farm, wind turbine.

I. INTRODUCTION

NOWADAYS, wind power is the fastest growing Renew-
able Energy Resource (RES). According to the report of

the European Wind Energy Association (EWEA), the newly
installed wind power capacity of EU in 2014 is 12.8 GW [1].
By the end of 2015, the cumulative capacity of wind power had
reached 141.6 GW, which can meet around 11.4% of Europe’s
electricity demand.

With the increasing penetration level, variability and uncer-
tainty of wind power have brought new technical challenges
to power system operation [2]–[4]. The technical requirements
for wind power integration are more stringent [5]. For the
active power, different control requirements are specified, such
as balance control, delta limitation, ramp rate limitation, etc.
[6]. In other words, a wind farm shall be capable of tracking
the power reference from the system operator.

With fast development of power electronics, controllability
of modern Wind Turbines (WTs) has been largely improved.
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When required wind farm power is less than the maximum
available power, WTs will limit power production and operate
in the derated mode. In order to achieve specific control
objectives, it is very important to optimally dispatch power
references to individual WTs.

The initial dispatch schemes for wind farms only focus on
the power reference tracking. The power reference is propor-
tionally distributed to individual WTs according to either the
available power [7] or the actual output power [8]. Fatigue
loads (load for short hereinafter) experienced by WTs, which
has a significant impact on the lifetime of WTs, are not
considered.

In recent studies, several multi-objective dispatch algorithms
have been proposed [9]–[18]. The studies of [9]–[11] focus
on the multi-objective control at the WT level. On top of
providing the desired power production, mechanical loads
are minimized by coordinating the pitch angle and electrical
torque. For the wind farm level control, as long as the power
requirement specified by the system operator is met, loads can
be minimized by coordination among WTs [19]. The optimal
control problem is either solved in a centralized manner [12]–
[14] or a distributed manner [15]–[18]. For the former case,
the wind farm model is formulated as a coupled, constrained
Multiple Input and Multiple Output (MIMO) system whose
order drastically grows with increasing the number of WTs.
Since a modern large-scale wind farm may consist of several
hundred WTs, the computation burden of the centralized
control scheme is quite heavy and it cannot be used for real-
time application. For the latter case, the distributed control
scheme can efficiently reduce the computation burden. How-
ever, in order to guarantee the optimality, the iteration among
WTs is required which implies high sampling communication
required.

In this paper, a load sensitivity based optimal active power
dispatch algorithm is proposed for wind farms to overcome the
aforementioned problems. It minimizes WT loads while track-
ing the wind farm power reference. The proposed approach
includes the following two aspects. Firstly, the sensitivity
of WT fatigue loads to power references is defined and
introduced as the signal exchanged between the central and
local controllers. Secondly, explicit expression of the WT load
sensitivities are derived.

The main contribution is that the proposed scheme enables
efficient implementation of the optimal wind farm control,
especially for large-scale wind farms. The proposed scheme
is solved in the centralized manner. Compared with the other
central optimal wind farm control schemes, the formulation
of the optimal dispatch algorithm is simplified. Most of
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the computation task is undertaken by the local controller
and solved in parallel. The explicit expressions of the load
sensitivities can reduce the online computation burden of
the local controller. Moreover, the optimal control problem
is formulated as a standard Quadratic Programming (QP)
problem and can be efficiently solved. Compared with the
distributed control scheme, the global optimum of the QP
problem can be obtained without additional iterations.

The paper is organized as follows. Section II describes the
structure of the wind farm control based on the load sensitivity.
The modeling and operation of a power-controlled WT are
introduced in Section III and Section IV, respectively. The
explicit equations of load sensitivities are derived in Section
V. Section VI explains the formulation of the optimal dispatch
algorithm. Case studies are presented and discussed in Section
VII, followed by conclusions.

II. LOAD SENSITIVITY BASED WIND FARM CONTROL
STRUCTURE

The proposed wind farm control structure is shown in Fig.
1. According to the requirement of the system operator and the
available power Pwfc

avi , the active power control scheme of the
wind farm is decided. The power reference of the wind farm
Pwfc

ref is calculated and delivered to the wind farm controller. In
the optimal wind farm control schemes of the previous studies,
the measurements of individual WTs are sent directly to the
central wind farm controller and the optimization problem is
formulated based on a complicated wind farm model.
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Fig. 1. Wind farm control structure.

In the proposed wind farm control, the load sensitivity
∂L
∂Pwt

ref
and the power reference constraints of individual WTs

([Pwt
min, P

wt
max]) are used for the formulation of the optimal

dispatch problem. They are calculated locally and sent to the
wind farm controller. The details of calculating ∂L

∂Pwt
ref

and
constraints ([Pwt

min, P
wt
max]) are described in Section IV and

Section V, respectively. By solving the optimization problem,
the power references of individual WTs Pwt

ref are updated for
each interval of wind farm control. During the control interval,
based on Pwt

ref , a torque reference Tg ref for the local torque
control and a pitch angle reference θref for the pitch actuator
are generated. The control interval of the local controller is
smaller.

III. MODELING OF A POWER-CONTROLLED WT

In the wind farm control, the role of individual WTs is
an actuator, which operates in a derated condition and tracks
Pwt

ref . The power-controlled WT model developed by National
Renewable Energy Laboratory (NREL) is used to represent
a variable speed pitch-controlled WT [20], [21]. The model
structure is shown in Fig. 2. 1
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Fig. 2. Power-controlled WT model [21].

Normally, the sampling time of the wind farm controller
ts is in seconds [17]. Therefore, the fast dynamics in the
generator and pitch actuator can be ignored [12]. Moreover,
the oscillations in the shaft torsion and tower nodding are
disregarded to reduce the model complexity. In this study,
a simplified nonlinear WT model with its local control is
introduced in the wind farm control, which is used to calculate
the load sensitivities. Its controller and operation are described
in Section IV.

A. Aerodynamics

The aerodynamic torque Ta and thrust force Ft are the main
sources of nonlinearities [22], calculated by,

Ta =
0.5πρR2v3

rCp(λ, θ)

ωr
, (1)

Ft = 0.5πρR2v2
rCt(λ, θ), (2)

where Cp and Ct are the power coefficient and thrust coeffi-
cient, respectively, R is the length of the blade, ρ is the air
density, vr is the effective wind speed on the rotor, and λ is
the tip speed ratio, defined by λ , ωrR

vr
.

