Technical University of Denmark

Archetypal analysis of auditory profiling data towards a clinical test battery

Sanchez Lopez, Raul; Bianchi, Federica; Santurette, Sébastien; Dau, Torsten

Publication date: 2016

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Sanchez Lopez, R., Bianchi, F., Santurette, S., & Dau, T. (2016). Archetypal analysis of auditory profiling data towards a clinical test battery. Poster session presented at ARCHES/ICANHEAR 2016, Zurich, Switzerland.

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Archetypal analysis of auditory profiling data BERR towards a clinical test battery

¹ Hearing Systems group, Department of Electrical Engineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark HEARING SYSTEMS ² Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen, Denmark

Introduction

Nowadays, the pure-tone audiogram alone is used for hearing-aid fitting and characterization of the degree of hearing loss. Nevertheless, some hearing-impaired listeners have shown a socalled speech communication handicap even though the audibility was compensated for by amplification. Plomp (1978) proposed a classification of the hearing loss based on speech intelligibility tests, the "audibility loss" and the "distortion loss". Therefore, a different fitting strategy may be needed for compensating the deficits of these two different classes.

The aim of the present study is to clarify which tests are needed (in addition to the audiogram) to classify the listeners in different hearing profiles.

I. Dimensionality Reduction: PCA

Hypothesis

- H1: Hearing-impaired listeners can the be grouped in 4 different profiles by identifying trends in the behavioral data. This can be done using unsupervised learning.
- **H2:** The test used for classifying the subjects can be reduced to only the most relevant tests using **supervised learning**.

Fig. 3: A) Principal component analysis of the dataset. After crossvalidation the optimal number of components was five.
B) PCA after dimensionality reduction by crossvalidation with the 5 variables higly correlated to PCA1 (~95%). C) same as
B) but for PCA2 (~73%). Proposed listening tests consisted of the 10 tests in B and C.

II & III. Archetypal analysis and Profile identification

Fig. 2: A) **Arquetypes,** trends found in the data for each profile and for the proposed listening tests. **4 archetypes** resulted from the achetypal analysis which could explain 88 % of the variance. B) Each listener is placed in the "Square Visualization" depending on the similarity to each **archetype.** Each listener will belong to the **auditory profile** of the closer archetype, which will be used in IV. Supervised learning.

Fig. 1: From the data set the dimensionality was reduced using principal component analysis. Archetypal analysis was used as a technique for data-driven prototype identification (Ragozini et al, 2016). The nearest profile was used to divide the subjects. Then, supervised learning (Decision trees) served to identify the most relevant tests for classification.

Test Battery for auditory profiling

Thorup et al. (2016) proposed an extended clinical test battery beyond the audiogram in hearing-aid candidates. In order to verify the hypothesis (fig. 2A). The data were re-analyzed using this approach.

IV. Supervised learning: Classification

Fig. 4: Supervised Learning. A) Decision tree obtained by using the raw data as an input and the **auditory profiles** as the output. The classification was based in the variables SRT_{ISTS} , IPD and Bpdicho. B) Boxplots of the Speech reception in noise ISTS (SRT_{ISTS}) C) the lowest frequency for detecting interaural phase differences (IPD) and D) Binaural pitch dichotic (Bpdich). The dashed lines correspond to the limits imposed in the decision tree.

BETTER HEARING

REHABILITATION

Domain

Test

Clinical Experimental Set-up	Audibility (AUD & SPEECH)	Pure-tone Audiogram Speech Audiometry
	Binaural processing (BIN)	Binaural Pitch* & IPD
	Speech recognition in noise (SIN)	Danish HINT in LTASS noise Danish HINT in ISTS noise
	Working memory (RS)	Reading Span
	Spectral and Temporal resolution (F-T Test)	F-T Test
	Loudness perception	ACALOS*
-	HA treatment evaluation	Gothenburg Questionnaire*

* Tests not included in Thorup et al. (2016)

References

Plomp, R. (1978). Auditory handicap of hearing impairment and the limited benefit of hearing aids. JASA, 63(2), 533-549. Strelcyk, O., & Dau, T. (2009). Relations between frequency selectivity, temporal fine-structure processing, and speech Ragozini, G., Palumbo, F., & D'Esposito, M. R. (2016). Archetypal analysis for data-driven prototype identification. reception in impaired hearing. *The Journal of the Acoustical Society of America*, 125, 3328–3345. Statistical Analysis and Data Mining: The ASA Data Science Journal, 4(5), 497–511. Thorup, N et al. (2016). Auditory profiling and hearing-aid satisfaction in hearing-aid candidates. Danish Medical Journal.

Conclusion

- The new analysis provides consistent evidence of the existence of different "auditory profiles" in the data.
- The most informative predictors for the profile identification of the HI listeners were related to temporal processing, loudness perception and speech perception.
- The current approach seems to be promising for analyzing other existing data towards an efficient auditory profiling.