B. Drive Train

The drive train is considered to be rigidly coupled and the
single-mass model is used in this study, where the rotor mass
Jr and generator mass Jg are merged into one equivalent mass
Jt [23], expressed by,

Jt = Jr + η2
gJg. (3)

According to the low-shaft motion equation,

ω̇r =
1

Jt
(Ta − ηgTg), (4)

ωg = ηgωr, (5)

where ωr and ωg are the rotor and generator speeds, respec-
tively, and ηg is the gear box ratio.
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C. Generator

In the torque control loop, the vector control is used to
ensure a fast (in milliseconds) and accurate response [24].
Since the dynamic is neglected, the generator torque Tg is
approximately equal to its reference, i.e.,

Tg ≈ Tg ref . (6)

D. Tower

The tower dynamics is not included in the simplified WT
model. According to [14], [25], it is assumed the fore-aft
bending moment at the tower base Mt can be approximately
derived by,

Mt ≈ H · Ft, (7)

where H indicates the tower height.

IV. OPERATION AND CONTROL OF WTS IN A WIND FARM

Conventionally, WTs are controlled to track its Optimal
Regimes Characteristic (ORC), as shown in Fig. 3. The
polyhedron marked in the figure shows the feasible operation
area where the power coefficient Cp > 0. Define the rated
wind speed as vrated and the rated power as Pwt

rated. When
vw ≤ vrated, the pitch control is deactivated (θ = 0) and Tg

is regulated to track the optimal rotor speed. The maximum
available wind power is extracted (Pwt

ref = Pwt
avi ≤ Pwt

rated).
When vw > vrated, Tg is kept at its rated value and the pitch
control is activated to prevent the generator speed ωg from
over-speeding. The captured wind power is limited to the rated
value (Pwt

ref = Pwt
rated) .
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In [20], the WT operates in the power maximization mode.
In this study, the WT operates in the derated mode, i.e., Pwt

ref <
Pwt

avi. Different from the region definition in [20], the operation
area is below the ORC and can be divided into two regions
according to the status of the pitch control, as shown in Fig.
3. In order to follow Pwt

ref , the pitch angle reference θref and
generator torque reference Tg ref are computed by the WT
controller and then sent to the pitch actuator and generator,
respectively.

A. Region I

The pitch control is activated. The captured power is con-
trolled by regulating θref and Tg ref . The measured generator
speed ωg is filtered by a low-pass filter and the filtered speed
ωf is derived by,

ωf =
1

1 + sτf
ωg, (8)

where τf is the time constant of the filter.
According to the deviation of ωf from its rated value ωg rate,

θref is obtained by the gain-scheduled PI controller,

θref =
Kp

Kc
(ωf − ωg rate) +

Ki

Kc

ωf − ωg rate

s
, (9)

where Kp and Ki are proportional and integral gains of the
PI controller, respectively, and Kc is the correction factor. In
[21], Kc is a function of θ, i.e., Kc = K0 +Kθθ, where K0

and Kθ are the constants.
Tg ref is calculated by,

Tg ref =
Pwt

ref

ωf
. (10)

B. Region II

The pitch control is deactivated, i.e., θref = 0. The captured
power is only controlled by regulating Tg ref , which is also
calculated by (10).

V. SENSITIVITY CALCULATION OF WT LOAD

The fatigue loads of WTs can be divided into aerodynamic
and gravity loads (external), and structural loads (internal)
[26]. In this paper, the fatigue loads mainly focus on the loads
of the drive train due to the torsion of the shaft and the loads
of the tower structure due to the tower deflection. Compared
with static loads, the dynamic stress causing structural damage
of WTs is a much bigger issue. By damping the fluctuations
of low-speed shaft torque Ts and thrust force Ft, the related
fatigue loads can be reduced. Accordingly, for the drive
train loads, the load sensitivity ∂L

∂Pwt
ref

can be represented by
∂Ts

∂Pwt
ref

. For the tower structure loads, ∂L
∂Pwt

ref
can be represented

by ∂Ft

∂Pwt
ref

. If both drive train and tower structure loads are
considered, ∂L

∂Pwt
ref

can be represented by the combination of
∂Ts

∂Pwt
ref

and ∂Ft

∂Pwt
ref

.

A. Incremental State Space Model

Suppose the time of the operating point is t0. The wind
speed vr is a variable which can either be measured or
estimated [27]. In this study, vr is estimated. The value at
t = t0 is vr0 and assumed to be constant for the short
control period. The measured power production, generator
speed, filtered speed and pitch angle at t = t0 are defined
as Pg0, ωg0, ωf0, and θ0, respectively. According to (1) and
(10), the aerodynamic torque and generator torque at t = t0
can be calculated and are defined as Tg0 and Ta0, respectively.

Based on linearization of the simplified nonlinear WT model
at the operating point, the incremental state space model for
Region I is derived by the following steps. Then, the model
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for Region II can be derived by neglecting the term related
to the pitch angle. The sign ∆ indicates the increment of a
variable.

Step 1: Derivative equations of ∆ωg, ∆ωf and ∆β.
Based on (4) and (5),

˙∆ωg =
ηg

Jt
(∆Ta − ηg∆Tg) +

ηg

Jt
(Ta0 − ηgTg0). (11)

Based on (8),

∆ω̇f = − 1

τf
∆ωf +

1

τf
∆ωg. (12)

By defining β , Kcθ = K0θ + Kθθ
2, (8) is transformed

into,

β = Kp(ωf − ωg rate) +Ki
ωf − ωg rate

s
. (13)

Based on (12) and (13),

∆̇β = Kp
˙∆ωf +Ki(ωf0 + ∆ωf − ωg rated) (14)

=
Kp

τf
∆ωg + (−Kp

τf
+Ki)∆ωf +Ki(ωf0 − ωg rated).

Step 2: Calculation of ∆Ta and ∆Tg.
Equation (10) is nonlinear. It could be approximately calcu-

lated around the operating point according to the Taylor series,

∆Tg ≈ −
Pg0

ω2
f0

∆ωf +
1

ωf0
∆Pwt

ref . (15)

Similarly, according to (1), ∆Ta can be calculated by,

∆Ta ≈
∂Ta

∂ωg

∣∣
(ωg0,vr0,θ0)

∆ωg +
∂Ta

∂β

∣∣
(ωg0,vr0,θ0)

∆β. (16)

In the following, ∂Ta

∂ωg
and ∂Ta

∂β are used for ∂Ta

∂ωg

∣∣
(ωg0,vr0,θ0)

and ∂Ta

∂β

∣∣
(ωg0,vr0,θ0)

, respectively.

Step 3: Calculation of ∂Ta

∂ωg
and ∂Ta

∂β .

By defining P0 , 0.5πρR2v3
r0, the partial derivatives of Ta

are derived according to (1),

∂Ta

∂ωg
= −ηgP0Cp(ωg0, vr0, θ0)

ω2
g0

+
ηgP0

ωg0

∂Cp(ωg, vr0, θ0)

∂ωg
,(17)

∂Ta

∂θ
=
ηgP0

ωg0

∂Cp(ωg0, vr0, θ)

∂θ
. (18)

Accordingly,

∂Ta

∂β
=
∂Ta

∂θ

∂θ

∂β
=
∂Ta

∂θ

1

K0 + 2Kθθ0
. (19)

Step 4: Calculation of ∂Cp

∂ωg
and ∂Cp

∂θ .
The function Cp(ωg, vr, θ) is nonlinear. Normally, it can be

expressed in two formats. For the first format, Cp is described
by an empirical formula [28], e.g.,

Cp(ωg, vr, θ) = 0.22(
116

λi
− 0.4θ − 5)e

12.5
λi , (20)

1

λi
=

1

λ+ 0.08θ
− 0.035

θ3 + 1
, λ =

ηgωgR

vr
.

For the second format, Cp is described in a lookup table
derived from the geometry of the blades with inputs λ and

θ [21], as shown in Fig. 4. The differences of λ and θ of
neighbouring cells are ∆λtab and ∆θtab, respectively. In this
study, the second format is used. The corresponding data
for this study can be accessed in the wind turbine model
of SimWindFarm−a publicly available Simulink toolbox for
dynamic wind farm modeling, simulation, and control [21].
The plot of Cp(λ, θ) based on the lookup table is shown in
Fig. 5.

1
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...

θmax

Fig. 4. Lookup table format of Cp(λ, θ).
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Fig. 5. Cp(λ, θ) based on the data from SimWindFarm [21].

According to vr0, ωg0, and θ0, the power coefficient at the
operating point Cp0 can be obtained based on the lookup table,
i.e., Cp0 = Cp(n,m), where n and m are the corresponding
row and column indices, respectively. ∂Cp

∂ωg
and ∂Cp

∂θ can be
calculated by,

∂Cp

∂ωg
=
Rηg

vr0

∂Cp

∂λ
,
∂Cp

∂λ
≈ Cp(n,m+1) − Cp0

∆λtab
, (21)

∂Cp

∂θ
≈ Cp(n+1,m) − Cp0

∆θtab
. (22)

Step 5: Formulation of the state space model.
According to (11)-(22), the continuous state space model

for Region I is formulated as,

ẋ = AIx+ BI∆P
wt
ref + EI, (23)

with

x = [∆ωg,∆β,∆ωf ]
′,

AI =


ηg

Jt

∂Ta

∂ωg

ηg

Jt

∂Ta

∂β

η2
gPg0

Jtω2
f0

Kp

τf
0 −Kp

τf
+Ki

1

τf
0 − 1

τf

 ,
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BI =

 −
η2

g

Jtωf0
0
0

 , EI =


ηg

Jt
(Ta0 − ηgTg0)

Ki(ωf0 − ωg rated)
0

 .
For Region II, the terms related to the pitch angle is

neglected,

x = [∆ωg,∆ωf ]
′,

AII =


ηg

Jt

∂Ta

∂ωg

η2
gPg0

Jtω2
f0

1

τf
− 1

τf

 ,BII =

 − η2
g

Jtωf0
0

 ,
EII =

[ ηg

Jt
(Ta0 − ηgTg0)

0

]
.

Step 5: Discretization.
The continuous state space model (23) is discretized with

the sampling period ts.
For Region I, the discrete state space model is,

x(k + 1) = Ad
I x(k) + Bd

I ∆Pwt
ref + Ed

I , (24)

with

Ad
I = eAIts ,Bd

I =

∫ ts

0

(eAItBI)dt,E
d
I =

∫ ts

0

(eAItEI)dt,

where k is the step index.
For Region II, the discrete state space model is,

x(k + 1) = Ad
IIx(k) + Bd

II∆P
wt
ref + Ed

II, (25)

with

Ad
II = eAIIts ,Bd

II =

∫ ts

0

(eAIItBII)dt,E
d
II =

∫ ts

0

(eAIItEII)dt.

B. Calculation of ∂Ts

∂Pwt
ref

The shaft torque Ts twists the low-speed shaft. According
to the motion equation,

ω̇r =
1

Jr
(Ta − Ts)⇒ Ts = Ta − Jrωr. (26)

Substituting (3) and (4) into (26),

Ts = Ta − Jrω̇r = Ta −
Jr

Jt
(Ta − ηgTg) (27)

=
Jt − Jr

Jt
Ta +

ηgJr

Jt
Tg

=
η2

gJg

Jt
Ta +

ηgJr

Jt
Tg.

Accordingly,

∆Ts =
η2

gJg

Jt
∆Ta +

ηgJr

Jt
∆Tg. (28)

During the sampling period, the operation region of the WT
may stay or change to another. When the current operating
point is in Region I, i.e., θ0 > 0, with the increase of ∆Pwt

ref ,
θ0 + ∆θ will decrease. If θ0 + ∆θ = 0, the system will
transit into Region II. The corresponding ∆Pwt

ref is defined
by ∆Pwt

I→II, which can be considered as the threshold.

According to (24),

∆β = Bd
I (2,1)∆P

wt
ref + Ed

I (2,1), (29)

where Bd
I (2,1) and Ed

I (2,1) are the matrix elements of Bd
I

and Ed
I , respectively. Since ∆β

∆θ ≈
∂β
∂θ = K0 + 2Kθθ0,

∆θ =
Bd

I (2,1)∆P
wt
ref + Ed

I (2,1)

K0 + 2Kθθ0
. (30)

According to ∆θ = −θ0, ∆Pwt
I→II can be derived by,

∆Pwt
I→II =

−θ0(K0 + 2Kθθ0)−Ed
I (2,1)

Bd
I (2,1)

. (31)

When the current operating point is in Region II, i.e., θ0 =
0, with the decrease of ∆Pwt

ref , ωf0 + ∆ωf will increase. If
ωf0 + ∆ωf = ωg rated, the system will transit into Region I.
The corresponding ∆Pwt

ref is defined by ∆Pwt
II→I, which can

be considered as the threshold.
According to (25),

∆ωf = Bd
II(2,1)∆P

wt
ref + Ed

II(2,1), (32)

where Bd
II(2,1) and Ed

II(2,1) are the matrix elements of
Bd

II and Ed
II, respectively.

According to ωf0 +∆ωf = ωg rated, ∆Pwt
II→I can be derived

by,

∆Pwt
II→I =

ωg rated − ωf0 −Ed
II(2,1)

Bd
II(2,1)

. (33)

In the following, 4 cases are summarized to calculate ∂Ts

∂Pwt
ref

.

Case 1: Region I→Region I.
If ∆Pwt

ref ≤ ∆Pwt
I→II, the system stays in Region I. Based

on (15) and (16), (28) can be transformed into,

∆Ts = CTs

I ∆x+ DTs

I ∆Pwt
ref , (34)

with

CTs

I =

[
η2

gJg

Jt

∂Ta

∂ωg

η2
gJg

Jt

∂Ta

∂β
−Pg0ηgJr

ω2
f0Jt

]
,

DTs

I =
ηgJr

Jtωf0
.

Based on (24) and (34),

∆Ts(k + 1) = (CTs

I Bd
I + DTs

I )∆Pwt
ref + CTs

I Ed
I . (35)

Hence,

∂Ts

∂Pwt
ref

≈ ∆Ts

∆Pwt
ref

= STs
1 +

Y Ts
1

∆Pwt
ref

, (36)

with STs
1 = CTs

I Bd
I +DTs

I , Y Ts
1 = CTs

I Ed
I . The subscript of

STs
1 and Y Ts

1 indicates the case index.

Case 2: Region II→Region II.
If ∆Pwt

ref > ∆Pwt
II→I, the system stays in Region II. Based

on (15) and (16), (28) can be transformed into,

∆Ts = CTs

II ∆x+ DTs

II ∆Pwt
ref , (37)

with

CTs

II =

[
η2

gJg

Jt

∂Ta

∂ωg
−Pg0ηgJr

ω2
f0Jt

]
,DTs

II =
ηgJr

Jtωf0
.
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Based on (25) and (37),

∆Ts(k + 1) = (CTs

II B
d
II + DTs

II )∆Pwt
ref + CTs

II E
d
II. (38)

Hence,

∂Ts

∂Pwt
ref

≈ ∆Ts

∆Pwt
ref

= STs
2 +

Y Ts
2

∆Pwt
ref

, (39)

with STs
2 = CTs

II B
d
II + DTs

II , Y Ts
2 = CTs

II E
d
II.

Case 3: Region I→Region II.

If ∆Pwt
ref > ∆Pwt

I→II, the system transits from Region I to
Region II. In that case, ∆Pwt

ref could be divided into two parts:
∆Pwt

I→II and ∆Pwt
ref−∆Pwt

I→II. The former part works in Region
I and the latter part works in Region II.

Accordingly, ∆Ts(k + 1) can be approximately calculated
by,

∆Ts(k + 1) ≈STs
1 ∆Pwt

I→II + Y Ts
1 (40)

+ STs
2 (∆Pwt

ref −∆Pwt
I→II) + Y Ts

2

≈STs
2 ∆Pwt

ref + Y Ts
1 + Y Ts

2 + (STs
1 − STs

2 )∆Pwt
I→II.

Hence,

∂Ts

∂Pwt
ref

≈ ∆Ts

∆Pwt
ref

= STs
3 +

Y Ts
3

∆Pwt
ref

, (41)

with STs
3 = STs

2 , Y Ts
3 = Y Ts

1 + Y Ts
2 + (STs

1 − STs
2 )∆Pwt

I→II.

Case 4: Region II→Region I.

If ∆Pwt
ref ≤ ∆Pwt

II→I, the system transits from Region II
to Region I. Similarly, ∆Pwt

ref could be divided into two parts:
∆Pwt

II→I and ∆Pwt
ref−∆Pwt

II→I. The former part works in Region
II and the latter part works in Region I. ∆Ts(k + 1) can be
approximately calculated by,

∆Ts(k + 1) ≈STs
2 ∆Pwt

II→I + Y Ts
2 (42)

+ STs
1 (∆Pwt

ref −∆Pwt
II→I) + STs

1

≈STs
1 ∆Pwt

ref + Y Ts
2 + Y Ts

1 + (STs
2 − STs

1 )∆Pwt
II→I.

Hence,

∂Ts

∂Pwt
ref

≈ ∆Ts

∆Pwt
ref

= STs
4 +

Y Ts
4

∆Pwt
ref

, (43)

with STs
4 = STs

1 , Y Ts
4 = Y Ts

2 + Y Ts
1 + (STs

2 − STs
1 )∆Pwt

II→I.
In the following, for generality, the subscripts of STs and

Y Ts are omitted. Based on the measurements, STs and Y Ts

can be calculated explicitly, which are sent to the wind farm
controller to formulate the optimal dispatch algorithm.

C. Calculation of ∂Ft

∂Pwt
ref

Similar to ∂Ts

∂Pwt
ref

, 4 cases are summarized to calculate ∂Ft

∂Pwt
ref

.

Case 1: Region I→Region I.

If ∆Pwt
ref ≤ ∆Pwt

I→II, the system stays in Region I. Ft can
be calculated by,

∆Ft = CFt

I x, (44)

with CFt

I = [ ∂Ft

∂ωg

∂Ft

∂β 0].

Based on (24) and (44),

∆Ft(k + 1) = CFt

I Bd
I ∆Pwt

ref + CFt

I Ed
I . (45)

Hence,

∂Ft

∂Pwt
ref

≈ ∆Ft

∆Pwt
ref

= SFt
1 +

Y Ft
1

∆Pwt
ref

, (46)

with SFt
1 = CFt

I Bd
I , Y Ft

1 = CFt

I Ed
I . The subscript of SFs

1

and Y Fs
1 indicates the case index.

Case 2: Region II→Region II.

If ∆Pwt
ref > ∆Pwt

II→I, the system stays in Region II. Ft can
be calculated by,

∆Ft = CFt

II x, (47)

with CFt

II = [ ∂Ft

∂ωg
0].

Based on (25) and (47),

∆Ft(k + 1) = CFt

II B
d
II∆P

wt
ref + CFt

II E
d
II. (48)

Hence,

∂Ft

∂Pwt
ref

≈ ∆Ft

∆Pwt
ref

= SFt
2 +

Y Ft
2

∆Pwt
ref

, (49)

with SFt
2 = CFt

II B
d
II, Y

Ft
1 = CFt

II E
d
II.

Case 3: Region I→Region II.

If ∆Pwt
ref > ∆Pwt

I→II, the system transits from Region I to
Region II. ∆Ft(k + 1) can be approximately calculated by,

∆Ft(k + 1) ≈SFt
1 ∆Pwt

I→II + Y Ft
1 (50)

+ SFt
2 (∆Pwt

ref −∆Pwt
I→II) + Y Ft

2

≈SFt
2 ∆Pwt

ref + Y Ft
1 + Y Ft

2 + (SFt
1 − SFt

2 )∆Pwt
I→II.

Hence,

∂Ft

∂Pwt
ref

≈ ∆Ft

∆Pwt
ref

= SFt
3 +

Y Ft
3

∆Pwt
ref

, (51)

with SFt
3 = SFt

2 , Y Ft
3 = Y Ft

1 + Y Ft
2 + (SFt

1 − SFt
2 )∆Pwt

I→II.

Case 4: Region II→Region I.

If ∆Pwt
ref ≤ ∆Pwt

II→I, the system transits from Region II to
Region I. ∆Ft(k + 1) can be approximately calculated by,

∆Ft(k + 1) ≈SFt
2 ∆Pwt

II→I + Y Ft
2 (52)

+ SFt
1 (∆Pwt

ref −∆Pwt
II→I) + SFt

1

≈SFt
1 ∆Pwt

ref + Y Ft
2 + Y Ft

1 + (SFt
2 − SFt

1 )∆Pwt
II→I.

Hence,

∂Ft

∂Pwt
ref

≈ ∆Ft

∆Pwt
ref

= SFt
4 +

Y Ft
4

∆Pwt
ref

, (53)

with SFt
4 = SFt

1 , Y Ft
4 = Y Ft

2 + Y Ft
1 + (SFt

2 − SFt
1 )∆Pwt

II→I.
According to (2), ∂Ft

∂ωg
and ∂Ft

∂β in (44) and (47) are the
functions of ∂Ct

∂ωg
and ∂Ct

∂β , respectively, i.e.,

∂Ft

∂ωg
=
P0

vr0

∂Ct

∂ωg
,
∂Ft

∂β
=
P0

vr0

∂Ct

∂β
. (54)
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The function Ct is nonlinear. Similar to Cp, Ct is also
described in a lookup table derived from the geometry of
the blades with inputs λ and θ [21]. The corresponding data
for this study can be obtained in the wind turbine model of
SimWindFarm. The plot of Ct(λ, θ) based on the lookup table
is shown in Fig. 6.

1
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,θ
)

Fig. 6. Ct(λ, θ) based on the data from SimWindFarm [21].

According to vr0, ωg0, and θ0, the power coefficient at the
operating point Ct0 can be found based on the lookup table,
i.e., Ct0 = Ct(n,m), where n and m are the corresponding
row and column indices, respectively. ∂Ct

∂ωg
and ∂Ct

∂β can be
calculated by,

∂Ct

∂ωg
=
Rηg

vr0

∂Ct

∂λ
,
∂Ct

∂λ
≈ Ct(n,m+1) − Ct0

∆λtab
, (55)

∂Ct

∂β
=
∂Ct

∂θ

1

K0 + 2Kθθ0
,
∂Ct

∂θ
≈ Ct(n+1,m) − Ct0

∆θtab
.(56)

In the following, for generality, the subscripts of SFt and
Y Ft are omitted. Based on the measurements, SFt and Y Ft

can be calculated explicitly, which are sent to the wind farm
controller to formulate the optimal dispatch algorithm.

VI. FORMULATION OF OPTIMAL DISPATCH ALGORITHM

A. Cost Function

Conventionally, the dispatch algorithm is based on a propor-
tional distribution of the availabe active power [7]. Suppose a
wind farm consists of Nwt WTs. According to [7], the power
reference of the ith WT is calculated by,

Pwt i
ref = αiP

wfc
ref , αi =

Pwt i
avi

Pwfc
avi

, Pwfc
avi =

Nwt∑
i=1

Pwt i
avi , (57)

where αi is the distribution factor of the ith WT and Pwt i
avi is

the available power of the ith WT.
In this study, based on the proportional dispatch algorithm,

the control objective is to dynamically redistribute power to
minimize the fatigue loads experienced by the WTs while
tracking Pwfc

ref all the time. The Pwfc
ref tracking is regarded

as an equality constraint, described in Section VI-B. The
minimization of the fatigue loads implies the minimization
of the variation of Ts and Ft, which is included in the cost
function.

By defining the control vector uref ,

uref , [∆Pwt 1
ref , · · · ,∆Pwt Nwt

ref ]′, uref ∈ RNwt×1,

the optimization problem can be formulated as,

min
uref

Nwt∑
i=1

‖ uiref + P ig0 − αiPwfc
ref ‖2QP︸ ︷︷ ︸

Term 1

(58)

+ ‖ ∂T is
∂Pwt i

ref

uiref ‖2QTs︸ ︷︷ ︸
Term 2

+ ‖ ∂F it
∂Pwt i

ref

uiref ‖2QFt︸ ︷︷ ︸
Term 3

,

where QP is the weighting factor which penalizes the devia-
tion of Pwt i

ref to its proportional value, QTs is the weighting
factor which penalizes the variation of Ts, and QFt

is the
weighting factor which penalizes the variation of Ft.

As shown in Term 1 of (58), uiref is around αiPwfc
ref − P ig0.

Therefore, by assuming uiref ≈ αiP
wfc
ref − P ig0, the case index

of the system during the control interval (Case 1∼Case 4)
in Subsection V-B and Subsection V-C could be estimated.
Accordingly, STs i and SYs i could be decided. Term 2 and
Term 3 in (58) can be transformed into,

min
uref

Nwt∑
i=1

‖ STs iuiref + Y Ts i ‖2QTs + ‖ SFt iuiref + Y Ft i ‖2QFt
.

(59)

B. Constraints

The constraints are summarized as follows:
1) Power Reference Tracking: According to Pwfc

ref , the total
power reference increments of WTs should follow,

Nwt∑
i=1

uiref = Pwfc
ref − Pwfc, (60)

where Pwfc is the measured output of the wind farm.
2) Local WT Constraint: For individual WTs, there exists

the available power limit,

uref ∈ [−Pg0, P
wt
avi − Pg0]. (61)

For generality, the turbine index i is omitted.
Besides, as mentioned in Subsection VI-A, the case index

of the system is estimated based on αPwfc
ref −Pg0. Accordingly,

uref should be limited in the local constraint to guarantee that
the system will be in the estimated case, i.e.,

If αPwfc
ref − Pg0 ≤ ∆Pwt

I→II(Case 1), uref ≤ ∆Pwt
I→II,

If αPwfc
ref − Pg0 > ∆Pwt

II→I(Case 2), uref > ∆Pwt
II→I,

If αPwfc
ref − Pg0 > ∆Pwt

I→II(Case 3), uref > ∆Pwt
I→II,

If αPwfc
ref − Pg0 ≤ ∆Pwt

II→I(Case 4), uref ≤ ∆Pwt
II→I.

(62)

By merging (61) and (62), the feasible operation range of
uref can be derived,

uref ∈ [umin, umax]. (63)

Accordingly, Pwt
min = Pg0 + umin and Pwt

max = Pg0 + umax.
The derived optimization problem can be reformulated as a

standard Quadratic Programming (QP) problem, whose rank
is equal to the number of WTs. It can be efficiently solved by
a number of commercial solvers.
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C. Discussion

The computation task of the optimal wind farm control
mainly consists of formulating and solving the optimal prob-
lem. Accordingly, the improvement with the proposed method
can be described in the following two aspects.

1) Formulation of the optimal problem: With the proposed
method, the operation region can be determined according to
the measurements. Accordingly, the offline calculated parame-
ters of the region can be derived and the load sensitivities can
be calculated based on the explicit equations. As such, a part
of the computation burden required for the online computation
can be removed. Moreover, the task has been distributed to
local controllers, which can be solved in parallel. With increas-
ing the number of WTs, this efficiency improvement becomes
higher. Therefore, the dedicated controller is computationally
viable for implementation in large wind farms.

2) Solution of the optimal problem: The time complexity,
expressed by O, is used to indicate the amount of time taken
by an algorithm. As mentioned in [29], QP problems can
be solved roughly with the same efficiency as LP problems.
The time complexity of the practical algorithm to solve LP
problem with n variables and m constraints requires roughly
O(n3m0.5 + n2m1.5). Compared with the method in [14],
the formulated optimal problem of the proposed method has
reduced optimization variables (n = Nwt) and constraints
(m = Nwt + 1). The corresponding time complexity of the
proposed method is less.

VII. CASE STUDIES

A wind farm comprised of 10×5MW WTs is used as the test
system. The wind field modeling considering turbulences and
wake effects for the wind farm is generated from SimWind-
Farm [21]. The control period of the wind farm control ts is
set as 1 s.

1
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Fig. 7. Pwfc
avi and P ref

wfc under both low and high wind conditions.

In order to test the efficacy of the developed dispatch
algorithm, the operation of the wind farm under both low
and high conditions were studied. The available power of the
wind farm Pwfc

avi under both conditions is shown in Fig. 7. The
typical active control scheme, balance control mode, is used
in this study, where the wind farm production is reduced to
specified constant levels [30]. The simulation results of the
proposed optimal algorithm (“OPT”) are compared with the
conventional proportional dispatch algorithm in [7] (“CON”).

The dynamic turbine behavior in a simulated wind field
yields time series of loads or stresses. Through post-
processing, the fatigue cycles based on the rainflow counting
method is derived to evaluate the performance of the proposed
scheme [31]. Besides, the Damage Equivalent Load (DEL),
based on Miner’s rule and dependent on materials properties
specified by the slope of the S-N curve, is used to quantify
the load minimization. In this study, the related calculations
are completed by MCrunch, developed by NREL [32].

A. Decision of Weighting Factors

The control objective of the cost function (58) consists of
the following two parts, which represent the minimization of
∆Ts and ∆Ft, respectively,

Obj1 ,
Nwt∑
i=1

‖∆T is ‖2,Obj2 ,
Nwt∑
i=1

‖∆F it ‖2. (64)

The weighting factors for Obj1 and Obj2 are QTs and QFt .
They can be considered as a whole part, which represents the
load minimization of the wind farm. By defining QLoad ,
QTs

+QFt
, it is obvious that larger QLoad

QP
can lead to a better

performance of the load alleviation. In this study, QP = 1 and
QLoad = 600. By defining γ , QTs

QLoad
,

QTs
= γQLoad, QFt

= (1− γ)QLoad. (65)

Fig. 8 shows the Pareto frontier under both low and high
wind conditions. By increasing the ratio γ, Obj1 decreases
while Obj2 increases. For the low wind condition, it can
be observed that γ = 0.0017 is the optimum solution. A
significant reduction of ∆Ft (Obj2) can be observed, which
is from 1 to 0.33 (67%). Comparably, the reduction of ∆Ts

(Obj1) is not sensitive, which is from 1 to 0.81 (19%). For
the high wind condition, it can be observed that γ = 0.003 is
the optimum solution. The reduction of ∆Ft (Obj2) is from
1 to 0.83 (17%). Comparably, the reduction of ∆Ts (Obj1) is
similar, which is from 1 to 0.84 (16%). 1
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Fig. 8. Pareto frontier under low and high wind conditions.

It can be observed that the optimum γ is related to the
available power. In this study, γ is adaptive to different wind
conditions and can be approximately calculated by,

γ ≈
∑Nwt

i=1 P
wt i
avi max

18000
, Pwt

avi max = 0.5πρR2v3
rC

max
p , (66)
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where Cmax
p is the maximum power coefficient. The unit of

Pwt
avi max is in MW. Accordingly, QTs and QFt can be derived,

which are used for the following case scenarios.

B. Operation under Low Wind Condition

The average wind speeds of all WTs (vavr) in the wind
farm are listed in Table II, which range from 8.85 m/s to
9.97 m/s. As shown in Fig. 9, three scenarios are defined
according to different Pwfc

ref : Pwfc
ref = 20 MW (Scenario 1),

Pwfc
ref = 17.5 MW (Scenario 2), and Pwfc

ref = 15 MW (Scenario
3). The simulation time is 300 s.
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Fig. 9. Pwfc
avi and Pwfc

ref under the low wind condition.

1) Power Reference Tracking: To evaluate the tracking
performance, the Root Mean Square Errors (RMSEs) for both
algorithms are calculated and listed in Table I. Both values
are identical and quite small, which implies the same tracking
performances of both algorithms.

TABLE I
RMSE COMPARISON UNDER LOW WIND CONDITION

Scenario CON OPT

Scenario 1 0.012 MW 0.012 MW
Scenario 2 0.003 MW 0.003 MW
Scenario 3 0.003 MW 0.003 MW

2) Fatigue Loads Reduction: Firstly, more details of the
simulation result for Scenario 2 are shown. A representative
WT (WT08) is used as an example. The variations of Ts with
the two algorithms are shown in Fig. 10(a). Compared with
the CON, the variation of the shaft torque ∆Ts is reduced with
the OPT. According to the cumulative rainflow cycles in Fig.
10(b), less cycles are found for the OPT, which implies less
fatigue loads experienced by the WT.

The variations of Mt with the two algorithms are shown in
Fig. 11(a). Compared with the CON, the variation of ∆Mt is
reduced with the OPT. According to the cumulative rainflow
cycles in Fig. 11(b), less cycles are found in the large tower
bending moment for the OPT, which implies less fatigue loads
experienced by the WT.

The calculated DELs of Ts and Mt for all WTs are listed in
Table II and III, respectively. As shown in Table II, with the
OPT, most DELs are reduced. From the whole wind farm point
of view, the total DEL of Ts is reduced by 2.11%. Similarly,
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Fig. 10. Ts of WT08 for Scenario 2.
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Fig. 11. Mt of WT08 for Scenario 2.

as shown in Table III, most DELs are reduced. The reduction
of the total DEL of Mt is 11.36%.

The simulation results of Scenario 1−3 are summarized
in Table IV. As mentioned in Section VII-A, ∆Ft is more
sensitive under the load wind condition. Therefore, for the
DELs of Mt, the reductions of the OPT are significant, which
range from 11.36% to 13.32%. Comparably, the changes of
the DELs of Ts for the OPT are limited, which range from
0.73% to −2.11%.

C. Operation under High Wind Condition

The average wind speeds of all WTs (vavr) in the wind
farm are listed in Table VI, which range from 12.85 m/s to
13.97 m/s. As shown in Fig. 12, three scenarios are defined
according to different Pwfc

ref : Pwfc
ref = 45 MW (Scenario 4),
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TABLE II
DELS OF WTS (Ts) FOR SCENARIO 2

No.
vavr DEL (CON) DEL (OPT)

Percentage
in m/s in MNm in MNm

WT01 8.85 1.88 1.86 -1.06%
WT02 9.09 2.10 2.07 -1.43%
WT03 9.46 1.75 1.64 -6.29%
WT04 9.10 1.86 1.74 -6.45%
WT05 9.75 1.47 1.51 2.72%
WT06 9.09 1.59 1.57 -1.26%
WT07 9.50 1.93 1.88 -2.59%
WT08 9.97 1.54 1.51 -1.95%
WT09 9.24 1.95 1.91 -2.05%
WT10 9.45 2.39 2.38 -0.42%

Summary 18.46 18.07 -2.11%

TABLE III
DELS OF WTS (Mt) FOR SCENARIO 2

No.
vavr DEL (CON) DEL (OPT)

Percentage
in m/s in MNm in MNm

WT01 8.85 26.70 26.00 -2.62%
WT02 9.09 31.72 25.15 -23.87%
WT03 9.46 27.77 21.19 -23.69%
WT04 9.10 34.94 27.95 -20.01%
WT05 9.75 19.35 20.16 4.19%
WT06 9.09 18.86 19.29 -2.28%
WT07 9.50 20.42 21.64 5.97%
WT08 9.97 22.82 20.02 -12.27%
WT09 9.24 33.41 30.32 -9.25%
WT10 9.45 33.40 28.06 -15.99%

Summary 269.39 238.78 -11.36%

TABLE IV
COMPARISON OF DELS FOR DIFFERENT SCENARIOS

Scenario Type
DEL (CON) DEL (OPT)

Percentage
in MNm in MNm

Scenario 1
Ts 21.94 22.20 0.73%
Mt 404.16 350.34 -13.32%

Scenario 2
Ts 18.46 18.07 -2.11%
Mt 269.39 238.78 -11.36%

Scenario 3
Ts 14.86 14.82 -0.27%
Mt 213.19 187.63 -11.99%

Pwfc
ref = 42.5 MW (Scenario 5), and Pwfc

ref = 40 MW (Scenario
6). The simulation time is 300 s.

1) Power Reference Tracking: To evaluate the tracking
performance, the RMSEs for both algorithms are calculated
and listed in Table V. Both values are quite small, which shows
good tracking performances of both algorithms. Most values
of the OPT are the same as these of the CON.

2) Fatigue Loads Reduction: Firstly, more details of the
simulation result for Scenario 5 are shown. A representative
WT (WT05) is used as an example. The variations of Ts

with the two algorithms are shown in Fig. 13(a). Compared
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Fig. 12. Pwfc
avi and Pwfc

ref under the high wind condition.

TABLE V
RMSE COMPARISON UNDER HIGH WIND CONDITION

Scenario CON OPT

Scenario 4 0.010 MW 0.009 MW
Scenario 5 0.009 MW 0.009 MW
Scenario 6 0.008 MW 0.008 MW

with the CON, the variation of ∆Ts is reduced with the OPT.
According to the cumulative rainflow cycles in Fig. 13(b), less
cycles are found for the OPT, which implies less fatigue loads
experienced by the WT. 1

0 50 100 150 200 250 300

3.2

3.4

3.6

Time (s)

Sh
af

t
to

rq
ue

(M
N

m
)

(a)

CON OPT

0 0.1 0.2 0.3 0.4 0.5 0.6
10−1

100

101

102

Shaft torsion torque (MNm)

C
um

.r
ai

nfl
ow

cy
cl

es

(b)

CON OPT

Fig. 13. Ts of WT05 for Scenario 5.

The variations of Mt with the two algorithms are shown
in Fig. 14(a). Compared with the CON, the variation of
∆Mt is reduced with the OPT. According to the cumulative
rainflow cycles in Fig. 14(b), less cycles are found in the large
tower moment for the OPT, which implies less fatigue loads
experienced by the WT.

The calculated DELs of Ts and Mt for all WTs are listed
in Table VI and VII, respectively. As shown in Table VI,
compared with the CON, all the DELs are reduced with the
OPT. The reduction values are from 0.00% to 39.62%. From



11
1

0 50 100 150 200 250 300

−80

−60

−40

−20

Time (s)

To
w

er
m

om
eh

nt
(M

N
m

)
(a)

CON OPT

0 10 20 30 40 50 60
10−1

100

101

102

Tower moment (MNm)

C
um

.r
ai

nfl
ow

cy
cl

es

(b)

CON OPT

Fig. 14. Mt of WT05 for Scenario 5.

the whole wind farm point of view, the total DEL of Ts is
reduced by 14.88%. Similarly, as shown in Table VII, most
DELs are reduced. The reduction of the total DEL of Mt is
21.19%.

TABLE VI
DELS OF WTS (Ts) FOR SCENARIO 5

No.
vavr DEL (CON) DEL (OPT)

Percentage
in m/s in MNm in MNm

WT01 12.85 1.44 1.21 -15.97%
WT02 13.09 1.37 1.19 -13.14%
WT03 13.46 1.35 1.11 -17.78%
WT04 13.10 1.52 1.43 -5.92%
WT05 13.75 0.53 0.32 -39.62%
WT06 13.09 0.61 0.45 -26.23%
WT07 13.50 0.36 0.32 -11.11%
WT08 13.97 0.57 0.57 -0.00%
WT09 13.24 0.45 0.36 -20.00%
WT10 13.45 1.21 1.05 -13.22%

Summary 9.41 8.01 -14.88%

The simulation results of Scenario 4−6 are summarized in
Table VIII. Compared with the CON, the DELs of both Ts

and Mt with the OPT are reduced significantly. Specifically,
for Ts, the reduction values range from 10.97% to 20.77%.
For Mt, the reduction values range from 16.24% to 25.37%.

3) Discussion: The relation between the DEL value and
Pwfc

ref is analyzed. By taking the DEL value of Pwfc
ref =

45 MW as the reference, different Pwfc
ref are sampled and

the corresponding DELs in p.u. are calculated. According to
these points, the fitted curve can be derived based on the
nonlinear least square algorithm, as shown in Fig. 15. It can be
observed that the DEL can be reduced by decreasing the wind
power generation. However, with smaller Pwfc

ref , the reduction
sensitivity becomes smaller. For the wind farm operator, the
damage to the WTs might be also considered to decide Pwfc

ref .

TABLE VII
DELS OF WTS (Mt) FOR SCENARIO 5

No.
vavr DEL (CON) DEL (OPT)

Percentage
in m/s in MNm in MNm

WT01 12.85 57.75 45.07 -21.96%
WT02 13.09 48.66 46.41 -4.62%
WT03 13.46 46.16 44.13 -4.40%
WT04 13.10 41.88 42.09 0.50%
WT05 13.75 61.38 27.65 -54.95%
WT06 13.09 49.60 26.56 -46.45%
WT07 13.50 27.31 24.39 -10.69%
WT08 13.97 51.74 48.97 -5.35%
WT09 13.24 32.40 28.54 -11.91%
WT10 13.45 54.32 37.54 -30.89%

Summary 471.20 371.35 -21.19%

TABLE VIII
COMPARISON OF DELS FOR DIFFERENT SCENARIOS

Scenario Type
DEL (CON) DEL (OPT)

Percentage
in MNm in MNm

Scenario 4
Ts 10.67 9.5 -10.97%
Mt 513.57 430.16 -16.24%

Scenario 5
Ts 9.41 8.01 -14.88%
Mt 471.20 371.35 -21.19%

Scenario 6
Ts 8.86 7.02 -20.77%
Mt 431.44 321.99 -25.37%

Sometimes, it might be more beneficial to sacrifice Pwfc
ref

to reduce the damages to the WTs. How to evaluate the
economical benefit of the DEL reduction and strike a balance
between the DEL reduction and wind power generation will
be studied in the future work.
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Fig. 15. Relation between DEL and Pwfc
ref .
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VIII. CONCLUSION

In this paper, an optimal dispatch algorithm based on fatigue
load sensitivity is developed for the active power control of
wind farms. The load sensitivity and feasible range of the
power reference for individual WTs are used to formulate the
optimal dispatch problem, which are calculated locally. With
this configuration, most computation tasks are distributed to
the local WT controllers. The complicated wind farm model
is not required and the computation burden of the wind farm
controller is largely reduced. Moreover, the explicit analytical
equations of the load sensitivity are derived to improve the
computation efficiency of the local controller. The proposed
dispatch algorithm is suitable for real-time control of large-
scale wind farms. Case studies show the developed algorithm
can achieve good performances of power tracking. Moreover,
the fatigue loads experienced by WTs are largely alleviated.

APPENDIX

The parameters of 5 MW wind turbine model are listed in
Table IX.

TABLE IX
PARAMETER OF 5 MW WIND TURBINE MODEL

Symbol Description value

η Multiplier ratio 97

R Rotor blade length (m) 63

H Height of the rotor center (m) 87.6

Jr Rotor inertia (kg·m2) 3.544 · 107

Jg Generator inertia (kg·m2) 534.116

ksh Drive train spring constant (N·m/rad) 8.676 · 108

csh Drive train damping constant 6.215 · 106

(N·m·s/rad)
Mtow Integrated tower mass (kg) 3.475 · 105

ωg rated Rated generator speed (rad/s) 122.91

ωr rated Rated rotor speed (rad/s) 1.26

θmax Max. pitch angle (deg) 90

θmin Min. pitch angle (deg) 0

Kp Proportional gain of the pitch control 0.2143

Ki Integral gain of the pitch control 0.0918

K0 Gain scheduling coefficient 1

Kθ Gain scheduling coefficient 2.1323
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